51
|
Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol 2024; 14:1296447. [PMID: 38249451 PMCID: PMC10797027 DOI: 10.3389/fmicb.2023.1296447] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
Collapse
Affiliation(s)
- Oana-Alina Petrariu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
52
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
53
|
Chen Y, Rong C, Gao W, Luo S, Guo Y, Gu Y, Yang G, Xu W, Zhu C, Qu LL. Ag-MXene as peroxidase-mimicking nanozyme for enhanced bacteriocide and cholesterol sensing. J Colloid Interface Sci 2024; 653:540-550. [PMID: 37729761 DOI: 10.1016/j.jcis.2023.09.097] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Reactive oxygen species (ROS) are ideal alternative antibacterial reagents for rapid and effective sterilization. Although a variety of ROS-based antimicrobial strategies have been developed, many are still limited by their inefficiency. Herein, we report the synthesis of the Ag-MXene nanozyme, which have superior peroxidase-like activity for antibacterial applications. As a result, Ag-MXene nanozyme can efficiently increase the level of intracellular ROS, converting H2O2 into hydroxyl radicals that effectively kill both Gram-negative and Gram-positive bacteria and disrupting the bacterial biofilm formation. Moreover, a sensitive and selective colorimetric biosensor was constructed for assaying cholesterol based on the Ag-MXene's prominent peroxidase-mimicking activity and the cholesterol oxidase cascade reaction. The biosensor exhibits high performance with a linear cholesterol detection range of 2-800 μM, and a detection limit of 0.6 μM. Ag-MXene nanozyme can be used for the rapid detection of cholesterol in serum without complicated sample pretreatment. Collectively, it is conceivable that the proposed Ag-MXene nanozyme could be used as a biocide and as a cholesterol sensor. This study provides a broad prospect for the rapid detection and sterilization of MXene nanozymes in the biomedical field.
Collapse
Affiliation(s)
- Yu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Chengyu Rong
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenhui Gao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Siyu Luo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
54
|
Mattos Rocha Olivieri C, Aparecida Manólio Soares Freitas R, Alfredo Gomes Arêas J. Jatobá-do-cerrado (Hymenaea stigonocarpa Mart.) pulp positively affects plasma and hepatic lipids and increases short-chain fatty acid production in hamsters fed a hypercholesterolemic diet. Food Res Int 2024; 175:113766. [PMID: 38129058 DOI: 10.1016/j.foodres.2023.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
This study aimed to assess the impact of jatobá pulp, in its fresh (FJ) and extruded (EJ) forms, on lipid metabolism and intestinal fermentation parameters in hamsters. In a 21-day experiment, we determined the parameters of the animal lipid metabolism and colonic production of short chain fatty acids in four different groups. Control (C), fresh pulp (FJ) and extruded pulp (EJ) were fed using hypercholesterolemic diets, and the reference (R) was fed using AIN93 meal. R and C diets contained cellulose, FJ and EJ were added by jatobá pulp as a fiber source. The results showed that FJ and EJ exhibited lower levels of triglycerides, total cholesterol, LDL-c, non-HDL-c serum levels, liver lipids, and liver weight compared to C. The EJ had higher bile acid excretion in stool than the C. EJ and FJ exhibited lower excreted fiber compared to R and C, implying greater fermentation. Furthermore, the production of short-chain fatty acids (SCFA) in the cecum of FJ and EJ animals exceeded that of the C. Acetic and propionic acids were more abundant in the FJ and EJ diets, with FJ producing more butyric acid than the other groups.In conclusion, jatobá pulp maintained at normal levels of total cholesterol, LDL and HDL-associated cholesterol, non-HDL cholesterol, and serum triglycerides, while also reducing the accumulation of hepatic lipids. Jatobá also promoted SCFA formation and fermentation, making it a valuable ingredient for preventing chronic diseases.
Collapse
Affiliation(s)
- Camila Mattos Rocha Olivieri
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904, Brazil.
| | | | - José Alfredo Gomes Arêas
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904, Brazil.
| |
Collapse
|
55
|
She J, Sun L, Yu Y, Fan H, Li X, Zhang X, Zhuo X, Guo M, Liu J, Liu P, Tuerhongjiang G, Du B, Li H, Yu J, Yuan Z, Wu Y. A gut feeling of statin. Gut Microbes 2024; 16:2415487. [PMID: 39470680 PMCID: PMC11540068 DOI: 10.1080/19490976.2024.2415487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
Statins, known as HMG-CoA reductase inhibitors, are widely utilized to reduce blood cholesterol levels and possess pleiotropic effects, including the influence on inflammation and macrophage proliferation. Despite their significant impact in diminishing the incidence of cardiovascular events and mortality, individual responses to statin therapy vary considerably. Understanding this variability is essential for optimizing treatment outcomes and minimizing adverse effects. The gut microbiota, a complex ecosystem of microorganisms within the gastrointestinal tract, plays a critical role in human health and disease. Emerging evidence has linked the gut microbiota to drug metabolism and response, with the potential to modulate the efficacy of statin therapy and its side effects. This review provides a comprehensive overview of the interaction between the gut microbiota and statins. It discusses how the gut microbiota can influence the therapeutic effects and side effects of statins and examines the mechanisms by which the gut microbiota affect statin response and cardiovascular diseases.
Collapse
Affiliation(s)
- Jianqing She
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| | - Lizhe Sun
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Yue Yu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Heze Fan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xia Li
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xinyu Zhang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Xiaozhen Zhuo
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| | - Manyun Guo
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Junhui Liu
- Clinical Laboratory, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peining Liu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Gulinigaer Tuerhongjiang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Bin Du
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Hongbing Li
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Jun Yu
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zuyi Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Yue Wu
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an, Shaanxi, China
| |
Collapse
|
56
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
57
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
58
|
Gou R, Chang X, Li Z, Pan Y, Li G. Association of Life's Essential 8 with osteoarthritis in United States adults: mediating effects of dietary intake of live microbes. Front Med (Lausanne) 2023; 10:1297482. [PMID: 38179270 PMCID: PMC10764484 DOI: 10.3389/fmed.2023.1297482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Objective Osteoarthritis (OA) is associated with cardiovascular disease and represents a persistent economic and physical burden on patients in the United States. This study evaluated the mediating effect of dietary live microbe intake on the association between cardiovascular health [based on Life's Essential 8 (LE8) scores] and osteoarthritis (OA) in adults. Methods This cross-sectional study included data from the National Health and Nutrition Examination Survey, 1999-2019 (from patients aged ≥20 years). LE8 scores (0-100) were measured according to the American Heart Association definition and categorized as low (0-49), moderate (50-79), or high (80-100). OA disease status was assessed using self-reported data from patients. The relationships were evaluated using multivariate logistic and restricted cubic spline models. Mediation analysis was used to evaluate the mediating effect of dietary live microbe intake on the association between LE8 and OA risk. Results The study included 23,213 participants aged ≥20 years. After adjusting for latent confounders, higher LE8 scores were found to be associated with a lower incidence of OA. The odds ratios (with 95% confidence intervals) for low, moderate, and high OA risk were 0.81 (0.69, 0.96) and 0.55 (0.44, 0.69), respectively; a non-linear dose-response relationship was observed (P-nonlinear = 0.012). Health behavior and health factor scores showed a similar pattern of correlation with OA risk. Low live microbe intake mediated the association between LE8, health behavior, and health factor scores with OA risk and did not appear to reduce OA risk. Conclusion Our findings suggest that although higher LE8 scores reduce the risk of developing OA, low live microbe intake may reduce the protective effect of higher scores. It is, therefore, essential to emphasize adherence to a lifestyle that confers high LE8 scores. Individuals should also be advised to reduce the intake of foods with low live microbe content.
