51
|
Sweeney A, Mulvaney T, Maiorca M, Topf M. ChemEM: Flexible Docking of Small Molecules in Cryo-EM Structures. J Med Chem 2024; 67:199-212. [PMID: 38157562 PMCID: PMC10788898 DOI: 10.1021/acs.jmedchem.3c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Cryo-electron microscopy (cryo-EM), through resolution advancements, has become pivotal in structure-based drug discovery. However, most cryo-EM structures are solved at 3-4 Å resolution, posing challenges for small-molecule docking and structure-based virtual screening due to issues in the precise positioning of ligands and the surrounding side chains. We present ChemEM, a software package that employs cryo-EM data for the accurate docking of one or multiple ligands in a protein-binding site. Validated against a highly curated benchmark of high- and medium-resolution cryo-EM structures and the corresponding high-resolution controls, ChemEM displayed impressive performance, accurately placing ligands in all but one case, often surpassing cryo-EM PDB-deposited solutions. Even without including the cryo-EM density, the ChemEM scoring function outperformed the well-established AutoDock Vina score. Using ChemEM, we illustrate that valuable information can be extracted from maps at medium resolution and underline the utility of cryo-EM structures for drug discovery.
Collapse
Affiliation(s)
- Aaron Sweeney
- Leibniz Institute of Virology (LIV), Hamburg 20251, Germany
- Centre for Structural Systems Biology, Hamburg 22607, Germany
- Universitätsklinikum Hamburg
Eppendorf (UKE), Hamburg 20246, Germany
| | - Thomas Mulvaney
- Leibniz Institute of Virology (LIV), Hamburg 20251, Germany
- Centre for Structural Systems Biology, Hamburg 22607, Germany
- Universitätsklinikum Hamburg
Eppendorf (UKE), Hamburg 20246, Germany
| | - Mauro Maiorca
- Leibniz Institute of Virology (LIV), Hamburg 20251, Germany
- Centre for Structural Systems Biology, Hamburg 22607, Germany
- Universitätsklinikum Hamburg
Eppendorf (UKE), Hamburg 20246, Germany
| | | |
Collapse
|
52
|
Fang H, Niu B, Chen Q. The Discovery and Development of Glucagon-Like Peptide-1 Receptor Agonists. Curr Med Chem 2024; 31:2921-2943. [PMID: 37062063 DOI: 10.2174/0929867330666230416153301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 04/17/2023]
Abstract
Diabetes mellitus has become a serious life-threatening disease. As one of the new drugs for the treatment of diabetes, GLP-1 receptor agonists have attracted a lot of attention. Compared with traditional hypoglycemic drugs, GLP-1 receptor agonists have good safety and tolerability. To a certain extent, they overcome the problem of the short half-life of natural GLP-1 in vivo and can exist stably in patients for a long time, achieving good results in the treatment of diabetes, as well as improving the symptoms of some complications. The GLP-1 receptor agonists in the market are all peptide drugs. Compared with peptide drugs, small molecule agonists have the advantages of low cost and oral administration. In this article, we review the recent research progress of GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Haowen Fang
- School of Environmental and Chemical Engineering, Shanghai University, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, China
| | - Qin Chen
- School of Environmental and Chemical Engineering, Shanghai University, China
| |
Collapse
|
53
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
54
|
Ham D, Ahn D, Chung C, Chung KY. Isolation and conformational analysis of the Gα α-helical domain. Biochem Biophys Res Commun 2023; 685:149153. [PMID: 37913692 DOI: 10.1016/j.bbrc.2023.149153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Heterotrimeric G proteins (G proteins), composed of Gα, Gβ, and Gγ subunits, are the major downstream signaling molecules of the G protein-coupled receptors. Upon activation, Gα undergoes conformational changes both in the Ras-like domain (RD) and the α-helical domain (AHD), leading to the dissociation of Gα from Gβγ and subsequent regulation of downstream effector proteins. Gα RD mediate the most of classical functions of Gα. However, the role of Gα AHD is relatively not well elucidated despite its much higher sequence differences between Gα subtypes than those between Gα RD. Here, we isolated AHD from Gαs, Gαi1, and Gαq to provide tools for examining Gα AHD. We investigated the conformational dynamics of the isolated Gα AHD compared to those of the GDP-bound Gα. The results showed higher local conformational dynamics of Gα AHD not only at the domain interfaces but also in regions further away from the domain interfaces. This finding is consistent with the conformation of Gα AHD in the receptor-bound nucleotide-free state. Therefore, the isolated Gα AHD could provide a platform for studying the functions of Gα AHD, such as identification of the Gα AHD-binding proteins.
Collapse
Affiliation(s)
- Donghee Ham
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chiwoon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
55
|
Bingham M, Pesnot T, Scott AD. Biophysical screening and characterisation in medicinal chemistry. PROGRESS IN MEDICINAL CHEMISTRY 2023; 62:61-104. [PMID: 37981351 DOI: 10.1016/bs.pmch.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In the last two decades the use of biophysical assays and methods in medicinal chemistry has increased significantly, to meet the demands of the novel targets and modalities that drug discoverers are looking to tackle. The desire to obtain accurate affinities, kinetics, thermodynamics and structural data as early as possible in the drug discovery process has fuelled this innovation. This review introduces the principles underlying the techniques in common use and provides a perspective on the weaknesses and strengths of different methods. Case studies are used to further illustrate some of the applications in medicinal chemistry and a discussion of the emerging biophysical methods on the horizon is presented.
Collapse
|
56
|
Brown KA, Gellman SH. Effects of Replacing a Central Glycine Residue in GLP-1 on Receptor Affinity and Signaling Profile. Chembiochem 2023; 24:e202300504. [PMID: 37624685 PMCID: PMC10666649 DOI: 10.1002/cbic.202300504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Agonists of the glucagon-like peptide-1 receptor (GLP-1R) are used to treat diabetes and obesity. Cryo-EM structures indicate that GLP-1 is completely α-helical when bound to the GLP-1R. The mature form of this hormone, GLP-1(7-36), contains a glycine residue near the center (Gly22). Since glycine has the second-lowest α-helix propensity among the proteinogenic α-amino acid residues, and Gly22 does not appear to make direct contact with the receptor, we were motivated to explore the impact on agonist activity of altering the α-helix propensity at this position. We examined GLP-1 analogues in which Gly22 was replaced with L-Ala, D-Ala, or β-amino acid residues with varying helix propensities. The results suggest that the receptor is reasonably tolerant of variations in helix propensity, and that the functional receptor-agonist complex may comprise a conformational spectrum rather than a single fixed structure.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
57
|
Wright SC, Motso A, Koutsilieri S, Beusch CM, Sabatier P, Berghella A, Blondel-Tepaz É, Mangenot K, Pittarokoilis I, Sismanoglou DC, Le Gouill C, Olsen JV, Zubarev RA, Lambert NA, Hauser AS, Bouvier M, Lauschke VM. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. Nat Commun 2023; 14:6243. [PMID: 37813859 PMCID: PMC10562414 DOI: 10.1038/s41467-023-41893-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.
