51
|
Waqas S, Bilad MR, Man Z, Wibisono Y, Jaafar J, Indra Mahlia TM, Khan AL, Aslam M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110718. [PMID: 32510449 DOI: 10.1016/j.jenvman.2020.110718] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) process is considered as one of the leading-edge processes that provides a sustainable solution for wastewater treatment. IFAS was introduced as an advancement of the moving bed biofilm reactor by integrating the attached and the suspended growth systems. IFAS offers advantages over the conventional activated sludge process such as reduced footprint, enhanced nutrient removal, complete nitrification, longer solids retention time and better removal of anthropogenic composites. IFAS has been recognized as an attractive option as stated from the results of many pilot and full scales studies. Generally, IFAS achieves >90% removals for combined chemical oxygen demand and ammonia, improves sludge settling properties and enhances operational stability. Recently developed IFAS reactors incorporate frameworks for either methane production, energy generation through algae, or microbial fuel cells. This review details the recent development in IFAS with the focus on the pilot and full-scale applications. The microbial community analyses of IFAS biofilm and floc are underlined along with the special emphasis on organics and nitrogen removals, as well as the future research perspectives.
Collapse
Affiliation(s)
- Sharjeel Waqas
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Zakaria Man
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Yusuf Wibisono
- Bioprocess Engineering, Universitas Brawijaya, Malang, Indonesia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| |
Collapse
|
52
|
Wu S, Liu Y, Lei L, Zhang H. Nanographene oxides carrying antisense walR RNA regulates the Enterococcus faecalis biofilm formation and its susceptibility to chlorhexidine. Lett Appl Microbiol 2020; 71:451-458. [PMID: 32654154 DOI: 10.1111/lam.13354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023]
Abstract
Enterococcus faecalis is the dominant pathogen for persistent periapical periodontitis. The chlorhexidine (CHX) is used as conversional irrigation agents during endodontic root canal therapy. It was reported that the antisense walR RNA (ASwalR) suppressed the biofilm organization. The aim of this study was to investigate the antimicrobial effects of novel graphene oxide (GO)-polyethylenimine (PEI)-based antisense walR (ASwalR) on the inhibition of E. faecalis biofilm and its susceptibility to chlorhexidine. The recombinant ASwalR plasmids were modified with a gene encoding enhanced green fluorescent protein (ASwalR-eGFP) as a reporter gene so that the transformation efficiency could be evaluated by the fluorescence intensity. The GO-PEI-based ASwalR vector transformation strategy was developed to be transformed into E. faecalis and to over-produce ASwalR in biofilms. Colony forming units (CFU) and confocal laser scanning microscopy were used to investigate whether the antibacterial properties of antisense walR interference strategy sensitize E. faecalis biofilm to the CHX. The results indicated that overexpression of ASwalR by GO-PEI-based transformation strategy could inhibit biofilm formation, decrease the EPS synthesis and increase the susceptibility of E. faecalis biofilms to CHX. Our reports demonstrated that antisense walR RNA will be a supplementary strategy in treating E. faecalis with irrigation agents.
Collapse
Affiliation(s)
- S Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Y Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - L Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
53
|
Saidin S, Jumat MA, Mohd Amin NAA, Saleh Al-Hammadi AS. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111382. [PMID: 33254989 DOI: 10.1016/j.msec.2020.111382] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/01/2023]
Abstract
In spite of antibiotics, antibacterial agents or specifically known as antiseptics are actively explored for the prevention of infection-associated medical devices. Antibacterial agents are introduced to overcome the complication of bacterial resistance which devoted by antibiotics. It can be classified into inorganic and organic, that prominently have impacted bacterial retardation in their own killing mechanism patterns. Therefore, this review paper aimed to provide information on most common used inorganic and organic antibacterial agents which have potential to be utilized in biomedical applications, thus, classifying the trends of antibacterial mechanism on Gram-negative and Gram-positive bacteria. In the beginning, infectious diseases and associated biomedical infections were stated to expose current infection scenarios on medical devices. The general view, application, susceptible bacteria and activation mechanism of inorganic (silver, copper, gold and zinc) and organic (chlorhexidine, triclosan, polyaniline and polyethylenimine) antibacterial agents that are widely proposed for biomedical area, were then gathered and reviewed. In the latter part of the study, the intact mechanisms of inorganic and organic antibacterial agents in retarding bacterial growth were classified and summarized based on its susceptibility on Gram-negative and Gram-positive bacteria. Most of inorganic antibacterial agents are in the form of metal, which release its ions to retard prominently Gram-negative bacteria. While organic antibacterial agents are susceptible to Gram-positive bacteria through organelle modification and disturbance of bio-chemical pathway. However, the antibacterial effects of each antibacterial agent are also depending on its effective mechanism and the species of bacterial strain. These compilation reviews and classification mechanisms are beneficial to assist the selection of antibacterial agents to be incorporated on/within biomaterials, based on its susceptible bacteria. Besides, the combination of several antibacterial agents with different susceptibilities will cover a wide range of antibacterial spectrum.
Collapse
Affiliation(s)
- Syafiqah Saidin
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; IJN-UTM Cardiovascular Engineering Centre, Institute for Human Centred Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Mohamad Amin Jumat
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Nur Ain Atiqah Mohd Amin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Abdullah Sharaf Saleh Al-Hammadi
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
54
|
Gaio V, Cerca N. Biofilm released cells can easily be obtained in a fed-batch system using ica+ but not with ica- isolates. PeerJ 2020; 8:e9549. [PMID: 32742809 PMCID: PMC7368429 DOI: 10.7717/peerj.9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is one of the major opportunistic bacterial pathogens in healthcare facilities, mainly due to its strong ability to form biofilms in the surface of indwelling medical devices. To study biofilms under in vitro conditions, both fed-batch and flow systems are widely used, with the first being the most frequent due to their low cost and ease of use. Aim To assess if a fed-batch system previously developed to obtain biofilm released cells (Brc) from strong biofilm producing S. epidermidis isolates could also be used to obtain and characterize Brc from isolates with lower abilities to form biofilms. Methodology The applicability of a fed-batch system to obtain Brc from biofilms of 3 ica + and 3 ica - isolates was assessed by quantifying the biofilm and Brc biomass by optical density (OD) and colony-forming units (CFU) measurements. The effect of media replacement procedures of fed-batch systems on the amount of biofilm was determined by quantifying the biofilm and biofilm bulk fluid, by CFU, after consecutive washing steps. Results The fed-batch model was appropriate to obtain Brc from ica+ isolates, that presented a greater ability to form biofilms and release cells. However, the same was not true for ica - isolates, mainly because the washing procedure would physically remove a significant number of cells from the biofilm. Conclusions This study demonstrates that a fed-batch system is only feasible to be used to obtain Brc from S. epidermidis when studying strong and cohesive biofilm-forming isolates.
Collapse
Affiliation(s)
- Vânia Gaio
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| |
Collapse
|
55
|
The Effectiveness of Nafion-Coated Stainless Steel Surfaces for Inhibiting Bacillus Subtilis Biofilm Formation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10145001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stainless steel is one of most commonly used materials in the world; however, biofilms on the surfaces of stainless steel cause many serious problems. In order to find effective methods of reducing bacterial adhesion to stainless steel, and to investigate the role of electrostatic effects during the formation of biofilms, this study used a stainless steel surface that was negatively charged by being coated with Nafion which was terminated by sulfonic groups. The results showed that the roughness of stainless steel discs coated with 1% Nafion was similar to an uncoated surface; however the hydrophobicity increased, and the Nafion-coated surface reduced the adhesion of Bacillus subtilis by 75% compared with uncoated surfaces. Therefore, a facile way to acquire antibacterial stainless steel was found, and it is proved that electrostatic effects have a significant influence on the formation of biofilms.
