51
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
52
|
Arraes FBM, Martins-de-Sa D, Noriega Vasquez DD, Melo BP, Faheem M, de Macedo LLP, Morgante CV, Barbosa JARG, Togawa RC, Moreira VJV, Danchin EGJ, Grossi-de-Sa MF. Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biol 2020; 18:1653-1681. [PMID: 33302789 DOI: 10.1080/15476286.2020.1861816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.
Collapse
Affiliation(s)
| | - Diogo Martins-de-Sa
- Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Daniel D Noriega Vasquez
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil
| | - Bruno Paes Melo
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Viçosa University, UFV, Viçosa-MG, Brazil
| | - Muhammad Faheem
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Department of Biological Sciences, National University of Medical Sciences, Punjab, Pakistan
| | | | - Carolina Vianna Morgante
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Embrapa Semiarid, Petrolina-PE, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| | | | - Roberto Coiti Togawa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil
| | - Valdeir Junio Vaz Moreira
- Biotechnology Center, Brazil.,Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Etienne G J Danchin
- National Institute of Science and Technology, Jakarta Embrapa-Brazil.,INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| |
Collapse
|
53
|
Moore R, Vogt K, Acosta-Martin AE, Shire P, Zeidler M, Smythe E. Integration of JAK/STAT receptor-ligand trafficking, signalling and gene expression in Drosophila melanogaster cells. J Cell Sci 2020; 133:jcs246199. [PMID: 32917740 DOI: 10.1242/jcs.246199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
The JAK/STAT pathway is an essential signalling cascade required for multiple processes during development and for adult homeostasis. A key question in understanding this pathway is how it is regulated in different cell contexts. Here, we have examined how endocytic processing contributes to signalling by the single cytokine receptor in Drosophila melanogaster cells, Domeless. We identify an evolutionarily conserved di-leucine (di-Leu) motif that is required for Domeless internalisation and show that endocytosis is required for activation of a subset of Domeless targets. Our data indicate that endocytosis both qualitatively and quantitatively regulates Domeless signalling. STAT92E, the single STAT transcription factor in Drosophila, appears to be the target of endocytic regulation, and our studies show that phosphorylation of STAT92E on Tyr704, although necessary, is not always sufficient for target transcription. Finally, we identify a conserved residue, Thr702, which is essential for Tyr704 phosphorylation. Taken together, our findings identify previously unknown aspects of JAK/STAT pathway regulation likely to play key roles in the spatial and temporal regulation of signalling in vivo.
Collapse
Affiliation(s)
- Rachel Moore
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Katja Vogt
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Adelina E Acosta-Martin
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Patrick Shire
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin Zeidler
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth Smythe
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
54
|
Liu LK, Chen XX, Gao RL, Wang KJ, Zheng WY, Liu HP. A cytokine receptor domeless promotes white spot syndrome virus infection via JAK/STAT signaling pathway in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103749. [PMID: 32505616 DOI: 10.1016/j.dci.2020.103749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway is pivotal in immune responses for a variety of pathogens in both vertebrates and invertebrates. Domeless (Dome), as a unique cytokine receptor, involves in the upstream JAK/STAT pathway in invertebrates. In this study, the full-length cDNA sequence of a cytokine receptor Dome was identified from red claw crayfish Cherax quadricarinatus (named as CqDome), which contained an open reading frame of 4251 bp, encoding 1416 amino acids. The CqDome contained extracellular conservative domains of a signal peptide, two cytokine binding modules (CBM), three fibronectin-type-III-like (FN3) domains and a transmembrane region. Tissue distribution analysis showed that CqDome generally expressed in all the tissues selected with a high expression in hemocyte. The gene expression of both the viral immediately early gene (IE1) and a late gene envelope protein VP28 of white spot syndrome virus (WSSV) were significantly decreased after gene silencing of CqDome in crayfish haematopoietic tissue (Hpt) cells, indicating a key role of CqDome in promoting WSSV infection. Furthermore, the phosphorylation level of CqSTAT was significantly inhibited by gene silencing of CqDome in Hpt cells, indicating that CqDome participated in signal transduction of JAK/STAT pathway in red claw crayfish. These data together suggest that CqDome is likely to promote WSSV infection via JAK/STAT pathway, which sheds new light on further elucidation of the pathogenesis of WSSV.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen, 361102, Fujian, PR China
| | - Xiao-Xiao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen, 361102, Fujian, PR China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen, 361102, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen, 361102, Fujian, PR China
| | - Wen-Yun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen, 361102, Fujian, PR China.
| |
Collapse
|
55
|
Insulin Potentiates JAK/STAT Signaling to Broadly Inhibit Flavivirus Replication in Insect Vectors. Cell Rep 2020; 29:1946-1960.e5. [PMID: 31722209 PMCID: PMC6871768 DOI: 10.1016/j.celrep.2019.10.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that more than half of the world’s population is at risk for vector-borne diseases, including arboviruses. Because many arboviruses are mosquito borne, investigation of the insect immune response will help identify targets to reduce the spread of arboviruses. Here, we use a genetic screening approach to identify an insulin-like receptor as a component of the immune response to arboviral infection. We determine that vertebrate insulin reduces West Nile virus (WNV) replication in Drosophila melanogaster as well as WNV, Zika, and dengue virus titers in mosquito cells. Mechanistically, we show that insulin signaling activates the JAK/STAT, but not RNAi, pathway via ERK to control infection in Drosophila cells and Culex mosquitoes through an integrated immune response. Finally, we validate that insulin priming of adult female Culex mosquitoes through a blood meal reduces WNV infection, demonstrating an essential role for insulin signaling in insect antiviral responses to human pathogens. The world’s population is at risk for infection with several flaviviruses. Ahlers et al. use a living library of insects to determine that an insulin-like receptor controls West Nile virus infection. Insulin signaling is antiviral via the JAK/STAT pathway in both fly and mosquito models and against a range of flaviviruses.
Collapse
|
56
|
Ertekin D, Kirszenblat L, Faville R, van Swinderen B. Down-regulation of a cytokine secreted from peripheral fat bodies improves visual attention while reducing sleep in Drosophila. PLoS Biol 2020; 18:e3000548. [PMID: 32745077 PMCID: PMC7426065 DOI: 10.1371/journal.pbio.3000548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 11/29/2022] Open
Abstract
Sleep is vital for survival. Yet under environmentally challenging conditions, such as starvation, animals suppress their need for sleep. Interestingly, starvation-induced sleep loss does not evoke a subsequent sleep rebound. Little is known about how starvation-induced sleep deprivation differs from other types of sleep loss, or why some sleep functions become dispensable during starvation. Here, we demonstrate that down-regulation of the secreted cytokine unpaired 2 (upd2) in Drosophila flies may mimic a starved-like state. We used a genetic knockdown strategy to investigate the consequences of upd2 on visual attention and sleep in otherwise well-fed flies, thereby sidestepping the negative side effects of undernourishment. We find that knockdown of upd2 in the fat body (FB) is sufficient to suppress sleep and promote feeding-related behaviors while also improving selective visual attention. Furthermore, we show that this peripheral signal is integrated in the fly brain via insulin-expressing cells. Together, these findings identify a role for peripheral tissue-to-brain interactions in the simultaneous regulation of sleep quality and attention, to potentially promote adaptive behaviors necessary for survival in hungry animals.
