51
|
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013; 12:86. [PMID: 23915189 PMCID: PMC3750319 DOI: 10.1186/1476-4598-12-86] [Citation(s) in RCA: 2504] [Impact Index Per Article: 208.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore, NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity between NF-κB and other signaling molecules during inflammation and cancer.
Collapse
Affiliation(s)
- Bastian Hoesel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Johannes A Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
52
|
Kim YK, Kwak MJ, Ku B, Suh HY, Joo K, Lee J, Jung JU, Oh BH. Structural basis of intersubunit recognition in elongin BC-cullin 5-SOCS box ubiquitin-protein ligase complexes. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1587-97. [PMID: 23897481 DOI: 10.1107/s0907444913011220] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 02/03/2023]
Abstract
The cullin-RING ubiquitin ligases are multisubunit complexes that ubiquitinate various proteins. Six different cullins encoded by the human genome selectively pair with different adaptors and substrate receptors. It is presently poorly understood how cullin-2 (Cul2) and cullin-5 (Cul5) associate specifically with their adaptor elongin BC and a SOCS-box-containing substrate receptor. Here, crystallographic and mutational analyses of a quaternary complex between the N-terminal half of Cul5, elongin BC and SOCS2 are reported. Cul5 interacts extensively with elongin BC via residues that are highly conserved in Cul2 but not in other cullins. Cul5 also interacts with SOCS2, but via only two residues, Pro184 and Arg186, which are located in the C-terminal part of the SOCS box called the Cul5 box. Pro184 makes a ring-to-ring interaction with Trp53 of Cul5, which is substituted by alanine in Cul2. This interaction is shown to contribute significantly to the overall binding affinity between Cul5 and SOCS2-elongin BC. This study provides structural bases underlying the specificity of Cul5 and Cul2 for elongin BC and their preferential association with Cul5 or Cul2 box-containing substrate receptors.
Collapse
Affiliation(s)
- Young Kwan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhou W, Wei W, Sun Y. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res 2013; 23:599-619. [PMID: 23528706 PMCID: PMC3641602 DOI: 10.1038/cr.2013.44] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
54
|
Satija YK, Bhardwaj A, Das S. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer. Int J Cancer 2013; 133:2759-68. [PMID: 23436247 DOI: 10.1002/ijc.28129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/14/2013] [Indexed: 02/03/2023]
Abstract
E3 ubiquitin ligases and deubiquitylating enzymes (DUBs) are the key components of ubiquitin proteasome system which plays a critical role in cellular protein homeostasis. Any shortcoming in their biological roles can lead to various diseases including cancer. The dynamic interplay between ubiquitylation and deubiquitylation determines the level and activity of several proteins including p53, which is crucial for cellular stress response and tumor suppression pathways. In this review, we describe the different types of E3 ubiquitin ligases including those targeting tumor suppressor p53, SCF ligases and RING type ligases and accentuate on biological functions of few important E3 ligases in the cellular regulatory networks. Tumor suppressor p53 level is tightly regulated by multiple E3 ligases including Mdm2, COP1, Pirh2, etc. SCF ubiquitin ligase complexes are key regulators of cell cycle and signal transduction. BRCA1 and VHL RING type ligases function as tumor suppressors and play an important role in DNA repair and hypoxia response respectively. Further, we discuss the biological consequences of deregulation of the E3 ligases and the implications for cancer development. We also describe deubiquitylases which reverse the process of ubiquitylation and regulate diverse cellular pathways including metabolism, cell cycle control and chromatin remodelling. As the E3 ubiquitin ligases and DUBs work in a substrate specific manner, an improved understanding of them can lead to better therapeutics for cancer.