Collapse
|
56
|
Dufay M, Jimenez M, Degoutin S. Effect of Cold Plasma Treatment on Electrospun Nanofibers Properties: A Review. ACS APPLIED BIO MATERIALS 2020; 3:4696-4716. [DOI: 10.1021/acsabm.0c00154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Malo Dufay
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Maude Jimenez
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Stéphanie Degoutin
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| |
Collapse
|
57
|
Richard E, Dubois T, Allion-Maurer A, Jha PK, Faille C. Hydrophobicity of abiotic surfaces governs droplets deposition and evaporation patterns. Food Microbiol 2020; 91:103538. [PMID: 32539949 DOI: 10.1016/j.fm.2020.103538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/16/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022]
Abstract
Surface contamination with droplets containing bacteria is of concern in the food industry and other environments where hygiene control is essential. Deposition patterns after the drying of contaminated droplets is affected by numerous parameters. The present study evaluated the rate of evaporation and the shape of deposition patterns after the drying of water droplets on a panel of materials with different surface properties (topography, hydrophobicity). The influence of the particle properties (in this study 1 μm-microspheres and two bacterial spores) was also investigated. Polystyrene microspheres were hydrophobic, while Bacillus spores were hydrophilic or hydrophobic, and surrounded by different surface features. In contrast to material topography, hydrophobicity was shown to deeply affect droplet evaporation, with the formation of small, thick deposits with microspheres or hydrophilic spores. Among the particle properties, the spore morphology (size and round/ovoid shape) did not clearly affect the deposition pattern. Conversely, hydrophobic spores aggregated to form clusters, which quickly settled on the materials and either failed to migrate, or only migrated to a slight extent on the surface, resulting in a steady distribution of spores or spore clusters over the whole contaminated area. Adherent bacteria or spores are known to be highly resistant to many stressful environmental conditions. In view of all the quite different patterns obtained following drying of spore-containing droplets, it seems likely that some of these would entail enhanced resistance to hygienic processes.
Collapse
Affiliation(s)
- Elodie Richard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000, Lille, France
| | - Thomas Dubois
- Univ. Lille, CNRS, INRAE, ENSCL, UMET, F-59650, Villeneuve d'Ascq, France
| | - Audrey Allion-Maurer
- Aperam Isbergues Research Center - Solutions Dept., BP 15, F-62330, Isbergues, France
| | - Piyush Kumar Jha
- Univ. Lille, CNRS, INRAE, ENSCL, UMET, F-59650, Villeneuve d'Ascq, France
| | - Christine Faille
- Univ. Lille, CNRS, INRAE, ENSCL, UMET, F-59650, Villeneuve d'Ascq, France.
| |
Collapse
|
58
|
Vijayakumar K, Bharathidasan V, Manigandan V, Jeyapragash D. Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus. Microb Pathog 2020; 149:104286. [PMID: 32502632 DOI: 10.1016/j.micpath.2020.104286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
The present study evaluated the quebrachitol (QBC) antibiofilm and antivirulence potential against methicillin-resistant Staphylococcus aureus (MRSA). QBC inhibited MRSA biofilm formation at concentration dependent manner without affecting the bacterial growth. Then, QBC biofilm efficacy was confirmed with light and confocal laser scanning microscopy analysis. QBC treatment significantly inhibited the biofilm formation on stainless steel, titanium and silicone surfaces. Besides, QBC treatment significantly reduced the MRSA virulence productions such as lipase and hemolysis. Moreover, it reduced MRSA survival rate in the presence of hydrogen peroxide. QBC treatment inhibited the MRSA adherence on hydrophobic, hydrophilic, collagen coating and fibrinogen coating surfaces. As well as it significantly reduced the autolysin and bacterial aggregation progress. The real-time PCR analysis revealed the ability of QBC downregulated the virulence genes expression including global regulator sarA, agr and polysaccharide intracellular adhesion (PIA) encode ica. The cumulative results of the present study suggest that QBC as a potential agent to combat against MRSA pathogenesis.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Veeraiyan Bharathidasan
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Vajravelu Manigandan
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Danaraj Jeyapragash
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
59
|
Barton A. Medical adhesive-related skin injuries associated with vascular access: minimising risk with Appeel Sterile. ACTA ACUST UNITED AC 2020; 29:S20-S27. [DOI: 10.12968/bjon.2020.29.8.s20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular access device insertion is a common procedure in healthcare, and complications associated with vascular access can be serious and cause considerable patient harm. The use of care bundles to reduce the risks of these complications is well documented. However, the removal of devices, especially those associated with medical adhesive, can cause significant skin injuries, which often could be avoided if this aspect is included in the care bundle and the risk factors are better understood in healthcare. Appeel Sterile is an effective sterile silicone-based medical adhesive remover that is available in a variety of formats. It is the only sterile medical adhesive remover available, which makes it the safest choice for use with vascular access devices.
Collapse
Affiliation(s)
- Andrew Barton
- Advanced Nurse Practitioner IV Therapy and Vascular Access, IVAS Lead Nurse, Frimley Health NHS Foundation Trust; Chair, National Infusion and Vascular Access Society (NIVAS)
| |
Collapse
|
60
|
Faria SI, Teixeira-Santos R, Romeu MJ, Morais J, Vasconcelos V, Mergulhão FJ. The Relative Importance of Shear Forces and Surface Hydrophobicity on Biofilm Formation by Coccoid Cyanobacteria. Polymers (Basel) 2020; 12:polym12030653. [PMID: 32178447 PMCID: PMC7183090 DOI: 10.3390/polym12030653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023] Open
Abstract
Understanding the conditions affecting cyanobacterial biofilm development is crucial to develop new antibiofouling strategies and decrease the economic and environmental impact of biofilms in marine settings. In this study, we investigated the relative importance of shear forces and surface hydrophobicity on biofilm development by two coccoid cyanobacteria with different biofilm formation capacities. The strong biofilm-forming Synechocystis salina was used along with the weaker biofilm-forming Cyanobium sp. Biofilms were developed in defined hydrodynamic conditions using glass (a model hydrophilic surface) and a polymeric epoxy coating (a hydrophobic surface) as substrates. Biofilms developed in both surfaces at lower shear conditions contained a higher number of cells and presented higher values for wet weight, thickness, and chlorophyll a content. The impact of hydrodynamics on biofilm development was generally stronger than the impact of surface hydrophobicity, but a combined effect of these two parameters strongly affected biofilm formation for the weaker biofilm-producing organism. The antibiofilm performance of the polymeric coating was confirmed at the hydrodynamic conditions prevailing in ports. Shear forces were shown to have a profound impact on biofilm development in marine settings regardless of the fouling capacity of the existing flora and the hydrophobicity of the surface.
Collapse
Affiliation(s)
- Sara I. Faria
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.I.F.); (R.T.-S.); (M.J.R.)
| | - Rita Teixeira-Santos
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.I.F.); (R.T.-S.); (M.J.R.)
| | - Maria J. Romeu
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.I.F.); (R.T.-S.); (M.J.R.)
| | - João Morais
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
| | - Vitor Vasconcelos
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.I.F.); (R.T.-S.); (M.J.R.)
- Correspondence: ; Tel.: +351-225-081-668
| |
Collapse
|
61
|
Quebrachitol from Rhizophora mucronata inhibits biofilm formation and virulence production in Staphylococcus epidermidis by impairment of initial attachment and intercellular adhesion. Arch Microbiol 2020; 202:1327-1340. [DOI: 10.1007/s00203-020-01844-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
|
62
|
Xiao W, Xu G. Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134976. [PMID: 31757539 DOI: 10.1016/j.scitotenv.2019.134976] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
It is necessary to improve the performance and reduce the aeration cost is of wastewater treatment by aerobic biofilm systems. Nanobubble aeration is supposed to be a promising method to achieve these goals. Compared with coarse bubbles, dissolved oxygen profiling showed that the nanobubbles provided more oxygen to biofilms, offering superior oxygen supply capacity and 1.5 times higher oxygen transfer efficiency. Nanobubble aeration accelerated the growth of the biofilm and achieved better removal efficiencies of chemical oxygen demand and ammonia, with as maximum as six times higher dehydrogenase activity, and more extracellular polymeric substance content than when using the traditional aeration mode. This is attributed to the enhancement of metabolism and the proliferation of microorganisms. Confocal laser-scanning microscopy imaging confirmed that nanobubble aeration affected the components of biofilm by shifting the microbial community and changing its metabolic pathways of biofilms, such as carbohydrate synthesis. Nanobubble aeration resulted in an energy saving of approximately 80%. The assessment of nanobubble aerated biofilm growth suggests that this technique can offer a rapid-initiation, high efficiency, and low-cost strategy for aerobic biofilm systems in wastewater treatment.