Collapse
Affiliation(s)
- Deniz Ertekin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard Faville
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
57
|
McMillan WO, Livraghi L, Concha C, Hanly JJ. From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
58
|
Benoist L, Corre E, Bernay B, Henry J, Zatylny-Gaudin C. -Omic Analysis of the Sepia officinalis White Body: New Insights into Multifunctionality and Haematopoiesis Regulation. J Proteome Res 2020; 19:3072-3087. [PMID: 32643382 DOI: 10.1021/acs.jproteome.0c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cephalopods, like other protostomes, lack an adaptive immune system and only rely on an innate immune system. The main immune cells are haemocytes (Hcts), which are able to respond to pathogens and external attacks. First reports based on morphological observations revealed that the white body (WB) located in the optic sinuses of cuttlefish was the origin of Hcts. Combining transcriptomic and proteomic analyses, we identified several factors known to be involved in haematopoiesis in vertebrate species in cuttlefish WB. Among these factors, members of the JAK-STAT signaling pathway were identified, some of them for the first time in a molluscan transcriptome and proteome. Immune factors, such as members of the Toll/NF-κB signaling pathway, pattern recognition proteins and receptors, and members of the oxidative stress responses, were also identified, and support an immune role of the WB. Both transcriptome and proteome analyses revealed that the WB harbors an intense metabolism concurrent with the haematopoietic function. Finally, a comparative analysis of the WB and Hct proteomes revealed many proteins in common, confirming previous morphological studies on the origin of Hcts in cuttlefish. This molecular work demonstrates that the WB is multifunctional and provides bases for haematopoiesis regulation in cuttlefish.
Collapse
Affiliation(s)
- Louis Benoist
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | - Erwan Corre
- Plateforme ABiMS, Station Biologique de Roscoff (CNRS-Sorbonne Université), 29688 Roscoff, France
| | - Benoit Bernay
- Plateforme PROTEOGEN, SF 4206 ICORE, Normandie université, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Joel Henry
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | - Céline Zatylny-Gaudin
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| |
Collapse
|
59
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
60
|
Hudry B, de Goeij E, Mineo A, Gaspar P, Hadjieconomou D, Studd C, Mokochinski JB, Kramer HB, Plaçais PY, Preat T, Miguel-Aliaga I. Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell 2020; 178:901-918.e16. [PMID: 31398343 PMCID: PMC6700282 DOI: 10.1016/j.cell.2019.07.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized. Intestinal carbohydrate metabolism is male-biased and region-specific Testes masculinize gut sugar handling by promoting enterocyte JAK-STAT signaling The male intestine secretes citrate to the adjacent testes Gut-derived citrate promotes food intake and sperm maturation
Collapse
Affiliation(s)
- Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; Université Côte d'Azur, CNRS, INSERM, iBV, France.
| | - Eva de Goeij
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alessandro Mineo
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Joao B Mokochinski
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
61
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
62
|
Jin Z, Chen J, Huang H, Wang J, Lv J, Yu M, Guo X, Zhang Y, Cai T, Xi R. The Drosophila Ortholog of Mammalian Transcription Factor Sox9 Regulates Intestinal Homeostasis and Regeneration at an Appropriate Level. Cell Rep 2020; 31:107683. [DOI: 10.1016/j.celrep.2020.107683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 01/05/2023] Open
|
63
|
Harsh S, Fu Y, Kenney E, Han Z, Eleftherianos I. Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling. Dis Model Mech 2020; 13:dmm040816. [PMID: 32152180 PMCID: PMC7197722 DOI: 10.1242/dmm.040816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
To gain a comprehensive view of the changes in host gene expression underlying Zika virus (ZIKV) pathogenesis, we performed whole-genome RNA sequencing (RNA-seq) of ZIKV-infected Drosophila adult flies. RNA-seq analysis revealed that ZIKV infection alters several and diverse biological processes, including stress, locomotion, lipid metabolism, imaginal disc morphogenesis and regulation of JAK/STAT signaling. To explore the interaction between ZIKV infection and JAK/STAT signaling regulation, we generated genetic constructs overexpressing ZIKV-specific non-structural proteins NS2A, NS2B, NS4A and NS4B. We found that ectopic expression of non-structural proteins in the developing Drosophila eye significantly restricts growth of the larval and adult eye and correlates with considerable repression of the in vivo JAK/STAT reporter, 10XStat92E-GFP At the cellular level, eye growth defects are associated with reduced rate of proliferation without affecting the overall rate of apoptosis. In addition, ZIKV NS4A genetically interacts with the JAK/STAT signaling components; co-expression of NS4A along with the dominant-negative form of domeless or StatRNAi results in aggravated reduction in eye size, while co-expression of NS4A in HopTuml (also known as hopTum ) mutant background partially rescues the hop-induced eye overgrowth phenotype. The function of ZIKV NS4A in regulating growth is maintained in the wing, where ZIKV NS4A overexpression in the pouch domain results in reduced growth linked with diminished expression of Notch targets, Wingless (Wg) and Cut, and the Notch reporter, NRE-GFP Thus, our study provides evidence that ZIKV infection in Drosophila results in restricted growth of the developing eye and wing, wherein eye phenotype is induced through regulation of JAK/STAT signaling, whereas restricted wing growth is induced through regulation of Notch signaling. The interaction of ZIKV non-structural proteins with the conserved host signaling pathways further advance our understanding of ZIKV-induced pathogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- NYU Langone Health, Alexandria Center for Life Science, New York, NY 10016, USA
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System. Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Eric Kenney
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System. Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
64
|
A hemipteran insect reveals new genetic mechanisms and evolutionary insights into tracheal system development. Proc Natl Acad Sci U S A 2020; 117:4252-4261. [PMID: 32041884 DOI: 10.1073/pnas.1908975117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity in the organization of the tracheal system is one of the drivers of insect evolutionary success; however, the genetic mechanisms responsible are yet to be elucidated. Here, we highlight the advantages of utilizing hemimetabolous insects, such as the milkweed bug Oncopeltus fasciatus, in which the final adult tracheal patterning can be directly inferred by examining its blueprint in embryos. By reporting the expression patterns, functions, and Hox gene regulation of trachealess (trh), ventral veinless (vvl), and cut (ct), key genes involved in tracheal development, this study provides important insights. First, Hox genes function as activators, modifiers, and suppressors of trh expression, which in turn results in a difference between the thoracic and abdominal tracheal organization. Second, spiracle morphogenesis requires the input of both trh and ct, where ct is positively regulated by trh As Hox genes regulate trh, we can now mechanistically explain the previous observations of their effects on spiracle formation. Third, the default state of vvl expression in the thorax, in the absence of Hox gene expression, features three lateral cell clusters connected to ducts. Fourth, the exocrine scent glands express vvl and are regulated by Hox genes. These results extend previous findings [Sánchez-Higueras et al., 2014], suggesting that the exocrine glands, similar to the endocrine, develop from the same primordia that give rise to the trachea. The presence of such versatile primordia in the miracrustacean ancestor could account for the similar gene networks found in the glandular and respiratory organs of both insects and crustaceans.
