51
|
Arregui CO, Balsamo J, Lilien J. Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. J Biophys Biochem Cytol 1998; 143:861-73. [PMID: 9813103 PMCID: PMC2148148 DOI: 10.1083/jcb.143.3.861] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in beta1-integrin- mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with beta1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.
Collapse
Affiliation(s)
- C O Arregui
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
52
|
Balsamo J, Arregui C, Leung T, Lilien J. The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. J Biophys Biochem Cytol 1998; 143:523-32. [PMID: 9786960 PMCID: PMC2132848 DOI: 10.1083/jcb.143.2.523] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: alpha-and beta- or gamma- catenin. Phosphorylation of beta-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from beta-catenin, thus maintaining the cadherin-actin connection (). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and beta-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion.
Collapse
Affiliation(s)
- J Balsamo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
53
|
Rigacci S, Marzocchini R, Bucciantini M, Berti A. Different in vitro and in vivo activity of low Mr phosphotyrosine protein phosphatase on epidermal growth factor receptor. Biochem Biophys Res Commun 1998; 250:577-81. [PMID: 9784386 DOI: 10.1006/bbrc.1998.9347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low Mr phosphotyrosine protein phosphatase is a cytosolic enzyme which dephosphorylates platelet-derived growth factor and insulin receptor in vivo, thus reducing cellular mitogenic response to such growth factors. Following cell stimulation with platelet-derived growth factor the phosphatase undergoes a redistribution from the citosol to the Triton X-100-insoluble fraction where its activity upon the growth factor receptor is intense. Previous research uncovered evidence that low Mr phosphotyrosine protein phosphatase dephosphorylates the epidermal growth factor receptor in vitro. Here we demonstrate that in vivo the enzyme is not active on the phosphorylated epidermal growth factor receptor and it does not influence the mitogenic response of cells. Since the enzyme distribution is not affected by epidermal growth factor stimulation, involvement of a recruitment mechanism in the definition of low Mr phosphotyrosine protein phosphatase substrate specificity is hypothesized.
Collapse
Affiliation(s)
- S Rigacci
- Department of Biochemical Sciences, University of Firenze, Viale Morgagni 50, Firenze, 50134, Italy
| | | | | | | |
Collapse
|
54
|
Wishart MJ, Dixon JE. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci 1998; 23:301-6. [PMID: 9757831 DOI: 10.1016/s0968-0004(98)01241-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of tyrosine phosphorylation are manifested and regulated through protein domains that bind to specific phosphotyrosine motifs. STYX is a unique modular domain found within proteins implicated in mediating the effects of tyrosine phosphorylation in vivo. Individual STYX domains are not catalytically active; however, they resemble protein tyrosine phosphatase (PTP) domains and, like PTPs, contain core sequences that recognize phosphorylated substrates. Thus, the STYX domain adds to the repertoire of modular domains that can mediate intracellular signaling in response to protein phosphorylation.
Collapse
Affiliation(s)
- M J Wishart
- Dept of Physiology, University of Michigan, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
55
|
Zhang YL, Keng YF, Zhao Y, Wu L, Zhang ZY. Suramin is an active site-directed, reversible, and tight-binding inhibitor of protein-tyrosine phosphatases. J Biol Chem 1998; 273:12281-7. [PMID: 9575179 DOI: 10.1074/jbc.273.20.12281] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of suramin, a well known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers, on protein-tyrosine phosphatases (PTPases) has been examined. Suramin is a reversible and competitive PTPase inhibitor with Kis values in the low microM range, whereas the Kis for the dual specificity phosphatase VHR is at least 10-fold higher. Although suramin can also inhibit the activity of the potato acid phosphatase at a slightly higher concentration, it is 2-3 orders of magnitude less effective against the protein Ser/Thr phosphatase 1alpha and the bovine intestinal alkaline phosphatase. Suramin binds to the active site of PTPases with a binding stoichiometry of 1:1. Furthermore, when suramin is bound to the active site of PTPases, its fluorescence is enhanced approximately by 10-fold. This property has allowed the determination of the binding affinity of suramin for PTPases and several catalytically impaired mutant PTPases by fluorescence titration techniques. Thus, the active site Cys to Ser mutants bind suramin with similar affinity as the wild type, while the active site Arg to Ala mutant exhibits a 20-fold reduced affinity toward suramin. Interestingly, the general acid deficient Asp to Ala mutant PTPases display an enhanced affinity toward suramin, which is in accord with their use as improved "substrate-trapping" agents. That suramin is a high affinity PTPase inhibitor is consistent with the observation that suramin treatment of cancer cell lines leads to an increase in tyrosine phosphorylation of several cellular proteins. Given the pleiotropic effects of suramin on many enzyme systems and growth factor-receptor interactions, the exact in vivo actions of suramin require further detailed structure-activity investigation of suramin and its structural analogs.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
