51
|
Pandini G, Genua M, Frasca F, Squatrito S, Vigneri R, Belfiore A. 17β-Estradiol Up-regulates the Insulin-like Growth Factor Receptor through a Nongenotropic Pathway in Prostate Cancer Cells. Cancer Res 2007; 67:8932-41. [PMID: 17875736 DOI: 10.1158/0008-5472.can-06-4814] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate carcinomas frequently express estrogen receptors (ER), irrespective of androgen receptor (AR) expression; however, the role of ERs and estrogens in prostate cancer is controversial. We found that 17beta-estradiol (E(2)) is able to markedly up-regulate insulin-like growth factor (IGF)-I receptor (IGF-IR) mRNA and protein expression in both AR-positive (LNCaP cells) and AR-negative (PC-3 cells) prostate cancer cells. This effect occurs not only via ERalpha but also via ERbeta stimulation and is specific for IGF-IR because it does not involve the cognate insulin receptor. IGF-IR up-regulation is associated with increased IGF-IR phosphorylation and with increased mitogenic and motogenic activities in response to IGF-I. IGF-IR up-regulation by E(2) does not require ER binding to DNA and is poorly sensitive to antiestrogen blockade, whereas it is associated with the activation of cytosolic kinase cascades involving Src, extracellular signal-regulated kinase (ERK)-1/2, and, to a lesser extent, phosphatidylinositol 3-kinase and is sensitive to the inhibition of these kinases. In conclusion, our data indicate that estrogens may contribute to IGF system deregulation in prostate cancer through the activation of a nongenotropic pathway. Estrogens may have a role, therefore, in tumor progression to androgen independence. Inhibition of the IGF-IR or the Src-ERK pathway should be considered, therefore, as an adjuvant therapy in prostate cancer.
Collapse
Affiliation(s)
- Giuseppe Pandini
- Endocrinologia, Dipartimento di Medicina Interna e Medicina Specialistica, University of Catania, Ospedale Garibaldi-Nesima, Catania, Italy
| | | | | | | | | | | |
Collapse
|
52
|
Massarweh S, Schiff R. Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res 2007; 13:1950-4. [PMID: 17404074 DOI: 10.1158/1078-0432.ccr-06-2540] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two thirds of breast cancers express the estrogen receptor (ER), which contributes to tumor development and progression. ER-targeted therapy is therefore widely used in breast cancer to inhibit signaling through ER and disrupt breast cancer growth. This therapeutic strategy, particularly using the antiestrogen tamoxifen, is proven to increase the cure rates in early breast cancer, improve patient outcomes in advanced disease, and reduce breast cancer incidence in the prevention setting. Despite the recent integration of more powerful endocrine agents into breast cancer care, resistance to all forms of endocrine therapy remains a major problem. New insight into ER biology and progress in understanding resistance mechanisms, mediated by molecular crosstalk between ER and various growth factor signaling pathways, are generating tremendous promise for new therapeutic opportunities to target resistance and improve breast cancer disease outcomes.
Collapse
Affiliation(s)
- Suleiman Massarweh
- Department of Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
53
|
Affiliation(s)
- Amy Jo Chien
- Department of Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
54
|
Ilagan R, Pottratz J, Le K, Zhang L, Wong SG, Ayala R, Iyer M, Wu L, Gambhir SS, Carey M. Imaging Mitogen-Activated Protein Kinase Function in Xenograft Models of Prostate Cancer. Cancer Res 2006; 66:10778-85. [PMID: 17108114 DOI: 10.1158/0008-5472.can-05-3577] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPK) play important roles in malignancy. The ability to detect and quantitate MAPKs in live animal models of cancer will facilitate an understanding of disease progression. We have developed a gene expression-based imaging system that detects and quantifies MAPK activity in prostate cancer tumors implanted into severe combined immunodeficient mice. The imaging technology uses a modified version of two-step transcriptional amplification (TSTA). The tissue specificity of gene expression is imparted by an enhanced version of the prostate-specific antigen regulatory region that expresses GAL4-ELK1. GAL4-ELK1 confers MAPK specificity by activating a firefly luciferase (FLuc) reporter gene when the Ets-like transcription factor (ELK) 1 activation domain is phosphorylated by MAPK. FLuc activity in live animals was detected using the Xenogen In vivo Imaging System. We validated the TSTA-ELK1 system by analyzing its response to epidermal growth factor treatment in transfected tissue culture cells and in adenovirus (AdTSTA-ELK1)-injected prostate cancer xenograft tumors. We measured MAPK activity in two well-characterized xenograft models, CWR22 and LAPC9. Although no significant differences in MAPK levels were detected between androgen-dependent and androgen-independent xenografts, the CWR22 models display significantly higher levels of AdTSTA-ELK1 activity versus LAPC9. Western blots of tumor extracts showed that the elevated imaging signal in CWR22 xenografts correlated with elevated levels of phosphorylated extracellular signal-regulated kinase 1/2 but not p38 or c-Jun NH(2)-terminal kinase. We conclude that a gene expression-based optical imaging system can accurately detect and quantify MAPK activity in live animals.
