51
|
Egbenya DL, Hussain S, Lai YC, Xia J, Anderson AE, Davanger S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol Cell Neurosci 2018; 92:93-103. [PMID: 30064010 DOI: 10.1016/j.mcn.2018.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/22/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Excitotoxicity caused by excessive stimulation of glutamate receptors, resulting in pathologically increased Ca2+-concentrations, is a decisive factor in neurodegenerative diseases. We investigated long-term changes in synaptic contents of AMPA receptor subunits that play important roles in calcium regulation in chronic epilepsy. Such plastic changes may be either adaptive or detrimental. We used a kainic acid (KA)-based rat model of chronic temporal lobe epilepsy (TLE). Using hippocampal synaptosomes, we found significant reductions in the concentration of the AMPA receptor subunits GluA1 and GluA2, and the NMDA receptor subunit NR2B. The relative size of GluA1 and GluA2 reductions were almost identical, at 28% and 27%, respectively. In order to determine whether the synaptic reduction of the AMPA receptor subunits actually reflected the pool of receptors present along the postsynaptic density (PSD), as opposed to cytoplasmic or extrasynaptic pools, we performed postembedding immunogold electron microscopy (EM) of GluA1 and GluA2 in Schaffer collateral synapses in the hippocampal CA1 area. We found significant reductions, at 32% and 52% of GluA1 and GluA2 subunits, respectively, along the PSD, indicating that these synapses undergo lasting changes in glutamatergic neurotransmission during chronic TLE. When compared to the overall concentration and composition of AMPA receptors expressed in the brain, there was a relative increase in GluA2-lacking AMPA receptor subunits following chronic epilepsy. These changes in synaptic AMPA receptor subunits may possibly contribute to further aggravate the excitotoxic vulnerability of the neurons as well as have significant implications for hippocampal cognitive functions.
Collapse
Affiliation(s)
- Daniel L Egbenya
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Suleman Hussain
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yi-Chen Lai
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anne E Anderson
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Svend Davanger
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
52
|
PICK1 inhibits the E3 ubiquitin ligase activity of Parkin and reduces its neuronal protective effect. Proc Natl Acad Sci U S A 2018; 115:E7193-E7201. [PMID: 29987020 PMCID: PMC6064985 DOI: 10.1073/pnas.1716506115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkin functions as a multipurpose E3 ubiquitin ligase, and Parkin loss of function is associated with both sporadic and familial Parkinson's disease (PD). We report that the Bin/Amphiphysin/Rvs (BAR) domain of protein interacting with PRKCA1 (PICK1) bound to the really interesting new gene 1 (RING1) domain of Parkin and potently inhibited the E3 ligase activity of Parkin by disrupting its interaction with UbcH7. Parkin translocated to damaged mitochondria and led to their degradation in neurons, whereas PICK1 robustly inhibited this process. PICK1 also impaired the protective function of Parkin against stresses in SH-SY5Y cells and neurons. The protein levels of several Parkin substrates were reduced in young PICK1-knockout mice, and these mice were resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated toxicity. Taken together, the results indicate that PICK1 is a potent inhibitor of Parkin, and the reduction of PICK1 enhances the protective effect of Parkin.
Collapse
|
53
|
Jensen KL, Sørensen G, Dencker D, Owens WA, Rahbek-Clemmensen T, Brett Lever M, Runegaard AH, Riis Christensen N, Weikop P, Wörtwein G, Fink-Jensen A, Madsen KL, Daws L, Gether U, Rickhag M. PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis. eNeuro 2018; 5:ENEURO.0422-17.2018. [PMID: 29911172 PMCID: PMC6001137 DOI: 10.1523/eneuro.0422-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) is a widely expressed scaffold protein known to interact via its PSD-95/discs-large/ZO-1 (PDZ)-domain with several membrane proteins including the dopamine (DA) transporter (DAT), the primary target for cocaine's reinforcing actions. Here, we establish the importance of PICK1 for behavioral effects observed after both acute and repeated administration of cocaine. In PICK1 knock-out (KO) mice, the acute locomotor response to a single injection of cocaine was markedly attenuated. Moreover, in support of a role for PICK1 in neuroadaptive changes induced by cocaine, we observed diminished cocaine intake in a self-administration paradigm. Reduced behavioral effects of cocaine were not associated with decreased striatal DAT distribution and most likely not caused by the ∼30% reduction in synaptosomal DA uptake observed in PICK1 KO mice. The PICK1 KO mice demonstrated preserved behavioral responses to DA receptor agonists supporting intact downstream DA receptor signaling. Unexpectedly, we found a prominent increase in striatal DA content and levels of striatal tyrosine hydroxylase (TH) in PICK1 KO mice. Chronoamperometric recordings showed enhanced DA release in PICK1 KO mice, consistent with increased striatal DA pools. Viral-mediated knock-down (KD) of PICK1 in cultured dopaminergic neurons increased TH expression, supporting a direct cellular effect of PICK1. In summary, in addition to demonstrating a key role of PICK1 in mediating behavioral effects of cocaine, our data reveal a so far unappreciated role of PICK1 in DA homeostasis that possibly involves negative regulation of striatal TH levels.
Collapse
Affiliation(s)
- Kathrine Louise Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gunnar Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - William Anthony Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229
| | - Troels Rahbek-Clemmensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Michael Brett Lever
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Annika H. Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Nikolaj Riis Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lynette Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
54
|
Regulation of AMPA receptor trafficking and exit from the endoplasmic reticulum. Mol Cell Neurosci 2018; 91:3-9. [PMID: 29545119 DOI: 10.1016/j.mcn.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
A fundamental property of the brain is its ability to modify its function in response to its own activity. This ability for self-modification depends to a large extent on synaptic plasticity. It is now appreciated that for excitatory synapses, a significant part of synaptic plasticity depends upon changes in the post synaptic response to glutamate released from nerve terminals. Modification of the post synaptic response depends, in turn, on changes in the abundances of AMPA receptors in the post synaptic membrane. In this review, we consider mechanisms of trafficking of AMPA receptors to and from synapses that take place in the early trafficking stages, starting in the endoplasmic reticulum (ER) and continuing into the secretory pathway. We consider mechanisms of AMPA receptor assembly in the ER, highlighting the role of protein synthesis and the selective properties of specific AMPA receptor subunits, as well as regulation of ER exit, including the roles of chaperones and accessory proteins and the incorporation of AMPA receptors into COPII vesicles. We consider these processes in the context of the mechanism of mGluR LTD and discuss a compelling role for the dendritic ER membrane that is found proximal to synapses. The review illustrates the important, yet little studied, contribution of the early stages of AMPA receptor trafficking to synaptic plasticity.
Collapse
|
55
|
Marcotte DJ, Hus J, Banos CC, Wildes C, Arduini R, Bergeron C, Hession CA, Baker DP, Lin E, Guckian KM, Dunah AW, Silvian LF. Lock and chop: A novel method for the generation of a PICK1 PDZ domain and piperidine-based inhibitor co-crystal structure. Protein Sci 2018; 27:672-680. [PMID: 29280296 PMCID: PMC5818740 DOI: 10.1002/pro.3361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Abstract
The membrane protein interacting with kinase C1 (PICK1) plays a trafficking role in the internalization of neuron receptors such as the amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor. Reduction of surface AMPA type receptors on neurons reduces synaptic communication leading to cognitive impairment in progressive neurodegenerative diseases such as Alzheimer disease. The internalization of AMPA receptors is mediated by the PDZ domain of PICK1 which binds to the GluA2 subunit of AMPA receptors and targets the receptor for internalization through endocytosis, reducing synaptic communication. We planned to block the PICK1-GluA2 protein-protein interaction with a small molecule inhibitor to stabilize surface AMPA receptors as a therapeutic possibility for neurodegenerative diseases. Using a fluorescence polarization assay, we identified compound BIO124 as a modest inhibitor of the PICK1-GluA2 interaction. We further tried to improve the binding affinity of BIO124 using structure-aided drug design but were unsuccessful in producing a co-crystal structure using previously reported crystallography methods for PICK1. Here, we present a novel method through which we generated a co-crystal structure of the PDZ domain of PICK1 bound to BIO124.