Collapse
Affiliation(s)
- Wanting Xiao
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
63
|
Torres Dominguez E, Nguyen PH, Hunt HK, Mustapha A. Antimicrobial Coatings for Food Contact Surfaces: Legal Framework, Mechanical Properties, and Potential Applications. Compr Rev Food Sci Food Saf 2019; 18:1825-1858. [PMID: 33336965 DOI: 10.1111/1541-4337.12502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023]
Abstract
Food contact surfaces (FCS) in food processing facilities may become contaminated with a number of unwanted microorganisms, such as Listeria monocytogenes, Escherichia coli O157:H7, and Staphylococcus aureus. To reduce contamination and the spread of disease, these surfaces may be treated with sanitizers or have active antimicrobial components adhered to them. Although significant efforts have been devoted to the development of coatings that improve the antimicrobial effectiveness of FCS, other important coating considerations, such as hardness, adhesion to a substrate, and migration of the antimicrobial substance into the food matrix, have largely been disregarded to the detriment of their translation into practical application. To address this gap, this review examines the mechanical properties of antimicrobial coatings (AMC) applied to FCS and their interplay with their antimicrobial properties within the framework of relevant regulatory constraints that would apply if these were used in real-world applications. This review also explores the various assessment techniques for examining these properties, the effects of the deposition methods on coating properties, and the potential applications of such coatings for FCS. Overall, this review attempts to provide a holistic perspective. Evaluation of the current literature urges a compromise between antimicrobial effectiveness and mechanical stability in order to adhere to various regulatory frameworks as the next step toward improving the industrial feasibility of AMC for FCS applications.
Collapse
Affiliation(s)
- Eduardo Torres Dominguez
- Dept. of Biomedical, Biological & Chemical Engineering, Univ. of Missouri, Columbia, MO, 65211, U.S.A
| | - Phong H Nguyen
- Dept. of Biomedical, Biological & Chemical Engineering, Univ. of Missouri, Columbia, MO, 65211, U.S.A
| | - Heather K Hunt
- Dept. of Biomedical, Biological & Chemical Engineering, Univ. of Missouri, Columbia, MO, 65211, U.S.A
| | - Azlin Mustapha
- Food Science Program, Univ. of Missouri, Columbia, MO, 65211, U.S.A
| |
Collapse
|
64
|
Das D, Bhattacharjee H, Gogoi K, Das JK, Misra P, Dhir P, Deka A. Intraocular lens biofilm formation supported by scanning electron microscopy imaging. Indian J Ophthalmol 2019; 67:1708-1709. [PMID: 31546523 PMCID: PMC6786198 DOI: 10.4103/ijo.ijo_467_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Dipankar Das
- Department of Uvea, Ocular Pathology and Neuro-Ophthalmology Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | | | - Krishna Gogoi
- Microbiology, Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | - Jayanta K Das
- Ophthalmology, Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | - Puneet Misra
- Ophthalmology, Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | - Pushkar Dhir
- Ophthalmology, Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | - Apurba Deka
- Ocular Pathology, Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| |
Collapse
|
65
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|
66
|
Peak selection matters in principal component analysis: A case study of syntrophic microbes. Biointerphases 2019; 14:051004. [DOI: 10.1116/1.5118237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
67
|
Simcox LJ, Pereira RPA, Wellington EMH, Macpherson JV. Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of Pseudomonas aeruginosa Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25024-25033. [PMID: 31260250 DOI: 10.1021/acsami.9b07245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron doped diamond (BDD), given the robustness of the material, is becoming an electrode of choice for applications which require long-term electrochemical monitoring of analytes in aqueous environments. However, despite the extensive work in this area, there are no studies which directly assess the biofilm formation (biofouling) capabilities of the material, which is an essential consideration because biofouling often causes deterioration in the sensor performance. Pseudomonas aeruginosa is one of the most prevalent bacterial pathogens linked to water-related diseases, with a strong capacity for forming biofilms on surfaces that are exposed to aquatic environments. In this study, we comparatively evaluate the biofouling capabilities of oxygen-terminated (O-)BDD against materials commonly employed as either the packaging or sensing element in water quality sensors, with an aim to identify factors which control biofilm formation on BDD. We assess the monospecies biofilm formation of P. aeruginosa in two different growth media, Luria-Bertani, a high nutrient source and drinking water, a low nutrient source, at two different temperatures (20 and 37 °C). Multispecies biofilm formation is also investigated. The performance of O-BDD, when tested against all other materials, promotes the lowest extent of P. aeruginosa monospecies biofilm formation, even with corrections made for total surface area (roughness). Importantly, O-BDD shows the lowest water contact angle of all materials tested, that is, greatest hydrophilicity, strongly suggesting that for these bacterial species, the factors controlling the hydrophilicity of the surface are important in reducing bacterial adhesion. This was further proven by keeping the surface topography fixed and changing surface termination to hydrogen (H-), to produce a strongly hydrophobic surface. A noticeable increase in biofilm formation was found. Doping with boron also results in changes in hydrophobicity/hydrophilicity compared to the undoped counterpart, which in turn affects the bacterial growth. For practical electrochemical sensing applications in aquatic environments, this study highlights the extremely beneficial effects of employing smooth, O-terminated (hydrophilic) BDD electrodes.
Collapse
|
68
|
Abduljauwad SN, Ahmed HUR. Enhancing cancer cell adhesion with clay nanoparticles for countering metastasis. Sci Rep 2019; 9:5935. [PMID: 30976058 PMCID: PMC6459834 DOI: 10.1038/s41598-019-42498-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer metastasis results from the suppression of adhesion between cancer cells and the extracellular matrix, causing their migration from the primary tumor location and the subsequent formation of tumors in distant organs. This study demonstrates the potential use of nano-sized clay mineral particles to modulate adhesions between tumor cells and with the surrounding extracellular matrix. Atomic force microscopy studies of live cell cultures reveal a significant increase in adhesion between tumor cells and their environment after treatment with different types of electrically charged clay nanoparticles. The enhancement of adhesion among cancer cells was further confirmed through scratch type of wound healing assay studies. To provide insight into the adhesion mechanisms introduced by the clay nanoparticles, we performed a molecular-level computer simulation of cell adhesions in the presence and absence of the nanoparticles. Strong van der Waals and electrostatic attractions modelled in the molecular simulations result in an increase in the cohesive energy density of these environments when treated with clay crystallites. The increase in the cohesive energy density after the sorption of clay crystallites on cell-cell and cell-extracellular matrix complexes lends weight to our strategy of using clay nanoparticles for the restoration of adhesion among cancer cells and prevention of metastasis.
Collapse
Affiliation(s)
- Sahel N Abduljauwad
- Civil & Environmental Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Habib-Ur-Rehman Ahmed
- Civil & Environmental Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia.
| |
Collapse
|
69
|
Oelker A, Horger T, Kuttler C. From Staphylococcus aureus gene regulation to its pattern formation. J Math Biol 2019; 78:2207-2234. [PMID: 30949755 DOI: 10.1007/s00285-019-01340-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/31/2018] [Indexed: 11/25/2022]
Abstract
The focus of this paper is to develop a new partial differential equation model for the pattern formation of the human pathogen Staphylococcus aureus, starting from a newly developed model of selected gene regulation mechanisms. In our model, we do not only account for the bacteria densities and nutrient concentrations, but also for the quorum sensing and biofilm components, since they enable bacteria to coordinate their behavior and provide the environment in which the colony grows. To this end, we model the relevant gene regulation systems using ordinary differential equations and therefrom derive our evolution equations for quorum sensing and biofilm environment by time-scale arguments. Furthermore, we compare and validate our model and the corresponding simulation results with biological real data observations of Staphylococcus aureus mutant colony growth in the laboratory. We show that we are able to adequately display the qualitative biological features of pattern formation in selected mutants, using the parameter changes indicated by the gene regulation mechanisms.