Collapse
Affiliation(s)
- Shane C Wright
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| | - Aikaterini Motso
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Koutsilieri
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Surgical Sciences, Uppsala University, Uppsala, 75185, Sweden
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, 64100, Italy
| | - Élodie Blondel-Tepaz
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Kimberley Mangenot
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | | | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jesper V Olsen
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
- The National Medical Research Center for Endocrinology, Moscow, 115478, Russia
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| | - Volker M Lauschke
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tübingen, Tübingen, Germany.
| |
Collapse
|
58
|
Aspnes GE, Bagley SW, Coffey SB, Conn EL, Curto JM, Edmonds DJ, Genovino J, Griffith DA, Ingle G, Jiao W, Limberakis C, Mathiowetz AM, Piotrowski DW, Rose CR, Ruggeri RB, Wei L. 6-Azaspiro[2.5]octanes as small molecule agonists of the human glucagon-like peptide-1 receptor. Bioorg Med Chem Lett 2023; 94:129454. [PMID: 37591316 DOI: 10.1016/j.bmcl.2023.129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Activation of the glucagon-like peptide-1 (GLP-1) receptor stimulates insulin release, lowers plasma glucose levels, delays gastric emptying, increases satiety, suppresses food intake, and affords weight loss in humans. These beneficial attributes have made peptide-based agonists valuable tools for the treatment of type 2 diabetes mellitus and obesity. However, efficient, and consistent delivery of peptide agents generally requires subcutaneous injection, which can reduce patient utilization. Traditional orally absorbed small molecules for this target may offer improved patient compliance as well as the opportunity for co-formulation with other oral therapeutics. Herein, we describe an SAR investigation leading to small-molecule GLP-1 receptor agonists that represent a series that parallels the recently reported clinical candidate danuglipron. In the event, identification of a benzyloxypyrimidine lead, using a sensitized high-throughput GLP-1 agonist assay, was followed by optimization of the SAR using substituent modifications analogous to those discovered in the danuglipron series. A new series of 6-azaspiro[2.5]octane molecules was optimized into potent GLP-1 agonists. Information gleaned from cryogenic electron microscope structures was used to rationalize the SAR of the optimized compounds.
Collapse
Affiliation(s)
- Gary E Aspnes
- Pfizer Medicine Design, Cambridge, MA 02139, United States
| | | | | | - Edward L Conn
- Pfizer Medicine Design, Groton, CT 06340, United States
| | - John M Curto
- Pfizer Medicine Design, Groton, CT 06340, United States
| | | | | | | | | | - Wenhua Jiao
- Pfizer Medicine Design, Groton, CT 06340, United States
| | | | | | | | - Colin R Rose
- Pfizer Medicine Design, Groton, CT 06340, United States
| | | | - Liuqing Wei
- Pfizer Medicine Design, Groton, CT 06340, United States
| |
Collapse
|
59
|
Li B, Maruszko K, Kim SK, Yang MY, Vo ADP, Goddard WA. Structure and Molecular Mechanism of Signaling for the Glucagon-like Peptide-1 Receptor Bound to Gs Protein and Exendin-P5 Biased Agonist. J Am Chem Soc 2023; 145:20422-20431. [PMID: 37672637 PMCID: PMC10777869 DOI: 10.1021/jacs.3c05996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of blood glucose and a prime target for the treatment of type II diabetes and obesity with multiple public drugs. Here we present a comprehensive computational analysis of the interactions of the activated GLP-1R-Gs signaling complex with a G protein biased agonist, Exendin P5 (ExP5), which possesses a unique N-terminal sequence responsible for the signal bias. Using a refined all-atom model of the ExP5-GLP-1R-Gs complex in molecular dynamics (MD) simulations, we propose a novel mechanism of conformation transduction in which the unique interaction network of ExP5 N-terminus propagates the binding signal across an array of conserved residues at the transmembrane domain to enhance Gs protein coupling at the cytoplasmic end of the receptor. Our simulations reveal previously unobserved interactions important for activation by ExP5 toward GDP-GTP signaling, providing new insights into the mechanism of class B G protein-coupled receptor (GPCR) signaling. These findings offer a framework for the structure-based design of more effective therapeutics.
Collapse
Affiliation(s)
- Bo Li
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Krystyna Maruszko
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Moon Young Yang
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Amy-Doan P Vo
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
60
|
Gibadullin R, Kim TW, Tran LML, Gellman SH. Hormone Analogues with Unique Signaling Profiles from Replacement of α-Residue Triads with β/γ Diads. J Am Chem Soc 2023; 145:20539-20550. [PMID: 37697685 PMCID: PMC10588032 DOI: 10.1021/jacs.3c06703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a β-amino acid residue and a γ-amino acid residue. The β/γ diad retains the number of backbone atoms in the ααα triad. Because the β and γ residue each bear a single side chain, we implemented ααα→βγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/β/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→βγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tae Wook Kim
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
61
|
Zhao LH, He Q, Yuan Q, Gu Y, He X, Shan H, Li J, Wang K, Li Y, Hu W, Wu K, Shen J, Xu HE. Conserved class B GPCR activation by a biased intracellular agonist. Nature 2023; 621:635-641. [PMID: 37524305 DOI: 10.1038/s41586-023-06467-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Class B G-protein-coupled receptors (GPCRs), including glucagon-like peptide 1 receptor (GLP1R) and parathyroid hormone 1 receptor (PTH1R), are important drug targets1-5. Injectable peptide drugs targeting these receptors have been developed, but orally available small-molecule drugs remain under development6,7. Here we report the high-resolution structure of human PTH1R in complex with the stimulatory G protein (Gs) and a small-molecule agonist, PCO371, which reveals an unexpected binding mode of PCO371 at the cytoplasmic interface of PTH1R with Gs. The PCO371-binding site is totally different from all binding sites previously reported for small molecules or peptide ligands in GPCRs. The residues that make up the PCO371-binding pocket are conserved in class B GPCRs, and a single alteration in PTH2R and two residue alterations in GLP1R convert these receptors to respond to PCO371. Functional assays reveal that PCO371 is a G-protein-biased agonist that is defective in promoting PTH1R-mediated arrestin signalling. Together, these results uncover a distinct binding site for designing small-molecule agonists for PTH1R and possibly other members of the class B GPCRs and define a receptor conformation that is specific only for G-protein activation but not arrestin signalling. These insights should facilitate the design of distinct types of class B GPCR small-molecule agonist for various therapeutic indications.
Collapse
MESH Headings
- Humans
- Arrestin/metabolism
- Binding Sites
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Imidazolidines/pharmacology
- Ligands
- Peptides/pharmacology
- Protein Conformation
- Receptor, Parathyroid Hormone, Type 1/agonists
- Receptor, Parathyroid Hormone, Type 1/classification
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Spiro Compounds/pharmacology
- Drug Design
Collapse
Affiliation(s)
- Li-Hua Zhao
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qian He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yimin Gu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Shan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junrui Li
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
62
|
Vishnoi S, Bhattacharya S, Walsh EM, Okoh GI, Thompson D. Computational Peptide Design Cotargeting Glucagon and Glucagon-like Peptide-1 Receptors. J Chem Inf Model 2023; 63:4934-4947. [PMID: 37523325 PMCID: PMC10428222 DOI: 10.1021/acs.jcim.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/02/2023]
Abstract
Peptides are sustainable alternatives to conventional therapeutics for G protein-coupled receptor (GPCR) linked disorders, promising biocompatible and tailorable next-generation therapeutics for metabolic disorders including type-2 diabetes, as agonists of the glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R). However, single agonist peptides activating GLP-1R to stimulate insulin secretion also suppress obesity-linked glucagon release. Hence, bioactive peptides cotargeting GCGR and GLP-1R may remediate the blood glucose and fatty acid metabolism imbalance, tackling both diabetes and obesity to supersede current monoagonist therapy. Here, we design and model optimized peptide sequences starting from peptide sequences derived from earlier phage-displayed library screening, identifying those with predicted molecular binding profiles for dual agonism of GCGR and GLP-1R. We derive design rules from extensive molecular dynamics simulations based on peptide-receptor binding. Our newly designed coagonist peptide exhibits improved predicted coupled binding affinity for GCGR and GLP-1R relative to endogenous ligands and could in the future be tested experimentally, which may provide superior glycemic and weight loss control.