Collapse
Affiliation(s)
| | | | | | - Craig Wildes
- Biotherapeutics and Medicinal SciencesBiogen IncCambridgeMassachusetts,Present address:
Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - Robert Arduini
- Biotherapeutics and Medicinal SciencesBiogen IncCambridgeMassachusetts
| | - Chris Bergeron
- Biotherapeutics and Medicinal SciencesBiogen IncCambridgeMassachusetts
| | | | - Darren P. Baker
- Biotherapeutics and Medicinal SciencesBiogen IncCambridgeMassachusetts,Present address:
SanofiCambridgeMA02142
| | - Edward Lin
- Biotherapeutics and Medicinal SciencesBiogen IncCambridgeMassachusetts
| | - Kevin M. Guckian
- Biotherapeutics and Medicinal SciencesBiogen IncCambridgeMassachusetts
| | | | - Laura F. Silvian
- Biotherapeutics and Medicinal SciencesBiogen IncCambridgeMassachusetts
| |
Collapse
|
56
|
Li J, Mao Z, Huang J, Xia J. PICK1 is essential for insulin production and the maintenance of glucose homeostasis. Mol Biol Cell 2018; 29:587-596. [PMID: 29298842 PMCID: PMC6004578 DOI: 10.1091/mbc.e17-03-0204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) is a peripheral membrane protein that controls insulin granule formation, trafficking, and maturation in INS-1E cells. However, global Pick1-knockout mice showed only a subtle diabetes-like phenotype. This raises the possibility that compensatory effects from tissues other than pancreatic beta cells may obscure the effects of insulin deficiency. To explore the role of PICK1 in pancreatic islets, we generated mice harboring a conditional Pick1 allele in a C57BL/6J background. The conditional Pick1-knockout mice exhibited impaired glucose tolerance, profound insulin deficiency, and hyperglycemia. In vitro experiments showed that the ablation of Pick1 in pancreatic beta cells selectively decreased the initial rapid release of insulin and the total insulin levels in the islets. Importantly, the specific ablation of Pick1 induced elevated proinsulin levels in the circulation and in the islets, accompanied by a reduction in the proinsulin processing enzymes prohormone convertase 1/3 (PC1/3). The deletion of Pick1 triggered the specific elimination of chromogranin B in pancreatic beta cells, which is believed to control granule formation and release. Collectively, these data demonstrate the critical role of PICK1 in secretory granule biogenesis, proinsulin processing, and beta cell function. We conclude that the beta cell-specific deletion of Pick1 in mice led to hyperglycemia and eventually to diabetes.
Collapse
Affiliation(s)
- Jia Li
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- College of Life Science, Shaanxi Normal University, Shaanxi 710119, China
| | - Zhuo Mao
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518061, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China
- Shenzhen Institute of Advanced Technologies, Shenzhen 518055, China
| | - Jun Xia
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
57
|
Chowdhury D, Hell JW. Homeostatic synaptic scaling: molecular regulators of synaptic AMPA-type glutamate receptors. F1000Res 2018; 7:234. [PMID: 29560257 PMCID: PMC5832907 DOI: 10.12688/f1000research.13561.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
The ability of neurons and circuits to maintain their excitability and activity levels within the appropriate dynamic range by homeostatic mechanisms is fundamental for brain function. Neuronal hyperactivity, for instance, could cause seizures. One such homeostatic process is synaptic scaling, also known as synaptic homeostasis. It involves a negative feedback process by which neurons adjust (scale) their postsynaptic strength over their whole synapse population to compensate for increased or decreased overall input thereby preventing neuronal hyper- or hypoactivity that could otherwise result in neuronal network dysfunction. While synaptic scaling is well-established and critical, our understanding of the underlying molecular mechanisms is still in its infancy. Homeostatic adaptation of synaptic strength is achieved through upregulation (upscaling) or downregulation (downscaling) of the functional availability of AMPA-type glutamate receptors (AMPARs) at postsynaptic sites. Understanding how synaptic AMPARs are modulated in response to alterations in overall neuronal activity is essential to gain valuable insights into how neuronal networks adapt to changes in their environment, as well as the genesis of an array of neurological disorders. Here we discuss the key molecular mechanisms that have been implicated in tuning the synaptic abundance of postsynaptic AMPARs in order to maintain synaptic homeostasis.
Collapse
Affiliation(s)
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
58
|
Binding of PICK1 PDZ domain with calcineurin B regulates osteoclast differentiation. Biochem Biophys Res Commun 2018; 496:83-88. [PMID: 29305867 DOI: 10.1016/j.bbrc.2017.12.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/20/2022]
Abstract
The calcineurin/nuclear factor of activated T cell (NFAT) signaling pathway plays a major role in osteoclast differentiation; however, the proteins that react with the calcineurin-NFAT complex in osteoclasts to regulate osteoclastogenesis remain unclear. Here, we present evidence that PICK1 also positively regulates calcineurin B in osteoclasts to activate NFAT to promote osteoclastogenesis. mRNA and protein expression of PICK1 in murine primary bone marrow macrophages (BMMs) was significantly increased during RANKL-induced osteoclast differentiation. The interaction of PICK1 with calcineurin B in BMMs was confirmed by co-immunoprecipitation. An inhibitor of the PICK1 PDZ domain significantly decreased osteoclastogenesis marker gene expression and the number of TRAP-positive multinucleated cells among RAW264.7 osteoclast progenitor cells. Overexpression of PICK1 in RAW264.7 cells significantly increased the number of TRAP-positive mature osteoclasts. Increased NFAT activation with transcriptional activation of PICK1 during RAW264.7 osteoclastogenesis was also confirmed in a tetracycline-controlled PICK1 expression system. These results suggest that the PDZ domain of PICK1 directly interacts with calcineurin B in osteoclast progenitor cells and promotes osteoclast differentiation through activation of calcineurin-NFAT signaling.
Collapse
|
59
|
Widagdo J, Guntupalli S, Jang SE, Anggono V. Regulation of AMPA Receptor Trafficking by Protein Ubiquitination. Front Mol Neurosci 2017; 10:347. [PMID: 29123470 PMCID: PMC5662755 DOI: 10.3389/fnmol.2017.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 11/27/2022] Open
Abstract
The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs) is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer’s disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer’s disease, chronic stress and epilepsy.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Se E Jang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
60
|
Kunde SA, Rademacher N, Zieger H, Shoichet SA. Protein kinase C regulates AMPA receptor auxiliary protein Shisa9/CKAMP44 through interactions with neuronal scaffold PICK1. FEBS Open Bio 2017; 7:1234-1245. [PMID: 28904854 PMCID: PMC5586339 DOI: 10.1002/2211-5463.12261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Synaptic α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptors are essential mediators of neurotransmission in the central nervous system. Shisa9/cysteine‐knot AMPAR modulating protein 44 (CKAMP44) is a transmembrane protein recently found to be present in AMPA receptor‐associated protein complexes. Here, we show that the cytosolic tail of Shisa9/CKAMP44 interacts with multiple scaffold proteins that are important for regulating synaptic plasticity in central neurons. We focussed on the interaction with the scaffold protein PICK1, which facilitates the formation of a tripartite complex with the protein kinase C (PKC) and thereby regulates phosphorylation of Shisa9/CKAMP44 C‐terminal residues. This work has implications for our understanding of how PICK1 modulates AMPAR‐mediated transmission and plasticity and also highlights a novel function of PKC.