Collapse
Affiliation(s)
- Romyla Ilagan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|
56
|
Abstract
17beta-Estradiol (E2) acts as a chemical messenger in target tissues inducing both slow nuclear and rapid extra-nuclear responses. E2 binds to its cognate nuclear receptors (ER) resulting in the activation of target gene transcription in the nucleus. In addition to these genomic effects, E2 modulates cell functions through rapid non-genomic actions. Stimulation of G-proteins, Ca(2+) influx, inositol phosphate generation as well as phospholipase C, ERK/MAPK, and PI3K/AKT activation all occur within seconds to minutes after E2 binding to a small population of ERalpha located at the plasma membrane. The great impact of these rapid signals on cell physiology renders central the knowledge of the structural bases and mechanisms that mediate extra-nuclear signaling by E2. Several laboratories, including our own, have recently elucidated the structural requirements for localization and function of plasma membrane ERalpha. This review summarizes the molecular mechanisms of E2-induced rapid non-genomic actions relevant for cell functions, highlighting the role of lipid modification (i.e., palmitoylation) in the ERalpha localization to and residence at the plasma membrane.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Italy.
| | | | | |
Collapse
|
57
|
Segal S, Narayanan R, Dalton JT. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery. Expert Opin Investig Drugs 2006; 15:377-87. [PMID: 16548787 DOI: 10.1517/13543784.15.4.377] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.
Collapse
|
58
|
Abstract
Rapid, non-genomic, steroid actions have been identified for more than 20 years. In the last decade however, a great expansion of research was observed. In the present review we report the identification and the subsequent signaling cascades involved in these rapid steroid effects. In the current state of knowledge, with the exception of progesterone for which a seven-loop G protein-coupled receptor has been identified, two major lines of evidence exist for membrane-related steroid actions: (1) a binding to the intracellular receptor, coupled to the plasma membrane, or interacting with other growth factor receptors, and (2) the existence of specific membrane steroid receptors. In addition, major intracellular signaling cascades involved in cell survival and/or apoptosis are activated by non-genomic steroid actions. Finally, it appears that cancer cells and tumors express membrane steroid sites, related to cancer aggressiveness. These lines of evidence may implicate, in the forthcoming years, membrane steroid receptors in cancer control as major or adjuvant chemotherapeutic agents, providing new possible targets for cancer chemotherapy.
Collapse
Affiliation(s)
- Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, Heraklion, GR-711110, Greece
| | | |
Collapse
|
59
|
Iwamatsu T, Kobayashi H, Sagegami R, Shuo T. Testosterone content of developing eggs and sex reversal in the medaka (Oryzias latipes). Gen Comp Endocrinol 2006; 145:67-74. [PMID: 16137690 DOI: 10.1016/j.ygcen.2005.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/07/2005] [Accepted: 07/11/2005] [Indexed: 11/19/2022]
Abstract
To understand the effect of testosterone on sex differentiation, the quantities of testosterone (T) and estradiol-17beta (E2) in developing eggs of medaka (Oryzias latipes) were measured by radioimmunoassay, and the influence on sex differentiation of treating embryos with exogenous androgens was also examined. Endogenous T of eggs dispersed into the environmental water at spawning, and precipitously declined to a minimum level during incubation for 2 days post-fertilization (dpf). It did not significantly increase during development. The E2 content of fertilized eggs increased when eggs were incubated in medium containing exogenous T at the concentrations of 100 and 500 ng/ml, but not in low concentrations of 10 ng/ml or less. The presence of 500 ng/ml 17alpha-methyltestosterone (MT) in the incubation medium also induced an increase in the E2 content of embryos. Exposure of embryos to exogenous 1 ng/ml T that corresponded with the level of T in eggs shortly after fertilization was enough to induce sex reversal of genotypic females to functional males. The co-existence of T and aromatase inhibitor in incubation medium inhibited not only the T-induced increase in the embryonic E2 content, but also the estrogenic effect of T in causing the paradoxical sex reversal from genotypic males to phenotypic females. However, treatment of embryos with the non-aromatizable androgen, 17alpha-methyldihydrotestosterone, induced no detectable increase in the E2 content of embryos, but still brought about sex reversal of genotypic males into females. This contradictory result suggests that the conversion of androgens to E2 may not always be the cause for induction of paradoxical sex reversal by T treatment. Consequently, these results on sex reversal induced by treatment of embryos with exogenous androgens suggest that endogenous T of developing medaka embryos may not act as the natural andro-inducer, and that genotypic sex can be modified by exogenous sex steroids at early developmental stages long before gonadal differentiation in the medaka.