Collapse
Affiliation(s)
- Yatendra Kumar Satija
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | |
Collapse
|
55
|
Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics 2013; 40:97-106. [PMID: 23522382 PMCID: PMC3861240 DOI: 10.1016/j.jgg.2013.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
Abstract
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin-proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MI 48109, USA
| |
Collapse
|
56
|
Zhao J, Mialki RK, Wei J, Coon TA, Zou C, Chen BB, Mallampalli RK, Zhao Y. SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J 2013; 27:2611-9. [PMID: 23512198 DOI: 10.1096/fj.12-223099] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rac1, a member of the Rho family of GTPases, regulates diverse cellular functions, including cytoskeleton reorganization and cell migration. F-box proteins are major subunits within the Skp1-Cul1-F-box (SCF) E3 ubiquitin ligases that recognize specific substrates for ubiquitination. The role of F-box proteins in regulating Rac1 stability has not been studied. Mouse lung epithelial (MLE12) cells were used to investigate Rac1 stability and cell migration. Screening of an F-box protein library and in vitro ubiquitination assays identified FBXL19, a relatively new member of the F-box protein family that targets Rac1 for its polyubiquitination and proteasomal degradation. Overexpression of FBXL19 decreased both Rac1 active and inactive forms and significantly reduced cellular migration. Protein kinase AKT-mediated phosphorylation of Rac1 at serine(71) was essential for FBXL19-mediated Rac1 ubiquitination and depletion. Lysine(166) within Rac1 was identified as a polyubiquitination acceptor site. Rac1(S71A) and Rac1(K166R) mutant proteins were resistant to FBXL19-mediated ubiquitination and degradation. Further, ectopically expressed FBXL19 reduced cell migration in Rac1-overexpressing cells (P<0.01, Rac1 cells vs. FBXL19+Rac1 cells), but not in Rac1 lysine(166) mutant-overexpressing cells. FBXL19 diminished formation of the migratory leading edge. Thus, SCF(FBXL19) targets Rac1 for its disposal, a process regulated by AKT. These findings provide the first evidence of an F-box protein targeting a small G protein for ubiquitination and degradation to modulate cell migration.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Ave., Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Monda JK, Scott DC, Miller DJ, Lydeard J, King D, Harper JW, Bennett EJ, Schulman BA. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 2013; 21:42-53. [PMID: 23201271 PMCID: PMC3786212 DOI: 10.1016/j.str.2012.10.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/20/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023]
Abstract
Little is known about molecular recognition of acetylated N termini, despite prevalence of this modification among eukaryotic cytosolic proteins. We report that the family of human DCN-like (DCNL) co-E3s, which promote ligation of the ubiquitin-like protein NEDD8 to cullin targets, recognizes acetylated N termini of the E2 enzymes UBC12 and UBE2F. Systematic biochemical and biophysical analyses reveal 40- and 10-fold variations in affinities among different DCNL-cullin and DCNL-E2 complexes, contributing to varying efficiencies of different NEDD8 ligation cascades. Structures of DCNL2 and DCNL3 complexes with N-terminally acetylated peptides from UBC12 and UBE2F illuminate a common mechanism by which DCNL proteins recognize N-terminally acetylated E2s and how selectivity for interactions dependent on N-acetyl-methionine are established through side chains recognizing distal residues. Distinct preferences of UBC12 and UBE2F peptides for inhibiting different DCNLs, including the oncogenic DCNL1 protein, suggest it may be possible to develop small molecules blocking specific N-acetyl-methionine-dependent protein interactions.