Collapse
Affiliation(s)
- Ruoyu Gou
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoyu Chang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zeyuan Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ying Pan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi Province, China
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
59
|
Goyal SP, Saravanan C. An insight into the critical role of gut microbiota in triggering the phthalate-induced toxicity and its mitigation using probiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166889. [PMID: 37683852 DOI: 10.1016/j.scitotenv.2023.166889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Exposure to phthalates, a major food safety concern, has been implicated in various chronic human disorders. As dietary exposure serves as a primary exposure route for phthalate exposure, understanding the detrimental impact on the gastrointestinal tract and resident gut microbiota is indispensable for better managing public health risks. Various reports have explored the intricate interplay between phthalate exposure, gut microbiota dysbiosis and host pathophysiology. For instance, oral exposure of dibutyl phthalate (DBP) or di-(2-ethylhexyl) phthalate (DEHP) affected the Firmicutes/Bacteroidetes ratio and abundance of Akkermansia and Prevotella, ensuing impaired lipid metabolism and reproductive toxicity. In some cases, DEHP exposure altered the levels of gut microbial metabolites, namely short-chain fatty acids, branched-chain amino acids or p-cresol, resulting in cholesterol imbalance or neurodevelopmental disorders. Conversely, supplementation of gut-modulating probiotics like Lactococcus or Lactobacillus sp. averted the phthalate-induced hepatic or testicular toxicity through host gene regulation, gut microbial modulation or elimination of DEHP or DBP in faeces. Overall, the current review revealed the critical role of the gut microbiota in initiating or exacerbating phthalate-induced toxicity, which could be averted or mitigated by probiotics supplementation. Future studies should focus on identifying high-efficiency probiotic strains that could help reduce the exposure of phthalates in animals and humans.
Collapse
Affiliation(s)
- Shivani Popli Goyal
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Chakkaravarthi Saravanan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India.
| |
Collapse
|
60
|
Khongriah W, Maurya R, Kondepudi KK, Joshi SR. Probiotic Properties and Anti-inflammatory Activity of Bacillus spp. Isolated from Ethnically Fermented Soybean. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2023; 17:2525-2535. [DOI: 10.22207/jpam.17.4.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Bacillus spp. probiotics used as feed additives can form spores and tolerate the harsh conditions of the human digestive system and are beneficial for the treatment of inflammatory bowel syndrome. Since reports on probiotics and anti-inflammatory properties of Bacillus spp. isolated from the fermented food of Northeast India have not been explored much. The present study focused on Bacillus spp. BN5, AY5, and AN8, possessing these desired properties. In the probiotics study, the isolates were screened for their tolerance to acid and bile salt, auto-aggregation, hydrophobicity, cholesterol assimilation, antibiotic resistance, and antagonistic properties. It was found that these isolates possessed the desirable probiotic traits. The Bacillus spp. culture and their supernatant were also screened for their ability to reduce LPS-induced inflammation in murine macrophage (RAW 264.7) cells. All the Bacillus spp. culture and their supernatant treatments were found to reduced the Nitric oxide (NO) production by LPS-induced cell lines. The supernatant of LPS-induced cell lines were also analyzed to measure the level of inflammatory cytokine production. It was found that the levels of TNF-α, IL-6, and IL-1β were reduced after co-treatment with LPS and Bacillus spp. culture or LPS and Bacillus spp. supernatant. Results suggested that the Bacillus spp. are potential probiotic candidates with anti-inflammatory properties.
Collapse
|
61
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
62
|
He Z, Wang T, Zhang S, Shi K, Wang F, Li Y, Lin C, Chen J. Evaluation of cholesterol transformation abilities and probiotic properties of Bacteroides dorei YGMCC0564. Front Microbiol 2023; 14:1279996. [PMID: 38029107 PMCID: PMC10666794 DOI: 10.3389/fmicb.2023.1279996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Hypercholesterolemia, a risk factor for cardiovascular disease (CVD), often requires therapeutic agents with varying degrees of side effects. This has created a need for safe and natural alternatives such as medications or functional foods that can improve lipid metabolism and reduce cholesterol levels. In recent years, Next-generation probiotics (NGPs) have recently emerged as a potential solution, offering distinct mechanisms compared to traditional probiotics. Among the NGPs, Bacteroides, a dominant bacterial genus in the human gut, has gained significant attention due to its prevalence, ability to break down plant polysaccharides, and production of short-chain fatty acids (SCFAs). Recent evidence has demonstrated that Bacteroides effectively reduces cholesterol levels, prevents obesity, and lowers the risk of CVD. However, research on Bacteroides is currently limited to a few species, leaving rooms for exploration of the beneficial functions of different species in this genus. In this study, we isolated 66 Bacteroides strains, including 9 distinct species, from healthy adults' fecal samples. By comparing their ability to assimilate cholesterol, we found that the transformation ability was not specific to any particular species. Notably, Bacteroides dorei YGMCC0564 revealed superior cholesterol-lowering capabilities and bile salt hydrolase (BSH) activity in vitro, surpassing that of Lactobacillus GG (LGG). YGMCC0564 exhibited favorable probiotic characteristics, including high survival rate in vitro simulation of gastrointestinal digestion, excellent adhesion ability, susceptibility to antibiotics, absence of hemolysis or virulence genes, and substantial production of SCFAs. The strain also demonstrated remarkable bile salt deconjugation activities and upregulation of the BT_416 gene associated with cholesterol, providing insights into a possible molecular mechanism underlying its cholesterol-reducing activity. These findings establish YGMCC0564 as a promising NPG candidate for improving cardiovascular health.