Collapse
Affiliation(s)
- Takashi Iwamatsu
- Department of Biology, Aichi University of Education, Kariya 448-8542, Japan
| | | | | | | |
Collapse
|
60
|
Pawlak KJ, Zhang G, Wiebe JP. Membrane 5alpha-pregnane-3,20-dione (5alphaP) receptors in MCF-7 and MCF-10A breast cancer cells are up-regulated by estradiol and 5alphaP and down-regulated by the progesterone metabolites, 3alpha-dihydroprogesterone and 20alpha-dihydroprogesterone, with associated changes in cell proliferation and detachment. J Steroid Biochem Mol Biol 2005; 97:278-88. [PMID: 16154741 DOI: 10.1016/j.jsbmb.2005.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Previous studies have shown that the progesterone metabolite, 5alpha-pregnane-3,20-dione (5alphaP), exhibits mitogenic and metastatic activity in breast cell lines and that specific, high affinity receptors for 5alphaP are located in the plasma membrane fractions of tumorigenic (ER/PR-positive) MCF-7 cells. The aim of this study was to determine the effects of the mitogenic (estradiol; 5alphaP) and anti-mitogenic (3alpha-hydroxy-4-pregnen-20-one, 3alphaHP; 20alpha-hydroxy-4-pregnen-3-one, 20alphaHP) endogenous steroid hormones on 5alphaP receptor (5alphaP-R) numbers and on cell proliferation and adhesion of MCF-7 and MCF-10A cells. Exposure of MCF-7 cells for 24h to estradiol or 5alphaP resulted in significant (p < 0.05-0.001) dose-dependent increases in 5alphaP-R levels. Conversely, treatment with 3alphaHP or 20alphaHP resulted in significant (p < 0.05-0.01) dose-dependent decreases in 5alphaP-R levels. Treatment with one mitogenic and one anti-mitogenic hormone resulted in inhibition of the mitogen-induced increases, whereas treatment with two mitogenic or two anti-mitogenic hormones resulted in additive effects on 5alphaP-R numbers. Treatments with cycloheximide and actinomycin D indicate that changes in 5alphaP-R levels depend upon transcription and translation. The non-tumorigenic breast cell line, MCF-10A, was also shown to posses specific, high affinity plasma membrane receptors for 5alphaP that were up-regulated by estradiol and 5alphaP and down-regulated by 3alphaHP. Estradiol binding was demonstrated in MCF-10A cell membrane fractions and may explain the estradiol action in these cells that lack intracellular ER. In both MCF-7 and MCF-10A cells, the increases in 5alphaP-R due to estradiol or 5alphaP, and decreases due to 3alphaHP or 20alphaHP correlate with respective increases and decreases in cell proliferation as well as detachment. These results show distribution of 5alphaP-R in several cell types and they provide further evidence of the significance of progesterone metabolites and their novel membrane-associated receptors in breast cancer stimulation and control. The findings that 3alphaHP and 20alphaHP down-regulate 5alphaP-R and suppress mitogenic and metastatic activity suggest that these endogenous anti-mitogenic progesterone metabolites deserve considerations in designing new breast cancer therapeutic agents.