Collapse
|
65
|
Moest M, Van Belleghem SM, James JE, Salazar C, Martin SH, Barker SL, Moreira GRP, Mérot C, Joron M, Nadeau NJ, Steiner FM, Jiggins CD. Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biol 2020; 18:e3000597. [PMID: 32027643 PMCID: PMC7029882 DOI: 10.1371/journal.pbio.3000597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/19/2020] [Accepted: 01/15/2020] [Indexed: 11/21/2022] Open
Abstract
Natural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from 4 major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns in the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilising selection. Using simulations, we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius butterflies. Simulated recipient populations show a distinct 'volcano' pattern with peaks of increased genetic diversity around the selected target, characteristic of sweeps of introgressed variation and consistent with diversity patterns found in some populations. Our genomic data reveal a surprisingly dynamic history of colour pattern selection and co-evolution in this adaptive radiation.
Collapse
Affiliation(s)
- Markus Moest
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Steven M. Van Belleghem
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Jennifer E. James
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota D.C., Colombia
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah L. Barker
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Gilson R. P. Moreira
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claire Mérot
- IBIS, Department of Biology, Université Laval, Québec, Canada
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS—Université de Montpellier—Université Paul Valéry Montpellier—EPHE, Montpellier, France
| | - Nicola J. Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
66
|
Shin M, Cha N, Koranteng F, Cho B, Shim J. Subpopulation of Macrophage-Like Plasmatocytes Attenuates Systemic Growth via JAK/STAT in the Drosophila Fat Body. Front Immunol 2020; 11:63. [PMID: 32082322 PMCID: PMC7005108 DOI: 10.3389/fimmu.2020.00063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Drosophila hemocytes, like those of mammals, are given rise from two distinctive phases during both the embryonic and larval hematopoiesis. Embryonically derived hemocytes, mostly composed of macrophage-like plasmatocytes, are largely identified by genetic markers. However, the cellular diversity and distinct functions of possible subpopulations within plasmatocytes have not been explored in Drosophila larvae. Here, we show that larval plasmatocytes exhibit differential expressions of Hemolectin (Hml) and Peroxidasin (Pxn) during development. Moreover, removal of plasmatocytes by overexpressing pro-apoptotic genes, hid and reaper in Hml-positive plasmatocytes, feeding high sucrose diet, or wasp infestation results in increased circulating hemocytes that are Hml-negative. Interestingly these Hml-negative plasmatocytes retain Pxn expression, and animals expressing Hml-negative and Pxn-positive subtype largely attenuate growth and abrogate metabolism. Furthermore, elevated levels of a cytokine, unpaired 3, are detected when Hml-positive hemocytes are ablated, which in turn activates JAK/STAT activity in several tissues including the fat body. Finally, we observed that insulin signaling is inhibited in this background, which can be recovered by concurrent loss of upd3. Overall, this study highlights heterogeneity in Drosophila plasmatocytes and a functional plasticity of each subtype, which reaffirms extension of their role beyond immunity into metabolic regulation for cooperatively maintaining internal homeostatic balance.
Collapse
Affiliation(s)
- Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Ferdinand Koranteng
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
- Research Institute for Natural Science, College of Natural Science, Hanyang University, Seoul, South Korea
- Research Institute for Convergence of Basic Sciences, College of Natural Science, Hanyang University, Seoul, South Korea
| |
Collapse
|
67
|
Kierdorf K, Hersperger F, Sharrock J, Vincent CM, Ustaoglu P, Dou J, Gyoergy A, Groß O, Siekhaus DE, Dionne MS. Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. eLife 2020; 9:e51595. [PMID: 31944178 PMCID: PMC6996930 DOI: 10.7554/elife.51595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signalling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signalling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signalling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.
Collapse
Affiliation(s)
- Katrin Kierdorf
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Fabian Hersperger
- Institute of Neuropathology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jessica Sharrock
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Crystal M Vincent
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Pinar Ustaoglu
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Jiawen Dou
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
| | - Attila Gyoergy
- Institute of Science and TechnologyKlosterneuburgAustria
| | - Olaf Groß
- Institute of Neuropathology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Centre for Integrative Biological Signalling Studies (CIBSS)University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
| |
Collapse
|
68
|
Liu Z, Chen Y, Rao Y. An RNAi screen for secreted factors and cell-surface players in coordinating neuron and glia development in Drosophila. Mol Brain 2020; 13:1. [PMID: 31900209 PMCID: PMC6942347 DOI: 10.1186/s13041-019-0541-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
The establishment of the functional nervous system requires coordinated development of neurons and glia in the embryo. Our understanding of underlying molecular and cellular mechanisms, however, remains limited. The developing Drosophila visual system is an excellent model for understanding the developmental control of the nervous system. By performing a systematic transgenic RNAi screen, we investigated the requirements of secreted proteins and cell-surface receptors for the development of photoreceptor neurons (R cells) and wrapping glia (WG) in the Drosophila visual system. From the screen, we identified seven genes whose knockdown disrupted the development of R cells and/or WG, including amalgam (ama), domeless (dome), epidermal growth factor receptor (EGFR), kuzbanian (kuz), N-Cadherin (CadN), neuroglian (nrg), and shotgun (shg). Cell-type-specific analysis revealed that ama is required in the developing eye disc for promoting cell proliferation and differentiation, which is essential for the migration of glia in the optic stalk. Our results also suggest that nrg functions in both eye disc and WG for coordinating R-cell and WG development.