56
|
LaMontagne KR, Flint AJ, Franza BR, Pandergast AM, Tonks NK. Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Mol Cell Biol 1998; 18:2965-75. [PMID: 9566916 PMCID: PMC110676 DOI: 10.1128/mcb.18.5.2965] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1997] [Accepted: 01/25/1998] [Indexed: 02/07/2023] Open
Abstract
The p210 bcr-abl protein tyrosine kinase (PTK) appears to be directly responsible for the initial manifestations of chronic myelogenous leukemia (CML). In contrast to the extensive characterization of the PTK and its effects on cell function, relatively little is known about the nature of the protein tyrosine phosphatases (PTPs) that may modulate p210 bcr-abl-induced signalling. In this study, we have demonstrated that expression of PTP1B is enhanced specifically in various cells expressing p210 bcr-abl, including a cell line derived from a patient with CML. This effect on expression of PTP1B required the kinase activity of p210 bcr-abl and occurred rapidly, concomitant with maximal activation of a temperature-sensitive mutant of the PTK. The effect is apparently specific for PTP1B since, among several PTPs tested, we detected no change in the levels of TCPTP, the closest relative of PTP1B. We have developed a strategy for identification of physiological substrates of individual PTPs which utilizes substrate-trapping mutant forms of the enzymes that retain the ability to bind to substrate but fail to catalyze efficient dephosphorylation. We have observed association between a substrate-trapping mutant of PTP1B (PTP1B-D181A) and p210 bcr-abl, but not v-Abl, in a cellular context. Consistent with the trapping data, we observed dephosphorylation of p210 bcr-abl, but not v-Abl, by PTP1B in vivo. We have demonstrated that PTP1B inhibited binding of the adapter protein Grb2 to p210 bcr-abl and suppressed p210 bcr-abl-induced transcriptional activation that is dependent on Ras. These results illustrate selectivity in the effects of PTPs in a cellular context and suggest that PTP1B may function as a specific, negative regulator of p210 bcr-abl signalling in vivo.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Cell Transformation, Neoplastic
- Enzyme Activation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Oncogene Proteins v-abl/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Rats
- Recombinant Proteins/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
|
57
|
Bhandari V, Lim KL, Pallen CJ. Physical and functional interactions between receptor-like protein-tyrosine phosphatase alpha and p59fyn. J Biol Chem 1998; 273:8691-8. [PMID: 9535845 DOI: 10.1074/jbc.273.15.8691] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have examined the in vivo activity of receptor-like protein-tyrosine phosphatase alpha (PTPalpha) toward p59(fyn), a widely expressed Src family kinase. In a coexpression system, PTPalpha effected a dose-dependent tyrosine dephosphorylation and activation of p59(fyn), where maximal dephosphorylation correlated with a 5-fold increase in kinase activity. PTPalpha expression resulted in increased accessibility of the p59(fyn) SH2 domain, consistent with a PTPalpha-mediated dephosphorylation of the regulatory C-terminal tyrosine residue of p59(fyn). No p59(fyn) dephosphorylation was observed with an enzymatically inactive mutant form of PTPalpha or with another receptor-like PTP, CD45. Many enzyme-linked receptors are complexed with their substrates, and we examined whether PTPalpha and p59(fyn) underwent association. Reciprocal immunoprecipitations and assays detected p59(fyn) and an appropriate kinase activity in PTPalpha immunoprecipitates and PTPalpha and PTP activity in p59(fyn) immunoprecipitates. No association between CD45 and p59(fyn) was detected in similar experiments. The PTPalpha-mediated activation of p59(fyn) is not prerequisite for association since wild-type and inactive mutant PTPalpha bound equally well to p59(fyn). Endogenous PTPalpha and p59(fyn) were also found in association in mouse brain. Together, these results demonstrate a physical and functional interaction of PTPalpha and p59(fyn) that may be of importance in PTPalpha-initiated signaling events.