Collapse
Affiliation(s)
- Stella-Amrei Kunde
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Nils Rademacher
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Hanna Zieger
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Sarah A Shoichet
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| |
Collapse
|
61
|
Chen YT, Lin CH, Huang CH, Liang WM, Lane HY. PICK1 Genetic Variation and Cognitive Function in Patients with Schizophrenia. Sci Rep 2017; 7:1889. [PMID: 28507309 PMCID: PMC5432511 DOI: 10.1038/s41598-017-01975-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/04/2017] [Indexed: 11/09/2022] Open
Abstract
The gene of protein interacting with C kinase 1 alpha (PICK1) has been implicated in schizophrenia, nevertheless, conflicting results existed. However, its role in cognitive function remains unclear. Besides, cognitive deficits impair the long-term outcome. We explored whether the polymorphisms of PICK1 (rs2076369, rs3952) affected cognitive functions in schizophrenic patients. We analyzed 302 patients and tested the differences of cognitive functions, clinical symptoms between genetic groups. We also used general linear model to analyze the effect of PICK1 genetic polymorphisms on cognitive functions. After adjustment for gender, age, education, the patients with rs2076369 G/T genotype showed better performance than T/T homozygotes in the summary score, global composite score, neurocognitive composite score, category fluency subtest, WAIS-III-Digit Symbol Coding subtest, working memory, WMS-III-Spatial Span (backward) subtest, MSCEIT-managing emotions branch (p = 0.038, 0.025, 0.046, 0.036, 0.025, 0.027, 0.035, 0.028, respectively). G/G homozygotes performed better than T/T in category fluency subtest (p = 0.049). A/A homozygotes of rs3952 performed better than G/G in trail making A subtest (p = 0.048). To our knowledge, this is the first study to indicate that PICK1 polymorphisms may associate with cognitive functions in schizophrenic patients. Further replication studies in healthy controls or other ethnic groups are warranted.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| | - Chiung-Hsien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
62
|
Getz AM, Xu F, Visser F, Persson R, Syed NI. Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons. Sci Rep 2017; 7:1768. [PMID: 28496137 PMCID: PMC5432004 DOI: 10.1038/s41598-017-01825-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/04/2017] [Indexed: 01/14/2023] Open
Abstract
In the central nervous system (CNS), cholinergic transmission induces synaptic plasticity that is required for learning and memory. However, our understanding of the development and maintenance of cholinergic circuits is limited, as the factors regulating the expression and clustering of neuronal nicotinic acetylcholine receptors (nAChRs) remain poorly defined. Recent studies from our group have implicated calpain-dependent proteolytic fragments of menin, the product of the MEN1 tumor suppressor gene, in coordinating the transcription and synaptic clustering of nAChRs in invertebrate central neurons. Here, we sought to determine whether an analogous cholinergic mechanism underlies menin's synaptogenic function in the vertebrate CNS. Our data from mouse primary hippocampal cultures demonstrate that menin and its calpain-dependent C-terminal fragment (C-menin) regulate the subunit-specific transcription and synaptic clustering of neuronal nAChRs, respectively. MEN1 knockdown decreased nAChR α5 subunit expression, the clustering of α7 subunit-containing nAChRs at glutamatergic presynaptic terminals, and nicotine-induced presynaptic facilitation. Moreover, the number and function of glutamatergic synapses was unaffected by MEN1 knockdown, indicating that the synaptogenic actions of menin are specific to cholinergic regulation. Taken together, our results suggest that the influence of menin on synapse formation and synaptic plasticity occur via modulation of nAChR channel subunit composition and functional clustering.
Collapse
Affiliation(s)
- Angela M Getz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fenglian Xu
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Biology, Saint Louis University, Saint Louis, Missouri, 63103, USA
| | - Frank Visser
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | - Naweed I Syed
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
63
|
Wigerblad G, Huie JR, Yin HZ, Leinders M, Pritchard RA, Koehrn FJ, Xiao WH, Bennett GJ, Huganir RL, Ferguson AR, Weiss JH, Svensson CI, Sorkin LS. Inflammation-induced GluA1 trafficking and membrane insertion of Ca 2+ permeable AMPA receptors in dorsal horn neurons is dependent on spinal tumor necrosis factor, PI3 kinase and protein kinase A. Exp Neurol 2017; 293:144-158. [PMID: 28412220 DOI: 10.1016/j.expneurol.2017.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
Peripheral inflammation induces sensitization of nociceptive spinal cord neurons. Both spinal tumor necrosis factor (TNF) and neuronal membrane insertion of Ca2+ permeable AMPA receptor (AMPAr) contribute to spinal sensitization and resultant pain behavior, molecular mechanisms connecting these two events have not been studied in detail. Intrathecal (i.t.) injection of TNF-blockers attenuated paw carrageenan-induced mechanical and thermal hypersensitivity. Levels of GluA1 and GluA4 from dorsal spinal membrane fractions increased in carrageenan-injected rats compared to controls. In the same tissue, GluA2 levels were not altered. Inflammation-induced increases in membrane GluA1 were prevented by i.t. pre-treatment with antagonists to TNF, PI3K, PKA and NMDA. Interestingly, administration of TNF or PI3K inhibitors followed by carrageenan caused a marked reduction in plasma membrane GluA2 levels, despite the fact that membrane GluA2 levels were stable following inhibitor administration in the absence of carrageenan. TNF pre-incubation induced increased numbers of Co2+ labeled dorsal horn neurons, indicating more neurons with Ca2+ permeable AMPAr. In parallel to Western blot results, this increase was blocked by antagonism of PI3K and PKA. In addition, spinal slices from GluA1 transgenic mice, which had a single alanine replacement at GluA1 ser 845 or ser 831 that prevented phosphorylation, were resistant to TNF-induced increases in Co2+ labeling. However, behavioral responses following intraplantar carrageenan and formalin in the mutant mice were no different from littermate controls, suggesting a more complex regulation of nociception. Co-localization of GluA1, GluA2 and GluA4 with synaptophysin on identified spinoparabrachial neurons and their relative ratios were used to assess inflammation-induced trafficking of AMPAr to synapses. Inflammation induced an increase in synaptic GluA1, but not GluA2. Although total GluA4 also increased with inflammation, co-localization of GluA4 with synaptophysin, fell short of significance. Taken together these data suggest that peripheral inflammation induces a PI3K and PKA dependent TNFR1 activated pathway that culminates with trafficking of calcium permeable AMPAr into synapses of nociceptive dorsal horn projection neurons.
Collapse
Affiliation(s)
- G Wigerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - J R Huie
- Department of Neurological Surgery, UC San Francisco, San Francisco, CA, USA
| | - H Z Yin
- Department of Neurology, UC Irvine, Irvine, CA, USA
| | - M Leinders
- Department of Anesthesiology, UC San Diego, La Jolla, CA, USA
| | - R A Pritchard
- Department of Anesthesiology, UC San Diego, La Jolla, CA, USA
| | - F J Koehrn
- Department of Anesthesiology, UC San Diego, La Jolla, CA, USA
| | - W-H Xiao
- Department of Anesthesiology, UC San Diego, La Jolla, CA, USA
| | - G J Bennett
- Department of Anesthesiology, UC San Diego, La Jolla, CA, USA
| | - R L Huganir
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - A R Ferguson
- Department of Neurological Surgery, UC San Francisco, San Francisco, CA, USA
| | - J H Weiss
- Department of Neurology, UC Irvine, Irvine, CA, USA
| | - C I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - L S Sorkin
- Department of Anesthesiology, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
64
|
Rajgor D, Fiuza M, Parkinson GT, Hanley JG. The PICK1 Ca 2+ sensor modulates N-methyl-d-aspartate (NMDA) receptor-dependent microRNA-mediated translational repression in neurons. J Biol Chem 2017; 292:9774-9786. [PMID: 28404816 PMCID: PMC5465499 DOI: 10.1074/jbc.m117.776302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of localized mRNA translation in neuronal dendrites. The presence of RNA-induced silencing complex proteins in these compartments and the dynamic miRNA expression changes that occur in response to neuronal stimulation highlight their importance in synaptic plasticity. Previously, we demonstrated a novel interaction between the major RNA-induced silencing complex component Argounaute-2 (Ago2) and the BAR (bin/amphiphysin/rvs) domain protein PICK1. PICK1 recruits Ago2 to recycling endosomes in dendrites, where it inhibits miRNA-mediated translational repression. Chemical induction of long-term depression via NMDA receptor activation causes the dissociation of Ago2 from PICK1 and a consequent increase in dendritic miRNA-mediated gene silencing. The mechanism that underlies the regulation of PICK1-Ago2 binding is unknown. In this study, we demonstrate that the PICK1-Ago2 interaction is directly sensitive to Ca2+ ions so that high [Ca2+]free reduces PICK1 binding to Ago2. Mutating a stretch of C-terminal Ca2+-binding residues in PICK1 results in a complete block of NMDA-induced PICK1-Ago2 disassociation in cortical neurons. Furthermore, the same mutant also blocks NMDA-stimulated miRNA-mediated gene silencing. This study defines a novel mechanism whereby elevated [Ca2+] induced by NMDA receptor activation modulates Ago2 and miRNA activity via PICK1. Our work suggests a Ca2+-dependent process to regulate miRNA activity in neurons in response to the induction of long-term depression.
Collapse
Affiliation(s)
- Dipen Rajgor
- From the School of Biochemistry and the Centre for Synaptic Plasticity, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Maria Fiuza
- From the School of Biochemistry and the Centre for Synaptic Plasticity, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Gabrielle T Parkinson
- From the School of Biochemistry and the Centre for Synaptic Plasticity, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jonathan G Hanley
- From the School of Biochemistry and the Centre for Synaptic Plasticity, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
65
|
GRASP1 Regulates Synaptic Plasticity and Learning through Endosomal Recycling of AMPA Receptors. Neuron 2017; 93:1405-1419.e8. [PMID: 28285821 PMCID: PMC5382714 DOI: 10.1016/j.neuron.2017.02.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/13/2016] [Accepted: 02/16/2017] [Indexed: 11/23/2022]
Abstract
Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity, and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescued spine loss in hippocampal CA1 neurons in Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders.