Collapse
Affiliation(s)
- K J Pawlak
- Hormonal Regulatory Mechanisms Laboratory, Department of Biology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
61
|
Hall G, Phillips TJ. Estrogen and skin: The effects of estrogen, menopause, and hormone replacement therapy on the skin. J Am Acad Dermatol 2005; 53:555-68; quiz 569-72. [PMID: 16198774 DOI: 10.1016/j.jaad.2004.08.039] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 07/27/2004] [Accepted: 08/23/2004] [Indexed: 11/23/2022]
Abstract
UNLABELLED Aging is associated with declining levels of several hormones, including estrogen. Although the effects of estrogen on the skin are still not fully understood, it is known that, in women, declining estrogen levels are associated with a variety of cutaneous changes, many of which can be reversed or improved by estrogen supplementation. Estrogens are C-18 steroids synthesized from cholesterol in the ovary premenopausally and in the peripheral tissue in postmenopausal women. Two estrogen receptors, alpha and beta, have been cloned and found in various tissue types. Studies of postmenopausal women indicate that estrogen deprivation is associated with dryness, atrophy, fine wrinkling, poor healing, and hot flashes. Epidermal thinning, declining dermal collagen content, diminished skin moisture, decreased laxity, and impaired wound healing have been reported in postmenopausal women. This article reviews the effects of declining estrogen levels on the skin and the effects of estrogen supplementation. LEARNING OBJECTIVE At the conclusion of this learning activity, participants should be familiar with the pathways of estrogen synthesis, sites of estrogen receptors, age-dependent variations in serum estrogen concentration, the changes seen in postmenopausal skin, and the effects of estrogen supplementation.
Collapse
Affiliation(s)
- Glenda Hall
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
62
|
Feldkoren BI, Andersson S. Anabolic-androgenic steroid interaction with rat androgen receptor in vivo and in vitro: a comparative study. J Steroid Biochem Mol Biol 2005; 94:481-7. [PMID: 15876413 DOI: 10.1016/j.jsbmb.2004.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
Anabolic steroids are synthetic derivatives of testosterone and are characterized by their ability to cause nitrogen retention and positive protein metabolism, thereby leading to increased protein synthesis and muscle mass. There are disagreements in the literature in regards to the interaction of anabolic steroids with the androgen receptor (AR) as revealed by competitive ligand binding assays in vitro using cytosolic preparations from prostate and skeletal muscle. By use of tissue extracts, it has been shown that some anabolic steroids have binding affinities for the AR that are higher than that of the natural androgen testosterone, while others such as stanozolol and methanedienone have significantly lower affinities as compared with testosterone. In this study we show that stanozolol and methanedienone are low affinity ligands of the rat recombinant AR as revealed by a ligand binding assay in vitro, however, based on a cell-based AR-dependent transactivation assay, they are potent activators of the AR. We also show that a single injection of stanozolol and methanedienone causes a rapid cytosolic depletion of AR in rat skeletal muscle. Based on these results, we conclude that anabolic steroids with low affinity to AR in vitro, can in fact in vivo act on the AR to cause biological responses.
Collapse
Affiliation(s)
- Boris I Feldkoren
- Department of Obstetrics-Gynecology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9032, USA
| | | |
Collapse
|
63
|
Platet N, Cathiard AM, Gleizes M, Garcia M. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol 2005; 51:55-67. [PMID: 15207254 DOI: 10.1016/j.critrevonc.2004.02.001] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2004] [Indexed: 01/04/2023] Open
Abstract
Estrogens play an important role in regulating the growth and differentiation of normal, premalignant and malignant cell types, especially breast epithelial cells, through interaction with two nuclear estrogen receptors (ERalpha and ERbeta). In this review, we present a brief overview of the actions of estrogens in the different steps of breast carcinogenesis, including cancer progression to metastasis, and of their clinical consequences in the prevention, prognosis and treatment of the disease. The requirement of estrogen receptors, mainly of the alpha subtype, in normal mammary gland differentiation and growth has been evidenced by estrogen receptor deficiency in animals. The promotion of breast cancer carcinogenesis by prolonged exposure to estrogens is well-documented and this has logically led to the use of anti-estrogens as potentially chemopreventive agents. In breast cancer progression, however, the exact roles of estrogen receptors have been less well established but they may possibly be dual. Estrogens are mitogenic in ER-positive cells and anti-estrogens are an efficient adjuvant therapy for these tumors. On the other hand, the fact that estrogens and their receptors protect against cancer cell invasiveness through distinct mechanisms in experimental models may explain why the presence of ER is associated with well-differentiated and less invasive tumors.