Collapse
Affiliation(s)
- V Bhandari
- Cell Regulation Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | |
Collapse
|
58
|
Abstract
Protein tyrosine phosphatase (PTP) 1B has long been known to regulate cell proliferation negatively, but the mechanism by which this inhibition occurs is poorly defined. We have shown previously that PTP1B binds to, and dephosphorylates, p130(Cas) (Crk-associated substrate) [1], a protein that is thought to play a role in integrin signaling [2,3]. In this report, we present evidence that PTP1B interferes specifically with cell-adhesion-stimulated, but not growth-factor-stimulated, signaling pathways. In rat fibroblasts that overexpress PTP1B, the activation of mitogen-activated protein (MAP) kinase by growth factors was not affected, but activation by cell adhesion was markedly impaired. The inhibition of adhesion-dependent MAP kinase activation by PTP1B required an intact proline-rich region in the carboxyl terminus of PTP1B, a region we have shown to mediate binding to the Src-homology 3 (SH3) domain of p130Cas [1]. Overexpression of wild-type PTP1B, but not of a proline-to-alanine mutant form (PA-PTP1B) that is unable to bind or dephosphorylate p130Cas, interfered with cell spreading, cytoskeletal architecture, and the formation of focal adhesion complexes. Cells overexpressing wild-type PTP1B also displayed markedly reduced migration in response to a fibronectin gradient, whereas cells expressing the PA-PTP1B mutant migrated normally. These data indicate that PTP1B exerts its inhibitory effects via proline-dependent interactions with one or more critical components of the adhesion-dependent signaling apparatus, and suggest that one of these components may be p130Cas.
Collapse
Affiliation(s)
- F Liu
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
59
|
Liu F, Sells MA, Chernoff J. Transformation suppression by protein tyrosine phosphatase 1B requires a functional SH3 ligand. Mol Cell Biol 1998; 18:250-9. [PMID: 9418872 PMCID: PMC121485 DOI: 10.1128/mcb.18.1.250] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1997] [Accepted: 10/22/1997] [Indexed: 02/05/2023] Open
Abstract
We have recently shown that protein tyrosine phosphatase 1B (PTP1B) associates with the docking protein p130Cas in 3Y1 rat fibroblasts. This interaction is mediated by a proline-rich sequence on PTP1B and the SH3 domain on p130Cas. Expression of wild-type PTP1B (WT-PTP1B), but not a catalytically competent, proline-to-alanine point mutant that cannot bind p130Cas (PA-PTP1B), causes substantial tyrosine dephosphorylation of p130Cas (F. Liu, D. E. Hill, and J. Chernoff, J. Biol. Chem. 271:31290-31295, 1996). Here we demonstrate that WT-, but not PA-PTP1B, inhibits transformation of rat 3Y1 fibroblasts by v-crk, -src, and -ras, but not by v-raf. These effects on transformation correlate with the phosphorylation status of p130Cas and two proteins that are associated with p130Cas, Paxillin and Fak. Expression of WT-PTP1B reduces formation of p130Cas-Crk complexes and inhibits mitogen-activated protein kinase activation by Src and Crk. These data show that transformation suppression by PTP1B requires a functional SH3 ligand and suggest that p130Cas may represent an important physiological target of PTP1B in cells.