Collapse
Affiliation(s)
- Zhengya Liu
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yixu Chen
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yong Rao
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
69
|
Kondo T, Hayashi S. Two-step regulation of trachealess ensures tight coupling of cell fate with morphogenesis in the Drosophila trachea. eLife 2019; 8:45145. [PMID: 31439126 PMCID: PMC6707767 DOI: 10.7554/elife.45145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, inductive signals cause cell differentiation and morphogenesis. However, how these phenomena are coordinated to form functional organs is poorly understood. Here, we show that cell differentiation of the Drosophila trachea is sequentially determined in two steps and that the second step is synchronous with the invagination of the epithelial sheet. The master gene trachealess is dispensable for the initiation of invagination, while it is essential for maintaining the invaginated structure, suggesting that tracheal morphogenesis and differentiation are separately induced. trachealess expression starts in bipotential tracheal/epidermal placode cells. After invagination, its expression is maintained in the invaginated cells but is extinguished in the remaining sheet cells. A trachealess cis-regulatory module that shows both tracheal enhancer activity and silencer activity in the surface epidermal sheet was identified. We propose that the coupling of trachealess expression with the invaginated structure ensures that only invaginated cells canalize robustly into the tracheal fate. Cells in developing organs have two important decisions to make: where to be and what cell type to become. If cells end up in the wrong places, they can stop an organ from working, so it is vital that one decision depends upon the other. The so-called progenitor cells responsible for forming the trachea, for example, can either become part of a flat sheet or part of a tube. The cells on the sheet need to become epidermal cells, while the cells in the tube need to become tracheal cells. Work on fruit flies found that a gene called 'trachealess' plays an important role in this process. Without it, developing flies cannot make a trachea at all. At the start of trachea development, some of the cells form thickened structures called placodes. The progenitor cells in the placodes start to divide, and the structures buckle inwards to form pockets. These pockets then lengthen into tubes. The trachealess gene codes for a protein that works as a genetic switch. It turns other genes on or off, helping the progenitor cells inside the pockets to become tracheal cells. But, it is not clear whether trachealess drives the formation of the pockets: the progenitor cells first decide what to be; or whether pocket formation tells the cells to use trachealess: the progenitor cells first decide where to be. To find out, Kondo and Hayashi imaged developing fly embryos and saw that the trachealess gene does not start pocket formation, but that it is essential to maintain the pockets. Flies without the gene managed to form pockets, but they did not last long. Looking at embryos with defects in other genes involved in pocket formation revealed why. In these flies, some of the progenitor cells using trachealess got left behind when the pockets started to form. But rather than forming pockets of their own (as they might if trachealess were driving pocket formation), they turned their trachealess gene off. Progenitor cells in the fly trachea seem to decide where to be before they decide what cell type to become. This helps to make sure that trachea cells do not form in the wrong places. A question that still remains is how do the cells know when they are inside a pocket? It is possible that the cells are sensing different mechanical forces or different chemical signals. Further research could help scientists to understand how organs form in living animals, and how they might better recreate that process in the laboratory.
Collapse
Affiliation(s)
- Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
70
|
In vivo Hox binding specificity revealed by systematic changes to a single cis regulatory module. Nat Commun 2019; 10:3597. [PMID: 31399572 PMCID: PMC6689074 DOI: 10.1038/s41467-019-11416-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/09/2019] [Indexed: 11/08/2022] Open
Abstract
Hox proteins belong to a family of transcription factors with similar DNA binding specificities that control animal differentiation along the antero-posterior body axis. Hox proteins are expressed in partially overlapping regions where each one is responsible for the formation of particular organs and structures through the regulation of specific direct downstream targets. Thus, explaining how each Hox protein can selectively control its direct targets from those of another Hox protein is fundamental to understand animal development. Here we analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins and uncover how different Hox class proteins differentially control its expression. We find that regulation by one or another Hox protein depends on the combination of three modes: Hox-cofactor dependent DNA-binding specificity; Hox-monomer binding sites; and interaction with positive and negative Hox-collaborator proteins. Additionally, we find that similar regulation can be achieved by Amphioxus orthologs, suggesting these three mechanisms are conserved from insects to chordates. Hox proteins are expressed in partially overlapping regions to inform development along the embryo’s head-tail axis. Here the authors analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins to uncover how different Hox class proteins differentially control its expression.
Collapse
|
71
|
Lovato CV, Lovato TL, Cripps RM. Crossveinless is a direct transcriptional target of Trachealess and Tango in Drosophila tracheal precursor cells. PLoS One 2019; 14:e0217906. [PMID: 31158257 PMCID: PMC6546244 DOI: 10.1371/journal.pone.0217906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
Understanding the transcriptional pathways controlling tissue-specific gene expression is critical to unraveling the complex regulatory networks that underlie developmental mechanisms. Here, we assessed how the Drosophila crossveinless (cv) gene, that encodes a BMP-binding factor, is transcriptionally regulated in the developing embryonic tracheal system. We identify an upstream regulatory region of cv that promotes reporter gene expression in the tracheal precursors. We further demonstrate that this promoter region is directly responsive to the basic, helix-loop-helix-PAS domain factors Trachealess (Trh) and Tango (Tgo), that function to specify tracheal fate. Moreover, cv expression in embryos is lost in trh mutants, and the integrity of the Trh/Tgo binding sites are required for promoter-lacZ expression. These findings for the first time elucidate the transcriptional regulation of one member of a family of BMP binding proteins, that have diverse functions in animal development.
Collapse
Affiliation(s)
- Candice V. Lovato
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - TyAnna L. Lovato
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
72
|
Bailetti AA, Negrón-Piñeiro LJ, Dhruva V, Harsh S, Lu S, Bosula A, Bach EA. Enhancer of Polycomb and the Tip60 complex repress hematological tumor initiation by negatively regulating JAK/STAT pathway activity. Dis Model Mech 2019; 12:dmm.038679. [PMID: 31072879 PMCID: PMC6550037 DOI: 10.1242/dmm.038679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders that cause excessive production of myeloid cells. Most MPN patients have a point mutation in JAK2 (JAK2V617F), which encodes a dominant-active kinase that constitutively triggers JAK/STAT signaling. In Drosophila, this pathway is simplified, with a single JAK, Hopscotch (Hop), and a single STAT transcription factor, Stat92E. The hopTumorous-lethal [hopTum] allele encodes a dominant-active kinase that induces sustained Stat92E activation. Like MPN patients, hopTum mutants have significantly more myeloid cells, which form invasive tumors. Through an unbiased genetic screen, we found that heterozygosity for Enhancer of Polycomb [E(Pc)], a component of the Tip60 lysine acetyltransferase complex (also known as KAT5 in humans), significantly increased tumor burden in hopTum animals. Hematopoietic depletion of E(Pc) or other Tip60 components in an otherwise wild-type background also induced blood cell tumors. The E(Pc) tumor phenotype was dependent on JAK/STAT activity, as concomitant depletion of hop or Stat92E inhibited tumor formation. Stat92E target genes were significantly upregulated in E(Pc)-mutant myeloid cells, indicating that loss of E(Pc) activates JAK/STAT signaling. Neither the hop nor Stat92E gene was upregulated upon hematopoietic E(Pc) depletion, suggesting that the regulation of the JAK/STAT pathway by E(Pc) is dependent on substrates other than histones. Indeed, E(Pc) depletion significantly increased expression of Hop protein in myeloid cells. This study indicates that E(Pc) works as a tumor suppressor by attenuating Hop protein expression and ultimately JAK/STAT signaling. Since loss-of-function mutations in the human homologs of E(Pc) and Tip60 are frequently observed in cancer, our work could lead to new treatments for MPN patients. This article has an associated First Person interview with the first author of the paper. Editor's choice: Using Drosophila as a low-complexity model for human myeloproliferative neoplasms, the authors identified a conserved mechanism by which the Tip60 lysine acetyltransferase acts as a tumor suppressor by repressing JAK protein expression in a histone-independent manner.