Collapse
Affiliation(s)
- Zhili He
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Tinghui Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | | | - Kuojiang Shi
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Fan Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Yanzhao Li
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Chanqing Lin
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Jianguo Chen
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| |
Collapse
|
63
|
Hu S, Gao K, Jiao Y, Yuan Z. Glycolysis characteristics of intracellular polysaccharides from Agaricus bitorquis (Quél.) sacc. Chaidam and its effects on intestinal flora from different altitudes of mice in vitro fermentation. Food Res Int 2023; 173:113382. [PMID: 37803720 DOI: 10.1016/j.foodres.2023.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The glycolysis characteristics and effects on intestinal flora of polysaccharides from Agaricus bitorquis (Quél.) Sacc. Chaidam (ABIPs) in vitro fermentation by different altitudes of mice feces was examined, including low, medium, and high altitudes groups (LG, MG, and HG). In vitro, fermentation of ABIPs forty-eight hours resulted in a remarkable decrease in total sugar content and improvement of short-chain fatty acids (SCFAs) (mainly acetate, propionate, and butyrate), which simultaneously induced the composition of monose and uronic acids and SCFAs continuously change. Besides, ABIPs influenced the abundance and composition of the intestinal flora, generally increasing the abundance of probiotic bacteria (such as Bifidobacterium and Faecalibacterium) and decreasing the abundance of harmful bacteria (such as Phenylobacterium and Streptococcus) in all groups, with the highland biology core genus Blautia significantly enriched in LG and MG groups. It was also found that ABIPs enhanced pathways associated with biosynthesis and metabolism. In addition, correlation analysis speculated that the metabolism of SCFAs by ABIPs may be associated with genera such as Anaerostipes, Roseburia, and Weissella. ABIPs may protect organismal health by regulating hypoxic intestinal flora composition and metabolic function, and more superior fermentation performance was observed in MG compared to other groups.
Collapse
Affiliation(s)
- Shicheng Hu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Ke Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China.
| |
Collapse
|
64
|
Bao ZY, Li HM, Zhang SB, Fei YQ, Yao MF, Li LJ. Administration of A. muciniphila ameliorates pulmonary arterial hypertension by targeting miR-208a-3p/NOVA1 axis. Acta Pharmacol Sin 2023; 44:2201-2215. [PMID: 37433872 PMCID: PMC10618511 DOI: 10.1038/s41401-023-01126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A. muciniphila has been reported to play a critical role in treating cardiovascular disorders. In this study we evaluated the therapeutic effects of A. muciniphila against hypoxia-induced PH and the underlying mechanisms. Mice were pretreated with A. muciniphila suspension (2 × 108 CFU in 200 μL sterile anaerobic PBS, i.g.) every day for 3 weeks, and then exposed to hypoxia (9% O2) for another 4 weeks to induce PH. We showed that A. muciniphila pretreatment significantly facilitated the restoration of the hemodynamics and structure of the cardiopulmonary system, reversed the pathological progression of hypoxia-induced PH. Moreover, A. muciniphila pretreatment significantly modulated the gut microbiota in hypoxia-induced PH mice. miRNA sequencing analysis reveals that miR-208a-3p, a commensal gut bacteria-regulated miRNA, was markedly downregulated in lung tissues exposed to hypoxia, which was restored by A. muciniphila pretreatment. We showed that transfection with miR-208a-3p mimic reversed hypoxia-induced abnormal proliferation of human pulmonary artery smooth muscle cells (hPASMCs) via regulating the cell cycle, whereas knockdown of miR-208a-3p abolished the beneficial effects of A. muciniphila pretreatment in hypoxia-induced PH mice. We demonstrated that miR-208a-3p bound to the 3'-untranslated region of NOVA1 mRNA; the expression of NOVA1 was upregulated in lung tissues exposed to hypoxia, which was reversed by A. muciniphila pretreatment. Furthermore, silencing of NOVA1 reversed hypoxia-induced abnormal proliferation of hPASMCs through cell cycle modulation. Our results demonstrate that A. muciniphila could modulate PH through the miR-208a-3p/NOVA1 axis, providing a new theoretical basis for PH treatment.
Collapse
Affiliation(s)
- Zheng-Yi Bao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Hui-Min Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Shuo-Bo Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi-Qiu Fei
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ming-Fei Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100010, China.
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100010, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
65
|
Liu Y, Huang K, Zhang Y, Cao H, Guan X. Dietary polyphenols maintain homeostasis via regulating bile acid metabolism: a review of possible mechanisms. Food Funct 2023; 14:9486-9505. [PMID: 37815149 DOI: 10.1039/d3fo02471g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The synthesis and metabolism of bile acids (BAs) have been implicated in various metabolic diseases, including obesity and diabetes. Dietary polyphenols, as natural antioxidants, play a vital role in synthesizing and metabolizing bile acids. This paper reviews the mechanism of dietary polyphenols involved in bile acid (BA) synthesis and metabolism. The impact of different gut microorganisms on BA profiles is discussed in detail. The regulation of BA metabolism by dietary polyphenols can be divided into two modes: (1) dietary polyphenols directly activate/inhibit farnesol X receptor (FXR) and Takeda G protein-coupled receptor (TGR5); (2) dietary polyphenols regulate BA synthesis and metabolism through changes in intestinal microorganisms. Research on direct activation/inhibition of FXR and TGR5 by polyphenols should be ramped up. In addition, the effect of dietary polyphenols on intestinal microorganisms has been paid more and more attention and has become a target that cannot be ignored.
Collapse
Affiliation(s)
- Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| |
Collapse
|
66
|
Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults. Microorganisms 2023; 11:2656. [PMID: 38004667 PMCID: PMC10673050 DOI: 10.3390/microorganisms11112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism.