Collapse
Affiliation(s)
- Shubham Vishnoi
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | | | | | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
63
|
Popoviciu MS, Păduraru L, Yahya G, Metwally K, Cavalu S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int J Mol Sci 2023; 24:10449. [PMID: 37445623 DOI: 10.3390/ijms241310449] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity is a chronic disease with high prevalence and associated comorbidities, making it a growing global concern. These comorbidities include type 2 diabetes, hypertension, ventilatory dysfunction, arthrosis, venous and lymphatic circulation diseases, depression, and others, which have a negative impact on health and increase morbidity and mortality. GLP-1 agonists, used to treat type 2 diabetes, have been shown to be effective in promoting weight loss in preclinical and clinical studies. This review summarizes numerous studies conducted on the main drugs in the GLP-1 agonists class, outlining the maximum achievable weight loss. Our aim is to emphasize the active role and main outcomes of GLP-1 agonists in promoting weight loss, as well as in improving hyperglycemia, insulin sensitivity, blood pressure, cardio-metabolic, and renal protection. We highlight the pleiotropic effects of these medications, along with their indications, contraindications, and precautions for both diabetic and non-diabetic patients, based on long-term follow-up studies.
Collapse
Affiliation(s)
- Mihaela-Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410073 Oradea, Romania
| | - Lorena Păduraru
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410073 Oradea, Romania
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410073 Oradea, Romania
| |
Collapse
|
64
|
Wang H, Hu W, Xu T, Yuan Y, Liu D, Wüthrich K. Selective polypeptide ligand binding to the extracellular surface of the transmembrane domains of the class B GPCRs GLP-1R and GCGR. iScience 2023; 26:106918. [PMID: 37332600 PMCID: PMC10276138 DOI: 10.1016/j.isci.2023.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 05/14/2023] [Indexed: 06/20/2023] Open
Abstract
Crystal and cryo-EM structures of the glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) bound with their peptide ligands have been obtained with full-length constructs, indicating that the extracellular domain (ECD) is indispensable for specific ligand binding. This article complements these data with studies of ligand recognition of the two receptors in solution. Paramagnetic NMR relaxation enhancement measurements using dual labeling with fluorine-19 probes on the receptor and nitroxide spin labels on the peptide ligands provided new insights. The glucagon-like peptide-1 (GLP-1) was found to interact with GLP-1R by selective binding to the extracellular surface. The ligand selectivity toward the extracellular surface of the receptor was preserved in the transmembrane domain (TMD) devoid of the ECD. The dual labeling approach further provided evidence of cross-reactivity of GLP-1R and GCGR with glucagon and GLP-1, respectively, which is of interest in the context of medical treatments using combinations of the two polypeptides.
Collapse
Affiliation(s)
- Huixia Wang
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wanhui Hu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Tiandan Xu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya Yuan
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Dongsheng Liu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
65
|
Gibadullin R, Cary BP, Gellman SH. Differential Responses of the GLP-1 and GLP-2 Receptors to N-Terminal Modification of a Dual Agonist. J Am Chem Soc 2023; 145:12105-12114. [PMID: 37235770 PMCID: PMC10335629 DOI: 10.1021/jacs.3c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Class B1 G protein-coupled receptors (GPCRs), collectively, respond to a diverse repertoire of extracellular polypeptide agonists and transmit the encoded messages to cytosolic partners. To fulfill these tasks, these highly mobile receptors must interconvert among conformational states in response to agonists. We recently showed that conformational mobility in polypeptide agonists themselves plays a role in activation of one class B1 GPCR, the receptor for glucagon-like peptide-1 (GLP-1). Exchange between helical and nonhelical conformations near the N-termini of agonists bound to the GLP-1R was revealed to be critical for receptor activation. Here, we ask whether agonist conformational mobility plays a role in the activation of a related receptor, the GLP-2R. Using variants of the hormone GLP-2 and the designed clinical agonist glepaglutide (GLE), we find that the GLP-2R is quite tolerant of variations in α-helical propensity near the agonist N-terminus, which contrasts with signaling at the GLP-1R. A fully α-helical conformation of the bound agonist may be sufficient for GLP-2R signal transduction. GLE is a GLP-2R/GLP-1R dual agonist, and the GLE system therefore enables direct comparison of the responses of these two GPCRs to a single set of agonist variants. This comparison supports the conclusion that the GLP-1R and GLP-2R differ in their response to variations in helical propensity near the agonist N-terminus. The data offer a basis for development of new hormone analogues with distinctive and potentially useful activity profiles; for example, one of the GLE analogues is a potent agonist of the GLP-2R but also a potent antagonist of the GLP-1R, a novel form of polypharmacology.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brian P. Cary
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
66
|
Chen L, Yun Y, Guo S, Wang X, Xiong M, Zhao T, Xu T, Shen J, Xie X, Wang K. Discovery of Novel 5,6-Dihydro-1,2,4-triazine Derivatives as Efficacious Glucagon-Like Peptide-1 Receptor Agonists. J Med Chem 2023. [PMID: 37286364 DOI: 10.1021/acs.jmedchem.3c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Danuglipron is the most representative small-molecule agonist of the glucagon-like peptide-1 receptor (GLP-1R) and has received considerable attention due to positive results in the treatment of type 2 diabetes mellitus (T2DM) and obesity in clinical trials. However, hERG inhibition, lower activity than endogenous GLP-1, and a short action time represent limitations in terms of feasible application. In this study, we report a new class of 5,6-dihydro-1,2,4-triazine derivatives that serve to eliminate potential hERG inhibition caused by the piperidine ring of danuglipron. Applying systematic in vitro to in vivo screening, we have identified compound 42 as a highly potent and selective GLP-1R agonist, which delivers improved (7-fold) efficacy in stimulating cAMP accumulation compared with danuglipron and which exhibits acceptable drug-like properties. Furthermore, 42 significantly reduces glucose excursion and inhibits food intake of hGLP-1R Knock-In mice. These effects are longer-lasting than that shown by danuglipron, demonstrating feasibility in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
67
|
Duffet L, Williams ET, Gresch A, Chen S, Bhat MA, Benke D, Hartrampf N, Patriarchi T. Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution. eLife 2023; 12:86628. [PMID: 37265064 DOI: 10.7554/elife.86628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Simin Chen
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Nina Hartrampf
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
68
|
Kobayashi K, Kawakami K, Kusakizako T, Tomita A, Nishimura M, Sawada K, Okamoto HH, Hiratsuka S, Nakamura G, Kuwabara R, Noda H, Muramatsu H, Shimizu M, Taguchi T, Inoue A, Murata T, Nureki O. Class B1 GPCR activation by an intracellular agonist. Nature 2023; 618:1085-1093. [PMID: 37286611 PMCID: PMC10307627 DOI: 10.1038/s41586-023-06169-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and β-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than β-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.
Collapse
Affiliation(s)
- Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Preferred Networks, Tokyo, Japan
| | - Michihiro Nishimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sawada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Gaku Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Riku Kuwabara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroshi Noda
- Research Division, Chugai Pharmaceutical, Shizuoka, Japan
| | | | - Masaru Shimizu
- Research Division, Chugai Pharmaceutical, Shizuoka, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
69
|
Vuckovic Z, Wang J, Pham V, Mobbs JI, Belousoff MJ, Bhattarai A, Burger WAC, Thompson G, Yeasmin M, Nawaratne V, Leach K, van der Westhuizen ET, Khajehali E, Liang YL, Glukhova A, Wootten D, Lindsley CW, Tobin A, Sexton P, Danev R, Valant C, Miao Y, Christopoulos A, Thal DM. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 2023; 12:83477. [PMID: 37248726 DOI: 10.7554/elife.83477] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.