Collapse
Affiliation(s)
- Alessandro A Bailetti
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Lenny J Negrón-Piñeiro
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Vishal Dhruva
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sneh Harsh
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sean Lu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Aisha Bosula
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA .,Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
73
|
Cell Adhesion-Mediated Actomyosin Assembly Regulates the Activity of Cubitus Interruptus for Hematopoietic Progenitor Maintenance in Drosophila. Genetics 2019; 212:1279-1300. [PMID: 31138608 PMCID: PMC6707476 DOI: 10.1534/genetics.119.302209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The actomyosin network is involved in crucial cellular processes including morphogenesis, cell adhesion, apoptosis, proliferation, differentiation, and collective cell migration in Drosophila, Caenorhabditiselegans, and mammals. Here, we demonstrate that Drosophila larval blood stem-like progenitors require actomyosin activity for their maintenance. Genetic loss of the actomyosin network from progenitors caused a decline in their number. Likewise, the progenitor population increased upon sustained actomyosin activation via phosphorylation by Rho-associated kinase. We show that actomyosin positively regulates larval blood progenitors by controlling the maintenance factor Cubitus interruptus (Ci). Overexpression of the maintenance signal via a constitutively activated construct (ci.HA) failed to sustain Ci-155 in the absence of actomyosin components like Zipper (zip) and Squash (sqh), thus favoring protein kinase A (PKA)-independent regulation of Ci activity. Furthermore, we demonstrate that a change in cortical actomyosin assembly mediated by DE-cadherin modulates Ci activity, thereby determining progenitor status. Thus, loss of cell adhesion and downstream actomyosin activity results in desensitization of the progenitors to Hh signaling, leading to their differentiation. Our data reveal how cell adhesion and the actomyosin network cooperate to influence patterning, morphogenesis, and maintenance of the hematopoietic stem-like progenitor pool in the developing Drosophila hematopoietic organ.
Collapse
|
74
|
Powers N, Srivastava A. JAK/STAT signaling is involved in air sac primordium development of Drosophila melanogaster. FEBS Lett 2019; 593:658-669. [PMID: 30854626 DOI: 10.1002/1873-3468.13355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
The dorsal thoracic air sacs in fruit flies (Drosophila melanogaster) are functionally and developmentally comparable to human lungs. The progenitors of these structures, air sac primordia (ASPs), invasively propagate into wing imaginal disks, employing mechanisms similar to those that promote metastasis in malignant tumors. We investigated whether Janus kinase/signal transducer and activator of transcription JAK/STAT signaling plays a role in the directed morphogenesis of ASPs. We find that JAK/STAT signaling occurs in ASP tip cells and misexpression of core components in the JAK/STAT signaling cascade significantly impedes ASP development. We further identify Upd2 as an activating ligand for JAK/STAT activity in the ASP. Together, these data constitute a considerable step forward in understanding the role of JAK/STAT signaling in ASPs and similar structures in mammalian models.
Collapse
Affiliation(s)
- Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, KY, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
75
|
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146:dev167643. [PMID: 30696713 PMCID: PMC6361132 DOI: 10.1242/dev.167643] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
76
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
77
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
78
|
Abstract
Like humans, insects face the threat of viral infection. Despite having repercussions on human health and disease, knowledge gaps exist for how insects cope with viral pathogens. Drosophila melanogaster serves as an ideal insect model due to its genetic tractability. When encountering a pathogen, two major approaches to fight disease are resistance strategies and tolerance strategies. Disease resistance strategies promote the health of the infected host by reducing pathogen load. Multiple disease resistance mechanisms have been identified in Drosophila: RNA interference, Jak/STAT signaling, Toll signaling, IMD signaling, and autophagy. Disease tolerance mechanisms, in contrast, do not reduce pathogen load directly, but rather mitigate the stress and damage incurred by infection. The main benefit of tolerance mechanisms may therefore be to provide the host with time to engage antiviral resistance mechanisms that eliminate the threat. In this review, antiviral resistance mechanisms used by Drosophila will be described and compared to mammalian antiviral mechanisms. Disease tolerance will then be explained in a broader context as this is a burgeoning field of study.
Collapse
Affiliation(s)
- Jonathan Chow
- Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jonathan C Kagan
- Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States.
| |
Collapse
|
79
|
Bao R, Dia SE, Issa HA, Alhusein D, Friedrich M. Comparative Evidence of an Exceptional Impact of Gene Duplication on the Developmental Evolution of Drosophila and the Higher Diptera. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
80
|
Chen K, Lu Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:3-11. [PMID: 29289612 DOI: 10.1016/j.dci.2017.12.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
The silkworm Bombyx mori, an economically important insect that is usually reared indoors, is susceptible to various pathogens, including bacteria, fungi, viruses, and microsporidia. As with other insects, the silkworm lacks an adaptive immune system and relies solely on innate immunity to defend itself against infection. Compared to other intensively studied insects, such as the fruit fly and tobacco hornworm, the principal immune pathways in the silkworm remain unclear. In this article, we review the literature concerning silkworm immune responses to bacteria and fungi and present our perspectives on future research into silkworm immunity.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
81
|
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System. J Clin Med 2018; 7:E24. [PMID: 29393890 PMCID: PMC5852440 DOI: 10.3390/jcm7020024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biology, Truman State University, Kirksville, MO 63501, USA.
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
82
|
Beira JV, Torres J, Paro R. Signalling crosstalk during early tumorigenesis in the absence of Polycomb silencing. PLoS Genet 2018; 14:e1007187. [PMID: 29357360 PMCID: PMC5794193 DOI: 10.1371/journal.pgen.1007187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
In response to stress and injury a coordinated activation of conserved signalling modules, such as JNK and JAK/STAT, is critical to trigger regenerative tissue restoration. While these pathways rebuild homeostasis and promote faithful organ recovery, it is intriguing that they also become activated in various tumour conditions. Therefore, it is crucial to understand how similar pathways can achieve context-dependent functional outputs, likely depending on cellular states. Compromised chromatin regulation, upon removal of the Polycomb group member polyhomeotic, leads to tumour formation with ectopic activation of JNK signalling, mediated by egr/grnd, in addition to JAK/STAT and Notch. Employing quantitative analyses, we show that blocking ectopic signalling impairs ph tumour growth. Furthermore, JAK/STAT functions in parallel to JNK, while Notch relies on JNK. Here, we reveal a signalling hierarchy in ph tumours that is distinct from the regenerative processes regulated by these pathways. Absence of ph renders a permissive state for expression of target genes, but our results suggest that both loss of repression and the presence of activators may collectively regulate gene expression during tumorigenesis. Further dissecting the effect of signalling, developmental or stress-induced factors will thus elucidate the regulation of physiological responses and the contribution of context-specific cellular states.