Collapse
Affiliation(s)
- Ineta Kalnina
- Latvian Biomedical Research and Study Centre 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Menezes CA, Zanette DL, Magalhães LB, da Silva JT, Lago RMRS, Gomes AN, dos Santos RA, Ladeia AMT, Vianna NA, Oliveira RR. Higher Bifidobacterium spp. fecal abundance is associated with a lower prevalence of hyperglycemia and cardiovascular risk markers among schoolchildren from Bahia, Brazil. PLoS One 2023; 18:e0290813. [PMID: 37856463 PMCID: PMC10586616 DOI: 10.1371/journal.pone.0290813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/16/2023] [Indexed: 10/21/2023] Open
Abstract
The gut microbiome has recently been the subject of considerable scientific interest due to its essential bodily functions. Several factors can change the composition and function of the gut microbiome, and dietary habits are one of the most important contributors. Despite the recognition of the probiotic effects related to the genus Bifidobacterium spp. (BIF) studies aiming to assess its relationship with metabolic outcomes show conflicting results, particularly in the child population. This cross-sectional study aimed to evaluate the fecal abundance of BIF in a group of schoolchildren from public schools in Bahia, Brazil, and to investigate their relationship with food consumption and laboratory and anthropometric characteristics. A sample of 190 subjects aged 5 to 19y was randomly selected for dietary, laboratory, and anthropometric assessment. Fecal BIF abundance assessment was performed using the Real-Time Polymerase Chain Reaction assay. Fecal BIF abundance was higher among subjects who had lower intakes of meat. The abundance of BIF was also higher among subjects with lower Waist Circumference and Waist-to-Height Ratio (WHtR). Low BIF abundance was associated with a higher prevalence of hyperglycemia (PR 1.04, 95%CI 1.02-1.07, p = 0.001) and high WHtR (PR 1.04, 95%CI 1.01-1, 08, p = 0.015). These findings allow us to conclude that BIF fecal abundance is related to dietary and anthropometric parameters in schoolchildren, and its increase is associated with positive metabolic outcomes.
Collapse
Affiliation(s)
- Camilla A. Menezes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Fiocruz, Salvador, Bahia, Brazil
| | - Dalila L. Zanette
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Fiocruz, Curitiba, Paraná, Brazil
| | - Letícia B. Magalhães
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Fiocruz, Salvador, Bahia, Brazil
| | - Jacqueline Tereza da Silva
- Global Academy of Agriculture and Food Systems, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Alexvon N. Gomes
- Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Ronald A. dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Fiocruz, Salvador, Bahia, Brazil
| | | | - Nelzair A. Vianna
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Fiocruz, Salvador, Bahia, Brazil
| | - Ricardo R. Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Fiocruz, Salvador, Bahia, Brazil
| |
Collapse
|
68
|
Miao J, Lai P, Wang K, Fang G, Li X, Zhang L, Jiang M, Bao Y. Characteristics of intestinal microbiota in children with idiopathic short stature: a cross-sectional study. Eur J Pediatr 2023; 182:4537-4546. [PMID: 37522979 DOI: 10.1007/s00431-023-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Idiopathic short stature (ISS) accounts for more than 70% of childhood short stature cases, with an undefined etiology and pathogenesis, leading to limited treatment. However, recent studies have shown that intestinal microbiota may be associated with ISS. This study aimed to characterize the intestinal microbiota in children with ISS, effect of treatment with growth hormones, and association between specific bacterial species and ISS. This study enrolled 55 children, comprising 40 diagnosed with ISS at Jinhua Hospital, Zhejiang University, and 15 healthy controls. The subjects with ISS were divided into the untreated ISS group (UISS group, 22 children who had not been treated with recombinant human growth hormone [rhGH]), treated ISS group (TISS group, 18 children treated with rhGH for 1 year), and control group (NC group, 15 healthy children). High-throughput sequencing was used to determine the intestinal microbiota characteristics. Higher abundances of Bacteroides, Prevotella, Alistipes, Parabacteroides, Agathobacter and Roseburia were found in the UISS and TISS groups than in the control group, whereas Bifidobacterium, Subdoligranulum, and Romboutsia were less abundant. The composition of intestinal microbiota in the UISS and TISS groups was almost identical, except for Prevotella. The TISS group had significantly lower levels of Prevotella than did the UISS group, which were closer to those of the NC group. Receiver operating characteristic curve analysis revealed that the abundances of Prevotella, Bifidobacterium, Bacteroides, and Subdoligranulum were effective in differentiating between the UISS and NC groups. CONCLUSION Alterations in intestinal microbiota may be associated with ISS. Specific bacterial species, such as Prevotella, may be potential diagnostic markers for ISS. WHAT IS KNOWN • ISS is associated with the GH-IGF-1 axis. • Recent studies indicated an association between the GH-IGF-1 axis and intestinal microbiota. WHAT IS NEW • Children with ISS showed alterations in intestinal microbiota, with a relative increase in the abundance of gut inflammation-related bacteria. • The relative abundances of Prevotella, Bacteroides, Bifidobacterium, and Subdoligranulum may serve as potential diagnostic markers.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Panjian Lai
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Kan Wang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Guoxing Fang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Xiaobing Li
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Linqian Zhang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Mizu Jiang
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yunguang Bao
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China.
| |
Collapse
|
69
|
Zhang L, Li X, Liu X, Wu X, Xu Q, Qu J, Li X, Zhu Y, Wen L, Wang J. High-Carbohydrate Diet Consumption Poses a More Severe Liver Cholesterol Deposition than a High-Fat and High-Calorie Diet in Mice. Int J Mol Sci 2023; 24:14700. [PMID: 37834148 PMCID: PMC10572265 DOI: 10.3390/ijms241914700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In the past few decades, many researchers believed that a high-fat and high-calorie diet is the most critical factor leading to metabolic diseases. However, increasing evidence shows a high-carbohydrate and low-fat diet may also be a significant risk factor. It needs a comprehensive evaluation to prove which viewpoint is more persuasive. We systematically compared the effects of high-fat and high-calorie diets and high-carbohydrate and low-fat ones on glycolipid metabolism in mice to evaluate and compare the effects of different dietary patterns on metabolic changes in mice. Sixty 8-week-old male C57BL/6 mice were divided into four groups after acclimatization and 15% (F-15), 25% (F-25), 35% (F-35), and 45% (F-45) of their dietary energy was derived from fat for 24 weeks. The body weight, body-fat percentage, fasting blood glucose, lipid content in the serum, and triglyceride content in the livers of mice showed a significantly positive correlation with dietary oil supplementation. Interestingly, the total cholesterol content in the livers of mice in the F-15 group was significantly higher than that in other groups (p < 0.05). Compared with the F-45 group, the mRNA expression of sterol synthesis and absorption-related genes (e.g., Asgr1, mTorc1, Ucp20, Srebp2, Hmgcr, and Ldlr), liver fibrosis-related genes (e.g., Col4a1 and Adamts1) and inflammation-related genes (e.g., Il-1β and Il-6) were significantly higher in the F-15 group. Compared with the F-45 group, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was decreased in the F-15 group. While unclassified_f_Lachnospiraceae and Akkermansia are potentially beneficial bacteria, they have the ability to produce short-chain fatty acids and modulate cholesterol metabolism. In addition, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was significantly positively correlated with fatty acid transporters expression and negatively correlated with that of cholesteryl acyltransferase 1 and cholesterol synthesis-related genes. In conclusion, our study delineated how a high-fat and high-calorie diet (fat supplied higher than or equal to 35%) induced obesity and hepatic lipid deposition in mice. Although the high-carbohydrate and low-fat diet did not cause weight gain in mice, it induced cholesterol deposition in the liver. The mechanism is mainly through the induction of endogenous synthesis of cholesterol in mice liver through the ASGR1-mTORC1-USP20-HMGCR signaling pathway. The appropriate oil and carbon water ratio (dietary energy supply from fat of 25%) showed the best gluco-lipid metabolic homeostasis in mice.