Collapse
Affiliation(s)
- A Oelker
- Technische Universität München, Boltzmannstrasse 3, 85748, Garching bei München, Germany.
| | - T Horger
- Technische Universität München, Boltzmannstrasse 3, 85748, Garching bei München, Germany
| | - C Kuttler
- Technische Universität München, Boltzmannstrasse 3, 85748, Garching bei München, Germany
| |
Collapse
|
70
|
Zurob E, Dennett G, Gentil D, Montero-Silva F, Gerber U, Naulín P, Gómez A, Fuentes R, Lascano S, Rodrigues da Cunha TH, Ramírez C, Henríquez R, Del Campo V, Barrera N, Wilkens M, Parra C. Inhibition of Wild Enterobacter cloacae Biofilm Formation by Nanostructured Graphene- and Hexagonal Boron Nitride-Coated Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E49. [PMID: 30609710 PMCID: PMC6358881 DOI: 10.3390/nano9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 12/25/2018] [Indexed: 11/17/2022]
Abstract
Although biofilm formation is a very effective mechanism to sustain bacterial life, it is detrimental in medical and industrial sectors. Current strategies to control biofilm proliferation are typically based on biocides, which exhibit a negative environmental impact. In the search for environmentally friendly solutions, nanotechnology opens the possibility to control the interaction between biological systems and colonized surfaces by introducing nanostructured coatings that have the potential to affect bacterial adhesion by modifying surface properties at the same scale. In this work, we present a study on the performance of graphene and hexagonal boron nitride coatings (h-BN) to reduce biofilm formation. In contraposition to planktonic state, we focused on evaluating the efficiency of graphene and h-BN at the irreversible stage of biofilm formation, where most of the biocide solutions have a poor performance. A wild Enterobacter cloacae strain was isolated, from fouling found in a natural environment, and used in these experiments. According to our results, graphene and h-BN coatings modify surface energy and electrostatic interactions with biological systems. This nanoscale modification determines a significant reduction in biofilm formation at its irreversible stage. No bactericidal effects were found, suggesting both coatings offer a biocompatible solution for biofilm and fouling control in a wide range of applications.
Collapse
Affiliation(s)
- Elsie Zurob
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
- Laboratorio de Microbiología Básica y Aplicada, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| | - Geraldine Dennett
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Dana Gentil
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Francisco Montero-Silva
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Ulrike Gerber
- Faculty Environment and Natural Science, Institute of Biotechnology, Brandenburg University of Technology, Universitätsplatz 1, 01968 Senftenberg, Germany.
| | - Pamela Naulín
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Andrea Gómez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Raúl Fuentes
- Departamento de Industrias, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Sheila Lascano
- Departamento de Mecánica, Universidad Técnica Federico Santa María, Avda. Vicuña Mackenna 3939, Santiago, Chile.
| | | | - Cristian Ramírez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Ricardo Henríquez
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Valeria Del Campo
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Nelson Barrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Marcela Wilkens
- Laboratorio de Microbiología Básica y Aplicada, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| | - Carolina Parra
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| |
Collapse
|
71
|
Malhotra R, Dhawan B, Garg B, Shankar V, Nag TC. A Comparison of Bacterial Adhesion and Biofilm Formation on Commonly Used Orthopaedic Metal Implant Materials: An In vitro Study. Indian J Orthop 2019; 53:148-153. [PMID: 30905995 PMCID: PMC6394199 DOI: 10.4103/ortho.ijortho_66_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bacterial adherence and biofilm formation on the surface of biomaterials can often lead to implant-related infections, which may vary depending on the species of microorganisms, type of biomaterial used, and physical characteristics of implant surfaces. However, there are limited studies specifically comparing biofilm formation between commonly used metallic orthopaedic implant materials and different bacterial strains. This in vitro study is to evaluate the ability of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa to adhere to and to form biofilms on the surface of five orthopaedic biomaterials, viz., cobalt and chromium, highly cross-linked polyethylene, stainless steel, trabecular metal, and titanium alloy. MATERIALS AND METHODS Bacterial adherence and bacterial biofilm-formation assays were performed by culturing S. aureus ATCC 29213, S. epidermidis ATCC 35984, E. coli ATCC 35218, K. pneumoniae ATCC 700603, and P. aeruginosa ATCC 27853 for 48 h on five different biomaterials. Quantitative bacterial adherence and biofilm formation were analyzed with a scanning electron microscope. RESULTS The highest level of adherence was observed on highly cross-linked polyethylene, followed by titanium, stainless steel, and trabecular metal, with the lowest occurring on the cobalt-chromium alloy. Among the bacterial strains tested, the ability for high adherence was observed with S. epidermidis and K. pneumoniae followed by P. aeruginosa and E. coli, whereas S. aureus showed the least adherence. CONCLUSION Cobalt-chromium was observed to have the lowest proclivity towards bacterial adherence compared to the other biomaterials tested. However, bacterial adhesion occurred with all the materials. Hence, it is necessary to further evaluate newer biomaterials that are resistant to bacterial adherence.
Collapse
Affiliation(s)
- Rajesh Malhotra
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Benu Dhawan
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India,Address for correspondence: Dr. Benu Dhawan, Department of Microbiology, All India Institute of Medical Sciences, New Delhi - 110 029, India. E-mail:
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Shankar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
72
|
Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018; 4:e01067. [PMID: 30619958 PMCID: PMC6312881 DOI: 10.1016/j.heliyon.2018.e01067] [Citation(s) in RCA: 645] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
In living organisms, biofilms are defined as complex communities of bacteria residing within an exopolysaccharide matrix that adheres to a surface. In the clinic, they are typically the cause of chronic, nosocomial, and medical device-related infections. Due to the antibiotic-resistant nature of biofilms, the use of antibiotics alone is ineffective for treating biofilm-related infections. In this review, we present a brief overview of concepts of bacterial biofilm formation, and current state-of-the-art therapeutic approaches for preventing and treating biofilms. Also, we have reviewed the prevalence of such infections on medical devices and discussed the future challenges that need to be overcome in order to successfully treat biofilms using the novel technologies being developed.
Collapse
Affiliation(s)
- Zohra Khatoon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Christopher D. McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
73
|
Antibacterial and anti-adhesive efficiency of Pediococcus acidilactici against foodborne biofilm producer Bacillus cereus attached on different food processing surfaces. Food Sci Biotechnol 2018; 28:841-850. [PMID: 31093442 DOI: 10.1007/s10068-018-0518-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
This study aimed to assess the biofilm formation by Bacillus cereus on two novel surfaces namely: aluminum and cold steel in comparison study with stainless steel and polystyrene. Also, it aimed to study the inhibitory effect of a new strain Pediococcus acidilactici against biofilm formation by B. cereus grown on these surfaces. In this study, B. cereus M50 isolated from milky machine surface was selected as the highest biofilm producer. The number of M50 cells adhered to aluminum and stainless steel surfaces were more than that adhered to polystyrene and cold steel, respectively. The antimicrobial, anti-adhesive and SEM studies revealed that the P. acidilactici P12 culture and its cell free filtrate showed a significant potential inhibition of biofilm formation of M50 on all tested surfaces under different conditions. These results demonstrated that P. acidilactici strain are considered a new biotreatment for biofilm destruction of food borne pathogens, food biopreservation and food safety.