Collapse
Affiliation(s)
- Julie K Monda
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Lydeard
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David King
- HHMI Mass Spectrometry Laboratory, University of California, Berkeley, CA 94720, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric J Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
58
|
BRCA1 and Its Network of Interacting Partners. BIOLOGY 2013; 2:40-63. [PMID: 24832651 PMCID: PMC4009870 DOI: 10.3390/biology2010040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/26/2012] [Accepted: 12/20/2012] [Indexed: 01/28/2023]
Abstract
BRCA1 is a large multi-domain protein with a pivotal role in maintaining genome stability and cell cycle progression. Germline mutations in the BRCA1 gene confer an estimated lifetime risk of 60%–80% for breast cancer and 15%–60% for ovarian cancer. Many of the germline mutations associated with cancer development are concentrated in the amino terminal RING domain and the carboxyl terminal BRCT motifs of BRCA1, which are the most well-characterized regions of the protein. The function of BRCA1 in DNA repair, transcription and cell cycle control through the DNA damage response is orchestrated through its association with an impressive repertoire of protein complexes. The association of BRCA1 with ATM/ATR, CHK2 and Aurora A protein kinases regulates cell cycle progression, whilst its association with RAD51 has a direct impact on the repair of double strand DNA breaks (DSBs) by homologous recombination (HR). BRCA1 interactions with the MRN complex of proteins, with the BRCC complex of proteins that exhibit E3 ligase activity and with the phosphor proteins CtIP, BACH1 (BRIP1) and Abraxas (CCDC98) are also implicated in DNA repair mechanisms and cell cycle checkpoint control. BRCA1 through its association with specific proteins and multi-protein complexes is a sentinel of the normal cell cycle control and DNA repair.
Collapse
|
59
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
60
|
Xu X, Keshwani M, Meyer K, Sarikas A, Taylor S, Pan ZQ. Identification of the degradation determinants of insulin receptor substrate 1 for signaling cullin-RING E3 ubiquitin ligase 7-mediated ubiquitination. J Biol Chem 2012; 287:40758-66. [PMID: 23045529 DOI: 10.1074/jbc.m112.405209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Negative feedback regulation of insulin signaling involves ubiquitin-dependent degradation of insulin receptor substrate 1 (IRS1). RESULTS Cullin-RING E3 ubiquitin ligase 7 (CRL7) mediates the ubiquitination of IRS1 in hyperphosphorylated form. CONCLUSION Multisite IRS1 phosphorylation triggers interactions with CRL7 for ubiquitin modification. SIGNIFICANCE Insulin signaling is self-restrained when its downstream effector kinases are hyperactivated to trigger the negative feedback inhibition. Hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and its effector kinase S6 kinase 1 (S6K1) is known to trigger multisite seryl phosphorylation of insulin receptor substrate 1 (IRS1), leading to its ubiquitination and degradation. This negative feedback inhibition functions to restrain PI3K activity and plays critical roles in the pathogenesis of cancer and type II diabetes. Recent work has implicated a role for cullin-RING E3 ubiquitin ligase 7 (CRL7) in targeting IRS1 for mTORC1/S6K1-dependent degradation. In the present study we have employed both cell-based degradation and reconstituted ubiquitination approaches to define molecular features associated with IRS1 critical for CRL7-mediated ubiquitination and degradation. We have mapped IRS1 degradation signal sequence to its N-terminal 574 amino acid residues, of which the integrity of Ser-307/Ser-312 and Ser-527, each constituting a S6K1 phosphorylation consensus site, was indispensible for supporting CRL7-forced degradation. In vitro, S6K1 was able to support the ubiquitination of bacterially expressed IRS1 N-terminal fragment by CRL7 but at low levels. In contrast, CRL7 supported efficient ubiquitination of IRS1 N-terminal fragment in hyperphosphorylated form, which was isolated from infected insect cells, suggesting requirement of additional phosphorylation by kinases yet to be identified. Finally, removal of IRS1 amino acids 1-260 led to substantial reduction of ubiquitination efficiency, suggesting a role for this region in mediating productive interactions with CRL7. The requirement of multisite phosphorylation and the N terminus of IRS1 for its turnover may ensure that complete IRS1 degradation occurs only when mTORC1 and S6K1 reach exceedingly high levels.