Collapse
Affiliation(s)
- Nadine Platet
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 540, Molecular and Cellular Endocrinology of Cancers and University Montpellier I, 60 Rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | |
Collapse
|
64
|
Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 2004; 64:7156-68. [PMID: 15466214 DOI: 10.1158/0008-5472.can-04-1121] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A cure for prostate cancer (CaP) will be possible only after a complete understanding of the mechanisms causing this disease to progress from androgen dependence to androgen independence. To carry on a careful characterization of the phenotypes of CaP cell lines before and after acquisition of androgen independence, we used two human CaP LNCaP sublines: LNCaP(nan), which is androgen dependent (AD), and LNCaP-HP, which is androgen independent (AI). In AD LNCaP(nan) cells, dihydrotestosterone (DHT) stimulated in an androgen receptor (AR)-dependent way a phosphorylation signaling pathway involving steroid receptor coactivator (Src)-mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)-1/2-ERK-1/2-cAMP-response element binding-protein (CREB). Activation of this pathway was associated with increased [(3)H]thymidine incorporation and resistance to apoptosis. Use of dominant-negative forms of MEK-1/2 and CREB demonstrated in LNCaP(nan) cells that DHT induced [(3)H]thymidiine incorporation through a thus far unidentified molecule activated downstream of MEK-1/2, and antiapoptosis through phosphorylation of the transcription factor CREB. In contrast, in AI LNCaP-HP cells, the Src-MEK-1/2-ERK-1/2-CREB pathway was constitutively active. Because it was not further stimulated by addition of DHT, no increase of [(3)H]thymidine incorporation or apoptosis resistance was demonstrated in LNCaP-HP cells. Additional experiments showed that Src and the scaffold protein MNAR coimmunoprecipitated with AR, indicating a role for Src as an apical molecule in the Src-MEK-1/2-ERK-1/2-CREB pathway. Interestingly, differences between the two cell lines were that in LNCaP-HP cells presence of an AI phenotype and lack of response to DHT were associated with constitutive activation of the protein kinase Src and interaction among Src, AR, and MNAR. In contrast, in LNCaP(nan) cells, presence of an AD phenotype and ability to respond to DHT were associated with DHT-dependent activation of Src kinase activity and interaction among Src, AR, and MNAR. Intriguingly, in LNCaP(nan) cells, we found that transcription through the prototypical CREB-responsive promoter c-fos could be induced in a DHT-dependent way, and this action was inhibited by the AR antagonist Casodex and MEK-1 inhibitor PD98059. In contrast, transcription through the PSA P/E promoter, a prototypical AR-dependent promoter directly activated by agonist, was obliterated only by Casodex. Additional experiments with genital skin fibroblasts derived from patients with a variety of AR abnormalities indicated that nongenotropic AR signaling does not depend on an intact DNA-binding domain or on the ability of AR to translocate to the nucleus. The results suggest the following: (1) Constitutive activation of the Src-MEK-1/2-ERK-1/2-CREB pathway is associated with the AI phenotype observed in LNCaP-HP cells. (2) Activation of the Src-MEK-1/2-ERK-1/2-CREB pathway is DHT dependent in AD LNCaP(nan) cells. (3) DHT activation of this pathway is associated with induction of [(3)H]thymidine incorporation by a molecule activated downstream of MEK-1/2 and of antiapoptosis through activation of the transcription factor CREB in AD LNCaP(nan) cells. (4) AR regulates transcription either directly upon ligand binding and nuclear translocation or indirectly through kinase pathways leading to activation of downstream transcription factors. (5) Nuclear translocation and ability of the DNA-binding domain of AR to interact with DNA are not prerequisites for nongenotropic AR activity.
Collapse
Affiliation(s)
- Emmanual Unni
- Department of Medicine, Baylor College of Medicine and VA Medical Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 2004; 16:231-7. [PMID: 15496458 PMCID: PMC539167 DOI: 10.1091/mbc.e04-07-0547] [Citation(s) in RCA: 346] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A fraction of the nuclear estrogen receptor alpha (ERalpha) is localized to the plasma membrane region of 17beta-estradiol (E2) target cells. We previously reported that ERalpha is a palmitoylated protein. To gain insight into the molecular mechanism of ERalpha residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERalpha membrane localization. The cancer cell lines expressing transfected or endogenous human ERalpha (HeLa and HepG2, respectively) or the ERalpha nonpalmitoylable Cys447Ala mutant transfected in HeLa cells were used as experimental models. We found that palmitoylation of ERalpha enacts ERalpha association with the plasma membrane, interaction with the membrane protein caveolin-1, and nongenomic activities, including activation of signaling pathways and cell proliferation (i.e., ERK and AKT activation, cyclin D1 promoter activity, DNA synthesis). Moreover, E2 reduces both ERalpha palmitoylation and its interaction with caveolin-1, in a time- and dose-dependent manner. These data point to the physiological role of ERalpha palmitoylation in the receptor localization to the cell membrane and in the regulation of the E2-induced cell proliferation.