Collapse
Affiliation(s)
- F Liu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
60
|
Flint AJ, Tiganis T, Barford D, Tonks NK. Development of "substrate-trapping" mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 1997; 94:1680-5. [PMID: 9050838 PMCID: PMC19976 DOI: 10.1073/pnas.94.5.1680] [Citation(s) in RCA: 641] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The identification of substrates of protein tyrosine phosphatases (PTPs) is an essential step toward a complete understanding of the physiological function of members of this enzyme family. PTPs are defined by a conserved catalytic domain harboring 27 invariant residues. From a mutagenesis study of these invariant residues that was guided by our knowledge of the crystal structure of PTP1B, we have discovered a mutation of the invariant catalytic acid (Asp-181 in PTP1B) that converts an extremely active enzyme into a "substrate trap." Expression of this D181A mutant of PTP1B in COS and 293 cells results in an enzyme that competes with endogenous PTP1B for substrates and promotes the accumulation of phosphotyrosine primarily on the epidermal growth factor (EGF) receptor as well as on proteins of 120, 80, and 70 kDa. The association between the D181A mutant of PTP1B and these substrates was sufficiently stable to allow isolation of the complex by immunoprecipitation. As predicted for an interaction between the substrate-binding site of PTP1B and its substrates, the complex is disrupted by vanadate and, for the EGF receptor, the interaction absolutely requires receptor autophosphorylation. Furthermore, from immunofluorescence studies, the D181A mutant of PTP1B appeared to retain the endogenous EGF receptor in an intracellular complex. These results suggest that the EGF receptor is a bona fide substrate for PTP1B in vivo and that one important function of PTP1B is to prevent the inappropriate, ligand-independent, activation of newly synthesized EGF receptor in the endoplasmic reticulum. This essential catalytic aspartate residue is present in all PTPs and has structurally equivalent counterparts in the dual-specificity phosphatases and the low molecular weight PTPs. Therefore we anticipate that this method may be widely applicable to facilitate the identification of substrates of other members of this enzyme family.
Collapse
Affiliation(s)
- A J Flint
- Cold Spring Harbor Laboratory, NY 11724, USA
| | | | | | | |
Collapse
|
61
|
Zhang ZY, Wu L. The single sulfur to oxygen substitution in the active site nucleophile of the Yersinia protein-tyrosine phosphatase leads to substantial structural and functional perturbations. Biochemistry 1997; 36:1362-9. [PMID: 9063884 DOI: 10.1021/bi9624043] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein-tyrosine phosphatases (PTPases) feature an essential nucleophilic thiol group which attacks the phosphorus atom in a substrate. A single S to O atom substitution in the nucleophile (via Cys to Ser mutation) renders PTPases catalytically inactive. We suggest that the lack of activity in the Cys to Ser mutant may be caused by structural and/or conformational perturbations in the active site. Yersinia PTPase contains a single tryptophan residue, Trp354, which is invariant among all PTPases and is located in the vicinity of the active site nucleophile Cys403. Thus, Trp354 serves as an intrinsic probe of the PTPase active site conformation. We show that although C403S displays a nearly identical circular dichroism spectrum to that of the wild type enzyme, its ultraviolet spectrum in the region attributed to Trp is significantly different from that of the wild-type enzyme. In addition, the intrinsic fluorescence intensity of C403S is enhanced 3-fold and exhibits different ionic strength dependency from that of the wild-type enzyme. Trp354 also has different accessibilities to quenchers in the wild-type and the C403S mutant PTPases. Furthermore, unfolding experiments demonstrate that the structure of C403S is significantly less stable than the wild-type PTPase and displays a different sensitivity to urea and guanidine hydrochloride. Finally, binding of tungstate enhances the fluorescence of the wild-type Yersinia PTPase with a Kd of 55 microM, whereas binding of tungstate quenches the fluorescence of the C403S mutant with a Kd of 690 microM. Collectively, these results indicate that the single sulfur to oxygen change in the active site nucleophile leads to substantial structural/conformational and functional alterations in the Yersinia PTPase.
Collapse
Affiliation(s)
- Z Y Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
62
|
Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson TA, Kusari J. Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J Biol Chem 1997; 272:1639-45. [PMID: 8999839 DOI: 10.1074/jbc.272.3.1639] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In response to insulin, protein-tyrosine phosphatase 1B (PTPase 1B) dephosphorylates 95- and 160-180-kDa tyrosine phosphorylated (PY) proteins (Kenner, K. A., Anyanwu, E., Olefsky, J. M., and Kusari, J. (1996) J. Biol. Chem. 271, 19810-19816). To characterize these proteins, lysates from control and insulin-treated cells expressing catalytically inactive PTPase 1B (CS) were immunoadsorbed and subsequently immunoblotted using various combinations of phosphotyrosine, PTPase 1B, and insulin receptor (IR) antibodies. Anti-PTPase 1B antibodies coprecipitated a 95-kDa PY protein from insulin-stimulated cells, subsequently identified as the IR beta-subunit. Similarly, anti-IR antibodies coprecipitated the 50-kDa PY-PTPase 1B protein from insulin-treated cells. To identify PTPase 1B tyrosine (Tyr) residues that are phosphorylated in response to insulin, three candidate sites (Tyr66, Tyr152, and Tyr153) were replaced with phenylalanine. Replacing Tyr66 or Tyr152 and Tyr153 significantly reduced insulin-stimulated PTPase 1B phosphotyrosine content, as well as its association with the IR. Studies using mutant IRs demonstrated that IR autophosphorylation is necessary for the PTPase 1B-IR interaction. These results suggest that PTPase 1B complexes with the autophosphorylated insulin receptor in intact cells, either directly or within a complex involving additional proteins. The interaction requires multiple tyrosine phosphorylation sites within both the receptor and PTPase 1B.