Collapse
Affiliation(s)
- Jorge V. Beira
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| | - Joana Torres
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
| | - Renato Paro
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- Faculty of Science, University of Basel, KlingelbergstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| |
Collapse
|
83
|
Jiggins CD, Wallbank RWR, Hanly JJ. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0485. [PMID: 27994126 DOI: 10.1098/rstb.2015.0485] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard W R Wallbank
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
84
|
Yang H, Hultmark D. Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism. Sci Rep 2017; 7:15713. [PMID: 29146985 PMCID: PMC5691183 DOI: 10.1038/s41598-017-15940-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
We recently found that JAK/STAT signaling in skeletal muscles is important for the immune response of Drosophila larvae against wasp infection, but it was not clear how muscles could affect the immune response. Here we show that insulin signaling is required in muscles, but not in fat body or hemocytes, during larval development for an efficient encapsulation response and for the formation of lamellocytes. This effect requires TOR signaling. We show that muscle tissue affects the immune response by acting as a master regulator of carbohydrate metabolism in the infected animal, via JAK/STAT and insulin signaling in the muscles, and that there is indirect positive feedback between JAK/STAT and insulin signaling in the muscles. Specifically, stimulation of JAK/STAT signaling in the muscles can rescue the deficient immune response when insulin signaling is suppressed. Our results shed new light on the interaction between metabolism, immunity, and tissue communication.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden.,Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden. .,Institute of Biomedical Technology, University of Tampere, FI-33520, Tampere, Finland.
| |
Collapse
|
85
|
Vollmer J, Fried P, Aguilar-Hidalgo D, Sánchez-Aragón M, Iannini A, Casares F, Iber D. Growth control in the Drosophila eye disc by the cytokine Unpaired. Development 2017; 144:837-843. [PMID: 28246213 DOI: 10.1242/dev.141309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023]
Abstract
A fundamental question in developmental biology is how organ size is controlled. We have previously shown that the area growth rate in the Drosophila eye primordium declines inversely proportionally to the increase in its area. How the observed reduction in the growth rate is achieved is unknown. Here, we explore the dilution of the cytokine Unpaired (Upd) as a possible candidate mechanism. In the developing eye, upd expression is transient, ceasing at the time when the morphogenetic furrow first emerges. We confirm experimentally that the diffusion and stability of the JAK/STAT ligand Upd are sufficient to control eye disc growth via a dilution mechanism. We further show that sequestration of Upd by ectopic expression of an inactive form of the receptor Domeless (Dome) results in a substantially lower growth rate, but the area growth rate still declines inversely proportionally to the area increase. This growth rate-to-area relationship is no longer observed when Upd dilution is prevented by the continuous, ectopic expression of Upd. We conclude that a mechanism based on the dilution of the growth modulator Upd can explain how growth termination is controlled in the eye disc.
Collapse
Affiliation(s)
- Jannik Vollmer
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Patrick Fried
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| | - Daniel Aguilar-Hidalgo
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Máximo Sánchez-Aragón
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonella Iannini
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, CABD, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, Basel 4058, Switzerland .,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, Basel 4058, Switzerland
| |
Collapse
|
86
|
Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun 2017; 8:136. [PMID: 28743877 PMCID: PMC5526992 DOI: 10.1038/s41467-017-00145-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/02/2017] [Indexed: 01/27/2023] Open
Abstract
Cell competition is a form of cell interaction that causes the elimination of less fit cells, or losers, by wild-type (WT) cells, influencing overall tissue health. Several mutations can cause cells to become losers; however, it is not known how. Here we show that Drosophila wing disc cells carrying functionally unrelated loser mutations (Minute and mahjong) display the common activation of multiple stress signalling pathways before cell competition and find that these pathways collectively account for the loser status. We find that JNK signalling inhibits the growth of losers, while JAK/STAT signalling promotes competition-induced winner cell proliferation. Furthermore, we show that losers display oxidative stress response activation and, strikingly, that activation of this pathway alone, by Nrf2 overexpression, is sufficient to prime cells for their elimination by WT neighbours. Since oxidative stress and Nrf2 are linked to several diseases, cell competition may occur in a number of pathological conditions.Cell competition causes the removal of less fit cells ('losers') but why some gene mutations turn cells into losers is unclear. Here, the authors show that Drosophila wing disc cells carrying some loser mutations activate Nrf2 and JNK signalling, which contribute to the loser status.
Collapse
Affiliation(s)
- Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Haematology and Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael Dinan
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Golnar Kolahgar
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Eugenia Piddini
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
87
|
Zhao X, Karpac J. Muscle Directs Diurnal Energy Homeostasis through a Myokine-Dependent Hormone Module in Drosophila. Curr Biol 2017; 27:1941-1955.e6. [PMID: 28669758 DOI: 10.1016/j.cub.2017.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/26/2017] [Accepted: 06/01/2017] [Indexed: 02/04/2023]
Abstract
Inter-tissue communication is critical to control organismal energy homeostasis in response to temporal changes in feeding and activity or external challenges. Muscle is emerging as a key mediator of this homeostatic control through consumption of lipids, carbohydrates, and amino acids, as well as governing systemic signaling networks. However, it remains less clear how energy substrate usage tissues, such as muscle, communicate with energy substrate storage tissues in order to adapt with diurnal changes in energy supply and demand. Using Drosophila, we show here that muscle plays a crucial physiological role in promoting systemic synthesis and accumulation of lipids in fat storage tissues, which subsequently impacts diurnal changes in circulating lipid levels. Our data reveal that the metabolic transcription factor Foxo governs expression of the cytokine unpaired 2 (Upd2) in skeletal muscle, which acts as a myokine to control glucagon-like adipokinetic hormone (AKH) secretion from specialized neuroendocrine cells. Circulating AKH levels in turn regulate lipid homeostasis in fat body/adipose and the intestine. Our data also reveal that this novel myokine-dependent hormone module is critical to maintain diurnal rhythms in circulating lipids. This tissue crosstalk provides a putative mechanism that allows muscle to integrate autonomous energy demand with systemic energy storage and turnover. Together, these findings reveal a diurnal inter-tissue signaling network between muscle and fat storage tissues that constitutes an ancestral mechanism governing systemic energy homeostasis.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
88
|
Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection. J Virol 2017; 91:JVI.00554-17. [PMID: 28404849 DOI: 10.1128/jvi.00554-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients.IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate antiviral responses. Identification of host proteins involved in the ZIKV replication process may lead to the discovery of antiviral targets. In this study, the first quantitative proteomic analysis of ZIKV-infected cells was performed to investigate host proteins involved in the ZIKV replication process. Bioinformatics analysis highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the UPS, bortezomib, can inhibit ZIKV infection in vivo Our study not only illustrated how host cells respond to ZIKV infection but also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients.