Collapse
Affiliation(s)
- Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Vindhya Nawaratne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Craig W Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, United States
| | - Andrew Tobin
- The Centre for Translational Pharmacology, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
70
|
Yuan S, Xia L, Wang C, Wu F, Zhang B, Pan C, Fan Z, Lei X, Stevens RC, Sali A, Sun L, Shui W. Conformational Dynamics of the Activated GLP-1 Receptor-G s Complex Revealed by Cross-Linking Mass Spectrometry and Integrative Structure Modeling. ACS CENTRAL SCIENCE 2023; 9:992-1007. [PMID: 37252352 PMCID: PMC10214531 DOI: 10.1021/acscentsci.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 05/31/2023]
Abstract
Despite advances in characterizing the structures and functions of G protein-coupled receptors (GPCRs), our understanding of GPCR activation and signaling is still limited by the lack of information on conformational dynamics. It is particularly challenging to study the dynamics of GPCR complexes with their signaling partners because of their transient nature and low stability. Here, by combining cross-linking mass spectrometry (CLMS) with integrative structure modeling, we map the conformational ensemble of an activated GPCR-G protein complex at near-atomic resolution. The integrative structures describe heterogeneous conformations for a high number of potential alternative active states of the GLP-1 receptor-Gs complex. These structures show marked differences from the previously determined cryo-EM structure, especially at the receptor-Gs interface and in the interior of the Gs heterotrimer. Alanine-scanning mutagenesis coupled with pharmacological assays validates the functional significance of 24 interface residue contacts only observed in the integrative structures, yet absent in the cryo-EM structure. Through the integration of spatial connectivity data from CLMS with structure modeling, our study provides a new approach that is generalizable to characterizing the conformational dynamics of GPCR signaling complexes.
Collapse
Affiliation(s)
- Shijia Yuan
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha Xia
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Wang
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Wu
- Structure
Therapeutics, South San Francisco, California 94080, United States
| | - Bingjie Zhang
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Chen Pan
- National
Facility for Protein Science in Shanghai, Shanghai Advanced Research
Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Zhiran Fan
- Biocreater
(WuHan) Biotechnology Co., Ltd, Wuhan 430075, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, Department of
Chemical Biology, College of Chemistry and Molecular Engineering,
Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Raymond C. Stevens
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- Structure
Therapeutics, South San Francisco, California 94080, United States
| | - Andrej Sali
- Quantitative
Biosciences Institute, University of California,
San Francisco, San Francisco, California 94143, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94143, United States
| | - Liping Sun
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Shui
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|
71
|
Ahn D, Provasi D, Duc NM, Xu J, Salas-Estrada L, Spasic A, Yun MW, Kang J, Gim D, Lee J, Du Y, Filizola M, Chung KY. Gαs slow conformational transition upon GTP binding and a novel Gαs regulator. iScience 2023; 26:106603. [PMID: 37128611 PMCID: PMC10148139 DOI: 10.1016/j.isci.2023.106603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
G proteins are major signaling partners for G protein-coupled receptors (GPCRs). Although stepwise structural changes during GPCR-G protein complex formation and guanosine diphosphate (GDP) release have been reported, no information is available with regard to guanosine triphosphate (GTP) binding. Here, we used a novel Bayesian integrative modeling framework that combines data from hydrogen-deuterium exchange mass spectrometry, tryptophan-induced fluorescence quenching, and metadynamics simulations to derive a kinetic model and atomic-level characterization of stepwise conformational changes incurred by the β2-adrenergic receptor (β2AR)-Gs complex after GDP release and GTP binding. Our data suggest rapid GTP binding and GTP-induced dissociation of Gαs from β2AR and Gβγ, as opposed to a slow closing of the Gαs α-helical domain (AHD). Yeast-two-hybrid screening using Gαs AHD as bait identified melanoma-associated antigen D2 (MAGE D2) as a novel AHD-binding protein, which was also shown to accelerate the GTP-induced closing of the Gαs AHD.
Collapse
Affiliation(s)
- Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Xu
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aleksandar Spasic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Min Woo Yun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyeong Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongmin Gim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
72
|
Cary BP, Gerrard EJ, Belousoff MJ, Fletcher MM, Jiang Y, Russell IC, Piper SJ, Wootten D, Sexton PM. Molecular insights into peptide agonist engagement with the PTH receptor. Structure 2023:S0969-2126(23)00125-9. [PMID: 37148874 DOI: 10.1016/j.str.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
The parathyroid hormone (PTH) 1 receptor (PTH1R) is a G protein-coupled receptor (GPCR) that regulates skeletal development and calcium homeostasis. Here, we describe cryo-EM structures of the PTH1R in complex with fragments of the two hormones, PTH and PTH-related protein, the drug abaloparatide, as well as the engineered tool compounds, long-acting PTH (LA-PTH) and the truncated peptide, M-PTH(1-14). We found that the critical N terminus of each agonist engages the transmembrane bundle in a topologically similar fashion, reflecting similarities in measures of Gαs activation. The full-length peptides induce subtly different extracellular domain (ECD) orientations relative to the transmembrane domain. In the structure bound to M-PTH, the ECD is unresolved, demonstrating that the ECD is highly dynamic when unconstrained by a peptide. High resolutions enabled identification of water molecules near peptide and G protein binding sites. Our results illuminate the action of orthosteric agonists of the PTH1R.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Elliot J Gerrard
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Yan Jiang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Isabella C Russell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Sarah J Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
73
|
Darbalaei S, Chang RL, Zhou QT, Chen Y, Dai AT, Wang MW, Yang DH. Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists. Acta Pharmacol Sin 2023; 44:421-433. [PMID: 35953646 PMCID: PMC9889767 DOI: 10.1038/s41401-022-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
The paradigm of one drug against multiple targets, known as unimolecular polypharmacology, offers the potential to improve efficacy while overcoming some adverse events associated with the treatment. This approach is best exemplified by targeting two or three class B1 G protein-coupled receptors, namely, glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic polypeptide receptor for treatment of type 2 diabetes and obesity. Some of the dual and triple agonists have already shown initial successes in clinical trials, although the molecular mechanisms underlying their multiplexed pharmacology remain elusive. In this study we employed structure-based site-directed mutagenesis together with pharmacological assays to compare agonist efficacy across two key signaling pathways, cAMP accumulation and ERK1/2 phosphorylation (pERK1/2). Three dual agonists (peptide 15, MEDI0382 and SAR425899) and one triple agonist (peptide 20) were evaluated at GLP-1R and GCGR, relative to the native peptidic ligands (GLP-1 and glucagon). Our results reveal the existence of residue networks crucial for unimolecular agonist-mediated receptor activation and their distinct signaling patterns, which might be useful to the rational design of biased drug leads.
Collapse
Affiliation(s)
- Sanaz Darbalaei
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru-Lue Chang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - An-Tao Dai
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - De-Hua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| |
Collapse
|
74
|
Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P, Du Y, Jin C, Kobilka BK. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat Commun 2023; 14:376. [PMID: 36690613 PMCID: PMC9870890 DOI: 10.1038/s41467-022-35726-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.
Collapse
Affiliation(s)
- Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
- Innovation Academy for Precision Measurement Science and Technology, CAS, 430071, Wuhan, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pharmacology, Medical School, University of Michigan 1150 Medical Center Dr., 1315 Medical Science Research Bldg III, Ann Arbor, MI, 48109, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuyong Tao
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China.
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
75
|
Wan W, Qin Q, Xie L, Zhang H, Wu F, Stevens RC, Liu Y. GLP-1R Signaling and Functional Molecules in Incretin Therapy. Molecules 2023; 28:751. [PMID: 36677809 PMCID: PMC9866634 DOI: 10.3390/molecules28020751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a critical therapeutic target for type 2 diabetes mellitus (T2DM). The GLP-1R cellular signaling mechanism relevant to insulin secretion and blood glucose regulation has been extensively studied. Numerous drugs targeting GLP-1R have entered clinical treatment. However, novel functional molecules with reduced side effects and enhanced therapeutic efficacy are still in high demand. In this review, we summarize the basis of GLP-1R cellular signaling, and how it is involved in the treatment of T2DM. We review the functional molecules of incretin therapy in various stages of clinical trials. We also outline the current strategies and emerging techniques that are furthering the development of novel therapeutic drugs for T2DM and other metabolic diseases.