Collapse
|
66
|
Ameller T, Legrand P, Marsaud V, Renoir JM. Drug delivery systems for oestrogenic hormones and antagonists: the need for selective targeting in estradiol-dependent cancers. J Steroid Biochem Mol Biol 2004; 92:1-18. [PMID: 15544926 DOI: 10.1016/j.jsbmb.2004.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
The pleiotropic activity of oestrogens and their mechanism of action via their binding to the two oestrogen receptors alpha (ER alpha) and beta (ER beta) subtypes in the different tissues where oestrogens exert their action have been briefly described. The fate of these compounds trapped into different galenic forms is discussed with regard to their therapeutic applications. Firstly, the advantages and disadvantages of the different forms (pills, i.v. forms and transdermal patches) used in contraception are compared. Secondly, the therapeutic use of formulated oestrogens for the post-menopausal hormone replacement therapy (HRT) is analysed through the various results obtained in different trials. The link between HRT and the risks of breast cancer and cardiovascular disease is underlined. Finally, comparing the activity of selective oestrogen receptor modulators such as tamoxifen and pure anti-oestrogens such as RU58668 and ICI182780, we analysed the reasons leading to the need for a tumor targeting of the latters, but not of the former for the treatment of oestrogen-dependent breast cancer. Different injectable and biodegradable formulations, that lead to a remarkable anti-tumor efficiency in xenografts, have been recently developed and we believe that they may represent promising new administration ways of added therapeutic values for anti-oestrogens. Such devices could be extended to the delivery of other anti-cancer drugs with more aggressive activities than anti-oestrogens.
Collapse
Affiliation(s)
- Thibault Ameller
- UMR CNRS 8612, Department of Pharmacologie Cellulaire et Moléculaire des Anticancéreux, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
67
|
Fernando RI, Wimalasena J. Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Mol Biol Cell 2004; 15:3266-84. [PMID: 15121878 PMCID: PMC452582 DOI: 10.1091/mbc.e03-11-0823] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/16/2004] [Accepted: 04/18/2004] [Indexed: 11/11/2022] Open
Abstract
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.
Collapse
Affiliation(s)
- Romaine Ingrid Fernando
- Department of Obstetrics and Gynecology, and the Comparative and Experimental Medicine Program, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee 37920, USA
| | | |
Collapse
|
68
|
Yang Z, Barnes CJ, Kumar R. Human Epidermal Growth Factor Receptor 2 Status Modulates Subcellular Localization of and Interaction with Estrogen Receptor α in Breast Cancer Cells. Clin Cancer Res 2004; 10:3621-8. [PMID: 15173068 DOI: 10.1158/1078-0432.ccr-0740-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Approximately two-thirds of breast cancer patients respond to endocrine therapy, and this population of patients is estrogen receptor (ER) positive. However, a significant proportion of patients do not respond to hormone therapy. ER hormone responsiveness is widely believed to be influenced by enhanced cross-talk of ER with overexpressed human epidermal growth factor receptor 2 (HER2), and a subgroup of ER-positive tumors coexpress high HER2. EXPERIMENTAL DESIGN Breast cancer cells with or without HER2 overexpression were analyzed for ER status, subcellular localization, and interactions with HER2 signaling components by biochemical and immunological methods. Experiments explored the regulatory interactions between the HER2 and ER pathways and the sensitivity of breast cancer cells to tamoxifen. RESULTS Stable or transient or natural HER2 overexpression in ER-positive breast cancer cells promoted the nucleus-to-cytoplasm relocalization of ER, enhanced interactions of ER with HER2, inhibited ER transactivation function, and induced resistance to tamoxifen-mediated growth inhibition of breast cancer cells. In addition, HER2 up-regulation resulted in ER interaction with Sos, a component of Ras signaling, and hyperstimulation of the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2). Conversely, down-regulation of HER2 by the anti-HER2 monoclonal antibody Herceptin led to suppression of ERK1/2 stimulation, restoration of ER to the nucleus, and potentiation of the growth-inhibitory action of tamoxifen. CONCLUSION The results presented here show for the first time that ER redistribution to the cytoplasm and its interaction with HER2 are important downstream effects of HER2 overexpression, that ERK1/2 is important for ER cytoplasmic localization, and that subcellular localization of ER may play a mechanistic role in determining the responsiveness of breast cancer cells to tamoxifen.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents, Hormonal/pharmacology
- Blotting, Northern
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation
- Cytoplasm/metabolism
- Down-Regulation
- ErbB Receptors/biosynthesis
- ErbB Receptors/genetics
- Estrogen Receptor alpha/biosynthesis
- Estrogen Receptor alpha/metabolism
- Female
- Genes, Reporter
- Humans
- Immunoblotting