Collapse
|
74
|
Oh JK, Yegin Y, Yang F, Zhang M, Li J, Huang S, Verkhoturov SV, Schweikert EA, Perez-Lewis K, Scholar EA, Taylor TM, Castillo A, Cisneros-Zevallos L, Min Y, Akbulut M. The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Sci Rep 2018; 8:17247. [PMID: 30467352 PMCID: PMC6250697 DOI: 10.1038/s41598-018-35343-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022] Open
Abstract
This work is concerned with investigating the effect of substrate hydrophobicity and zeta potential on the dynamics and kinetics of the initial stages of bacterial adhesion. For this purpose, bacterial pathogens Staphylococcus aureus and Escherichia coli O157:H7 were inoculated on the substrates coated with thin thiol layers (i.e., 1-octanethiol, 1-decanethiol, 1-octadecanethiol, 16-mercaptohexadecanoic acid, and 2-aminoethanethiol hydrochloride) with varying hydrophobicity and surface potential. The time-resolved adhesion data revealed a transformation from an exponential dependence to a square root dependence on time upon changing the substrate from hydrophobic or hydrophilic with a negative zeta potential value to hydrophilic with a negative zeta potential for both pathogens. The dewetting of extracellular polymeric substances (EPS) produced by E. coli O157:H7 was more noticeable on hydrophobic substrates, compared to that of S. aureus, which is attributed to the more amphiphilic nature of staphylococcal EPS. The interplay between the timescale of EPS dewetting and the inverse of the adhesion rate constant modulated the distribution of E. coli O157:H7 within microcolonies and the resultant microcolonial morphology on hydrophobic substrates. Observed trends in the formation of bacterial monolayers rather than multilayers and microcolonies rather than isolated and evenly spaced bacterial cells could be explained by a colloidal model considering van der Waals and electrostatic double-layer interactions only after introducing the contribution of elastic energy due to adhesion-induced deformations at intercellular and substrate-cell interfaces. The gained knowledge is significant in the context of identifying surfaces with greater risk of bacterial contamination and guiding the development of novel surfaces and coatings with superior bacterial antifouling characteristics.
Collapse
Affiliation(s)
- Jun Kyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Yagmur Yegin
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Fan Yang
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Ming Zhang
- Department of Polymer Engineering, University of Akron, Akron, Ohio, 44325, USA
| | - Jingyu Li
- Department of Polymer Engineering, University of Akron, Akron, Ohio, 44325, USA
| | - Shifeng Huang
- Department of Polymer Engineering, University of Akron, Akron, Ohio, 44325, USA
| | | | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Keila Perez-Lewis
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Ethan A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - T Matthew Taylor
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Alejandro Castillo
- Department of Animal Science, Texas A&M University, College Station, Texas, 77843, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | - Younjin Min
- Department of Polymer Engineering, University of Akron, Akron, Ohio, 44325, USA.
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, 77843, USA.
| |
Collapse
|
75
|
Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem Biol Interact 2018. [DOI: 10.1016/j.cbi.2017.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
76
|
Jamal M, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Ur Rahman S, Das CR. Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae. Folia Microbiol (Praha) 2018; 64:101-111. [PMID: 30090964 DOI: 10.1007/s12223-018-0636-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Biofilm is involved in a variety of infections, playing a critical role in the chronicity of infections. Enterobacter cloacae is a biofilm-forming and multi-drug-resistant (MDR) nosocomial pathogen leading to significant morbidity and mortality. This study aimed at isolation of a bacteriophage against MDR clinical strain of E. cloacae and its efficacy against bacterial planktonic cells and biofilm. A bacteriophage MJ2 was successfully isolated from wastewater and was characterized. The phage exhibited a wide range of thermal and pH stability and demonstrated considerable adsorption to host bacteria in the presence of CaCl2 or MgCl2. Transmission electron microscopy (TEM) showed MJ2 head as approximately 62 and 54 nm width and length, respectively. It had a short non-contractile tail and was characterized as a member of the family Podoviridae [order Caudovirales]. The phage MJ2 was found to possess 11 structural proteins (12-150 kDa) and a double-stranded DNA genome with an approximate size of 40 kb. The log-phase growth of E. cloacae both in biofilm and suspension was significantly reduced by the phage. The E. cloacae biofilm was formed under different conditions to evaluate the efficacy of MJ2 phage. Variable reduction pattern of E. cloacae biofilm was observed while treating it for 4 h with MJ2, i.e., biofilm under static conditions. The renewed media with intervals of 24, 72, and 120 h showed biomass decline of 2.8-, 3-, and 3.5-log, respectively. Whereas, the bacterial biofilm formed with dynamic conditions with refreshing media after 24, 72, and 120 h demonstrated decline in growth at 2.5-, 2.6-, and 3.3-log, respectively. It was, therefore, concluded that phage MJ2 possessed considerable inhibitory effects on MDR E. cloacae both in planktonic and biofilm forms.
Collapse
Affiliation(s)
- Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, 23200, Pakistan.
- Emerging Pathogens Institute (EPI), University of Florida (UF), Gainesville, FL, USA.
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan.
| | - Saadia Andleeb
- Emerging Pathogens Institute (EPI), University of Florida (UF), Gainesville, FL, USA
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fazal Jalil
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Muhammad Imran
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Pakistan
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Asif Nawaz
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, 23200, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
- Department of Life Sciences, School of Science, University of Management and Technology, C-II Johar Town, Lahore, 54770, Pakistan
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
- Department of Life Sciences, School of Science, University of Management and Technology, C-II Johar Town, Lahore, 54770, Pakistan
| | - Chythanya Rajanna Das
- Emerging Pathogens Institute (EPI), University of Florida (UF), Gainesville, FL, USA
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
77
|
Effects of Fine Particulate Matter on Pseudomonas aeruginosa Adhesion and Biofilm Formation In Vitro. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6287932. [PMID: 30069474 PMCID: PMC6057421 DOI: 10.1155/2018/6287932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022]
Abstract
Respiratory infections of Pseudomonas aeruginosa are a major cause of mortality and morbidity for hospitalized patients. Fine particulate matter (FPM) is known to have interactions with some bacterial infection in the respiratory system. In this report, we investigate the effect of different concentration of FPM on P. aeruginosa attachment and biofilm formation using in vitro cell culture systems. P. aeruginosa were cultured to form mature biofilms on hydroxyapatite-coated peg and the number of bacteria in the biofilms was enumerated. Morphology of biofilm was imaged with scanning electron microscopy and confocal laser scanning microscopy. Bacterial affinity change to the cell membrane was evaluated with attached colony counting and fluorescence microscopy images. Alteration of bacterial surface hydrophobicity and S100A4 protein concentration were explored as mechanisms of P. aeruginosa adhesion to human cells. There were a concentration-dependent increase of thickness and surface roughness of biofilm mass. P. aeruginosa adherence to respiratory epithelial cells was increased after FPM treatment. Bacterial surface hydrophobicity and S1000A4 protein concentration were increased with proportionally the dose of FPM in media. FPM in the airway could enhance both the adhesion of P. aeruginosa to epithelial cells and biofilm formation. Bacterial surface hydrophobicity and human cell plasma membrane injury are associated with binding of P. aeruginosa on airway epithelial cells and biofilm formation.
Collapse
|
78
|
Hwang GB, Page K, Patir A, Nair SP, Allan E, Parkin IP. The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived. ACS NANO 2018; 12:6050-6058. [PMID: 29792802 DOI: 10.1021/acsnano.8b02293] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Superhydrophobic surfaces are present in nature on the leaves of many plant species. Water rolls on these surfaces, and the rolling motion picks up particles including bacteria and viruses. Man-made superhydrophobic surfaces have been made in an effort to reduce biofouling. We show here that the anti-biofouling property of a superhydrophobic surface is due to an entrapped air-bubble layer that reduces contact between the bacteria and the surface. Further, we showed that prolonged immersion of superhydrophobic surfaces in water led to loss of the bubble-layer and subsequent bacterial adhesion that unexpectedly exceeded that of the control materials. This behavior was not restricted to one particular type of material but was evident on different types of superhydrophobic surfaces. This work is important in that it suggests that superhydrophobic surfaces may actually encourage bacterial adhesion during longer term exposure.
Collapse
Affiliation(s)
- Gi Byoung Hwang
- Materials Chemistry Research Centre, Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom
| | - Kristopher Page
- Materials Chemistry Research Centre, Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom
| | - Adnan Patir
- Materials Chemistry Research Centre, Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute , University College London , 256 Gray's Inn Road , London WC1X 8LD , United Kingdom
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute , University College London , 256 Gray's Inn Road , London WC1X 8LD , United Kingdom
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom
| |
Collapse
|
79
|
Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
80
|
Burgui S, Gil C, Solano C, Lasa I, Valle J. A Systematic Evaluation of the Two-Component Systems Network Reveals That ArlRS Is a Key Regulator of Catheter Colonization by Staphylococcus aureus. Front Microbiol 2018; 9:342. [PMID: 29563900 PMCID: PMC5845881 DOI: 10.3389/fmicb.2018.00342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/12/2018] [Indexed: 12/29/2022] Open
Abstract
Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.