Collapse
|
66
|
Tight junction protein ZO-1 controls organic cation/carnitine transporter OCTN2 (SLC22A5) in a protein kinase C-dependent way. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:797-805. [PMID: 28257821 DOI: 10.1016/j.bbamcr.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
OCTN2 (SLC22A5) is an organic cation/carnitine transporter belonging to the solute carrier transporters (SLC) family. OCTN2 is ubiquitously expressed and its presence was shown in various brain cells, including the endothelial cells forming blood-brain barrier, where it was mainly detected at abluminal membrane and in proximity of tight junctions (TJ). Since OCTN2 contains a PDZ-binding domain, the present study was focused on a possible role of transporter interaction with a TJ-associated protein ZO-1, containing PDZ domains and detected in rat Octn2 proteome. We showed previously that activation of protein kinase C (PKC) in rat astrocytes regulates Octn2 surface presence and activity. Regulation of a wild type Octn2 and its deletion mutant without a PDZ binding motif were studied in heterologous expression system in HEK293 cells. Plasma membrane presence of overexpressed Octn2 did not depend on either PKC activation or presence of PDZ-binding motif, anyhow, as assayed in proximity ligation assay, the truncation of PDZ binding motif resulted in a strongly diminished Octn2/ZO-1 interaction and in a decreased transporter activity. The same effects on Octn2 activity were detected upon PKC activation, what correlated with ZO-1 phosphorylation. It is postulated that ZO-1, when not phosphorylated by PKC, keeps Octn2 in an active state, while elimination of this binding in ΔPDZ mutant or after ZO-1 phosphorylation leads to diminution of Octn2 activity.
Collapse
|
67
|
Christiansen GB, Andersen KH, Riis S, Nykjaer A, Bolcho U, Jensen MS, Holm MM. The sorting receptor SorCS3 is a stronger regulator of glutamate receptor functions compared to GABAergic mechanisms in the hippocampus. Hippocampus 2017; 27:235-248. [DOI: 10.1002/hipo.22689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Sarah Riis
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - Anders Nykjaer
- DANDRITE, Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - Ulrik Bolcho
- DANDRITE, Department of Biomedicine; Aarhus University; Aarhus Denmark
| | | | - Mai Marie Holm
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
68
|
Tracy TE, Gan L. Acetylated tau in Alzheimer's disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy. Bioessays 2017; 39. [PMID: 28083916 DOI: 10.1002/bies.201600224] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathogenesis in tauopathies involves the accumulation of tau in the brain and progressive synapse loss accompanied by cognitive decline. Pathological tau is found at synapses, and it promotes synaptic dysfunction and memory deficits. The specific role of toxic tau in disrupting the molecular networks that regulate synaptic strength has been elusive. A novel mechanistic link between tau toxicity and synaptic plasticity involves the acetylation of two lysines on tau, K274, and K281, which are associated with dementia in Alzheimer's disease (AD). We propose that an increase in tau acetylated on these lysines blocks the expression of long-term potentiation at hippocampal synapses leading to impaired memory in AD. Acetylated tau could inhibit the activity-dependent recruitment of postsynaptic AMPA-type glutamate receptors required for plasticity by interfering with the postsynaptic localization of KIBRA, a memory-associated protein. Strategies that reduce the acetylation of tau may lead to effective treatments for cognitive decline in AD.
Collapse
Affiliation(s)
- Tara E Tracy
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
69
|
Selvakumar D, Drescher MJ, Deckard NA, Ramakrishnan NA, Morley BJ, Drescher DG. Dopamine D1A directly interacts with otoferlin synaptic pathway proteins: Ca2+ and phosphorylation underlie an NSF-to-AP2mu1 molecular switch. Biochem J 2017; 474:79-104. [PMID: 27821621 PMCID: PMC6310132 DOI: 10.1042/bcj20160690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
Dopamine receptors regulate exocytosis via protein-protein interactions (PPIs) as well as via adenylyl cyclase transduction pathways. Evidence has been obtained for PPIs in inner ear hair cells coupling D1A to soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-related proteins snapin, otoferlin, N-ethylmaleimide-sensitive factor (NSF), and adaptor-related protein complex 2, mu 1 (AP2mu1), dependent on [Ca2+] and phosphorylation. Specifically, the carboxy terminus of dopamine D1A was found to directly bind t-SNARE-associated protein snapin in teleost and mammalian hair cell models by yeast two-hybrid (Y2H) and pull-down assays, and snapin directly interacts with hair cell calcium-sensor otoferlin. Surface plasmon resonance (SPR) analysis, competitive pull-downs, and co-immunoprecipitation indicated that these interactions were promoted by Ca2+ and occur together. D1A was also found to separately interact with NSF, but with an inverse dependence on Ca2+ Evidence was obtained, for the first time, that otoferlin domains C2A, C2B, C2D, and C2F interact with NSF and AP2mu1, whereas C2C or C2E do not bind to either protein, representing binding characteristics consistent with respective inclusion or omission in individual C2 domains of the tyrosine motif YXXΦ. In competitive pull-down assays, as predicted by KD values from SPR (+Ca2+), C2F pulled down primarily NSF as opposed to AP2mu1. Phosphorylation of AP2mu1 gave rise to a reversal: an increase in binding by C2F to phosphorylated AP2mu1 was accompanied by a decrease in binding to NSF, consistent with a molecular switch for otoferlin from membrane fusion (NSF) to endocytosis (AP2mu1). An increase in phosphorylated AP2mu1 at the base of the cochlear inner hair cell was the observed response elicited by a dopamine D1A agonist, as predicted.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Marian J Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A.
| | - Nathan A Deckard
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Neeliyath A Ramakrishnan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Barbara J Morley
- Boys Town National Research Hospital, Omaha, Nebraska 68131, U.S.A
| | - Dennis G Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| |
Collapse
|
70
|
Lithium increases synaptic GluA2 in hippocampal neurons by elevating the δ-catenin protein. Neuropharmacology 2016; 113:426-433. [PMID: 27793771 DOI: 10.1016/j.neuropharm.2016.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 09/16/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023]
Abstract
Lithium (Li+) is a drug widely employed for treating bipolar disorder, however the mechanism of action is not known. Here we study the effects of Li+ in cultured hippocampal neurons on a synaptic complex consisting of δ-catenin, a protein associated with cadherins whose mutation is linked to autism, and GRIP, an AMPA receptor (AMPAR) scaffolding protein, and the AMPAR subunit, GluA2. We show that Li+ elevates the level of δ-catenin in cultured neurons. δ-catenin binds to the ABP and GRIP proteins, which are synaptic scaffolds for GluA2. We show that Li+ increases the levels of GRIP and GluA2, consistent with Li+-induced elevation of δ-catenin. Using GluA2 mutants, we show that the increase in surface level of GluA2 requires GluA2 interaction with GRIP. The amplitude but not the frequency of mEPSCs was also increased by Li+ in cultured hippocampal neurons, confirming a functional effect and consistent with AMPAR stabilization at synapses. Furthermore, animals fed with Li+ show elevated synaptic levels of δ-catenin, GRIP, and GluA2 in the hippocampus, also consistent with the findings in cultured neurons. This work supports a model in which Li+ stabilizes δ-catenin, thus elevating a complex consisting of δ-catenin, GRIP and AMPARs in synapses of hippocampal neurons. Thus, the work suggests a mechanism by which Li+ can alter brain synaptic function that may be relevant to its pharmacologic action in treatment of neurological disease.
Collapse
|
71
|
Zheng M, Zhang X, Min C, Choi BG, Oh IJ, Kim KM. Functional Regulation of Dopamine D₃ Receptor through Interaction with PICK1. Biomol Ther (Seoul) 2016; 24:475-81. [PMID: 27169823 PMCID: PMC5012871 DOI: 10.4062/biomolther.2016.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
PICK1, a PDZ domain-containing protein, is known to increase the reuptake activities of dopamine transporters by increasing their expressions on the cell surface. Here, we report a direct and functional interaction between PICK1 and dopamine D3 receptors (D3R), which act as autoreceptors to negatively regulate dopaminergic neurons. PICK1 colocalized with both dopamine D2 receptor (D2R) and D3R in clusters but exerted different functional influences on them. The cell surface expression, agonist affinity, endocytosis, and signaling of D2R were unaffected by the coexpression of PICK1. On the other hand, the surface expression and tolerance of D3R were inhibited by the coexpression of PICK1. These findings show that PICK1 exerts multiple effects on D3R functions.