Collapse
Affiliation(s)
- Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Xin Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Xiaoran Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Qiurong Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Jianyu Qu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.L.); (X.L.); (X.W.); (Q.X.); (J.Q.); (X.L.); (Y.Z.)
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
70
|
Jiang S, Liu A, Ma W, Liu X, Luo P, Zhan M, Zhou X, Chen L, Zhang J. Lactobacillus gasseri CKCC1913 mediated modulation of the gut-liver axis alleviated insulin resistance and liver damage induced by type 2 diabetes. Food Funct 2023; 14:8504-8520. [PMID: 37655696 DOI: 10.1039/d3fo01701j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by dysregulation of lipid metabolism, insulin resistance, and gut microbiota disorder. Compared to drug interventions, probiotic interventions may have a more enduring effect without producing any side effects. Thus, the potential of probiotics as a therapeutic approach for diabetes and other metabolic disorders has gained increasing attention in recent years. In this study, we evaluated the therapeutic efficacy of Lactobacillus gasseri CKCC1913, a potential probiotic strain, in high-fat diet-induced insulin-resistant diabetes using the C57BL/6J mouse animal model. From the results, L. gasseri CKCC1913 has been shown to increase glucose tolerance, reduce fasting blood glucose levels in diabetic mice, and reduce the expression of pro-inflammatory cytokines, such as TNF-α and IL-6. Besides, L. gasseri CKCC1913 intervention effectively alleviated oxidative stress damage by increasing SOD activity, decreasing MDA levels, reducing insulin resistance, and improving dyslipidemia caused by diabetes. The potential mechanism of L. gasseri CKCC1913 in improving metabolic health and alleviating diabetes involves an increased abundance of beneficial bacteria, such as Parabacteroides merdae, which directly produce short-chain fatty acids that help regulate immune cells and reduce inflammation. SCFAs also enter the bloodstream and promote antioxidant enzyme activity in the liver, protecting against oxidative damage. Additionally, L. gasseri CKCC1913 influences local bacterial metabolism pathways, such as the superpathway of unsaturated fatty acid biosynthesis, leading to an increase in unsaturated fatty acids, increasing high-density lipoprotein cholesterol (HDL-C) levels and improving lipid metabolism and glucose control in diabetic mice. In summary, in this study, L. gasseri CKCC1913 and its potential impact on metabolic health highlight the promising potential of probiotics as a therapeutic approach for diabetes. Future research should focus on identifying the optimal dose and duration, investigating the long-term effects and mechanisms of action, and exploring the potential use of probiotics as an adjunct to other therapies or in preventing metabolic disorders.
Collapse
Affiliation(s)
- Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Aijie Liu
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Wenyao Ma
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xinlei Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | | | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | | | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
71
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
72
|
Zhang Y, Yao D, Huang H, Zhang M, Sun L, Su L, Zhao L, Guo Y, Jin Y. Probiotics Increase Intramuscular Fat and Improve the Composition of Fatty Acids in Sunit Sheep through the Adenosine 5'-Monophosphate-Activated Protein Kinase (AMPK) Signaling Pathway. Food Sci Anim Resour 2023; 43:805-825. [PMID: 37701743 PMCID: PMC10493559 DOI: 10.5851/kosfa.2023.e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
This experiment aims to investigate the impact of probiotic feed on growth performance, carcass traits, plasma lipid biochemical parameters, intramuscular fat and triglyceride content, fatty acid composition, mRNA expression levels of genes related to lipid metabolism, and the activity of the enzyme in Sunit sheep. In this experiment, 12 of 96 randomly selected Sunit sheep were assigned to receive the basic diet or the basic diet supplemented with probiotics. The results showed that supplementation with probiotics significantly increased the loin eye area, and decreased plasma triglycerides and free fatty acids, increasing the content of intramuscular fat and triglycerides in the muscle and improving the composition of the fatty acids. The inclusion of probiotics in the diet reduced the expression of adenosine 5'-monophosphate-activated protein kinase alpha 2 (AMPKα2) mRNA and carnitine palmitoyltransferase 1B (CPT1B) mRNA, while increasing the expression of acetyl-CoA carboxylase alpha (ACCα) mRNA, sterol regulatory element-binding protein-1c (SREBP-1c) mRNA, fatty acid synthase mRNA, and stearoyl-CoA desaturase 1 mRNA. The results of this study indicate that supplementation with probiotics can regulate fat deposition and improves the composition of fatty acids in Sunit sheep through the signaling pathways AMPK-ACC-CPT1B and AMPK-SREBP-1c. This regulatory mechanism leads to an increase in intramuscular fat content, a restructuring of muscle composition of the fatty acids, and an enhancement of the nutritional value of meat. These findings contribute to a better understanding of the food science of animal resources and provide valuable references for the production of meat of higher nutritional value.
Collapse
Affiliation(s)
- Yue Zhang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Duo Yao
- Inner Mongolia Institute of Quality and
Standardization, Hohhot 010070, China
| | - Huan Huang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
| | - Min Zhang
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - LiHua Zhao
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Yueying Guo
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering,
Inner Mongolia Agricultural University, Hohhot 010018,
China
- Integrative Research Base of Beef and Lamb
Processing Technology, Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, Hohhot 010018, China
| |
Collapse
|
73
|
Abstract
PURPOSE In this review, the regulation, proposed hypolipidemic mechanism, and efficacy of common dietary supplements (DSs) marketed for cardiovascular health are discussed. RECENT FINDINGS Data demonstrate modest but inconsistent lipid-lowering effects with common DSs such as probiotics, soluble fibers, plant sterols, green tea, berberine, guggul, niacin, and garlic. Furthermore, data is limited regarding turmeric, hawthorn, and cinnamon. Red yeast rice has shown to be a beneficial DS, but its safety and efficacy are dependent upon its production quality and monacolin K content, respectively. Finally, soy proteins and omega-3 fatty acid-rich foods can have significant health benefits if used to displace other animal products as part of a healthier diet. Despite the rising use of DSs, data demonstrate unpredictable results. Patients should be educated on the difference between these DSs and evidence-based lipid-lowering medications proven to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Saeid Mirzai
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Luke J Laffin
- Section of Preventive Cardiology and Rehabilitation, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail Code JB1, Cleveland, OH, 44195, USA.