Collapse
Affiliation(s)
- Wenwei Wan
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qikai Qin
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanqing Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Fan Wu
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
76
|
Xue H, Xing HJ, Wang B, Fu C, Zhang YS, Qiao X, Guo C, Zhang XL, Hu B, Zhao X, Deng LJ, Zhu XC, Zhang Y, Liu YF. Cinchonine, a Potential Oral Small-Molecule Glucagon-Like Peptide-1 Receptor Agonist, Lowers Blood Glucose and Ameliorates Non-Alcoholic Steatohepatitis. Drug Des Devel Ther 2023; 17:1417-1432. [PMID: 37197367 PMCID: PMC10184894 DOI: 10.2147/dddt.s404055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Purpose The glucagon-like peptide-1 receptor (GLP-1R) is an effective therapeutic target for type 2 diabetes mellitus (T2DM) and non-alcoholic steatohepatitis (NASH). Research has focused on small-molecule GLP-1R agonists because of their ease of use in oral formulations and improved patient compliance. However, no small-molecule GLP-1R agonists are currently available in the market. We aimed to screen for a potential oral small-molecule GLP-1R agonist and evaluated its effect on blood glucose and NASH. Methods The Connectivity map database was used to screen for candidate small-molecule compounds. Molecular docking was performed using SYBYL software. Rat pancreatic islets were incubated in different concentrations glucose solutions, with cinchonine or Exendin (9-39) added to determine insulin secretion levels. C57BL/6 mice, GLP-1R-/- mice and hGLP-1R mice were used to conduct oral glucose tolerance test. In addition, we fed ob/ob mice with the GAN diet to induce the NASH model. Cinchonine (50 mg/kg or 100 mg/kg) was administered orally twice daily to the mice. Serum liver enzymes were measured using biochemical analysis. Liver tissues were examined using Hematoxylin-eosin staining, Oil Red O staining and Sirius Red staining. Results Based on the small intestinal transcriptome of geniposide, a recognized small-molecule GLP-1R agonist, we identified that cinchonine exerted GLP-1R agonist-like effects. Cinchonine had a good binding affinity for GLP-1R. Cinchonine promoted glucose-dependent insulin secretion, which could be attenuated significantly by Exendin (9-39), a specific GLP-1R antagonist. Moreover, cinchonine could reduce blood glucose in C57BL/6 and hGLP-1R mice, an effect that could be inhibited with GLP-1R knockout. In addition, cinchonine reduced body weight gain and food intake in ob/ob-GAN NASH mice dose-dependently. 100 mg/kg cinchonine significantly improved liver function by reducing the ALT, ALP and LDH levels. Importantly, 100 mg/kg cinchonine ameliorated hepatic steatosis and fibrosis in NASH mice. Conclusion Cinchonine, a potential oral small-molecule GLP-1R agonist, could reduce blood glucose and ameliorate NASH, providing a strategy for developing small-molecule GLP-1R agonists.
Collapse
Affiliation(s)
- Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Hao-Jie Xing
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Bin Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Chao Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yu-Shan Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xi Qiao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xiao-Li Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Bin Hu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Li-Jiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xiao-Chan Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Correspondence: Yi Zhang; Yun-Feng Liu, Tel +86-18835102847; +86-18703416169, Email ;
| | - Yun-Feng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
77
|
Li M, Bao Y, Xu R, Li M, Xi L, Guo J. Understanding the Allosteric Modulation of PTH1R by a Negative Allosteric Modulator. Cells 2022; 12:cells12010041. [PMID: 36611834 PMCID: PMC9818451 DOI: 10.3390/cells12010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The parathyroid hormone type 1 receptor (PTH1R) acts as a canonical class B G protein-coupled receptor, regulating crucial functions including calcium homeostasis and bone formation. The identification and development of PTH1R non-peptide allosteric modulators have obtained widespread attention. It has been found that a negative allosteric modulator (NAM) could inhibit the activation of PTH1R, but the implied mechanism remains unclear. Herein, extensive molecular dynamics simulations together with multiple analytical approaches are utilized to unravel the mechanism of PTH1R allosteric inhibition. The results suggest that the binding of NAM destabilizes the structure of the PTH1R-PTH-spep/qpep (the C terminus of Gs/Gq proteins) complexes. Moreover, the presence of NAM weakens the binding of PTH/peps (spep and qpep) and PTH1R. The intra- and inter-molecular couplings are also weakened in PTH1R upon NAM binding. Interestingly, compared with our previous study of the positive allosteric effects induced by extracellular Ca2+, the enhanced correlation between the PTH and G-protein binding sites is significantly reduced by the replacement of this negative allosteric regulator. Our findings might contribute to the development of new therapeutic agents for diseases caused by the abnormal activation of PTH1R.
Collapse
Affiliation(s)
- Mengrong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaomiao Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Xi
- Office of Institution of Drug Clinical Trial, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao 999078, China
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao 999078, China
- Correspondence:
| |
Collapse
|
78
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
79
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
80
|
Piper SJ, Deganutti G, Lu J, Zhao P, Liang YL, Lu Y, Fletcher MM, Hossain MA, Christopoulos A, Reynolds CA, Danev R, Sexton PM, Wootten D. Understanding VPAC receptor family peptide binding and selectivity. Nat Commun 2022; 13:7013. [PMID: 36385145 PMCID: PMC9668914 DOI: 10.1038/s41467-022-34629-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.
Collapse
Affiliation(s)
- Sarah J. Piper
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Giuseppe Deganutti
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK
| | - Jessica Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Peishen Zhao
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Yi-Lynn Liang
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,Present Address: Confo TherapeuticsTechnologiepark 94, Ghent (Zwijnaarde), 9052 Belgium
| | - Yao Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Madeleine M. Fletcher
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.454018.c0000 0004 0632 8971Present Address: GlaxoSmithKline, Abbotsford, 3067 VIC Australia
| | - Mohammed Akhter Hossain
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Arthur Christopoulos
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Christopher A. Reynolds
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK ,grid.8356.80000 0001 0942 6946School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Radostin Danev
- grid.26999.3d0000 0001 2151 536XGraduate School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Patrick M. Sexton
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Denise Wootten
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| |
Collapse
|
81
|
Poudel H, Leitner DM. Energy Transport in Class B GPCRs: Role of Protein-Water Dynamics and Activation. J Phys Chem B 2022; 126:8362-8373. [PMID: 36256609 DOI: 10.1021/acs.jpcb.2c03960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We compute energy exchange networks (EENs) through glucagon-like peptide-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR), in inactive and two active states, one activated by a peptide ligand and the other by a small molecule agonist, from results of molecular dynamics simulations. The reorganized network upon activation contains contributions from structural as well as from dynamic changes and corresponding entropic contributions to the free energy of activation, which are estimated in terms of the change in rates of energy transfer across non-covalent contacts. The role of water in the EENs and in activation of GLP-1R is also investigated. The dynamics of water in contact with the central polar network of the transmembrane region is found to be significantly slower for both activated states compared to the inactive state. This result is consistent with the contribution of water molecules to activation of GLP-1R previously suggested and resembles water dynamics in parts of the transmembrane region found in earlier studies of rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| |
Collapse
|
82
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
83
|
El Eid L, Reynolds CA, Tomas A, Ben Jones. Biased Agonism and Polymorphic Variation at the GLP-1 Receptor: Implications for the Development of Personalised Therapeutics. Pharmacol Res 2022; 184:106411. [PMID: 36007775 DOI: 10.1016/j.phrs.2022.106411] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a well-studied incretin hormone receptor and target of several therapeutic drugs for type 2 diabetes (T2D), obesity and, more recently, cardiovascular disease. Some signalling pathways downstream of GLP-1R may be responsible for drug adverse effects such as nausea, while others mediate therapeutic outcomes of incretin-based T2D therapeutics. Understanding the interplay between different factors that alter signalling, trafficking, and receptor activity, including biased agonism, single nucleotide polymorphisms and structural modifications is key to develop the next-generation of personalised GLP-1R agonists. However, these interactions remain poorly described, especially for novel therapeutics such as dual and tri-agonists that target more than one incretin receptor. Comparison of GLP-1R structures in complex with G proteins and different peptide and non-peptide agonists has revealed novel insights into important agonist-residue interactions and networks crucial for receptor activation, recruitment of G proteins and engagement of specific signalling pathways. Here, we review the latest knowledge on GLP-1R structure and activation, providing structural evidence for biased agonism and delineating important networks associated with this phenomenon. We survey current biased agonists and multi-agonists at different stages of development, highlighting possible challenges in their translational potential. Lastly, we discuss findings related to non-synonymous genomic variants of GLP1R and the functional importance of specific residues involved in GLP-1R function. We propose that studies of GLP-1R polymorphisms, and specifically their effect on receptor dynamics and pharmacology in response to biased agonists, could have a significant impact in delineating precision medicine approaches and development of novel therapeutics.