Collapse
Affiliation(s)
- Mei Zheng
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chengchun Min
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Gil Choi
- Medicinal Chemistry Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Joon Oh
- Physical Pharmacy Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
72
|
Wang Z, Yuan Y, Xie K, Tang X, Zhang L, Ao J, Li N, Zhang Y, Guo S, Wang G. PICK1 Regulates the Expression and Trafficking of AMPA Receptors in Remifentanil-Induced Hyperalgesia. Anesth Analg 2016; 123:771-81. [DOI: 10.1213/ane.0000000000001442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
73
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
74
|
Cao F, Zhou Z, Pan X, Leung C, Xie W, Collingridge G, Jia Z. Developmental regulation of hippocampal long-term depression by cofilin-mediated actin reorganization. Neuropharmacology 2016; 112:66-75. [PMID: 27543417 DOI: 10.1016/j.neuropharm.2016.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023]
Abstract
Long lasting synaptic plasticity involves both functional and morphological changes, but how these processes are molecularly linked to achieve coordinated plasticity remains poorly understood. Cofilin is a common target of multiple signaling pathways at the synapse and is required for both functional and spine plasticity, but how it is regulated is unclear. In this study, we investigate whether the involvement of cofilin in plasticity is developmentally regulated by examining the role of cofilin in hippocampal long-term depression (LTD) in both young (2 weeks) and mature (2 months) mice. We show that both total protein level of cofilin and its activation undergo significant changes as the brain matures, so that although the amount of cofilin decreases significantly in mature mice, its regulation by protein phosphorylation becomes increasingly important. Consistent with these biochemical data, we show that cofilin-mediated actin reorganization is essential for LTD in mature, but not in young mice. In contrast to cofilin, the GluA2 interactions with NSF and PICK1 appear to be required in both young and mature mice, indicating that AMPAR internalization is a common key mechanism for LTD expression regardless of the developmental stages. These results establish the temporal specificity of cofilin in LTD regulation and suggest that cofilin-mediated actin reorganization may serve as a key mechanism underlying developmental regulation of synaptic and spine plasticity. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Feng Cao
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada; The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Zikai Zhou
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China; Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| | - Xingxiu Pan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Celeste Leung
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China; Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| | - Graham Collingridge
- Department of Physiology, Faculty of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Canada; Centre for Synaptic Plasticity, School of Physiology & Pharmacology, University of Bristol, UK
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
75
|
PACSIN1 regulates the dynamics of AMPA receptor trafficking. Sci Rep 2016; 6:31070. [PMID: 27488904 PMCID: PMC4973260 DOI: 10.1038/srep31070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/14/2016] [Indexed: 01/29/2023] Open
Abstract
Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons.
Collapse
|
76
|
Lee FHF, Su P, Xie YF, Wang KE, Wan Q, Liu F. Disrupting GluA2-GAPDH Interaction Affects Axon and Dendrite Development. Sci Rep 2016; 6:30458. [PMID: 27461448 PMCID: PMC4962050 DOI: 10.1038/srep30458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
GluA2-containing AMPA receptors (AMPARs) play a critical role in various aspects of neurodevelopment. However, the molecular mechanisms underlying these processes are largely unknown. We report here that the interaction between GluA2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is necessary for neuron and cortical development. Using an interfering peptide (GluA2-G-Gpep) that specifically disrupts this interaction, we found that primary neuron cultures with peptide treatment displayed growth cone development deficits, impairment of axon formation, less dendritic arborization and lower spine protrusion density. Consistently, in vivo data with mouse brains from pregnant dams injected with GluA2-G-Gpep daily during embryonic day 8 to 19 revealed a reduction of cortical tract axon integrity and neuronal density in post-natal day 1 offspring. Disruption of GluA2-GAPDH interaction also impairs the GluA2-Plexin A4 interaction and reduces p53 acetylation in mice, both of which are possible mechanisms leading to the observed neurodevelopmental abnormalities. Furthermore, electrophysiological experiments indicate altered long-term potentiation (LTP) in hippocampal slices of offspring mice. Our results provide novel evidence that AMPARs, specifically the GluA2 subunit via its interaction with GAPDH, play a critical role in cortical neurodevelopment.
Collapse
Affiliation(s)
- Frankie Hang Fung Lee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Yu-Feng Xie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Kyle Ethan Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Qi Wan
- Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 Canada
| |
Collapse
|
77
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
78
|
Xie J, Wu X, Zhou Q, Yang Y, Tian Y, Huang C, Meng X, Li J. PICK1 confers anti-inflammatory effects in acute liver injury via suppressing M1 macrophage polarization. Biochimie 2016; 127:121-32. [PMID: 27157267 DOI: 10.1016/j.biochi.2016.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
Protein interacting with C kinase 1 (PICK1) is a scaffolding protein mainly implicated in neurological diseases, however, the function of PICK1 in acute liver injury (ALI) remains unknown. Our study found a dramatical decrease in mRNA and protein levels of PICK1 in liver tissues and isolated Kupffer cells (KCs) from the liver in mice with ALI. Furthermore, pretreatment the mice with ALI with FSC-231, a pharmacological inhibitor of PICK1, could significantly augment inflammatory response. Furthermore, in vitro studies showed that both lipopolysaccharide (LPS) and interferon gamma (IFN-γ) significantly reduced the expression of PICK1, while IL-4 elevated its expression in RAW 264.7 cells. Additionally, over-expression of PICK1 inhibited the expression of M1 biomarkers by suppressing NF-κB activity, and enhanced the expression of M2 biomarkers by promoting STAT6 activity. In contrast, knockdown of PICK1 or FSC-231 pretreatment promoted M1 polarization and suppressed M2 polarization. Besides, caveolin-1 was identified as a potential target gene controlled by PICK1 in RAW 264.7 cells. Mechanistic investigation revealed a dual role of PICK1 in regulating macrophage polarization and implied PICK1 as a potential therapeutic target in ALI.
Collapse
Affiliation(s)
- Juan Xie
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Xiaoqin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Yuanyao Tian
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
79
|
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast 2016; 2016:7969272. [PMID: 27019755 PMCID: PMC4785275 DOI: 10.1155/2016/7969272] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.
Collapse
|
80
|
Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep 2016; 6:20924. [PMID: 26868290 PMCID: PMC4751430 DOI: 10.1038/srep20924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/08/2016] [Indexed: 11/08/2022] Open
Abstract
PICK1 (protein interacting with C-kinase 1) is a peripheral membrane protein that interacts with diverse membrane proteins. PICK1 has been shown to regulate the clustering and membrane localization of synaptic receptors such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, metabotropic glutamate receptor 7, and ASICs (acid-sensing ion channels). Moreover, recent evidence suggests that PICK1 can mediate the trafficking of various vesicles out from the Golgi complex in several cell systems, including neurons. However, how PICK1 affects vesicle-trafficking dynamics remains unexplored. Here, we show that PICK1 mediates vesicle trafficking by interacting with syntabulin, a kinesin-binding protein that mediates the trafficking of both synaptic vesicles and mitochondria in axons. Syntabulin recruits PICK1 onto microtubule structures and mediates the trafficking of PICK1-containing vesicles along microtubules. In neurons, syntabulin alters PICK1 expression by recruiting PICK1 into axons and regulates the trafficking dynamics of PICK1-containing vesicles. Furthermore, we show that syntabulin forms a complex with PICK1 and ASICs, regulates ASIC protein expression in neurons, and participates in ASIC-induced acidotoxicity.