| |
Collapse
|
74
|
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023; 11:1714. [PMID: 37512887 PMCID: PMC10385805 DOI: 10.3390/microorganisms11071714] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, probiotics are increasingly being used for human health. So far, only lactic acid bacteria isolated from the human gastrointestinal tract were recommended for human use as probiotics. However, more authors suggest that probiotics can be also isolated from unconventional sources, such as fermented food products of animal and plant origin. Traditional fermented products are a rich source of microorganisms, some of which may have probiotic properties. A novel category of recently isolated microorganisms with great potential of health benefits are next-generation probiotics (NGPs). In this review, general information of some "beneficial microbes", including NGPs and acetic acid bacteria, were presented as well as essential mechanisms and microbe host interactions. Many reports showed that NGP selected strains and probiotics from unconventional sources exhibit positive properties when it comes to human health (i.e., they have a positive effect on metabolic, human gastrointestinal, neurological, cardiovascular, and immune system diseases). Here we also briefly present the current regulatory framework and requirements that should be followed to introduce new microorganisms for human use. The term "probiotic" as used herein is not limited to conventional probiotics. Innovation will undoubtedly result in the isolation of potential probiotics from new sources with fascinating new health advantages and hitherto unforeseen functionalities.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Aleksandra Szydłowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
75
|
Zhou H, Liu K, Liu W, Wu M, Wang Y, Lv Y, Meng H. Diets Enriched in Sugar, Refined, or Whole Grain Differentially Influence Plasma Cholesterol Concentrations and Cholesterol Metabolism Pathways with Concurrent Changes in Bile Acid Profile and Gut Microbiota Composition in ApoE -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37307383 DOI: 10.1021/acs.jafc.3c00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to compare the effects of diets enriched in sugar, refined grain (RG), or whole grain (WG) on circulating cholesterol concentrations and established and emerging mechanisms regulating cholesterol metabolism. Forty-four male ApoE-/- mice aged 8 weeks were randomly fed an isocaloric sugar-, RG-, or WG-enriched diet for 12 weeks. Compared to WG-enriched diet, fasting plasma LDL-C and HDL-C concentrations were higher and the mRNA expression of intestinal LXR-α was lower in sugar- and RG-enriched diets; plasma TC, non-HDL-C, TG and VLDL-C concentrations, and cecal concentrations of lithocholic acid were higher and the mRNA expression of intestinal ABCG5 was lower in sugar-enriched diet, and the mRNA expression of hepatic IDOL and cecal concentrations of lithocholic and deoxycholic acids was higher in RG-enriched diet. The relative abundance of Akkermansia, Clostridia_UCG-014, Alistipes, and Alloprevotella, which were lower in sugar- and/or RG- than in WG-enriched diet, had inverse correlations with fasting plasma cholesterol concentrations or cecal concentrations of secondary bile acids and positive correlations with gene expressions in intestinal cholesterol efflux. Conversely, the relative abundance of Lactobacillus, Lachnoclostridium, Lachnospiraceae_NK4A136_group, Colidextribacter, and Helicobacter had reverse correlations. Both sugar- and RG-enriched diets had unfavorable effects on cholesterol concentrations; yet, their effects on the gene expressions of cholesterol efflux, uptake, bile acid synthesis, and bile acid concentrations were distinctive and could be partially attributable to the concurrent changes in gut microbiota.
Collapse
Affiliation(s)
- Haiyan Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Ke Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Wenjing Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Man Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Yin Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Yiqian Lv
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Huicui Meng
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, Guangdong, P. R. China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
76
|
Amin N, Liu J, Bonnechere B, MahmoudianDehkordi S, Arnold M, Batra R, Chiou YJ, Fernandes M, Ikram MA, Kraaij R, Krumsiek J, Newby D, Nho K, Radjabzadeh D, Saykin AJ, Shi L, Sproviero W, Winchester L, Yang Y, Nevado-Holgado AJ, Kastenmüller G, Kaddurah-Daouk R, van Duijn CM. Interplay of Metabolome and Gut Microbiome in Individuals With Major Depressive Disorder vs Control Individuals. JAMA Psychiatry 2023; 80:597-609. [PMID: 37074710 PMCID: PMC10116384 DOI: 10.1001/jamapsychiatry.2023.0685] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 04/20/2023]
Abstract
Importance Metabolomics reflect the net effect of genetic and environmental influences and thus provide a comprehensive approach to evaluating the pathogenesis of complex diseases, such as depression. Objective To identify the metabolic signatures of major depressive disorder (MDD), elucidate the direction of associations using mendelian randomization, and evaluate the interplay of the human gut microbiome and metabolome in the development of MDD. Design, Setting and Participants This cohort study used data from participants in the UK Biobank cohort (n = 500 000; aged 37 to 73 years; recruited from 2006 to 2010) whose blood was profiled for metabolomics. Replication was sought in the PREDICT and BBMRI-NL studies. Publicly available summary statistics from a 2019 genome-wide association study of depression were used for the mendelian randomization (individuals with MDD = 59 851; control individuals = 113 154). Summary statistics for the metabolites were obtained from OpenGWAS in MRbase (n = 118 000). To evaluate the interplay of the metabolome and the gut microbiome in the pathogenesis of depression, metabolic signatures of the gut microbiome were obtained from a 2019 study performed in Dutch cohorts. Data were analyzed from March to December 2021. Main Outcomes and Measures Outcomes were lifetime and recurrent MDD, with 249 metabolites profiled with nuclear magnetic resonance spectroscopy with the Nightingale platform. Results The study included 6811 individuals with lifetime MDD compared with 51 446 control individuals and 4370 individuals with recurrent MDD compared with 62 508 control individuals. Individuals with lifetime MDD were younger (median [IQR] age, 56 [49-62] years vs 58 [51-64] years) and more often female (4447 [65%] vs 2364 [35%]) than control individuals. Metabolic signatures of MDD consisted of 124 metabolites spanning the energy and lipid metabolism pathways. Novel findings included 49 metabolites, including those involved in the tricarboxylic acid cycle (ie, citrate and pyruvate). Citrate was significantly decreased (β [SE], -0.07 [0.02]; FDR = 4 × 10-04) and pyruvate was significantly increased (β [SE], 0.04 [0.02]; FDR = 0.02) in individuals with MDD. Changes observed in these metabolites, particularly lipoproteins, were consistent with the differential composition of gut microbiota belonging to the order Clostridiales and the phyla Proteobacteria/Pseudomonadota and Bacteroidetes/Bacteroidota. Mendelian randomization suggested that fatty acids and intermediate and very large density lipoproteins changed in association with the disease process but high-density lipoproteins and the metabolites in the tricarboxylic acid cycle did not. Conclusions and Relevance The study findings showed that energy metabolism was disturbed in individuals with MDD and that the interplay of the gut microbiome and blood metabolome may play a role in lipid metabolism in individuals with MDD.