Collapse
Affiliation(s)
- Xinsong Xu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
61
|
Blees JS, Bokesch HR, Rübsamen D, Schulz K, Milke L, Bajer MM, Gustafson KR, Henrich CJ, McMahon JB, Colburn NH, Schmid T, Brüne B. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase β-TrCP1. PLoS One 2012; 7:e46567. [PMID: 23056346 PMCID: PMC3462793 DOI: 10.1371/journal.pone.0046567] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/31/2012] [Indexed: 12/20/2022] Open
Abstract
Loss of the tumor suppressor Pdcd4 was reported for various tumor entities and proposed as a prognostic marker in tumorigenesis. We previously characterized decreased Pdcd4 protein stability in response to mitogenic stimuli, which resulted from p70(S6K1)-dependent protein phosphorylation, β-TrCP1-mediated ubiquitination, and proteasomal destruction. Following high-throughput screening of natural product extract libraries using a luciferase-based reporter assay to monitor phosphorylation-dependent proteasomal degradation of the tumor suppressor Pdcd4, we succeeded in showing that a crude extract from Eriophyllum lanatum stabilized Pdcd4 from TPA-induced degradation. Erioflorin was identified as the active component and inhibited not only degradation of the Pdcd4-luciferase-based reporter but also of endogenous Pdcd4 at low micromolar concentrations. Mechanistically, erioflorin interfered with the interaction between the E3-ubiquitin ligase β-TrCP1 and Pdcd4 in cell culture and in in vitro binding assays, consequently decreasing ubiquitination and degradation of Pdcd4. Interestingly, while erioflorin stabilized additional β-TrCP-targets (such as IκBα and β-catenin), it did not prevent the degradation of targets of other E3-ubiquitin ligases such as p21 (a Skp2-target) and HIF-1α (a pVHL-target), implying selectivity for β-TrCP. Moreover, erioflorin inhibited the tumor-associated activity of known Pdcd4- and IκBα-regulated αtranscription factors, that is, AP-1 and NF-κB, altered cell cycle progression and suppressed proliferation of various cancer cell lines. Our studies succeeded in identifying erioflorin as a novel Pdcd4 stabilizer that inhibits the interaction of Pdcd4 with the E3-ubiquitin ligase β-TrCP1. Inhibition of E3-ligase/target-protein interactions may offer the possibility to target degradation of specific proteins only as compared to general proteasome inhibition.
Collapse
Affiliation(s)
- Johanna S. Blees
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heidi R. Bokesch
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Daniela Rübsamen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Kathrin Schulz
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Larissa Milke
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Magdalena M. Bajer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Kirk R. Gustafson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Curtis J. Henrich
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nancy H. Colburn
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
62
|
β-TrCP-mediated IRAK1 degradation releases TAK1-TRAF6 from the membrane to the cytosol for TAK1-dependent NF-κB activation. Mol Cell Biol 2012; 32:3990-4000. [PMID: 22851693 DOI: 10.1128/mcb.00722-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is phosphorylated, ubiquitinated, and degraded upon IL-1 stimulation. IRAK1 can be ubiquitinated through both K48- and K63-linked polyubiquitin chains upon IL-1 stimulation. While the Pellino proteins have been shown to meditate K63-linked polyubiquitination on IRAK1, the E3 ligase for K48-linked ubiquitination of IRAK1 has not been identified. In this study, we report that the SCF (Skp1-Cullin1-F-box)-β-TrCP complex functions as the K48-linked ubiquitination E3 ligase for IRAK1. IL-1 stimulation induced the interaction of IRAK1 with Cullin1 and β-TrCP. Knockdown of β-TrCP1 and β-TrCP2 attenuated the K48-linked ubiquitination and degradation of IRAK1. Importantly, β-TrCP deficiency abolished the translocation TAK1-TRAF6 complex from the membrane to the cytosol, resulting in a diminishment of the IL-1-induced TAK1-dependent pathway. Taken together, these results implicate a positive role of β-TrCP-mediated IRAK1 degradation in IL-1-induced TAK1 activation.