Collapse
Affiliation(s)
- D Bandyopadhyay
- Department of Physiology, Tulane University Medical Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Tinhofer I, Maly K, Dietl P, Hochholdinger F, Mayr S, Obermeier A, Grunicke HH. Differential Ca2+ signaling induced by activation of the epidermal growth factor and nerve growth factor receptors. J Biol Chem 1996; 271:30505-9. [PMID: 8940018 DOI: 10.1074/jbc.271.48.30505] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stimulation by epidermal growth factor (EGF) of NIH3T3 cells overexpressing the EGF receptor (EGFR) results in a release of Ca2+ from internal stores. Ca2+ release is followed by an influx of extracellular calcium which can be recorded by the influx of the calcium surrogate Mn2+. Both Ca2+ release and Mn2+/Ca2+ influx are inhibited by expression of the dominant negative Asn17-Ras mutant and abrogated by microinjected neutralizing anti-Ras antibody Y13-259, whereas microinjection of the anti-Ras antibody Y13-238 which does not interact with the effector binding domain of Ras is without any effect on the EGF-induced Ca2+ transient. Neither Asn17-Ha-Ras nor the Y13-259 antibody interferes with the thapsigargin-induced Mn2+/Ca2+ influx. The nerve growth factor receptor (Trk)-mediated Ca2+ transient was found to be unaffected by the dominant negative Ras mutant or microinjected neutralizing anti-Ras antibodies. Substitution of the phospholipase Cgamma1 (PLCgamma1) binding site of the EGFR by the PLCgamma binding domain of Trk renders the EGFR-induced Ca2+ influx insensitive to the expression of Asn17-Ha-Ras, whereas the Ca2+ signal induced by Trk carrying the PLC binding site of EGFR is Ras-dependent and abrogated by the dominant negative Ras mutant. It is concluded that the Ca2+ transient induced by the activated EGFR, not, however, the Ca2+ transient elicited by the activated NGFR/Trk, is a Ras-mediated phenomenon and that the role of Ras in regulating EGFR-induced Ca2+ influx depends on the structure of the PLCgamma binding domain.
Collapse
Affiliation(s)
- I Tinhofer
- Department of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
64
|
Kenner KA, Anyanwu E, Olefsky JM, Kusari J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 1996; 271:19810-6. [PMID: 8702689 DOI: 10.1074/jbc.271.33.19810] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To understand the physiological role of protein-tyrosine phosphatase 1B (PTPase 1B) in insulin and insulin-like growth factor-I (IGF-I) signaling, we established clonal cell lines overexpressing wild type or inactive mutant (C215S) PTPase 1B in cells overexpressing insulin (Hirc) or IGF-I (CIGFR) receptors. PTPase 1B overexpression in transfected cells was verified by immunoblot analysis with a monoclonal PTPase 1B antibody. Subfractionation of parental cells demonstrated that greater than 90% of PTPase activity was localized in the Triton X-100-soluble particulate (P1) cell fraction. PTPase activity in the P1 fraction of cells overexpressing wild type PTPase 1B was 3-6-fold higher than parental cells but was unaltered in all fractions from C215S PTPase 1B-containing cells. The overexpression of wild type and C215S PTPase 1B had no effects on intrinsic receptor kinase activity, growth rate, or general cell morphology. The effects of PTPase 1B overexpression on cellular protein tyrosine phosphorylation were examined by anti-phosphotyrosine immunoblot analysis. No differences were apparent under basal conditions, but hormone-stimulated receptor autophosphorylation and/or insulin receptor substrate tyrosine phosphorylation were inhibited in cells overexpressing wild type PTPase 1B and increased in cells expressing mutant PTPase 1B, in comparison with parental cells. Metabolic signaling, assessed by ligand-stimulated [14C]glucose incorporation into glycogen, was also inhibited in cells overexpressing active PTPase 1B and enhanced in cells containing C215S PTPase 1B. These data strongly suggest that PTPase 1B acts as a negative regulator of insulin and IGF-I signaling.