Collapse
|
89
|
Lee JH, Lee CW, Park SH, Choe KM. Spatiotemporal regulation of cell fusion by JNK and JAK/STAT signaling during Drosophila wound healing. J Cell Sci 2017; 130:1917-1928. [PMID: 28424232 DOI: 10.1242/jcs.187658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/18/2017] [Indexed: 12/23/2022] Open
Abstract
Cell-cell fusion is widely observed during development and disease, and imposes a dramatic change on participating cells. Cell fusion should be tightly controlled, but the underlying mechanism is poorly understood. Here, we found that the JAK/STAT pathway suppressed cell fusion during wound healing in the Drosophila larval epidermis, restricting cell fusion to the vicinity of the wound. In the absence of JAK/STAT signaling, a large syncytium containing a 3-fold higher number of nuclei than observed in wild-type tissue formed in wounded epidermis. The JAK/STAT ligand-encoding genes upd2 and upd3 were transcriptionally induced by wounding, and were required for suppressing excess cell fusion. JNK (also known as Basket in flies) was activated in the wound vicinity and activity peaked at ∼8 h after injury, whereas JAK/STAT signaling was activated in an adjoining concentric ring and activity peaked at a later stage. Cell fusion occurred primarily in the wound vicinity, where JAK/STAT activation was suppressed by fusion-inducing JNK signaling. JAK/STAT signaling was both necessary and sufficient for the induction of βPS integrin (also known as Myospheroid) expression, suggesting that the suppression of cell fusion was mediated at least in part by integrin protein.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan-Wool Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Si-Hyoung Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
90
|
Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection. Nat Commun 2017; 8:14642. [PMID: 28262681 PMCID: PMC5343520 DOI: 10.1038/ncomms14642] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium tuberculosis remains a global threat to human health, yet the molecular mechanisms regulating immunity remain poorly understood. Cytokines can promote or inhibit mycobacterial survival inside macrophages and the underlying mechanisms represent potential targets for host-directed therapies. Here we show that cytokine-STAT signalling promotes mycobacterial survival within macrophages by deregulating lipid droplets via ATG2 repression. In Drosophila infected with Mycobacterium marinum, mycobacterium-induced STAT activity triggered by unpaired-family cytokines reduces Atg2 expression, permitting deregulation of lipid droplets. Increased Atg2 expression or reduced macrophage triglyceride biosynthesis, normalizes lipid deposition in infected phagocytes and reduces numbers of viable intracellular mycobacteria. In human macrophages, addition of IL-6 promotes mycobacterial survival and BCG-induced lipid accumulation by a similar, but probably not identical, mechanism. Our results reveal Atg2 regulation as a mechanism by which cytokines can control lipid droplet homeostasis and consequently resistance to mycobacterial infection in Drosophila. Cytokines and their associated pathways can affect survival of Mycobacterium tuberculosis in macrophages, representing potential targets for host-directed therapies. Here, Péan et al. show that cytokine-STAT signalling promotes mycobacterial survival within macrophages by deregulating lipid droplet homeostasis.
Collapse
|
91
|
Terriente-Félix A, Pérez L, Bray SJ, Nebreda AR, Milán M. A Drosophila model of myeloproliferative neoplasm reveals a feed-forward loop in the JAK pathway mediated by p38 MAPK signalling. Dis Model Mech 2017; 10:399-407. [PMID: 28237966 PMCID: PMC5399568 DOI: 10.1242/dmm.028118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) of the Philadelphia-negative class comprise polycythaemia vera, essential thrombocythaemia and primary myelofibrosis (PMF). They are associated with aberrant numbers of myeloid lineage cells in the blood, and in the case of overt PMF, with development of myelofibrosis in the bone marrow and failure to produce normal blood cells. These diseases are usually caused by gain-of-function mutations in the kinase JAK2. Here, we use Drosophila to investigate the consequences of activation of the JAK2 orthologue in haematopoiesis. We have identified maturing haemocytes in the lymph gland, the major haematopoietic organ in the fly, as the cell population susceptible to induce hypertrophy upon targeted overexpression of JAK. We show that JAK activates a feed-forward loop, including the cytokine-like ligand Upd3 and its receptor, Domeless, which are required to induce lymph gland hypertrophy. Moreover, we present evidence that p38 MAPK signalling plays a key role in this process by inducing expression of the ligand Upd3. Interestingly, we also show that forced activation of the p38 MAPK pathway in maturing haemocytes suffices to generate hypertrophic organs and the appearance of melanotic tumours. Our results illustrate a novel pro-tumourigenic crosstalk between the p38 MAPK pathway and JAK signalling in a Drosophila model of MPNs. Based on the shared molecular mechanisms underlying MPNs in flies and humans, the interplay between Drosophila JAK and p38 signalling pathways unravelled in this work might have translational relevance for human MPNs. Summary: Pro-tumourigenic crosstalk occurs between the p38 MAPK pathway and JAK signalling in a Drosophila model of myeloproliferative neoplasm.
Collapse
Affiliation(s)
- Ana Terriente-Félix
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain .,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain .,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
92
|
Oliva Chávez AS, Shaw DK, Munderloh UG, Pedra JHF. Tick Humoral Responses: Marching to the Beat of a Different Drummer. Front Microbiol 2017; 8:223. [PMID: 28261180 PMCID: PMC5306392 DOI: 10.3389/fmicb.2017.00223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Ticks transmit a variety of human pathogens, including Borrelia burgdorferi, the etiological agent of Lyme disease. Multiple pathogens that are transmitted simultaneously, termed “coinfections,” are of increasing importance and can affect disease outcome in a host. Arthropod immunity is central to pathogen acquisition and transmission by the tick. Pattern recognition receptors recognize pathogen-associated molecular patterns and induce humoral responses through the Toll and Immune Deficiency (IMD) pathways. Comparative analyses between insects and ticks reveal that while the Toll pathway is conserved, the IMD network exhibits a high degree of variability. This indicates that major differences in humoral immunity exist between insects and ticks. While many variables can affect immunity, one of the major forces that shape immune outcomes is the microbiota. In light of this, we discuss how the presence of commensal bacteria, symbionts and/or coinfections can lead to altered immune responses in the tick that impact pathogen persistence and subsequent transmission. By investigating non-insect arthropod immunity, we will not only better comprehend tick biology, but also unravel the intricate effects that pathogen coinfections have on vector competence and tick-borne disease transmission.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Dana K Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD, USA
| | | | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
93
|
Feng L, Shi Z, Chen X. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis. PLoS Genet 2017; 13:e1006571. [PMID: 28196077 PMCID: PMC5308785 DOI: 10.1371/journal.pgen.1006571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Zhen Shi
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
94
|
JAK/STAT controls organ size and fate specification by regulating morphogen production and signalling. Nat Commun 2017; 8:13815. [PMID: 28045022 PMCID: PMC5216089 DOI: 10.1038/ncomms13815] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/02/2017] [Indexed: 01/20/2023] Open
Abstract
A stable pool of morphogen-producing cells is critical for the development of any organ or tissue. Here we present evidence that JAK/STAT signalling in the Drosophila wing promotes the cycling and survival of Hedgehog-producing cells, thereby allowing the stable localization of the nearby BMP/Dpp-organizing centre in the developing wing appendage. We identify the inhibitor of apoptosis dIAP1 and Cyclin A as two critical genes regulated by JAK/STAT and contributing to the growth of the Hedgehog-expressing cell population. We also unravel an early role of JAK/STAT in guaranteeing Wingless-mediated appendage specification, and a later one in restricting the Dpp-organizing activity to the appendage itself. These results unveil a fundamental role of the conserved JAK/STAT pathway in limb specification and growth by regulating morphogen production and signalling, and a function of pro-survival cues and mitogenic signals in the regulation of the pool of morphogen-producing cells in a developing organ.