Collapse
Affiliation(s)
- Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Bruno Bonnechere
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, Hasselt, Belgium
| | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Richa Batra
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Yu-Jie Chiou
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - William Sproviero
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Laura Winchester
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Yang Yang
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - Cornelia M. van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
77
|
Nesci A, Carnuccio C, Ruggieri V, D'Alessandro A, Di Giorgio A, Santoro L, Gasbarrini A, Santoliquido A, Ponziani FR. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci 2023; 24:ijms24109087. [PMID: 37240434 DOI: 10.3390/ijms24109087] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies in recent years have demonstrated that gut microbiota-host interactions play an important role in human health and disease, including inflammatory and cardiovascular diseases. Dysbiosis has been linked to not only well-known inflammatory diseases, such as inflammatory bowel diseases, rheumatoid arthritis, and systemic lupus erythematous, but also to cardiovascular risk factors, such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. The ways the microbiota is involved in modulating cardiovascular risk are multiple and not only related to inflammatory mechanisms. Indeed, human and the gut microbiome cooperate as a metabolically active superorganism, and this affects host physiology through metabolic pathways. In turn, congestion of the splanchnic circulation associated with heart failure, edema of the intestinal wall, and altered function and permeability of the intestinal barrier result in the translocation of bacteria and their products into the systemic circulation, further enhancing the pro-inflammatory conditions underlying cardiovascular disorders. The aim of the present review is to describe the complex interplay between gut microbiota, its metabolites, and the development and evolution of cardiovascular diseases. We also discuss the possible interventions intended to modulate the gut microbiota to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Carnuccio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessia D'Alessandro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center (CEMAD), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
78
|
Tomita T, Fukui H, Okugawa T, Nakanishi T, Mieno M, Nakai K, Eda H, Kitayama Y, Oshima T, Shinzaki S, Miwa H. Effect of Bifidobacterium bifidum G9-1 on the Intestinal Environment and Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D)-like Symptoms in Patients with Quiescent Crohn's Disease: A Prospective Pilot Study. J Clin Med 2023; 12:jcm12103368. [PMID: 37240476 DOI: 10.3390/jcm12103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D)-like symptoms are distressing for patients with quiescent Crohn's disease (qCD) and worsen their quality of life. In the present study, we assessed the effect of the probiotic Bifidobacterium bifidum G9-1 (BBG9-1) on the intestinal environment and clinical features in patients with qCD. Eleven patients with qCD, who met the Rome III diagnostic criteria for IBS-D, received BBG9-1 (24 mg) orally three times daily for 4 weeks. Indices of the intestinal environment (fecal calprotectin level and gut microbiome) and clinical features (CD/IBS-related symptoms, quality of life and stool irregularities) were evaluated before and after treatment. Treatment with BBG9-1 tended to reduce the IBS severity index in the studied patients (p = 0.07). Among gastrointestinal symptoms, abdominal pain and dyspepsia tended to be improved by the BBG9-1 treatment (p = 0.07 and p = 0.07, respectively), and IBD-related QOL showed a significant improvement (p = 0.007). With regard to mental status, the patient anxiety score was significantly lower at the endpoint of BBG9-1 treatment than at the baseline (p = 0.03). Although BBG9-1 treatment did not affect the fecal calprotectin level, it suppressed the serum MCP-1 level significantly and increased the abundance of intestinal Bacteroides in the study patients. The probiotic BBG9-1 is able to improve IBD-related QOL with a reduction of anxiety score in patients with quiescent CD and IBS-D-like symptoms.
Collapse
Grants
- 21K08016 Grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 18K07986 Grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 20210115 Fund from Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
Collapse
Affiliation(s)
- Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Takuya Okugawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Takashi Nakanishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Masatoshi Mieno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Keisuke Nakai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hirotsugu Eda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Yoshitaka Kitayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Shinichiro Shinzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan
| |
Collapse
|
79
|
Wang S, Xu C, Liu H, Wei W, Zhou X, Qian H, Zhou L, Zhang H, Wu L, Zhu C, Yang Y, He L, Li K. Connecting the Gut Microbiota and Neurodegenerative Diseases: the Role of Bile Acids. Mol Neurobiol 2023:10.1007/s12035-023-03340-9. [PMID: 37121952 DOI: 10.1007/s12035-023-03340-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
With the acceleration of global population aging, neurodegenerative diseases (NDs) will become the second leading cause of death in the world, which seriously threatens human life and health. Alzheimer's disease and Parkinson's disease are the most common and typical NDs. The exact mechanisms of the NDs occurrence and development remain unclear, which may be related to immune, oxidative stress, and abnormal aggregation of pathogenic proteins. Studies have suggested that gut microbiota (GM) influences brain function and plays an important role in regulating emotional and cognitive function. Recently, bile acids (BAs) have become the "star molecule" in the microbiota-gut-brain (MGB) axis research. BAs have been reported to exert anti-inflammatory, antioxidant, and neuroprotective activities in NDs. However, the role of BAs in the connection between GM and the central nervous system (CNS) is still unclear. In this review, we will review the possible mechanisms of BAs between GM and NDs and explore the function of BAs to provide ideas for the prevention and treatment of NDs in the future.