- Immunoprecipitation
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Protein Binding
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Transcriptional Activation
- Transfection
- Trastuzumab
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
69
|
Sengupta K, Banerjee S, Saxena NK, Banerjee SK. Thombospondin-1 Disrupts Estrogen-Induced Endothelial Cell Proliferation and Migration and Its Expression Is Suppressed by Estradiol. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.150.2.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The natural hormone 17β-estradiol (17β-E2) is known to induce tumor angiogenesis in various target organs by activating positive regulators of angiogenesis. In this study, we show for the first time that in human umbilical vein endothelial cells (HUVECs), 17β-E2 transiently down-regulates the expression and secretion of a potent negative regulator of angiogenesis, thrombospondin-1 (TSP-1). This inhibitory effect of 17β-E2 is mediated through nongenomic estrogen receptor (ER)/mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) 1/2 and c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK) signaling pathways, because this effect can be abolished by a pure ER antagonist (ICI 182,780) and inhibitors of downstream signaling proteins of MAPK signaling cascades, including MAPK kinase 1/2 and ERK1/2 inhibitor and JNK/SAPK inhibitor. To understand the functional role(s) of TSP-1 during estradiol-induced angiogenesis, we examined the growth and migration of endothelial cells in different experimental environments. Using a recombinant protein, we show that increments of TSP-1 protein concentration in culture medium significantly reduce the migration and proliferation of HUVECs stimulated by 17β-E2. Together, these studies suggest that TSP-1 can be considered an important negative factor in understanding the increased angiogenesis in response to estrogens.
Collapse
Affiliation(s)
- Krishanu Sengupta
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Neela K. Saxena
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
70
|
Caporali S, Imai M, Altucci L, Cancemi M, Caristi S, Cicatiello L, Matarese F, Penta R, Sarkar DK, Bresciani F, Weisz A. Distinct signaling pathways mediate stimulation of cell cycle progression and prevention of apoptotic cell death by estrogen in rat pituitary tumor PR1 cells. Mol Biol Cell 2003; 14:5051-9. [PMID: 12960425 PMCID: PMC284806 DOI: 10.1091/mbc.e03-05-0303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17beta-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar concentrations of the same are needed to prevent cell death that occurs at a high rate in these cells in the absence of hormone. Activation of endogenous (PRL) or transfected estrogen-responsive genes occurs at the same, higher concentrations of E2 required to promote cell survival, whereas stimulation of cyclin D3 expression and DNA synthesis occur at lower E2 concentrations. Similarly, the pure antiestrogen ICI 182,780 inhibits estrogen response element-dependent trans-activation and cell death more effectively than cyclin-cdk activity, G1-S transition, or DNA synthesis rate. In antiestrogen-treated and/or estrogen-deprived cells, death is due predominantly to apoptosis. Estrogen-induced cell survival, but not E2-dependent cell cycle progression, can be prevented by an inhibitor of c-Src kinase or by blockade of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. These data indicate the coexistence of two distinguishable estrogen signaling pathways in PR1 cells, characterized by different functions and sensitivity to hormones and antihormones.
Collapse
Affiliation(s)
- Simona Caporali
- Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli, 80138 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Androgen receptor (AR) is a member of the steroid hormone receptor family of molecules. AR primarily is responsible for mediating the physiologic effects of androgens by binding to specific DNA sequences that influence transcription of androgen-responsive genes. The three-dimensional structure of the AR ligand-binding domain has shown it is similar to other steroid hormone receptors and that ligand binding alters the protein conformation to allow binding of coactivator molecules that amplify the hormone signal and mediate transcriptional initiation. However, AR also undergoes intramolecular interactions that regulate its interactions with coactivators and influence its activity. A large number of naturally occurring mutations of the human AR gene have provided important information about AR molecular structure and intermolecular interactions. AR is also a critical mediator of prostate cancer promotion, conferring growth signals to prostate cancer cells throughout the natural history of the disease. Late-stage prostate cancer, unresponsive to hormonal deprivation, sustains AR signaling through a diverse array of molecular strategies. Variations in the AR gene may also confer genetic predisposition to prostate cancer development and severity. Further understanding of AR action and new strategies to interfere with AR signaling hold promise for improving prostate cancer therapy.