Collapse
|
63
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
64
|
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is a busy ground for the action of the ubiquitin-proteasome system; many of the signaling steps are coordinated by protein ubiquitination. The end point of this pathway is to induce transcription, and to this end, there is a need to overcome a major obstacle, a set of inhibitors (IκBs) that bind NF-κB and prohibit either the nuclear entry or the DNA binding of the transcription factor. Two major signaling steps are required for the elimination of the inhibitors: activation of the IκB kinase (IKK) and degradation of the phosphorylated inhibitors. IKK activation and IκB degradation involve different ubiquitination modes; the latter is mediated by a specific E3 ubiquitin ligase SCF(β-TrCP) . The F-box component of this E3, β-TrCP, recognizes the IκB degron formed following phosphorylation by IKK and thus couples IκB phosphorylation to ubiquitination. SCF(β-TrCP) -mediated IκB ubiquitination and degradation is a very efficient process, often resulting in complete degradation of the key inhibitor IκBα within a few minutes of cell stimulation. In vivo ablation of β-TrCP results in accumulation of all the IκBs and complete NF-κB inhibition. As many details of IκB-β-TrCP interaction have been worked out, the development of β-TrCP inhibitors might be a feasible therapeutic approach for NF-κB-associated human disease. However, we may still need to advance our understanding of the mechanism of IκB degradation as well as of the diverse functions of β-TrCP in vivo.
Collapse
Affiliation(s)
- Naama Kanarek
- Lautenberg Centre for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
65
|
Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB, Mittag T, DeCaprio JA, Schulman BA. Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol Cell 2012; 47:371-82. [PMID: 22748924 DOI: 10.1016/j.molcel.2012.05.044] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/23/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF(FBW7) complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.
Collapse
Affiliation(s)
- David M Duda
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lau AW, Fukushima H, Wei W. The Fbw7 and betaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Front Biosci (Landmark Ed) 2012; 17:2197-212. [PMID: 22652772 DOI: 10.2741/4045] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ubiquitin Proteasome System (UPS) is a major regulator of protein abundance in the cell. The UPS influences the functions of multiple biological processes by targeting key regulators for destruction. E3 ubiquitin ligases are a vital component of the UPS machinery, working with E1 and E2 enzymes to bind substrates and facilitate the transfer of ubiquitin molecules onto the target protein. This poly-ubiquitination, in turn, directs the modified proteins for proteolysis by the 26S proteasome. As the UPS regulates the degradation of multiple oncogenes and tumor suppressors, the dysregulation of this pathway is known to promote various diseases including cancer. While E1 and E2 enzymes have only been minimally linked to cancer development, burgeoning amounts of evidence have implicated loss or gain of E3 function as a key factor in cancer initiation and progression. This review will examine the literature on two SCF-type E3 ligases, SCFFbw7 and SCFbeta-TRCP. In particular, we will highlight novel substrates recently identified for these two E3 ligases, and further discuss how UPS regulation of these targets may promote carcinogenesis.
Collapse
Affiliation(s)
- Alan W Lau
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
67
|
Mackintosh C, García-Domínguez DJ, Ordóñez JL, Ginel-Picardo A, Smith PG, Sacristán MP, de Álava E. WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Ewing sarcoma cells. Oncogene 2012; 32:1441-51. [DOI: 10.1038/onc.2012.153] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
68
|
Abstract
Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases. CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR), development, immune response, transcriptional regulation, circadian rhythm, viral infection, and protein quality control. One of the main functions of CRLs is to regulate the DDR, a fundamental signaling cascade that maintains genome integrity. In this review, we will discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
Collapse
Affiliation(s)
- Ju-Mei Li
- Department of Biochemistry and Molecular Biology, Medical School, The University of Texas Health Science Center at Houston Houston, TX, USA
| | | |
Collapse
|
69
|