Collapse
Affiliation(s)
- Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongyan Liu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haipeng Qian
- Department of Nursing, AnHui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Li Zhou
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Haiqing Zhang
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Wu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuting Yang
- Computer Science and Technology of Department of Science and Engineering, Shiyuan College of Nanninng Normal University, Nanning, Guangxi Province, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
80
|
Wang Y, Jia Y, Li S, Li N, Zhou J, Liu J, Yang S, Zhang M, Panichayupakaranant P, Chen H. Gut microbiome-mediated glucose and lipid metabolism mechanism of star apple leaf polyphenol-enriched fraction on metabolic syndrome in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154820. [PMID: 37094426 DOI: 10.1016/j.phymed.2023.154820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Diabetes is a kind of metabolic syndrome (MetS) that seriously threatens human health globally. The leaf of star apple (Chrysophyllum cainito L.) is an incompletely explored folk medicine on diabetes. And, the effects and mechanisms on diabetes complicated glycolipid metabolism disorders are unknown till now. PURPOSE This study aimed to investigate the constituents of star apple leaf polyphenol enriched-fraction (SAP), and elucidate their treatment effects and mechanism on diabetes and accompanied other MetS. METHODS The components of SAP were tentatively identified by HPLC-Q-TOF-MS/MS. The antioxidant activity was determined by the scavenging of free radicals and hypoglycemic activities by inhibition of α-glucosidase in vitro. HepG2 cells were used for evaluating the alleviation effects of SAP on lipid accumulation. Streptozotocin and high-fat diet induced diabetic mice were grouped to evaluate the effects of different dosages of SAP. 16S rRNA was conducted to analysis gut microbiome-mediated glucose and lipid metabolism mechanism. RESULTS It showed that myricitrin was one of the main active constituents of SAP. SAP not only showed low IC50 on -glucosidase (24.427± 0.626 μg/mL), OH·(3.680± 0.054 μg/mL) and ABTS· (9.155±0.234 μg/mL), but significantly induced the lipid accumulation in HepG2 cells (p < 0.05). SAP at 200 mg/kg·day significantly decreased the blood glucose, insulin and oral glucose tolerance test value (p < 0.05). The insulin resistance indexes and oxidative stress were alleviated after administration. SAP not only attenuated hepatic lipid deposition, but also reversed the hepatic glycogen storage. 16S rRNA sequencing results revealed that the interaction between SAP and gut microbiota led to the positive regulation of beneficial bacteria including Akkermansia, Unspecified S24_7, Alistipes and Unspecified_Ruminococcaceae, which might be one of the mechanisms of SAP on MetS. CONCLUSION For the first time, this study explored the regulation effect of star apple leaf polyphenols on the hepatic glycolipid metabolism and studied the underlying mechanism from the view of gut microbiota. These findings indicated that SAP possesses great potential to serve as a complementary medicine for diabetes and associated MetS. It provided scientific evidence for folk complementary medicine on the treatment of diabetes-complicated multiple metabolic disorders.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
81
|
Guzzardi MA, La Rosa F, Iozzo P. Trust the gut: outcomes of gut microbiota transplant in metabolic and cognitive disorders. Neurosci Biobehav Rev 2023; 149:105143. [PMID: 36990372 DOI: 10.1016/j.neubiorev.2023.105143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a main public health concern, with increasing prevalence and growingly premature onset in children, in spite of emerging and successful therapeutic options. T2DM promotes brain aging, and younger age at onset is associated with a higher risk of subsequent dementia. Preventive strategies should address predisposing conditions, like obesity and metabolic syndrome, and be started from very early and even prenatal life. Gut microbiota is an emerging target in obesity, diabetes and neurocognitive diseases, which could be safely modulated since pregnancy and infancy. Many correlative studies have supported its involvement in disease pathophysiology. Faecal material transplantation (FMT) studies have been conducted in clinical and preclinical settings to deliver cause-effect proof and mechanistic insights. This review provides a comprehensive overview of studies in which FMT was used to cure or cause obesity, metabolic syndrome, T2DM, cognitive decline and Alzheimer's disease, including the evidence available in early life. Findings were analysed to dissect consolidated from controversial results, highlighting gaps and possible future directions.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Federica La Rosa
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), the National Research Council (CNR), via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
82
|
Jia Y, Jiang Y, He Y, Zhang W, Zou J, Magar KT, Boucetta H, Teng C, He W. Approved Nanomedicine against Diseases. Pharmaceutics 2023; 15:774. [PMID: 36986635 PMCID: PMC10059816 DOI: 10.3390/pharmaceutics15030774] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
Nanomedicine is a branch of medicine using nanotechnology to prevent and treat diseases. Nanotechnology represents one of the most effective approaches in elevating a drug's treatment efficacy and reducing toxicity by improving drug solubility, altering biodistribution, and controlling the release. The development of nanotechnology and materials has brought a profound revolution to medicine, significantly affecting the treatment of various major diseases such as cancer, injection, and cardiovascular diseases. Nanomedicine has experienced explosive growth in the past few years. Although the clinical transition of nanomedicine is not very satisfactory, traditional drugs still occupy a dominant position in formulation development, but increasingly active drugs have adopted nanoscale forms to limit side effects and improve efficacy. The review summarized the approved nanomedicine, its indications, and the properties of commonly used nanocarriers and nanotechnology.
Collapse
Affiliation(s)
- Yuanchao Jia
- Nanjing Vtrying Pharmatech Co., Ltd., Nanjing 211122, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | | | - Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
83
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
84
|
Huang J, Xu P, Shao M, Wei B, Zhang C, Zhang J. Humic acids alleviate dextran sulfate sodium-induced colitis by positively modulating gut microbiota. Front Microbiol 2023; 14:1147110. [PMID: 37125181 PMCID: PMC10132312 DOI: 10.3389/fmicb.2023.1147110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Humic acids (HAs) are natural polymers with diverse functional groups that have been documented and utilized in traditional Chinese medicine. Dextran sulfate sodium (DSS)-induced colitis has been used as a model to study inflammatory bowel disease. In this research, we investigate the effect of HAs on ameliorating DSS-induced colitis in mice. Our aim here was to investigate if HAs could be a remedy against colitis and the mechanisms involved. The results show that HAs facilitated a regain of body weight and restoration of intestinal morphology after DSS-induced colitis. HAs treatment alters the community of gut microbiota with more Lactobacillus and Bifidobacterium. Changes in bacterial community result in lower amounts of lipopolysaccharides in mouse sera, as well as lower levels of inflammatory cytokines through the Toll-like receptor 4 (TLR4)-NF-κB pathway. HAs also promoted the expression of tight junction proteins, which protect the intestinal barrier from DSS damage. Cell experiments show that HAs display an inhibitory effect on DSS growth as well. These results suggest that HAs can alleviate colitis by regulating intestinal microbiota, reducing inflammation, maintaining mucosal barriers, and inhibiting pathogen growth. Thus, HAs offer great potential for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Jiazhang Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Pengfei Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mingzhi Shao
- Ultrasound Department of Zhucheng People's Hospital, Weifang, China
| | - Bin Wei
- Shandong Asia-Pacific Haihua Biotechnology Co., Ltd., Jinan, China
| | - Cong Zhang
- Shandong Asia-Pacific Haihua Biotechnology Co., Ltd., Jinan, China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
85
|
Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated Ulva pertusa Polysaccharide. Pharmaceuticals (Basel) 2022; 16:ph16010062. [PMID: 36678559 PMCID: PMC9865482 DOI: 10.3390/ph16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD.
Collapse
|