Collapse
Affiliation(s)
- Liliane El Eid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
84
|
Wang P, Hill TA, Mitchell J, Fitzsimmons RL, Xu W, Loh Z, Suen JY, Lim J, Iyer A, Fairlie DP. Modifying a Hydroxyl Patch in Glucagon-like Peptide 1 Produces Biased Agonists with Unique Signaling Profiles. J Med Chem 2022; 65:11759-11775. [PMID: 35984914 DOI: 10.1021/acs.jmedchem.2c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) lowers blood glucose by inducing insulin but also has other poorly understood properties. Here, we show that hydroxy amino acids (Thr11, Ser14, Ser17, Ser18) in GLP-1(7-36) act in concert to direct cell signaling. Mutating any single residue to alanine removes one hydroxyl group, thereby reducing receptor affinity and cAMP 10-fold, with Ala11 or Ala14 also reducing β-arrestin-2 10-fold, while Ala17 or Ala18 also increases ERK1/2 phosphorylation 5-fold. Multiple alanine mutations more profoundly bias signaling, differentially silencing or restoring one or more signaling properties. Mutating three serines silences only ERK1/2, the first example of such bias. Mutating all four residues silences β-arrestin-2, ERK1/2, and Ca2+ maintains the ligand and receptor at the membrane but still potently stimulates cAMP and insulin secretion in cells and mice. These novel findings indicate that hydrogen bonding cooperatively controls cell signaling and highlight an important regulatory hydroxyl patch in hormones that activate class B G protein-coupled receptors.
Collapse
Affiliation(s)
- Peiqi Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Timothy A Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Justin Mitchell
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Rebecca L Fitzsimmons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Weijun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Zhixuan Loh
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Jacky Y Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| |
Collapse
|
85
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
86
|
Guo S, Zhao T, Yun Y, Xie X. Recent Progress in Assays for GPCR Drug Discovery. Am J Physiol Cell Physiol 2022; 323:C583-C594. [PMID: 35816640 DOI: 10.1152/ajpcell.00464.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein coupled receptors (GPCRs), also known as 7 transmembrane receptors, are the largest family of cell surface receptors in eukaryotes. There are ~800 GPCRs in human, regulating diverse physiological processes. GPCRs are the most intensively studied drug targets. Drugs that target GPCRs account for about a quarter of the global market share of therapeutic drugs. Therefore, to develop physiologically relevant and robust assays to search new GPCR ligands or modulators remain the major focus of drug discovery research worldwide. Early functional GPCR assays are mainly depend on the measurement of G protein-mediated second messenger generation. Recent development in GPCR biology indicate the signaling of these receptors is much more complex than the oversimplified classical view. GPCRs have been found to activate multiple G proteins simultaneously and induce b-arrestin-mediated signaling. GPCRs have also been found to interacte with other cytosolic scaffolding proteins and form dimer or heteromer with GPCRs or other transmembrane proteins. Here we mainly discuss technologies focused on detecting protein-protein interactions, such as FRET/BRET, NanoBiT, Tango, etc, and their applications in measuring GPCRs interacting with various signaling partners. In the final part, we also discuss the species differences in GPCRs when using animal models to study the in vivofunctions of GPCR ligands, and possible ways to solve this problem with modern genetic tools.
Collapse
Affiliation(s)
- Shimeng Guo
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Tingting Zhao
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Ying Yun
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Xin Xie
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| |
Collapse
|
87
|
Investigating Potential GLP-1 Receptor Agonists in Cyclopeptides from Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra, and Peptides Derived from Heterophyllin B for the Treatment of Type 2 Diabetes: An In Silico Study. Metabolites 2022; 12:metabo12060549. [PMID: 35736482 PMCID: PMC9227353 DOI: 10.3390/metabo12060549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
GLP-1 receptor agonists stimulate GLP-1R to promote insulin secretion, whereas DPP4 inhibitors slow GLP-1 degradation. Both approaches are incretin-based therapies for T2D. In addition to GLP-1 analogs, small nonpeptide GLP-1RAs such as LY3502970, TT-OAD2, and PF-06882961 have been considered as possible therapeutic alternatives. Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra are plants rich in cyclopeptides with hypoglycemic effects. Our previous study demonstrated the potential of their cyclopeptides for DPP4 inhibition. Reports of cyclic setmelanotide as an MC4R (GPCR) agonist and cyclic α-conotoxin chimeras as GLP-1RAs led to docking studies of these cyclopeptides with GLP-1R. Heterophyllin B, Pseudostellarin B, Cyclolinopeptide B, Cyclolinopeptide C, Drymarin A, and Diandrine C are abundant in these plants, with binding affinities of −9.5, −10.4, −10.3, −10.6, −11.2, and −11.9 kcal/mol, respectively. The configuration they demonstrated established multiple hydrogen bonds with the transmembrane region of GLP-1R. DdC:(cyclo)-GGPYWP showed the most promising docking score. The results suggest that, in addition to DPP4, GLP-1R may be a hypoglycemic target of these cyclopeptides. This may bring about more discussion of plant cyclopeptides as GLP-1RAs. Moreover, peptides derived from the HB precursor (IFGGLPPP), including IFGGWPPP, IFPGWPPP, IFGGYWPPP, and IFGYGWPPPP, exhibited diverse interactions with GLP-1R and displayed backbones available for further research.
Collapse
|
88
|
Huang S, Xu P, Shen DD, Simon IA, Mao C, Tan Y, Zhang H, Harpsøe K, Li H, Zhang Y, You C, Yu X, Jiang Y, Zhang Y, Gloriam DE, Xu HE. GPCRs steer G i and G s selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol Cell 2022; 82:2681-2695.e6. [PMID: 35714614 DOI: 10.1016/j.molcel.2022.05.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/27/2022] [Accepted: 05/26/2022] [Indexed: 01/23/2023]
Abstract
Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.
Collapse
Affiliation(s)
- Sijie Huang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Icaro A Simon
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; SARomics Biostructures AB, Scheelevägen 2, 223 63 Lund, Sweden; Present address: Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yangxia Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huadong Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yumu Zhang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chongzhao You
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuekui Yu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
89
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
90
|
Li M, Bao Y, Xu R, La H, Guo J. Critical Extracellular Ca 2+ Dependence of the Binding between PTH1R and a G-Protein Peptide Revealed by MD Simulations. ACS Chem Neurosci 2022; 13:1666-1674. [PMID: 35543321 DOI: 10.1021/acschemneuro.2c00176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The parathyroid hormone type 1 receptor (PTH1R), a canonical class B GPCR, is regulated by a positive allosteric modulator, extracellular Ca2+. Calcium ions prolong the residence time of PTH on the PTH1R, leading to increased receptor activation and duration of cAMP signaling. But the essential mechanism of the allosteric behavior of PTH1R is not fully understood. Here, extensive molecular dynamics (MD) simulations are performed for the PTH1R-G-protein combinations with and without Ca2+ to describe how calcium ions allosterically engage receptor-G-protein coupling. We find that the binding of Ca2+ stabilizes the conformation of the PTH1R-PTH-spep (the α5 helix of Gs protein) complex, especially the extracellular loop 1 (ECL1). Moreover, the MM-GBSA result indicates that Ca2+ allosterically promotes the interaction between PTH1R and spep, consistent with the observation of steered molecular dynamics (SMD) simulations. We further illuminate the possible allosteric signaling pathway from the stable Ca2+-coupling site to the intracellular G-protein binding site. These results unveil structural determinants for Ca2+ allosterism in the PTH1R-PTH-spep complex and give insights into pluridimensional GPCR signaling regulated by calcium ions.