Spratt DE, Wu K, Kovacev J, Pan ZQ, Shaw GS. Selective recruitment of an E2~ubiquitin complex by an E3 ubiquitin ligase. J Biol Chem 2012; 287:17374-17385. [PMID: 22433864 PMCID: PMC3366790 DOI: 10.1074/jbc.m112.353748] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kenneth Wu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574
| | - Jordan Kovacev
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
70
|
von Zeska Kress MR, Harting R, Bayram Ö, Christmann M, Irmer H, Valerius O, Schinke J, Goldman GH, Braus GH. The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development. Mol Microbiol 2012; 83:1162-77. [PMID: 22329854 DOI: 10.1111/j.1365-2958.2012.07999.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects in the COP9 signalosome (CSN) impair multicellular development, including embryonic plant or animal death or a block in sexual development of the fungus Aspergillus nidulans. CSN deneddylates cullin-RING ligases (CRLs), which are activated by covalent linkage to ubiquitin-like NEDD8. Deneddylation allows CRL disassembly for subsequent reassembly. An attractive hypothesis is a consecutive order of CRLs for development, which demands repeated cycles of neddylation and deneddylation for reassembling CRLs. Interruption of these cycles could explain developmental blocks caused by csn mutations. This predicts an accumulation of neddylated CRLs exhibiting developmental functions when CSN is dysfunctional. We tested this hypothesis in A. nidulans, which tolerates reduced levels of neddylation for growth. We show that only genes for CRL subunits or neddylation are essential, whereas CSN is primarily required for development. We used functional tagged NEDD8, recruiting all three fungal cullins. Cullins are associated with the CSN1/CsnA subunit when deneddylation is defective. Two CRLs were identified which are specifically involved in differentiation and accumulate during the developmental block. This suggests that an active CSN complex is required to counteract the accumulation of specific CRLs during development.
Collapse
Affiliation(s)
- Marcia Regina von Zeska Kress
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T. The Role of Elongin BC-Containing Ubiquitin Ligases. Front Oncol 2012; 2:10. [PMID: 22649776 PMCID: PMC3355856 DOI: 10.3389/fonc.2012.00010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/17/2012] [Indexed: 02/06/2023] Open
Abstract
The Elongin complex was originally identified as a positive regulator of RNA polymerase II and is composed of a transcriptionally active subunit (A) and two regulatory subunits (B and C). The Elongin BC complex enhances the transcriptional activity of Elongin A. “Classical” SOCS box-containing proteins interact with the Elongin BC complex and have ubiquitin ligase activity. They also interact with the scaffold protein Cullin (Cul) and the RING domain protein Rbx and thereby are members of the Cullin RING ligase (CRL) superfamily. The Elongin BC complex acts as an adaptor connecting Cul and SOCS box proteins. Recently, it was demonstrated that classical SOCS box proteins can be further divided into two groups, Cul2- and Cul5-type proteins. The classical SOCS box-containing protein pVHL is now classified as a Cul2-type protein. The Elongin BC complex containing CRL family is now considered two distinct protein assemblies, which play an important role in regulating a variety of cellular processes such as tumorigenesis, signal transduction, cell motility, and differentiation.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
72
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
73
|
SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell 2011; 21:1062-76. [PMID: 22118770 DOI: 10.1016/j.devcel.2011.09.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2011] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
SAG/RBX2/ROC2 protein is an essential RING component of SCF E3 ubiquitin ligase. The role of SAG during embryogenesis remains unknown. We report a critical role for SAG in controlling vascular and neural development by modulating RAS activity via promoting degradation of neurofibromatosis type 1 (NF1). Mice mutant for Sag died at embryonic day 11.5-12.5 with severe abnormalities in vascular and nervous system. Sag inactivation caused Nf1 accumulation and Ras inhibition, which blocks embryonic stem (ES) cells from undergoing endothelial differentiation and inhibits angiogenesis and proliferation in teratomas. Simultaneous Nf1 deletion fully rescues the differentiation defects in Sag(-/-) ES cells and partially rescues vascular and neural defects in Sag(-/-) embryos, suggesting that the effects of Sag deletion may not be solely explained by Nf1 misregulation. Collectively, our study identifies NF1 as a physiological substrate of SAG-CUL1-FBXW7 E3 ligase and establishes a ubiquitin-dependent regulatory mechanism for the NF1-RAS pathway during embryogenesis.