Collapse
Affiliation(s)
- Saioa Burgui
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Carmen Gil
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jaione Valle
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
81
|
Ravensdale JT, Coorey R, Dykes GA. Integration of Emerging Biomedical Technologies in Meat Processing to Improve Meat Safety and Quality. Compr Rev Food Sci Food Saf 2018; 17:615-632. [PMID: 33350135 DOI: 10.1111/1541-4337.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/16/2023]
Abstract
Modern-day processing of meat products involves a series of complex procedures designed to ensure the quality and safety of the meat for consumers. As the size of abattoirs increases, the logistical problems associated with large-capacity animal processing can affect the sanitation of the facility and the meat products, potentially increasing transmission of infectious diseases. Additionally, spoilage of food from improper processing and storage increases the global economic and ecological burden of meat production. Advances in biomedical and materials science have allowed for the development of innovative new antibacterial technologies that have broad applications in the medical industry. Additionally, new approaches in tissue engineering and nondestructive cooling of biological specimens could significantly improve organ transplantation and tissue grafting. These same strategies may be even more effective in the preservation and protection of meat as animal carcasses are easier to manipulate and do not have the same stringent requirements of care as living patients. This review presents potential applications of emerging biomedical technologies in the food industry to improve meat safety and quality. Future research directions investigating these new technologies and their usefulness in the meat processing chain along with regulatory, logistical, and consumer perception issues will also be discussed.
Collapse
Affiliation(s)
- Joshua T Ravensdale
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Ranil Coorey
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Gary A Dykes
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| |
Collapse
|
82
|
Harraghy N, Seiler S, Jacobs K, Hannig M, Menger MD, Herrmann M. Advances in in Vitro and in Vivo Models for Studying the Staphylococcal Factors Involved in Implant Infections. Int J Artif Organs 2018; 29:368-78. [PMID: 16705605 DOI: 10.1177/039139880602900406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implant infections due to staphylococci are one of the greatest threats facing patients receiving implant devices. For many years researchers have sought to understand the mechanisms involved in the adherence of the bacterium to the implanted device and the formation of the unique structure, the biofilm, which protects the indwelling bacteria from the host defence and renders them resistant to antibiotic treatment. A major goal has been to develop in vitro and in vivo models that adequately reflect the real-life situation. From the simple microtiter plate assay and scanning electron microscopy, tools for studying adherence and biofilm formation have since evolved to include specialised equipment for studying adherence, flow cell systems, real-time analysis of biofilm formation using reporter gene assays both in vitro and in vivo, and a wide variety of animal models. In this article, we discuss advances in the last few years in selected in vitro and in vivo models as well as future developments in the study of adherence and biofilm formation by the staphylococci.
Collapse
Affiliation(s)
- N Harraghy
- Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
83
|
Henriques M, Cerca N, Azeredo J, Oliveira R. Influence of Sub-Inhibitory Concentrations of Antimicrobial Agents on Biofilm Formation in Indwelling Medical Devices. Int J Artif Organs 2018; 28:1181-5. [PMID: 16353125 DOI: 10.1177/039139880502801116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biofilms of Staphylococcus epidermidis and Candida spp. are two of the most frequent factors of infections associated with the use of indwelling medical devices. Several strategies have been proposed and/or developed to prevent infection. The aim of this study was to compare the effect of sub-inhibitory concentrations of anti-microbial agents on biofilm formation. Biofilms of three strains of S. epidermidis and two of both Candida albicans and Candida dubliniensis were formed in the presence of three antibiotics and two antifungal agents respectively. Based on the control samples, the percentage of biofilm formation inhibition by the different agents was determined and compared. The results showed that the influence of the antibacterial and antifungal agents tested is strain dependent, with the effect of the different agents also varying among strains, even though they have the same mechanism of action.
Collapse
Affiliation(s)
- M Henriques
- Center of Biological Engineering, CEB, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | |
Collapse
|
84
|
Morán G, Ramos-Chagas G, Hugelier S, Xie X, Boudjemaa R, Ruckebusch C, Sliwa M, Darmanin T, Gaucher A, Prim D, Godeau G, Amigoni S, Guittard F, Méallet-Renault R. Superhydrophobic polypyrene films to prevent Staphylococcus aureus and Pseudomonas aeruginosa biofilm adhesion on surfaces: high efficiency deciphered by fluorescence microscopy. Photochem Photobiol Sci 2018; 17:1023-1035. [DOI: 10.1039/c8pp00043c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Superhydrophobic fluorinated-polypyrene proved to be highly efficient to prevent biofilm adhesion.
Collapse
|
85
|
Jamal M, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Das CR. Isolation and characterization of a bacteriophage and its utilization against multi-drug resistant Pseudomonas aeruginosa-2995. Life Sci 2017; 190:21-28. [PMID: 28964812 DOI: 10.1016/j.lfs.2017.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023]
Abstract
AIMS To identify, isolate, and characterize a lytic bacteriophage against the multiple-drug resistant clinical strain of Pseudomonas aeruginosa-2995 and to determine the phage efficacy against the bacterial planktonic cells and the biofilm. MAIN METHODS Wastewater was used to isolate a bacteriophage. The phage was characterized with Transmission electron microscopy (TEM). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to identify the expressed proteins. Bacteria were cultured in both suspension and biofilm to check and compare their susceptibility to phage lytic action. The activity of the phage (determined as AZ1) was determined against P. aeruginosa-2995 in both planktonic cells and the biofilm. KEY FINDINGS A bacteriophage, designated as AZ1, was isolated from waste water showing a narrow host range. AZ1 was characterized by TEM and could be identified as an isolate in the family Siphoviridae [order Caudovirals]. Seventeen structural proteins ranging from about 12 to 110kDa were found through SDS-PAGE analysis. Its genome was confirmed as dsDNA with a length of approx. 50kb. The log-phase growth of P. aeruginosa-2995 was significantly reduced after treatment with AZ1 (4.50×108 to 2.1×103CFU/ml) as compared to control. Furthermore, phage AZ1 significantly reduced 48h old biofilm biomass about 3-fold as compared to control. SIGNIFICANCE Pseudomonas aeruginosa is a ubiquitous free-living opportunistic human pathogen characterized by high antibiotic tolerance and tendency for biofilm formation. The phage, identified in this study, AZ1, showed promising activity in the destruction of both planktonic cells and biofilm of P. aeruginosa-2995. However, complete eradication may require a combination of phages.
Collapse
Affiliation(s)
- Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan; Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan; Emerging Pathogens Institute (EPI), University of Florida (UF), FL, USA.
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Sciences, University of Management and Technology (UMT), Lahore, Pakistan
| | | |
Collapse
|
86
|
Fernández M, Morales GM, Agostini E, González PS. An approach to study ultrastructural changes and adaptive strategies displayed by Acinetobacter guillouiae SFC 500-1A under simultaneous Cr(VI) and phenol treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20390-20400. [PMID: 28707241 DOI: 10.1007/s11356-017-9682-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Acinetobacter guillouiae SFC 500-1A, a native bacterial strain isolated from tannery sediments, is able to simultaneously remove high concentrations of Cr(VI) and phenol. In this complementary study, high-resolution microscopy techniques, such as atomic force microscopy (AFM) and transmission electron microscopy (TEM), were used to improve our understanding of some bacterial adaptive mechanisms that enhance their ability to survive. AFM contributed in gaining insight into changes in bacterial size and morphology. It allowed the unambiguous identification of pollutant-induced cellular disturbances and the visualization of bacterial cells with depth sensitivity. TEM analysis revealed that Cr(VI) produced changes mainly at the intracellular level, whereas phenol produced alterations at the membrane level. This strain tended to form more extensive biofilms after phenol treatment, which was consistent with microscopy images and the production of exopolysaccharides (EPSs). In addition, other exopolymeric substances (DNA, proteins) significantly increased under Cr(VI) and phenol treatment. These exopolymers are important for biofilm formation playing a key role in bacterial aggregate stability, being especially useful for bioremediation of environmental pollutants. This study yields the first direct evidences of a range of different changes in A. guillouiae SFC 500-1A which seems to be adaptive strategies to survive in stressful conditions.