Collapse
|
95
|
Londraville RL, Prokop JW, Duff RJ, Liu Q, Tuttle M. On the Molecular Evolution of Leptin, Leptin Receptor, and Endospanin. Front Endocrinol (Lausanne) 2017; 8:58. [PMID: 28443063 PMCID: PMC5385356 DOI: 10.3389/fendo.2017.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Over a decade passed between Friedman's discovery of the mammalian leptin gene (1) and its cloning in fish (2) and amphibians (3). Since 2005, the concept of gene synteny conservation (vs. gene sequence homology) was instrumental in identifying leptin genes in dozens of species, and we now have leptin genes from all major classes of vertebrates. This database of LEP (leptin), LEPR (leptin receptor), and LEPROT (endospanin) genes has allowed protein structure modeling, stoichiometry predictions, and even functional predictions of leptin function for most vertebrate classes. Here, we apply functional genomics to model hundreds of LEP, LEPR, and LEPROT proteins from both vertebrates and invertebrates. We identify conserved structural motifs in each of the three leptin signaling proteins and demonstrate Drosophila Dome protein's conservation with vertebrate leptin receptors. We model endospanin structure for the first time and identify endospanin paralogs in invertebrate genomes. Finally, we argue that leptin is not an adipostat in fishes and discuss emerging knockout models in fishes.
Collapse
Affiliation(s)
- Richard Lyle Londraville
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
- *Correspondence: Richard Lyle Londraville,
| | | | - Robert Joel Duff
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Qin Liu
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Matthew Tuttle
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| |
Collapse
|
96
|
Arp AP, Hunter WB, Pelz-Stelinski KS. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System. Front Physiol 2016; 7:570. [PMID: 27965582 PMCID: PMC5126049 DOI: 10.3389/fphys.2016.00570] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.
Collapse
Affiliation(s)
- Alex P Arp
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Lab, Agricultural Research Service, United State Department of Agriculture Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| |
Collapse
|
97
|
Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS, Teixeira L, Thompson B, Dionne MS, Wood W, Reis e Sousa C. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 2016; 5:e19662. [PMID: 27871362 PMCID: PMC5138034 DOI: 10.7554/elife.19662] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Naren Srinivasan
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Oliver Gordon
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Susan Ahrens
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Franz
- Department of Biochemistry, Biomedical Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Safia Deddouche
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - David Phillips
- Genomics-Equipment Park, The Francis Crick Institute, London, United Kingdom
| | - Ali A Yunus
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | | | | | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marc S Dionne
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
98
|
Kolosov MS, Komandirov MA, Terent’ev VV, Shitov AV, Kiroy RI, Kurayan OE. Immunological study of freshwater crayfish nervous tissue for receptors for neurotrophins and ciliary neurotrophic factor. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Smith AA, Navasa N, Yang X, Wilder CN, Buyuktanir O, Marques A, Anguita J, Pal U. Cross-Species Interferon Signaling Boosts Microbicidal Activity within the Tick Vector. Cell Host Microbe 2016; 20:91-8. [PMID: 27374407 DOI: 10.1016/j.chom.2016.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/13/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
Abstract
Evolution of hematophagy in blood-sucking parasites likely involves communication with their hosts. We find that Ixodes ticks are responsive to IFNγ acquired in a blood meal from mice infected with the Lyme disease-causing bacteria Borrelia burgdorferi, leading to induction of antimicrobial responses. Ixodes ticks parasitizing B. burgdorferi-infected mice upregulated an I. scapularis Rho-like GTPase (IGTPase). IGTPase knockdown enhanced B. burgdorferi levels in post-fed ticks, suggesting this protein controls spirochete survival. Notably, IGTPase was only induced during pathogen acquisition from mice and not upon transmission to naive hosts. Microinjection of ticks with IFNγ induced IGTPase, and ticks parasitizing IFNγ knockout mice, failed to upregulate IGTPase. Additionally, ticks lacking the transcription factor STAT, which signals downstream of IFNγ, did not induce IGTPase. IGTPase expression induced antimicrobial peptides, including Dae2, previously shown to inhibit B. burgdorferi. These results identify an interspecies signaling cascade allowing ticks to detect invading bacteria and mount microbicidal responses.
Collapse
Affiliation(s)
- Alexis A Smith
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Cara N Wilder
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ozlem Buyuktanir
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun 55139, Turkey
| | - Adriana Marques
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Bizkaia, Spain
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.
| |
Collapse
|
100
|
Chakrabarti S, Dudzic JP, Li X, Collas EJ, Boquete JP, Lemaitre B. Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila. PLoS Genet 2016; 12:e1006089. [PMID: 27231872 PMCID: PMC4883764 DOI: 10.1371/journal.pgen.1006089] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
The JAK/STAT pathway is a key signaling pathway in the regulation of development and immunity in metazoans. In contrast to the multiple combinatorial JAK/STAT pathways in mammals, only one canonical JAK/STAT pathway exists in Drosophila. It is activated by three secreted proteins of the Unpaired family (Upd): Upd1, Upd2 and Upd3. Although many studies have established a link between JAK/STAT activation and tissue damage, the mode of activation and the precise function of this pathway in the Drosophila systemic immune response remain unclear. In this study, we used mutations in upd2 and upd3 to investigate the role of the JAK/STAT pathway in the systemic immune response. Our study shows that haemocytes express the three upd genes and that injury markedly induces the expression of upd3 by the JNK pathway in haemocytes, which in turn activates the JAK/STAT pathway in the fat body and the gut. Surprisingly, release of Upd3 from haemocytes upon injury can remotely stimulate stem cell proliferation and the expression of Drosomycin-like genes in the intestine. Our results also suggest that a certain level of intestinal epithelium renewal is required for optimal survival to septic injury. While haemocyte-derived Upd promotes intestinal stem cell activation and survival upon septic injury, haemocytes are dispensable for epithelium renewal upon oral bacterial infection. Our study also indicates that intestinal epithelium renewal is sensitive to insults from both the lumen and the haemocoel. It also reveals that release of Upds by haemocytes coordinates the wound-healing program in multiple tissues, including the gut, an organ whose integrity is critical to fly survival.
Collapse
Affiliation(s)
- Sveta Chakrabarti
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| | - Jan Paul Dudzic
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxue Li
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Jeanne Collas
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Phillipe Boquete
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail: (SC); (BL)
| |
Collapse
|