Collapse
|
74
|
Schulman BA. Twists and turns in ubiquitin-like protein conjugation cascades. Protein Sci 2011; 20:1941-54. [PMID: 22012881 DOI: 10.1002/pro.750] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 12/19/2022]
Abstract
Post-translational modification by ubiquitin-like proteins (UBLs) is a predominant eukaryotic regulatory mechanism. The vast reach of this form of regulation extends to virtually all eukaryotic processes that involve proteins. UBL modifications play critical roles in controlling the cell cycle, transcription, DNA repair, stress responses, signaling, immunity, plant growth, embryogenesis, circadian rhythms, and a plethora of other pathways. UBLs dynamically modulate target protein properties including enzymatic activity, conformation, half-life, subcellular localization, and intermolecular interactions. Moreover, the enzymatic process of UBL ligation to proteins is itself dynamic, with the UBL moving between multiple enzyme active sites and ultimately to a target. This review highlights our work on how the dynamic conformations of selected enzymes catalyzing UBL ligation help mediate this fascinating form of protein regulation.
Collapse
Affiliation(s)
- Brenda A Schulman
- Department of Structural Biology and Tumor Cell Biology and Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
75
|
da Silva Almeida AC, Strous GJ, van Rossum AGSH. βTrCP controls GH receptor degradation via two different motifs. Mol Endocrinol 2011; 26:165-77. [PMID: 22034227 DOI: 10.1210/me.2011-1211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The physiological roles of GH are broad and include metabolism regulation and promotion of somatic growth. Therefore, the responsiveness of cells to GH must be tightly regulated. This is mainly achieved by a complex and well-controlled mechanism of GH receptor (GHR) endocytosis. GHR endocytosis occurs independently of GH and requires the ubiquitin ligase, SCF (βTrCP) that is recruited to the ubiquitin-dependent endocytosis (UbE) motif in the cytoplasmic tail of the GHR. In this study we report that, in addition to the UbE motif, a downstream degron, DSGRTS, binds to βTrCP. The WD40 residues on βTrCP involved in the interaction with this sequence are identical to the ones necessary for binding the classical motif, DSGxxS, in inhibitor of NFκB signalling, and β-catenin. Previously, we showed that this motif is not involved in GH-induced endocytosis. We show here that the DSGRTS sequence significantly contributes to GHR endocytosis/degradation in basal conditions, whereas the UbE motif is involved both in basal and GH-induced conditions. These findings explain the high rate of GHR degradation under basal conditions, which is important for regulating the responsiveness of cells to GH.
Collapse
Affiliation(s)
- Ana C da Silva Almeida
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
76
|
Emanuele MJ, Elia AEH, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PWC, Yen HCS, Elledge SJ. Global identification of modular cullin-RING ligase substrates. Cell 2011; 147:459-74. [PMID: 21963094 DOI: 10.1016/j.cell.2011.09.019] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/29/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Cullin-RING ligases (CRLs) represent the largest E3 ubiquitin ligase family in eukaryotes, and the identification of their substrates is critical to understanding regulation of the proteome. Using genetic and pharmacologic Cullin inactivation coupled with genetic (GPS) and proteomic (QUAINT) assays, we have identified hundreds of proteins whose stabilities or ubiquitylation status are regulated by CRLs. Together, these approaches yielded many known CRL substrates as well as a multitude of previously unknown putative substrates. We demonstrate that one substrate, NUSAP1, is an SCF(Cyclin F) substrate during S and G2 phases of the cell cycle and is also degraded in response to DNA damage. This collection of regulated substrates is highly enriched for nodes in protein interaction networks, representing critical connections between regulatory pathways. This demonstrates the broad role of CRL ubiquitylation in all aspects of cellular biology and provides a set of proteins likely to be key indicators of cellular physiology.