Collapse
Affiliation(s)
- K A Kenner
- Department of Physiology, Tulane University Medical Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
65
|
Herbst R, Carroll PM, Allard JD, Schilling J, Raabe T, Simon MA. Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during sevenless signaling. Cell 1996; 85:899-909. [PMID: 8681384 DOI: 10.1016/s0092-8674(00)81273-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The SH2 domain-containing phosphotyrosine phosphatase Corkscrew (CSW) is an essential component of the signaling pathway initiated by the activation of the sevenless receptor tyrosine kinase (SEV) during Drosophila eye development. We have used genetic and biochemical approaches to identify a substrate for CSW. Expression of a catalytically inactive CSW was used to trap CSW in a complex with a 115 kDa tyrosine-phosphorylated substrate. This substrate was purified and identified as the product of the daughter of sevenless (dos) gene. Mutations of dos were identified in a screen for dominant mutations which enhance the phenotype caused by overexpression of inactive CSW during photoreceptor development. Analysis of dos mutations indicates that DOS is a positive component of the SEV signaling pathway and suggests that DOS dephosphorylation by CSW may be a key event during signaling by SEV.
Collapse
Affiliation(s)
- R Herbst
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | | | | | |
Collapse
|
66
|
Saltiel AR. Diverse signaling pathways in the cellular actions of insulin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:E375-85. [PMID: 8638681 DOI: 10.1152/ajpendo.1996.270.3.e375] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Insulin is one of the most important regulators of glucose and lipid homeostasis. Many of its cellular actions are mediated by changes in protein phosphorylation. The consequences of these phosphorylation events extend from a series of different short-term metabolic actions to longer-term effects of the hormone on cellular growth and differentiation. Although the insulin receptor itself is a tyrosine kinase that is activated upon hormone binding, the ensuing changes in phosphorylation occur predominantly on serine and threonine residues. Moreover, insulin can simultaneously stimulate the phosphorylation of some proteins and the dephosphorylation of others. These paradoxical effects of insulin suggest that separate signal transduction pathways may emanate from the receptor itself to produce the pleiotropic actions of the hormone.
Collapse
Affiliation(s)
- A R Saltiel
- Department of Signal Transduction, Parke-Davis Pharmaceutical Research, Warner-Lambert, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
67
|
Ahmad F, Li PM, Meyerovitch J, Goldstein BJ. Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 1995; 270:20503-8. [PMID: 7544790 DOI: 10.1074/jbc.270.35.20503] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein-tyrosine phosphatases (PTPases) have been postulated to balance the steady-state phosphorylation and the activation state of the insulin receptor and its substrate proteins. To explore whether PTP1B, a widely expressed, non-receptor-type PTPase, regulates insulin signaling, we used osmotic shock to load rat KRC-7 hepatoma cells with affinity-purified neutralizing antibodies that immunoprecipitate and inactivate the enzymatic activity of recombinant rat PTP1B in vitro. In cells loaded with PTP1B antibody, insulin-stimulated DNA synthesis and phosphatidylinositol 3'-kinase activity were increased by 42% and 38%, respectively, compared with control cells loaded with preimmune IgG (p < 0.005). In order to characterize the potential site(s) of action of PTP1B in insulin signaling, we also determined that insulin-stimulated receptor autophosphorylation and insulin receptor substrate 1 tyrosine phosphorylation were increased 2.2- and 2.0-fold, respectively, and that insulin-stimulated receptor kinase activity toward an exogenous peptide substrate was increased by 57% in the PTP1B antibody-loaded cells. Osmotic loading did not alter the cellular content of PTP1B protein, suggesting that the antibody acts in the cell by sterically blocking catalytic interactions between PTP1B and its physiological substrates. These studies demonstrate that PTP1B has a role in the negative regulation of insulin signaling and acts, at least in part, directly at the level of the insulin receptor. These results also show that insulin signaling can be enhanced by the inhibition of specific PTPases, a maneuver that has potential clinical relevance in the treatment of insulin resistance and Type II diabetes mellitus.