Collapse
Affiliation(s)
- Marilina Fernández
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Gustavo M Morales
- Departamento de Química-FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
87
|
Artini M, Cicatiello P, Ricciardelli A, Papa R, Selan L, Dardano P, Tilotta M, Vrenna G, Tutino ML, Giardina P, Parrilli E. Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces. BIOFOULING 2017; 33:601-611. [PMID: 28686037 DOI: 10.1080/08927014.2017.1338690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcus epidermidis is a significant nosocomial pathogen in predisposed hosts because of its capability of forming a biofilm on indwelling medical devices. The initial stage of biofilm formation has a key role in S. epidermidis abiotic surface colonization. Recently, many strategies have been developed to create new anti-biofilm surfaces able to control bacterial adhesion mechanisms. In this work, the self-assembled amphiphilic layers formed by two fungal hydrophobins (Vmh2 and Pac3) have proven to be able to reduce the biofilm formed by different strains of S. epidermidis on polystyrene surfaces. The reduction in the biofilm thickness on the coated surfaces and the preservation of cell vitality have been demonstrated through confocal laser scanning microscope analysis. Moreover, the anti-biofilm efficiency of the self-assembled layers on different medically relevant materials has also been demonstrated using a CDC biofilm reactor.
Collapse
Affiliation(s)
- Marco Artini
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Paola Cicatiello
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Annarita Ricciardelli
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Rosanna Papa
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Laura Selan
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Principia Dardano
- c Institute for Microelectronics and Microsystems, Unit of Naples , National Research Council , Naples , Italy
| | - Marco Tilotta
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Gianluca Vrenna
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Maria Luisa Tutino
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Paola Giardina
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| | - Ermenegilda Parrilli
- b Department of Chemical Sciences , Federico II University, Complesso Universitario Monte Sant'Angelo , Naples , Italy
| |
Collapse
|
88
|
Cox SC, Jamshidi P, Eisenstein NM, Webber MA, Burton H, Moakes RJA, Addison O, Attallah M, Shepherd DE, Grover LM. Surface Finish has a Critical Influence on Biofilm Formation and Mammalian Cell Attachment to Additively Manufactured Prosthetics. ACS Biomater Sci Eng 2017; 3:1616-1626. [DOI: 10.1021/acsbiomaterials.7b00336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Neil M. Eisenstein
- Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston B15 2SQ, United Kingdom
| | - Mark A. Webber
- Institute of Food Research, Norwich
Research Park, Norwich NR4 7UG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
89
|
Rajoria S, Kumar RB, Gupta P, Alam SI. Postexposure Recovery and Analysis of Biological Agent in a Simulated Biothreat Scenario Using Tandem Mass Spectrometry. Anal Chem 2017; 89:4062-4070. [DOI: 10.1021/acs.analchem.6b04862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sakshi Rajoria
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Pallavi Gupta
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| |
Collapse
|
90
|
Kim CY, Ryu GJ, Park HY, Ryu K. Resistance ofStaphylococcus aureuson food contact surfaces with different surface characteristics to chemical sanitizers. J Food Saf 2017. [DOI: 10.1111/jfs.12354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Choon Young Kim
- Department of Food and Nutrition; Yeungnam University, Gyeongsan; Gyeongbuk 38541 South Korea
| | - Geum Joo Ryu
- Department of Food and Nutrition; Yeungnam University, Gyeongsan; Gyeongbuk 38541 South Korea
| | - Hye Young Park
- Department of Food and Nutrition; Yeungnam University, Gyeongsan; Gyeongbuk 38541 South Korea
| | - Kyung Ryu
- Department of Food and Nutrition; Yeungnam University, Gyeongsan; Gyeongbuk 38541 South Korea
| |
Collapse
|
91
|
Adhesion of Staphylococcus aureus and Staphylococcus xylosus to materials commonly found in catering and domestic kitchens. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
92
|
Hayat S, Sabri AN, McHugh TD. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria. J GEN APPL MICROBIOL 2017; 63:325-338. [DOI: 10.2323/jgam.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sumreen Hayat
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus
- Department of Microbiology, Government College University
| | - Anjum N. Sabri
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus
| | - Timothy D. McHugh
- Center for Clinical Microbiology, Royal Free Campus, University College London
| |
Collapse
|
93
|
Zhao X, Zhao F, Wang J, Zhong N. Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv 2017. [DOI: 10.1039/c7ra02497e] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Foodborne pathogens are the main factors behind foodborne diseases and food poisoning and thus pose a great threat to food safety.
Collapse
Affiliation(s)
- Xihong Zhao
- Research Center for Environmental Ecology and Engineering
- Key Laboratory for Green Chemical Process of Ministry of Education
- Key Laboratory for Hubei Novel Reactor & Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| | - Fenghuan Zhao
- Research Center for Environmental Ecology and Engineering
- Key Laboratory for Green Chemical Process of Ministry of Education
- Key Laboratory for Hubei Novel Reactor & Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| | - Jun Wang
- College of Food Science and Engineering
- Qingdao Agricultural University
- Qingdao
- P. R. China
| | - Nanjing Zhong
- School of Food Science
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| |
Collapse
|
94
|
Lei L, Shao M, Yang Y, Mao M, Yang Y, Hu T. Exopolysaccharide dispelled by calcium hydroxide with volatile vehicles related to bactericidal effect for root canal medication. J Appl Oral Sci 2016; 24:487-495. [PMID: 27812619 PMCID: PMC5083026 DOI: 10.1590/1678-775720160014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/26/2016] [Indexed: 02/05/2023] Open
Abstract
Objective: Enterococcus faecalis is the dominant microbial species responsible for persistent apical periodontitis with ability to deeply penetrate into the dentin. Exopolysaccharides (EPS) contribute to the pathogenicity and antibiotic resistance of E. faecalis. Our aim was to investigate the antimicrobial activity of calcium hydroxide (CH), camphorated parachlorophenol (CMCP), and chlorhexidine (CHX) against E. faecalis in dentinal tubules. Material and Methods: Decoronated single-canal human teeth and semicylindrical dentin blocks were incubated with E. faecalis for 3 weeks. Samples were randomly assigned to six medication groups for 1 week (n=10 per group): CH + 40% glycerin-water solution (1:1, wt/vol); CMCP; 2% CHX; CH + CMCP (1:1, wt/vol); CH + CMCP (2:3, wt/vol); and saline. Bacterial samples were collected and assayed for colony-forming units. After dentin blocks were split longitudinally, confocal laser scanning microscopy was used to assess the proportion of viable bacteria and EPS production in dentin. Results: CMCP exhibited the best antimicrobial activity, while CH was the least sensitive against E. faecalis (p<0.05). CHX showed similar antimicrobial properties to CH + CMCP (1:1, wt/vol) (p>0.05). CH combined with CMCP inhibited EPS synthesis by E. faecalis, which sensitized biofilms to antibacterial substances. Moreover, increasing concentrations of CMCP decreased EPS matrix formation, which effectively sensitized biofilms to disinfection agents. Conclusion: The EPS matrix dispelled by CH paste with CMCP may be related to its bactericidal effect; the visualization and analysis of EPS formation and microbial colonization in dentin may be a useful approach to verify medicaments for antimicrobial therapy.