Collapse
|
81
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
82
|
Herbert LM, Nitta CH, Yellowhair TR, Browning C, Gonzalez Bosc LV, Resta TC, Jernigan NL. PICK1/calcineurin suppress ASIC1-mediated Ca2+ entry in rat pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2015; 310:C390-400. [PMID: 26702130 DOI: 10.1152/ajpcell.00091.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022]
Abstract
Acid-sensing ion channel 1 (ASIC1) contributes to Ca(2+) influx and contraction in pulmonary arterial smooth muscle cells (PASMC). ASIC1 binds the PDZ (PSD-95/Dlg/ZO-1) domain of the protein interacting with C kinase 1 (PICK1), and this interaction is important for the subcellular localization and/or activity of ASIC1. Therefore, we first hypothesized that PICK1 facilitates ASIC1-dependent Ca(2+) influx in PASMC by promoting plasma membrane localization. Using Duolink to determine protein-protein interactions and a biotinylation assay to assess membrane localization, we demonstrated that the PICK1 PDZ domain inhibitor FSC231 diminished the colocalization of PICK1 and ASIC1 but did not limit ASIC1 plasma membrane localization. Although stimulation of store-operated Ca(2+) entry (SOCE) greatly enhanced colocalization between ASIC1 and PICK1, both FSC231 and shRNA knockdown of PICK1 largely augmented SOCE. These data suggest PICK1 imparts a basal inhibitory effect on ASIC1 Ca(2+) entry in PASMC and led to an alternative hypothesis that PICK1 facilitates the interaction between ASIC1 and negative intracellular modulators, namely PKC and/or the calcium-calmodulin-activated phosphatase calcineurin. FSC231 limited PKC-mediated inhibition of SOCE, supporting a potential role for PICK1 in this response. Additionally, we found PICK1 inhibits ASIC1-mediated SOCE through an effect of calcineurin to dephosphorylate the channel. Furthermore, it appears PICK1/calcineurin-mediated regulation of SOCE opposes PKA phosphorylation and activation of ASIC1. Together our data suggest PKA and PICK1/calcineurin differentially regulate ASIC1-mediated SOCE and these modulatory complexes are important in determining downstream Ca(2+) signaling.
Collapse
Affiliation(s)
- Lindsay M Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Carlos H Nitta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Tracylyn R Yellowhair
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Carly Browning
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
83
|
Cremer JN, Amunts K, Schleicher A, Palomero-Gallagher N, Piel M, Rösch F, Zilles K. Changes in the expression of neurotransmitter receptors in Parkin and DJ-1 knockout mice--A quantitative multireceptor study. Neuroscience 2015; 311:539-51. [PMID: 26546471 DOI: 10.1016/j.neuroscience.2015.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis.
Collapse
Affiliation(s)
- J N Cremer
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, and JARA - Translational Brain Medicine, D-52062 Aachen, Germany.
| | - K Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany; Cécile & Oskar Vogt Institute of Brain Research, Heinrich-Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - A Schleicher
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany
| | - N Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany
| | - M Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - F Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - K Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, and JARA - Translational Brain Medicine, D-52062 Aachen, Germany
| |
Collapse
|
84
|
Yagishita S, Murayama M, Ebihara T, Maruyama K, Takashima A. Glycogen Synthase Kinase 3β-mediated Phosphorylation in the Most C-terminal Region of Protein Interacting with C Kinase 1 (PICK1) Regulates the Binding of PICK1 to Glutamate Receptor Subunit GluA2. J Biol Chem 2015; 290:29438-48. [PMID: 26472923 DOI: 10.1074/jbc.m114.619668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 01/16/2023] Open
Abstract
Protein interacting with C kinase 1 (PICK1) is a synaptic protein interacting with the AMPA receptor subunits GluA2/3. The interaction between GluA2 and PICK1 is required for the removal of GluA2 from the synaptic plasma membrane during long-term depression (LTD). It has been suggested that glycogen synthase kinase 3β (GSK-3β) is activated during LTD, but the relationships between GluA2, PICK1, and GSK-3β are not well understood. In particular, the substrate(s) of GSK-3β have not yet been determined. Here we showed that PICK1 is a substrate of GSK-3β. We found that Ser(339), Ser(342), Ser(412), and Ser(416) of PICK1 were putative GSK-3β-mediated phosphorylation sites. Among these sites, Ser(416) played a crucial role in regulating the interaction between GluA2 and PICK1. We showed that replacing Ser(416) with Ala disrupted the GluA2-PICK1 interaction, whereas substituting Ser(416) with Glu or Asp retained this interaction. However, deletion of Ser(416) did not affect the GluA2-PICK1 interaction, and substitution of Ser(416) with Ala did not alter the PICK1-PICK1 interaction. Using image analysis in COS-7 cells with AcGFP1-fused PICK1, we showed that substitution of Ser(416) with Ala increased the formation of AcGFP1-positive clusters, suggesting an increase in the association of PICK1 with the membrane. This may have resulted in the dissociation of the GluA2-PICK1 complexes. Our results indicated that GSK-3β-mediated phosphorylation of PICK1 at Ser(416) was required for its association with the AMPA receptor subunit. Therefore, the GSK-3β-mediated phosphorylation of PICK1 may be a regulating factor during LTD induction.
Collapse
Affiliation(s)
- Sosuke Yagishita
- From the Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, the Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan, and
| | - Miyuki Murayama
- From the Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoe Ebihara
- the Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan, and
| | - Kei Maruyama
- the Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan, and
| | - Akihiko Takashima
- From the Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu-shi, Aichi 474-8522, Japan
| |
Collapse
|
85
|
Cockbill LMR, Murk K, Love S, Hanley JG. Protein interacting with C kinase 1 suppresses invasion and anchorage-independent growth of astrocytic tumor cells. Mol Biol Cell 2015; 26:4552-61. [PMID: 26466675 PMCID: PMC4678014 DOI: 10.1091/mbc.e15-05-0270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022] Open
Abstract
Astrocytic tumors are the most common form of primary brain tumor. Astrocytic tumor cells infiltrate the surrounding CNS tissue, allowing them to evade removal upon surgical resection of the primary tumor. Dynamic changes to the actin cytoskeleton are crucial to cancer cell invasion, but the specific mechanisms that underlie the particularly invasive phenotype of astrocytic tumor cells are unclear. Protein interacting with C kinase 1 (PICK1) is a PDZ and BAR domain-containing protein that inhibits actin-related protein 2/3 (Arp2/3)-dependent actin polymerization and is involved in regulating the trafficking of a number of cell-surface receptors. Here we report that, in contrast to other cancers, PICK1 expression is down-regulated in grade IV astrocytic tumor cell lines and also in clinical cases of the disease in which grade IV tumors have progressed from lower-grade tumors. Exogenous expression of PICK1 in the grade IV astrocytic cell line U251 reduces their capacity for anchorage-independent growth, two-dimensional migration, and invasion through a three-dimensional matrix, strongly suggesting that low PICK1 expression plays an important role in astrocytic tumorigenesis. We propose that PICK1 negatively regulates neoplastic infiltration of astrocytic tumors and that manipulation of PICK1 is an attractive possibility for therapeutic intervention.
Collapse
Affiliation(s)
- Louisa M R Cockbill
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kai Murk
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Seth Love
- School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, United Kingdom
| | - Jonathan G Hanley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
86
|
Abstract
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease.
Collapse
Affiliation(s)
| | - Scott H Soderling
- From the Departments of Cell Biology and Neurobiology, Duke University, School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
87
|
Kessels MM, Qualmann B. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses. J Cell Sci 2015; 128:3177-85. [PMID: 26285709 DOI: 10.1242/jcs.174193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions.
Collapse
Affiliation(s)
- Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
88
|
Cheng N, Hu X, Tian T, Lu W. PKMζ knockdown disrupts post-ischemic long-term potentiation via inhibiting postsynaptic expression of aminomethyl phosphonic acid receptors. J Biomed Res 2015; 29:241-9. [PMID: 26060448 PMCID: PMC4449492 DOI: 10.7555/jbr.28.20140033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/11/2014] [Accepted: 05/07/2014] [Indexed: 11/12/2022] Open
Abstract
Post-ischemic long-term potentiation (i-LTP) is a pathological form of plasticity that was observed in glutamate receptor-mediated neurotransmission after stroke and may exert a detrimental effect via facilitating excitotoxic damage. The mechanism underlying i-LTP, however, remains less understood. By employing electrophysiological recording and immunofluorescence assay on hippocampal slices and cultured neurons, we found that protein kinase Mζ (PKMζ), an atypical protein kinase C isoform, was involved in enhancing aminomethyl phosphonic acid (AMPA) receptor (AMPAR) expression after i-LTP induction. PKMζ knockdown attenuated postsynaptic expression of AMPA receptors and disrupted i-LTP. Consistently, we observed less neuronal death of cultured hippocampal cells with PKMζ knockdown. Meanwhile, these findings indicate that PKMζ plays an important role in i-LTP by regulating postsynaptic expression of AMPA receptors. This work adds new knowledge to the mechanism of i-LTP, and thus is helpful to find the potential target for clinical therapy of ischemic stroke.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoqiao Hu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
89
|
Karlsen ML, Thorsen TS, Johner N, Ammendrup-Johnsen I, Erlendsson S, Tian X, Simonsen JB, Høiberg-Nielsen R, Christensen NM, Khelashvili G, Streicher W, Teilum K, Vestergaard B, Weinstein H, Gether U, Arleth L, Madsen KL. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering. Structure 2015; 23:1258-1270. [PMID: 26073603 DOI: 10.1016/j.str.2015.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/15/2022]
Abstract
PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function.