Collapse
Affiliation(s)
- F Ahmad
- Dorrance H. Hamilton Research Laboratories, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
68
|
Alvarez CV, Shon KJ, Miloso M, Beguinot L. Structural requirements of the epidermal growth factor receptor for tyrosine phosphorylation of eps8 and eps15, substrates lacking Src SH2 homology domains. J Biol Chem 1995; 270:16271-16276. [PMID: 7608194 DOI: 10.1074/jbc.270.27.16271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphorylation of two newly identified epidermal growth factor (EGF) receptor substrates, eps8 and eps15, which do not possess Src homology (SH2) domains, was investigated using EGF receptor mutants of the autophosphorylation sites and deletion mutants of the carboxyl-terminal region. Two mutants, F5, in which all five tyrosine autophosphorylation sites substituted by phenylalanine, and Dc 123F, in which four tyrosines were removed by deletion and the fifth (Tyr-992) was mutated into phenylalanine, phosphorylated eps8 and eps15 as efficiently as the wild-type receptor. In contrast, SH2-containing substrates, phospholipase C gamma, the GTPase-activating protein of Ras, the p85 subunit of phosphatidylinositol 3 kinase, and the Src and collagen homology protein, are not phosphorylated by the F5 and Dc 123F mutants. A longer EGF receptor deletion mutant, Dc 214, lacking all five autophosphorylation sites, was unable to phosphorylate eps15 but phosphorylated eps8 13-fold more than the wild-type receptor. To determine the EGF receptor region important for phosphorylation of eps8 and eps15, progressive deletion mutants lacking the final 123, 165, 196, and 214 COOH-terminal residues were used. eps8 phosphorylation was progressively increased in Dc 165, Dc 196, and Dc 214 EGF receptor mutants, indicating that removal of the final 214 COOH-terminal residues increases the phosphorylation of this substrate by the EGF receptor. In contrast, eps15 was phosphorylated by Dc 123 and Dc 165 EGF receptor mutants but not by Dc 196 and Dc 214 mutants. This indicates that a region of 30 residues located between Dc 165 and Dc 196 is essential for eps15 phosphorylation. This is the first demonstration of structural requirements in the EGF receptor COOH terminus for efficient phosphorylation of non-SH2-containing substrates. In addition, enhanced eps8 phosphorylation correlates well with the increased transforming potential of EGF receptor deletion mutants Dc 196 and Dc 214, suggesting that this substrate may be involved in mitogenic signaling.
Collapse
Affiliation(s)
- C V Alvarez
- Dipartimento di Ricerca Biologica e Tecnologica, HS Raffaele, Milano, Italy
| | | | | | | |
Collapse
|
69
|
Rivard N, McKenzie FR, Brondello JM, Pouysségur J. The phosphotyrosine phosphatase PTP1D, but not PTP1C, is an essential mediator of fibroblast proliferation induced by tyrosine kinase and G protein-coupled receptors. J Biol Chem 1995; 270:11017-24. [PMID: 7537742 DOI: 10.1074/jbc.270.18.11017] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PTP1C and PTP1D are non-transmembrane protein-tyrosine phosphatases (PTPs), which contain two src homology-2 domains. These enzymes are believed to play a role in regulating downstream signaling from receptors with intrinsic tyrosine kinase activity. The present study describes the tyrosine phosphorylation and the catalytic activity of both PTPs in CCL39 cells, a Chinese hamster lung fibroblast cell line, upon addition of a variety of growth factors. We demonstrate that PTP1C activity was significantly stimulated by insulin and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate but was not influenced by serum, platelet-derived growth factor (PDGF), or alpha-thrombin. However, tyrosine phosphorylation of PTP1C was increased in response to insulin, PDGF, and alpha-thrombin. PTP1D activity was slightly stimulated by insulin and 12-O-tetradecanoylphorbol-13-acetate but was significantly inhibited by serum, PDGF, and alpha-thrombin, although tyrosine phosphorylation is increased in response to these agonists. Mitogen-activated protein kinase phosphorylated PTP1C and PTP1D in in vitro kinase assays, suggesting that both PTPs are target proteins for mitogen-activated protein kinase. We also show that overexpression of PTP1C or PTP1D had no effect on DNA synthesis stimulated by different growth factors. However, a mutated inactive form of PTP1D strongly inhibited the stimulatory effects of both PDGF and alpha-thrombin on early gene transcription and DNA synthesis. These results demonstrate for the first time that PTP1C and PTP1D may participate in signal transduction but in different manners and that only PTP1D is a positive mediator of mitogenic signals induced by both tyrosine kinase receptors and G protein-coupled receptors in fibroblasts.