Collapse
Affiliation(s)
- Edward P Gelmann
- Department of Oncology, Lombardi Cancer Center, Georgetown University School of Medicine, 3800 Reservoir Rd NW, Washington, DC 20007-2197, USA.
| |
Collapse
|
72
|
Schwartz Z, Sylvia VL, Guinee T, Dean DD, Boyan BD. Tamoxifen elicits its anti-estrogen effects in growth plate chondrocytes by inhibiting protein kinase C. J Steroid Biochem Mol Biol 2002; 80:401-10. [PMID: 11983487 DOI: 10.1016/s0960-0760(02)00038-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
17 beta-Estradiol (E(2)) regulates growth plate cartilage cells via classical nuclear receptor mechanisms, as well as by direct effects on the chondrocyte membrane. These direct effects are stereospecific, causing a rapid increase in protein kinase C (PKC) specific activity, are only found in cells from female rats and are mimicked by E(2)-bovine serum albumin (BSA), which cannot penetrate the cell membrane. E(2) and E(2)-BSA stimulate alkaline phosphatase specific activity and proteoglycan sulfation in female rat costochondral cartilage cell cultures, but traditional nuclear receptors do not appear to be involved. This study examined the effect of the anti-estrogen tamoxifen on these markers of chondrocyte differentiation; the gender-specificity of tamoxifen's effect on PKC, if tamoxifen has an effect on vitamin D metabolite-stimulated PKC, which is mediated via specific membrane receptors (1,25-mVDR; 24,25-mVDR) and whether the effect of tamoxifen is mediated by nuclear estrogen receptors. Tamoxifen dose-dependently inhibited the effect of E(2)-BSA on PKC, alkaline phosphatase and proteoglycan sulfation in confluent cultures of female resting zone (RC) cells and growth zone (GC) (prehypertrophic/upper hypertrophic zones) cells, suggesting that its action is at the membrane and not cell maturation-dependent. Neither the estrogen receptor (ER) antagonist ICI 182780 nor the ER agonist diethylstilbesterol affected E(2) or E(2)-BSA-stimulated PKC in female chondrocytes. Tamoxifen also inhibited the increase in PKC activity due to 1 alpha,25-(OH)(2)D(3) or 24R,25-(OH)(2)D(3) in growth plate cells derived from either female or male rats. Inhibition of PKC by tamoxifen may be a general property of membrane receptors involved in rapid responses to hormones.
Collapse
Affiliation(s)
- Z Schwartz
- Department of Orthopaedics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
Estrogen receptors (ERs) of which two isoforms have been identified (alpha and beta) are subjected to phosphorylation, glycozylation, ubiquitination and other post-transcriptional conformational changes giving rise to a very high molecular heterogeneity. Partial proteolysis of these receptors, as well as their high tendency to associate within oligomeric structures, reinforces this property. Investigations demonstrated that this heterogeneity is not a biochemical artefact suggesting some biological relevance. Our purpose was to review this topic, especially with regard to ERalpha from breast cancers.
Collapse
Affiliation(s)
- Guy Leclercq
- Laboratoire J.-C. Heuson de Cancérologie Mammaire 1, Institut Jules Bordet, Service de Médecine Interne, rue héger-Bordet, 1-1000 Brussels, Belgium.
| |
Collapse
|
74
|
|
75
|
|
76
|
Abstract
Estrogen receptors (ERs) orchestrate both transcriptional and non-genomic functions in response to estrogens, xenoestrogens and signals emanating from growth factor signalling pathways. The pleiotropic and tissue-specific effects of estrogens are likely to be mediated by the differential expression of distinct estrogen receptor subtypes (ERalpha and ERbeta) and their coregulators. The recent analysis of transcription complexes associated with estrogen-responsive promoters has revealed unexpected levels of complexity in the dynamics of ER-mediated transcription. Furthermore, a small fraction of ERs also appears to directly interact with components of the cytosolic signalling machinery. Analysis of the interrelationship between these distinct modes of ER action is likely to reveal novel aspects of estrogen signalling that will impact on nuclear receptor biology and human health.
Collapse
Affiliation(s)
- J G Moggs
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield SK10 4TJ, UK.
| | | |
Collapse
|