Collapse
Affiliation(s)
- Morten L Karlsen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute 18.6, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Thor S Thorsen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute 18.6, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Niklaus Johner
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, Room E-509, 1300 York Avenue, 10065, New York City, NY, USA
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute 18.6, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Simon Erlendsson
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute 18.6, University of Copenhagen, 2200 Copenhagen N, Denmark.,Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Xinsheng Tian
- Biostructural Research, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Jens B Simonsen
- Structural Biophysics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Rasmus Høiberg-Nielsen
- Structural Biophysics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Nikolaj M Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute 18.6, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, Room E-509, 1300 York Avenue, 10065, New York City, NY, USA
| | - Werner Streicher
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Bente Vestergaard
- Biostructural Research, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, Room E-509, 1300 York Avenue, 10065, New York City, NY, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute 18.6, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute 18.6, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
90
|
Challenor M, O'Hare Doig R, Fuller P, Giacci M, Bartlett C, Wale CH, Cozens GS, Hool L, Dunlop S, Swaminathan Iyer K, Rodger J, Fitzgerald M. Prolonged glutamate excitotoxicity increases GluR1 immunoreactivity but decreases mRNA of GluR1 and associated regulatory proteins in dissociated rat retinae in vitro. Biochimie 2015; 112:160-71. [DOI: 10.1016/j.biochi.2015.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
|
91
|
Mignogna ML, Giannandrea M, Gurgone A, Fanelli F, Raimondi F, Mapelli L, Bassani S, Fang H, Van Anken E, Alessio M, Passafaro M, Gatti S, Esteban JA, Huganir R, D'Adamo P. The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nat Commun 2015; 6:6504. [PMID: 25784538 PMCID: PMC4383008 DOI: 10.1038/ncomms7504] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 02/03/2015] [Indexed: 01/31/2023] Open
Abstract
RAB39B is a member of the RAB family of small GTPases that controls intracellular vesicular trafficking in a compartment-specific manner. Mutations in the RAB39B gene cause intellectual disability comorbid with autism spectrum disorder and epilepsy, but the impact of RAB39B loss of function on synaptic activity is largely unexplained. Here we show that protein interacting with C-kinase 1 (PICK1) is a downstream effector of GTP-bound RAB39B and that RAB39B-PICK1 controls trafficking from the endoplasmic reticulum to the Golgi and, hence, surface expression of GluA2, a subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). The role of AMPARs in synaptic transmission varies depending on the combination of subunits (GluA1, GluA2 and GluA3) they incorporate. RAB39B downregulation in mouse hippocampal neurons skews AMPAR composition towards non GluA2-containing Ca2+-permeable forms and thereby alters synaptic activity, specifically in hippocampal neurons. We posit that the resulting alteration in synaptic function underlies cognitive dysfunction in RAB39B-related disorders. Mutations in the RAB39B gene, which encodes a protein involved in vesicular trafficking, are associated with intellectual disability, but the impact of RAB39B loss of function on synaptic activity is not known. Here the authors show that RAB39B interacts with PICK1, and that this interaction is critical for the translocation of AMPA receptor subunits into the Golgi.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- 1] Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy [2] F. Hoffmann-La Roche AG, pRED Pharma Research &Early Development, DTA Neuroscience, CH4070 Basel, Switzerland [3] Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maila Giannandrea
- 1] Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy [2] F. Hoffmann-La Roche AG, pRED Pharma Research &Early Development, DTA Neuroscience, CH4070 Basel, Switzerland
| | - Antonia Gurgone
- 1] Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy [2] Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lisa Mapelli
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Silvia Bassani
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Huaqiang Fang
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Eelco Van Anken
- IRCCS San Raffaele Scientific Institute, Division of Genetics and Cell Biology, 20132 Milan, Italy
| | - Massimo Alessio
- IRCCS San Raffaele Scientific Institute, Division of Genetics and Cell Biology, 20132 Milan, Italy
| | - Maria Passafaro
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Silvia Gatti
- F. Hoffmann-La Roche AG, pRED Pharma Research &Early Development, DTA Neuroscience, CH4070 Basel, Switzerland
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Richard Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Patrizia D'Adamo
- Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy
| |
Collapse
|
92
|
Abstract
In the CNS, synapse formation and maturation play crucial roles in the construction and consolidation of neuronal circuits. Neurexin and neuroligin localize on the opposite sides of synaptic membrane and interact with each other to promote the assembly and specialization of synapses. However, the excitatory synapses induced by the neurexin-neuroligin complex are initially immature synapses that lack AMPA receptors. Previously, PICK1 (protein interacting with C kinase 1) was shown to cluster and regulate the synaptic localization of AMPA receptors. Here, we report that during synaptogenesis induced by neurexin in cultured neurons from rat hippocampus, PICK1 recruited AMPA receptors to immature postsynaptic sites. This synaptic recruitment of AMPA receptors depended on the interaction between GluA2 and PICK1, and on the lipid-binding ability of PICK1, but not the interaction between PICK1 and neuroligin. Last, our results demonstrated that the recruitment of GluA2 to synapses could be prevented by ICA69 (islet cell autoantigen 69 kDa), a key binding partner of PICK1. Our study showed that PICK1, being negatively regulated by ICA69, could facilitate synapse maturation.
Collapse
|
93
|
Madasu Y, Yang C, Boczkowska M, Bethoney KA, Zwolak A, Rebowski G, Svitkina T, Dominguez R. PICK1 is implicated in organelle motility in an Arp2/3 complex-independent manner. Mol Biol Cell 2015; 26:1308-22. [PMID: 25657323 PMCID: PMC4454178 DOI: 10.1091/mbc.e14-10-1448] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A SAXS-based structural model is described for PICK1, a key player in AMPA receptor trafficking. It is shown that the acidic C-terminal tail of PICK1 is involved in autoinhibition and motility of PICK1-associated vesicle-like structures, but, contrary to previous reports, PICK1 neither binds nor inhibits Arp2/3 complex. PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x-ray scattering suggests a structural model that places the receptor-binding site of the PDZ domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other on the concave side of the banana-shaped PICK1 dimer. In the model, the ACT of one subunit of the dimer interacts with the PDZ and BAR domains of the other subunit, possibly accounting for autoinhibition. Consistently, full-length PICK1 shows diffuse cytoplasmic localization, but it clusters on vesicle-like structures that colocalize with the trans-Golgi network marker TGN38 upon deletion of either the ACT or PDZ domain. This localization is driven by the BAR domain. Live-cell imaging further reveals that PICK1-associated vesicles undergo fast, nondirectional motility in an F-actin–dependent manner, but deleting the ACT dramatically reduces vesicle speed. Thus the ACT links PICK1-associated vesicles to a motility factor, likely myosin, but, contrary to previous reports, PICK1 neither binds nor inhibits Arp2/3 complex.
Collapse
Affiliation(s)
- Yadaiah Madasu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kelley A Bethoney
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
94
|
Han J, Wu P, Wang F, Chen J. S-palmitoylation regulates AMPA receptors trafficking and function: a novel insight into synaptic regulation and therapeutics. Acta Pharm Sin B 2015; 5:1-7. [PMID: 26579419 PMCID: PMC4629138 DOI: 10.1016/j.apsb.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023] Open
Abstract
Glutamate acting on AMPA-type ionotropic glutamate receptor (AMPAR) mediates the majority of fast excitatory synaptic transmission in the mammalian central nervous system. Dynamic regulation of AMPAR by post-translational modifications is one of the key elements that allow the nervous system to adapt to environment stimulations. S-palmitoylation, an important lipid modification by post-translational addition of a long-chain fatty acid to a cysteine residue, regulates AMPA receptor trafficking, which dynamically affects multiple fundamental brain functions, such as learning and memory. In vivo, S-palmitoylation is controlled by palmitoyl acyl transferases and palmitoyl thioesterases. In this review, we highlight advances in the mechanisms for dynamic AMPA receptors palmitoylation, and discuss how palmitoylation affects AMPA receptors function at synapses in recent years. Pharmacological regulation of S-palmitoylation may serve as a novel therapeutic strategy for neurobiological diseases.