Collapse
Affiliation(s)
- Mengrong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Faculty of Applied Science, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
91
|
Redij T, McKee JA, Do P, Campbell JA, Ma J, Li Z, Miller N, Srikanlaya C, Zhang D, Hua X, Li Z. 2-Aminothiophene derivatives as a new class of positive allosteric modulators of glucagon-like peptide 1 receptor. Chem Biol Drug Des 2022; 99:857-867. [PMID: 35313084 DOI: 10.1111/cbdd.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/29/2022]
Abstract
We report the discovery of two new 2-aminothiophene based small molecule positive allosteric modulators (PAMs) of glucagon-like peptide 1 receptor (GLP-1R) for the treatment of type 2 diabetes. One of the chemotypes, (S-1), has a molecular weight of 239 g/mol, the smallest molecule among all reported GLP-1R PAMs. When combined with GLP-1 peptide, S-1 increased the GLP-1R activity in a dose-dependent manner in a cell-based assay. When combined with the peptide agonist of vasoactive intestinal polypeptide receptor 1 (VIPR1), S-1 showed no specific activity on VIPR1, another class B GPCR present in the same HEK293-CREB cell line. Insulin secretion studies found S-1 combined with GLP-1 increased insulin secretion by 1.5-fold at 5 μM. In a mechanistic study, evidence is provided that the synergistic effect of S-1 with GLP-1 may be partly due to the enhanced impact on CREB based phosphorylation. Given the favorable profile of these chemotypes, the work reported herein suggests that 2-aminothiophene derivatives are a new and promising class of GLP-1R PAMs.
Collapse
Affiliation(s)
- Tejashree Redij
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - James A McKee
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Phu Do
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey A Campbell
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer Biology, Diabetes Research Center (DRC), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhiyu Li
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholas Miller
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chananchida Srikanlaya
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Xianxin Hua
- Department of Cancer Biology, Diabetes Research Center (DRC), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhijun Li
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
92
|
Griffith DA, Edmonds DJ, Fortin JP, Kalgutkar AS, Kuzmiski JB, Loria PM, Saxena AR, Bagley SW, Buckeridge C, Curto JM, Derksen DR, Dias JM, Griffor MC, Han S, Jackson VM, Landis MS, Lettiere D, Limberakis C, Liu Y, Mathiowetz AM, Patel JC, Piotrowski DW, Price DA, Ruggeri RB, Tess DA. A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-1 Receptor. J Med Chem 2022; 65:8208-8226. [PMID: 35647711 PMCID: PMC9234956 DOI: 10.1021/acs.jmedchem.1c01856] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) have revolutionized diabetes therapy, but their use has been limited because they require injection. Herein, we describe the discovery of the orally bioavailable, small-molecule, GLP-1R agonist PF-06882961 (danuglipron). A sensitized high-throughput screen was used to identify 5-fluoropyrimidine-based GLP-1R agonists that were optimized to promote endogenous GLP-1R signaling with nanomolar potency. Incorporation of a carboxylic acid moiety provided considerable GLP-1R potency gains with improved off-target pharmacology and reduced metabolic clearance, ultimately resulting in the identification of danuglipron. Danuglipron increased insulin levels in primates but not rodents, which was explained by receptor mutagensis studies and a cryogenic electron microscope structure that revealed a binding pocket requiring a primate-specific tryptophan 33 residue. Oral administration of danuglipron to healthy humans produced dose-proportional increases in systemic exposure (NCT03309241). This opens an opportunity for oral small-molecule therapies that target the well-validated GLP-1R for metabolic health.
Collapse
Affiliation(s)
- David A Griffith
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - David J Edmonds
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Jean-Philippe Fortin
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - J Brent Kuzmiski
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Paula M Loria
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Aditi R Saxena
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Scott W Bagley
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Clare Buckeridge
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - John M Curto
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - David R Derksen
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - João M Dias
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Matthew C Griffor
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Seungil Han
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - V Margaret Jackson
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Margaret S Landis
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Daniel Lettiere
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Chris Limberakis
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Yuhang Liu
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - Alan M Mathiowetz
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | | | - David W Piotrowski
- Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| | - David A Price
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - Roger B Ruggeri
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | - David A Tess
- Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
93
|
Yeast-based directed-evolution for high-throughput structural stabilization of G protein-coupled receptors (GPCRs). Sci Rep 2022; 12:8657. [PMID: 35606532 PMCID: PMC9126886 DOI: 10.1038/s41598-022-12731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The immense potential of G protein-coupled receptors (GPCRs) as targets for drug discovery is not fully realized due to the enormous difficulties associated with structure elucidation of these profoundly unstable membrane proteins. The existing methods of GPCR stability-engineering are cumbersome and low-throughput; in addition, the scope of GPCRs that could benefit from these techniques is limited. Here, we present a yeast-based screening platform for a single-step isolation of GRCR variants stable in the presence of short-chain detergents, a feature essential for their successful crystallization using vapor diffusion method. The yeast detergent-resistant cell wall presents a unique opportunity for compartmentalization, to physically link the receptor's phenotype to its encoding DNA, and thus enable discovery of stable GPCR variants with unprecedent efficiency. The scope of mutations identified by the method reveals a surprising amenability of the GPCR scaffold to stabilization, and suggests an intriguing possibility of amending the stability properties of GPCR by varying the structural status of the C-terminus.
Collapse
|
94
|
Structural basis of peptidomimetic agonism revealed by small- molecule GLP-1R agonists Boc5 and WB4-24. Proc Natl Acad Sci U S A 2022; 119:e2200155119. [PMID: 35561211 PMCID: PMC9171782 DOI: 10.1073/pnas.2200155119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are efficacious in the treatment of type 2 diabetes and obesity. While most clinically used agents require subcutaneous injection, Boc5, as the first orthosteric nonpeptidic agonist of GLP-1R, suffers from poor oral bioavailability that hinders its therapeutic development. The cryoelectron microscopy structures of Boc5 and its closely related analog WB4-24 presented here reveal a binding pocket located deeper in the transmembrane domain for nonpeptidic GLP-1R agonists. Molecular interaction with this site may facilitate a broad spectrum of in vivo agonistic activities, in addition to that with the upper helical bundles presumably responsible for biased signaling. These findings deepen our understanding of peptidomimetic agonism at GLP-1R and may help design better drug leads against this important target. Glucagon-like peptide-1 receptor (GLP-1R) agonists are effective in treating type 2 diabetes and obesity with proven cardiovascular benefits. However, most of these agonists are peptides and require subcutaneous injection except for orally available semaglutide. Boc5 was identified as the first orthosteric nonpeptidic agonist of GLP-1R that mimics a broad spectrum of bioactivities of GLP-1 in vitro and in vivo. Here, we report the cryoelectron microscopy structures of Boc5 and its analog WB4-24 in complex with the human GLP-1R and Gs protein. Bound to the extracellular domain, extracellular loop 2, and transmembrane (TM) helices 1, 2, 3, and 7, one arm of both compounds was inserted deeply into the bottom of the orthosteric binding pocket that is usually accessible by peptidic agonists, thereby partially overlapping with the residues A8 to D15 in GLP-1. The other three arms, meanwhile, extended to the TM1-TM7, TM1-TM2, and TM2-TM3 clefts, showing an interaction feature substantially similar to the previously known small-molecule agonist LY3502970. Such a unique binding mode creates a distinct conformation that confers both peptidomimetic agonism and biased signaling induced by nonpeptidic modulators at GLP-1R. Further, the conformational difference between Boc5 and WB4-24, two closed related compounds, provides a structural framework for fine-tuning of pharmacological efficacy in the development of future small-molecule therapeutics targeting GLP-1R.