Collapse
Affiliation(s)
- N Rivard
- Centre de Biochimie, CNRS-UMR134, Parc Valrose, Nice, France
| | | | | | | |
Collapse
|
70
|
MacLean D, Sefler AM, Zhu G, Decker SJ, Saltiel AR, Singh J, McNamara D, Dobrusin EM, Sawyer TK. Differentiation of peptide molecular recognition by phospholipase C gamma-1 Src homology-2 domain and a mutant Tyr phosphatase PTP1bC215S. Protein Sci 1995; 4:13-20. [PMID: 7773170 PMCID: PMC2142960 DOI: 10.1002/pro.5560040103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activated epidermal growth factor receptor (EGFR) undergoes autophosphorylation on several cytoplasmic tyrosine residues, which may then associate with the src homology-2 (SH2) domains of effector proteins such as phospholipase C gamma-1 (PLC gamma-1). Specific phosphotyrosine (pTyr)-modified EGFR fragment peptides can inhibit this intermolecular binding between activated EGFR and a tandem amino- and carboxy-terminal (N/C) SH2 protein construct derived from PLC gamma-1. In this study, we further explored the molecular recognition of phosphorylated EGFR988-998 (Asp-Ala-Asp-Glu-pTyr-Leu-Ile-Pro-Gln-Gln-Gly, I) by PLC gamma-1 N/C SH2 in terms of singular Ala substitutions for amino acid residues N- and C-terminal to the pTyr (P site) of phosphopeptide I. Comparison of the extent to which these phosphopeptides inhibited binding of PLC gamma-1 N/C SH2 to activated EGFR showed the critical importance of amino acid side chains at positions P+2 (Ile994), P+3 (Pro995), and P+4 (Gln996). Relative to phosphopeptide I, multiple Ala substitution throughout the N-terminal sequence, N-terminal sequence, N-terminal truncation, or dephosphorylation of pTyr each resulted in significantly decreased binding to PLC gamma-1 N/C SH2. These structure-activity results were analyzed by molecular modeling studies of the predicted binding of phosphopeptide I to each the N- and C-terminal SH2 domains of PLC gamma-1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D MacLean
- Department of Chemistry, Parke-Davis Pharmaceutical Research, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tian SS, Zinn K. An adhesion molecule-like protein that interacts with and is a substrate for a Drosophila receptor-linked protein tyrosine phosphatase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46952-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
72
|
Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31954-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
73
|
Abstract
The molecular cloning of new neuroactive growth factors and their receptors has greatly enhanced our understanding of important interactions among receptors and signaling molecules. These studies have begun to illuminate some of the mechanisms that allow for specificity in neuronal signaling. Model cell systems, such as the PC-12 pheochromocytoma cell line, express receptors for these different neurotrophic factors, leading to comparisons of signaling pathways for these factors. Upon binding their ligands, these receptors undergo phosphorylation on tyrosine residues, which directs their interaction with signaling proteins containing src homology (SH2) domains, sequences that mediate associations with tyrosine-phosphorylated proteins. These SH2 proteins translate the tyrosine kinase activity of receptors into downstream events that result in the specific cellular response. Investigations such as these have revealed that molecular specificity in signaling pathways may arise from combinatorial diversity in interactions between receptors and key regulatory proteins.
Collapse
Affiliation(s)
- A R Saltiel
- Department of Signal Transduction, Parke-Davis Pharmaceutical Research Division of Warner-Lambert Co., Ann Arbor, Michigan 48105
| | | |
Collapse
|
74
|
Affiliation(s)
- David Barford
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY 11724
| | - Andrew J. Flint
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|