Collapse
Key Words
- 17-ODYA, 17-octadecynoic acid
- ABE, acyl-biotinyl exchange
- ABP, AMPA receptor binding protein
- AD, Alzheimer׳s disease
- AKAP79/150, A-kinase anchoring protein 79/150
- AMPA receptors
- AMPAR, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
- APT1, acyl-protein thioesterase-1
- APT2, acyl-protein thioesterase-2
- CP-AMPARs, Ca2+-permeable AMPARs
- DHHC
- DHHC, aspartate-histidine-histidine-cysteine
- FMRP, fragile X mental retardation protein
- FXS, Fragile X syndrome
- GAP-43, growth associated protein-43
- GRIP, glutamate receptor interacting protein
- LTD, long-term depression
- LTP, long-term potentiation
- PATs, palmitoyl acyl transferases
- PDZ, postsynaptic density-95/discs large/zona occludens-1
- PICK1, protein interacting with C-kinase 1
- PKA, protein kinase A
- PKC, protein kinase C
- PPT1, palmitoyl-protein thioesterase-1
- PSD-95, postsynaptic density-95
- Palmitoylation
- Ras, rat sarcoma
- SNAP-23, soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor protein-23
- Trafficking
Collapse
|
95
|
He J, Xia M, Tsang WH, Chow KL, Xia J. ICA1L forms BAR-domain complexes with PICK1 and is critical for acrosome formation in spermiogenesis. J Cell Sci 2015; 128:3822-36. [DOI: 10.1242/jcs.173534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/21/2015] [Indexed: 01/17/2023] Open
Abstract
Mutations of the Pick1 gene cause globozoospermia, a male infertility disorder in both mice and human. PICK1 is critical for vesicle trafficking and its deficiency in sperm cells leads to abnormal vesicle trafficking from the Golgi to acrosome. This eventually disrupts acrosome formation and leads to male infertility. We identified a novel BAR-domain binding partner of PICK1: ICA1L, which has sequence similarities to ICA69. ICA1L is expressed in testes and brain, and is the major binding partner for PICK1 in testes. ICA1L and PICK1 are highly expressed in spermatids and trafficked together at different stages of spermiogenesis. ICA1L knockout mice were generated by CRISPR-Cas technology. PICK1 expression was reduced by 80% in the testes of male mice lacking ICA1L. Sperms from ICA1L knockout mice had abnormalities in acrosome, nucleus and mitochondrial sheath formation. Both total and mobile sperms were reduced in number and about half of the remaining sperms had characteristics of globozoospermia. These defects ultimately resulted in reduced fertility of male ICA1L knockout mice and the fertility of male mice was completely eliminated in ICA69/ICA1L double knockout mice.
Collapse
Affiliation(s)
- Jing He
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mengying Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wai Hung Tsang
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - King Lau Chow
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
96
|
Alfonso S, Kessels HW, Banos CC, Chan TR, Lin ET, Kumaravel G, Scannevin RH, Rhodes KJ, Huganir R, Guckian KM, Dunah AW, Malinow R. Synapto-depressive effects of amyloid beta require PICK1. Eur J Neurosci 2014; 39:1225-33. [PMID: 24713001 DOI: 10.1111/ejn.12499] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022]
Abstract
Amyloid beta (Aβ), a key component in the pathophysiology of Alzheimer's disease, is thought to target excitatory synapses early in the disease. However, the mechanism by which Aβ weakens synapses is not well understood. Here we showed that the PDZ domain protein, protein interacting with C kinase 1 (PICK1), was required for Aβ to weaken synapses. In mice lacking PICK1, elevations of Aβ failed to depress synaptic transmission in cultured brain slices. In dissociated cultured neurons, Aβ failed to reduce surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 2, a subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that binds with PICK1 through a PDZ ligand-domain interaction. Lastly, a novel small molecule (BIO922) discovered through structure-based drug design that targets the specific interactions between GluA2 and PICK1 blocked the effects of Aβ on synapses and surface receptors. We concluded that GluA2-PICK1 interactions are a key component of the effects of Aβ on synapses.
Collapse
Affiliation(s)
- Stephanie Alfonso
- Center for Neural Circuits and Behavior, Departments of Neuroscience and Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Zhao B, Chen YG. Regulation of TGF-β Signal Transduction. SCIENTIFICA 2014; 2014:874065. [PMID: 25332839 PMCID: PMC4190275 DOI: 10.1155/2014/874065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/02/2014] [Indexed: 05/30/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Bing Zhao
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
98
|
Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci 2014; 34:9621-43. [PMID: 25031403 DOI: 10.1523/jneurosci.3991-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that leads to hippocampal neurodegeneration after hypoxia/cerebral ischemia.
Collapse
|
99
|
Schwab LC, Luo V, Clarke CL, Nathan PJ. Effects of the KIBRA Single Nucleotide Polymorphism on Synaptic Plasticity and Memory: A Review of the Literature. Curr Neuropharmacol 2014; 12:281-8. [PMID: 24851092 PMCID: PMC4023458 DOI: 10.2174/1570159x11666140104001553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/19/2013] [Accepted: 01/02/2014] [Indexed: 11/25/2022] Open
Abstract
There has been a great deal
of interest recently in genetic effects on neurocognitive performance in the
healthy population. KIBRA –a postsynaptic protein from the WWC family of
proteins– was identified in 2003 in the human brain and kidney and has recently
been associated with memory performance and synaptic plasticity. Through
genome-wide screening, a single nucleotide polymorphism (SNP) was detected in
the ninth intron of KIBRA gene (T→ C substitution) and was implicated in human
memory and the underlying neuronal circuitry. This review presents a synopsis of
the current findings on the effects of the KIBRA SNP on human memory and
synaptic plasticity. Overall the findings suggest impaired memory performance
and less efficient or impaired hippocampal/medial temporal lobe (MTL) activation
in CC homozygotes (in comparison to T carriers) with some differences between
young and older subjects. This review also highlights limitations and potential
sources for variability of studies’ imaging findings along with future
perspectives and implications for the role of KIBRA in memory-related brain
systems.
Collapse
Affiliation(s)
| | - Vincent Luo
- Clinical Unit Cambridge, GlaxoSmithKline, UK
| | | | - Pradeep J Nathan
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; ; School of Psychology and Psychiatry, Monash University, Australia; ; Neuroscience Discovery Medicine, UCB Pharma, Belgium
| |
Collapse
|
100
|
Dutta P, O'Connell KE, Ozkan SB, Sailer AW, Dev KK. The protein interacting with C-kinase (PICK1) interacts with and attenuates parkin-associated endothelial-like (PAEL) receptor-mediated cell death. J Neurochem 2014; 130:360-73. [PMID: 24749734 DOI: 10.1111/jnc.12741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/16/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022]
Abstract
The parkin-associated endothelial-like receptor (PAELR, GPR37) is an orphan G protein-coupled receptor that interacts with and is degraded by parkin-mediated ubiquitination. Mutations in parkin are thought to result in PAELR accumulation and increase neuronal cell death in Parkinson's disease. In this study, we find that the protein interacting with C-kinase (PICK1) interacts with PAELR. Specifically, the Postsynaptic density protein-95/Discs large/ZO-1 (PDZ) domain of PICK1 interacted with the last three residues of the c-terminal (ct) located PDZ motif of PAELR. Pull-down assays indicated that recombinant and native PICK1, obtained from heterologous cells and rat brain tissue, respectively, were retained by a glutathione S-transferase fusion of ct-PAELR. Furthermore, coimmunoprecipitation studies isolated a PAELR-PICK1 complex from transiently transfected cells. PICK1 interacts with parkin and our data showed that PICK1 reduces PAELR expression levels in transiently transfected heterologous cells compared to a PICK1 mutant that does not interact with PAELR. Finally, PICK1 over-expression in HEK293 cells reduced cell death induced by PAEALR over-expression during rotenone treatment and these effects of PICK1 were attenuated during inhibition of the proteasome. These results suggest a role for PICK1 in preventing PAELR-induced cell toxicity.
Collapse
Affiliation(s)
- Priyanka Dutta
- Molecular Neuropharmacology, Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|