Collapse
|
95
|
Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis. Acta Pharm Sin B 2022; 12:2443-2461. [PMID: 35646543 PMCID: PMC9136578 DOI: 10.1016/j.apsb.2021.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Currently, there is still no effective curative treatment for the development of late-stage liver fibrosis. Here, we have illustrated that TB001, a dual glucagon-like peptide-1 receptor/glucagon receptor (GLP-1R/GCGR) agonist with higher affinity towards GCGR, could retard the progression of liver fibrosis in various rodent models, with remarkable potency, selectivity, extended half-life and low toxicity. Four types of liver fibrosis animal models which were induced by CCl4, α-naphthyl-isothiocyanate (ANIT), bile duct ligation (BDL) and Schistosoma japonicum were used in our study. We found that TB001 treatment dose-dependently significantly attenuated liver injury and collagen accumulation in these animal models. In addition to decreased levels of extracellular matrix (ECM) accumulation during hepatic injury, activation of hepatic stellate cells was also inhibited via suppression of TGF-β expression as well as downstream Smad signaling pathways particularly in CCl4-and S. japonicum-induced liver fibrosis. Moreover, TB001 attenuated liver fibrosis through blocking downstream activation of pro-inflammatory nuclear factor kappa B/NF-kappa-B inhibitor alpha (NFκB/IKBα) pathways as well as c-Jun N-terminal kinase (JNK)-dependent induction of hepatocyte apoptosis. Furthermore, GLP-1R and/or GCGR knock-down results represented GCGR played an important role in ameliorating CCl4-induced hepatic fibrosis. Therefore, TB001 can be used as a promising therapeutic candidate for the treatment of multiple causes of hepatic fibrosis demonstrated by our extensive pre-clinical evaluation of TB001.
Collapse
|
96
|
A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2. Nat Commun 2022; 13:2272. [PMID: 35477937 PMCID: PMC9046186 DOI: 10.1038/s41467-022-30041-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Class B1 of G protein-coupled receptors (GPCRs) comprises 15 members activated by physiologically important peptide hormones. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, including pulmonary arterial hypertension, autoimmune and psychiatric disorders, in which it is thus a valuable drug target. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics. Vasoactive intestinal polypeptide receptor 2 (VIP2R) is involved in immunity. Here, the authors report two cryo-EM structures of the VIP2R–Gs in complex with the endogenous peptide ligand PACAP27, revealing a unique interaction mode between PACAP27 and the receptor, stabilized by the N-terminal α-helix of VIP2R.
Collapse
|
97
|
Abstract
Tirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization. We report how cryogenic electron microscopy and molecular dynamics simulations inform the structural basis for the unique pharmacology of tirzepatide. These studies reveal the extent to which fatty acid modification, combined with amino acid sequence, determines the mode of action of a multireceptor agonist. Tirzepatide (LY3298176) is a fatty-acid-modified, dual incretin receptor agonist that exhibits pharmacology similar to native GIP at the glucose-dependent insulinotropic polypeptide receptor (GIPR) but shows bias toward cyclic adenosine monophosphate signaling at the glucagon-like peptide-1 receptor (GLP-1R). In addition to GIPR signaling, the pathway bias at the GLP-1R may contribute to the efficacy of tirzepatide at improving glucose control and body weight regulation in type 2 diabetes mellitus. To investigate the structural basis for the differential signaling of tirzepatide, mechanistic pharmacology studies were allied with cryogenic electron microscopy. Here, we report high-resolution structures of tirzepatide in complex with the GIPR and GLP-1R. Similar to the native ligands, tirzepatide adopts an α-helical conformation with the N terminus reaching deep within the transmembrane core of both receptors. Analyses of the N-terminal tyrosine (Tyr1Tzp) of tirzepatide revealed a weak interaction with the GLP-1R. Molecular dynamics simulations indicated a greater propensity of intermittent hydrogen bonding between the lipid moiety of tirzepatide and the GIPR versus the GLP-1R, consistent with a more compact tirzepatide–GIPR complex. Informed by these analyses, tirzepatide was deconstructed, revealing a peptide structure–activity relationship that is influenced by acylation-dependent signal transduction. For the GIPR, Tyr1Tzp and other residues making strong interactions within the receptor core allow tirzepatide to tolerate fatty acid modification, yielding an affinity equaling that of GIP. Conversely, high-affinity binding with the extracellular domain of the GLP-1R, coupled with decreased stability from the Tyr1Tzp and the lipid moiety, foster biased signaling and reduced receptor desensitization. Together, these studies inform the structural determinants underlying the function of tirzepatide.
Collapse
|
98
|
Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nat Chem Biol 2022; 18:256-263. [PMID: 34937906 PMCID: PMC8950777 DOI: 10.1038/s41589-021-00945-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.
Collapse
|
99
|
Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, Chen Y, Dai A, Liang A, Ming Q, Wang M, Chen LN, Xu P, Chang R, Feng W, Xia T, Zhang Y, Wu B, Yang D, Zhao L, Xu HE, Wang MW. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun 2022; 13:1057. [PMID: 35217653 PMCID: PMC8881610 DOI: 10.1038/s41467-022-28683-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose homeostasis, regulated by glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon (GCG) is critical to human health. Several multi-targeting agonists at GIPR, GLP-1R or GCGR, developed to maximize metabolic benefits with reduced side-effects, are in clinical trials to treat type 2 diabetes and obesity. To elucidate the molecular mechanisms by which tirzepatide, a GIPR/GLP-1R dual agonist, and peptide 20, a GIPR/GLP-1R/GCGR triagonist, manifest their multiplexed pharmacological actions over monoagonists such as semaglutide, we determine cryo-electron microscopy structures of tirzepatide-bound GIPR and GLP-1R as well as peptide 20-bound GIPR, GLP-1R and GCGR. The structures reveal both common and unique features for the dual and triple agonism by illustrating key interactions of clinical relevance at the near-atomic level. Retention of glucagon function is required to achieve such an advantage over GLP-1 monotherapy. Our findings provide valuable insights into the structural basis of functional versatility of tirzepatide and peptide 20. Multi-targeting agonists at GIPR, GLP-1R or GCGR are pursued vigorously. Here, the authors report cryo-EM structures of tirzepatide-bound GIPR and GLP-1R, peptide 20-bound GIPR, GLP-1R and GCGR, revealing the molecular basis of their multiplexed pharmacological actions.
Collapse
Affiliation(s)
- Fenghui Zhao
- School of Pharmacy, Fudan University, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaini Hang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinyu Zou
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Anyi Liang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Ming
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rulve Chang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tian Xia
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beili Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - Lihua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| |
Collapse
|
100
|
Malik F, Li Z. Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: Alternative approaches for treatment of Type 2 diabetes. Br J Pharmacol 2022; 179:511-525. [PMID: 33724441 PMCID: PMC8820177 DOI: 10.1111/bph.15446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptors belong to the pharmaceutically important Class B family of GPCRs and are involved in many biologically significant signalling pathways. Its incretin peptide ligand GLP-1 analogues are effective treatments for Type 2 diabetes. Although developing non-peptide low MW drugs targeting GLP-1 receptors remains elusive, considerable progress has been made in discovering non-peptide agonists and positive allosteric modulators (PAMs) of GLP-1 receptors with demonstrated efficacy. Many of these compounds induce biased signalling in GLP-1 receptor-mediated functional pathways. High-quality structures of GLP-1 receptors in both inactive and active states have been reported, revealing detailed molecular interactions between GLP-1 receptors and non-peptide agonists or PAMs. These progresses raise the exciting possibility of developing non-peptide drugs of GLP-1 receptors as alternative treatments for Type 2 diabetes. The insight into the interactions between the receptor and the non-peptide ligand is also useful for developing non-peptide ligands targeting other Class B GPCRs. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Faisal Malik
- Department of Chemistry and BiochemistryUniversity of the Sciences in PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Zhijun Li
- Department of Chemistry and BiochemistryUniversity of the Sciences in PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|