Collapse
Affiliation(s)
- Lei Lei
- Sichuan University, West China Hospital of Stomatology, Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, Sichuan, China.,The Forsyth Institute, Department of Microbiology, Cambridge, United States
| | - Meiying Shao
- Sichuan University, College of Life Sciences, State Key Laboratory of Oral Diseases, Sichuan, China
| | - Yan Yang
- Sichuan University, West China Hospital of Stomatology, Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, Sichuan, China
| | - Mengying Mao
- Sichuan University, West China Hospital of Stomatology, Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, Sichuan, China
| | - Yingming Yang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, Sichuan, China
| | - Tao Hu
- Sichuan University, West China Hospital of Stomatology, Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, Sichuan, China.,Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, Sichuan, China
| |
Collapse
|
95
|
Rossi Gonçalves I, Dantas RCC, Ferreira ML, Batistão DWDF, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol 2016; 48:211-217. [PMID: 28034598 PMCID: PMC5470431 DOI: 10.1016/j.bjm.2016.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 04/25/2016] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes frequently nosocomial infections, currently becoming more difficult to treat due to the various resistance mechanisms and different virulence factors. The purpose of this study was to determine the risk factors independently associated with the development of bacteremia by carbapenem-resistant P. aeruginosa, the frequency of virulence genes in metallo-β-lactamases producers and to evaluate their ability to produce biofilm. We conducted a case–control study in the Uberlândia Federal University – Hospital Clinic, Brazil. Polymerase Chain Reaction was performed for metallo-β-lactamases and virulence genes. Adhesion and biofilm assays were done by quantitative tests. Among the 157 strains analyzed, 73.9% were multidrug-resistant, 43.9% were resistant to carbapenems, 16.1% were phenotypically positive for metallo-β-lactamases, and of these, 10.7% were positive for blaSPM gene and 5.3% positive for blaVIM. The multivariable analysis showed that mechanical ventilation, enteral/nasogastric tubes, primary bacteremia with unknown focus, and inappropriate therapy were independent risk factors associated with bacteremia. All tested strains were characterized as strongly biofilm producers. A higher mortality was found among patients with bacteremia by carbapenem-resistant P. aeruginosa strains, associated independently with extrinsic risk factors, however it was not evident the association with the presence of virulence and metallo-β-lactamases genes.
Collapse
Affiliation(s)
- Iara Rossi Gonçalves
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Microbiologia, Uberlândia, MG, Brazil.
| | | | - Melina Lorraine Ferreira
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Microbiologia, Uberlândia, MG, Brazil
| | | | - Paulo Pinto Gontijo-Filho
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Microbiologia, Uberlândia, MG, Brazil
| | - Rosineide Marques Ribas
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Microbiologia, Uberlândia, MG, Brazil
| |
Collapse
|
96
|
Mohmmed SA, Vianna ME, Hilton ST, Boniface DR, Ng YL, Knowles JC. Investigation to test potential stereolithography materials for development of anin vitroroot canal model. Microsc Res Tech 2016; 80:202-210. [DOI: 10.1002/jemt.22788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Saifalarab A. Mohmmed
- Division of Biomaterials and Tissue Engineering; UCL Eastman Dental Institute, University College London; London UK
| | - Morgana E. Vianna
- Department of Learning and Scholarship, School of Dentistry, College of Biomedical and Life Sciences; Cardiff University; Cardiff UK
| | - Stephen T. Hilton
- School of Pharmacy, Faculty of Life Sciences; University College London; London UK
| | - David R. Boniface
- Biostatistics Unit, UCL Eastman Dental institute, University College London; London UK
| | - Yuan-Ling Ng
- Unit of Endodontology, UCL-Eastman Dental Institute, University College London; London United Kingdom
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering; UCL Eastman Dental Institute, University College London; London UK
| |
Collapse
|
97
|
Ding Y, Zhou Y, Yao J, Szymanski C, Fredrickson J, Shi L, Cao B, Zhu Z, Yu XY. In Situ Molecular Imaging of the Biofilm and Its Matrix. Anal Chem 2016; 88:11244-11252. [DOI: 10.1021/acs.analchem.6b03909] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuanzhao Ding
- Singapore
Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
- Interdisciplinary
Graduate School (IGS), Nanyang Technological University (NTU), 639798, Singapore
- Earth
and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yufan Zhou
- Environmental
and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Juan Yao
- Earth
and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Craig Szymanski
- Environmental
and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James Fredrickson
- Earth
and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Liang Shi
- Earth
and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Bin Cao
- Singapore
Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
- School
of Civil and Environmental Engineering, Nanyang Technological University (NTU), 639798, Singapore
| | - Zihua Zhu
- Environmental
and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiao-Ying Yu
- Earth
and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
98
|
N'Diaye AR, Leclerc C, Kentache T, Hardouin J, Poc CD, Konto-Ghiorghi Y, Chevalier S, Lesouhaitier O, Feuilloley MGJ. Skin-bacteria communication: Involvement of the neurohormone Calcitonin Gene Related Peptide (CGRP) in the regulation of Staphylococcus epidermidis virulence. Sci Rep 2016; 6:35379. [PMID: 27739485 PMCID: PMC5064375 DOI: 10.1038/srep35379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
Abstract
Staphylococci can sense Substance P (SP) in skin, but this molecule is generally released by nerve terminals along with another neuropeptide, Calcitonin Gene Related Peptide (CGRP). In this study, we investigated the effects of αCGRP on Staphylococci. CGRP induced a strong stimulation of Staphylococcus epidermidis virulence with a low threshold (<10−12 M) whereas Staphylococcus aureus was insensitive to CGRP. We observed that CGRP-treated S. epidermidis induced interleukin 8 release by keratinocytes. This effect was associated with an increase in cathelicidin LL37 secretion. S. epidermidis displayed no change in virulence factors secretion but showed marked differences in surface properties. After exposure to CGRP, the adherence of S. epidermidis to keratinocytes increased, whereas its internalization and biofilm formation activity were reduced. These effects were correlated with an increase in surface hydrophobicity. The DnaK chaperone was identified as the S. epidermidis CGRP-binding protein. We further showed that the effects of CGRP were blocked by gadolinium chloride (GdCl3), an inhibitor of MscL mechanosensitive channels. In addition, GdCl3 inhibited the membrane translocation of EfTu, the Substance P sensor. This work reveals that through interaction with specific sensors S. epidermidis integrates different skin signals and consequently adapts its virulence.
Collapse
Affiliation(s)
- Awa R N'Diaye
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Camille Leclerc
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Takfarinas Kentache
- Laboratory of Polymers, Biopolymers and Surfaces, CNRS UMR 6270, Normandie Université, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Laboratory of Polymers, Biopolymers and Surfaces, CNRS UMR 6270, Normandie Université, Mont-Saint-Aignan, France
| | - Cecile Duclairoir Poc
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| |
Collapse
|
99
|
Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol 2016; 63:233-9. [PMID: 27479925 DOI: 10.1111/lam.12627] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/07/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED The human opportunistic pathogen, Acinetobacter baumannii, has the propensity to form biofilms and frequently cause medical device-related infections in hospitals. However, the physio-chemical properties of medical surfaces, in addition to bacterial surface properties, will affect colonization and biofilm development. The objective of this study was to compare the ability of A. baumannii to form biofilms on six different materials common to the hospital environment: glass, porcelain, stainless steel, rubber, polycarbonate plastic and polypropylene plastic. Biofilms were developed on material coupons in a CDC biofilm reactor. Biofilms were visualized and quantified using fluorescent staining and imaged using confocal laser scanning microscopy (CLSM) and by direct viable cell counts. Image analysis of CLSM stacks indicated that the mean biomass values for biofilms grown on glass, rubber, porcelain, polypropylene, stainless steel and polycarbonate were 0·04, 0·26, 0·62, 1·00, 2·08 and 2·70 μm(3) /μm(2) respectively. Polycarbonate developed statistically more biofilm mass than glass, rubber, porcelain and polypropylene. Viable cell counts data were in agreement with the CLSM-derived data. In conclusion, polycarbonate was the most accommodating surface for A. baumannii ATCC 17978 to form biofilms while glass was least favourable. Alternatives to polycarbonate for use in medical and dental devices may need to be considered. SIGNIFICANCE AND IMPACT OF THE STUDY In the hospital environment, Acinetobacter baumannii is one of the most persistent and difficult to control opportunistic pathogens. The persistence of A. baumannii is due, in part, to its ability to colonize surfaces and form biofilms. This study demonstrates that A. baumannii can form biofilms on a variety of different surfaces and develops substantial biofilms on polycarbonate - a thermoplastic material that is often used in the construction of medical devices. The findings highlight the need to further study the in vitro compatibility of medical materials that could be colonized by A. baumannii and allow it to persist in hospital settings.
Collapse
Affiliation(s)
- C Greene
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA
| | - J Wu
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA
| | - A H Rickard
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - C Xi
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
100
|
Nguyen V, Karunakaran E, Collins G, Biggs CA. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material. Colloids Surf B Biointerfaces 2016; 143:518-525. [DOI: 10.1016/j.colsurfb.2016.03.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/15/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
|