Collapse
Affiliation(s)
- Michael J Emanuele
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol Cell Biol 2011; 31:4513-23. [PMID: 21911473 DOI: 10.1128/mcb.05733-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Skp1-Cul1-F-box (SCF) E3 ubiquitin ligase complexes modulate the accumulation of key cell cycle regulatory proteins. Following the G(1)/S transition, SCF(Fbx4) targets cyclin D1 for proteasomal degradation, a critical event necessary for DNA replication fidelity. Deregulated cyclin D1 drives tumorigenesis, and inactivating mutations in Fbx4 have been identified in human cancer, suggesting that Fbx4 may function as a tumor suppressor. Fbx4(+/-) and Fbx4(-/-) mice succumb to multiple tumor phenotypes, including lymphomas, histiocytic sarcomas and, less frequently, mammary and hepatocellular carcinomas. Tumors and premalignant tissue from Fbx4(+/-) and Fbx4(-/-) mice exhibit elevated cyclin D1, an observation consistent with cyclin D1 as a target of Fbx4. Molecular dissection of the Fbx4 regulatory network in murine embryonic fibroblasts (MEFs) revealed that loss of Fbx4 results in cyclin D1 stabilization and nuclear accumulation throughout cell division. Increased proliferation in early passage primary MEFs is antagonized by DNA damage checkpoint activation, consistent with nuclear cyclin D1-driven genomic instability. Furthermore, Fbx4(-/-) MEFs exhibited increased susceptibility to Ras-dependent transformation in vitro, analogous to tumorigenesis observed in mice. Collectively, these data reveal a requisite role for the SCF(Fbx4) E3 ubiquitin ligase in regulating cyclin D1 accumulation, consistent with tumor suppressive function in vivo.
Collapse
|
78
|
Wu K, Yan H, Fang L, Wang X, Pfleger C, Jiang X, Huang L, Pan ZQ. Mono-ubiquitination drives nuclear export of the human DCN1-like protein hDCNL1. J Biol Chem 2011; 286:34060-70. [PMID: 21813641 DOI: 10.1074/jbc.m111.273045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conjugation of Nedd8 to a cullin protein, termed neddylation, is an evolutionarily conserved process that functions to activate the cullin-RING family E3 ubiquitin ligases, leading to increased proteasomal degradation of a wide range of substrate proteins. Recent emerging evidence demonstrates that cellular neddylation requires the action of Dcn1, which, in humans, consists of five homologues designated as hDCNL1-5. Here we revealed a previously unknown mechanism that regulates hDCNL1. In cultured mammalian cells ectopically expressed hDCNL1 was mono-ubiquitinated predominantly at K143, K149, and K171. Using a classical chromatographic purification strategy, we identified Nedd4-1 as an E3 ligase that can catalyze mono-ubiquitination of hDCNL1 in a reconstituted ubiquitination system. In addition, the hDCNL1 N-terminal ubiquitin-binding domain is necessary and sufficient to mediate mono-ubiquitination. Finally, fluorescence microscopic and subcellular fractionation analyses revealed a role for mono-ubiquitination in driving nuclear export of hDCNL1. Taken together, these results suggest a mono-ubiquitination-mediated mechanism that governs nuclear-cytoplasmic trafficking of hDCNL1, thereby regulating hDCNL1-dependent activation of the cullin-RING E3 ubiquitin ligases in selected cellular compartments.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Kigoshi Y, Tsuruta F, Chiba T. Ubiquitin ligase activity of Cul3-KLHL7 protein is attenuated by autosomal dominant retinitis pigmentosa causative mutation. J Biol Chem 2011; 286:33613-21. [PMID: 21828050 DOI: 10.1074/jbc.m111.245126] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Substrate-specific protein degradation mediated by the ubiquitin proteasome system (UPS) is crucial for the proper function of the cell. Proteins are specifically recognized and ubiquitinated by the ubiquitin ligases (E3s) and are then degraded by the proteasome. BTB proteins act as the substrate recognition subunit that recruits their cognate substrates to the Cullin 3-based multisubunit E3s. Recently, it was reported that missense mutations in KLHL7, a BTB-Kelch protein, are related to autosomal dominant retinitis pigmentosa (adRP). However, the involvement of KLHL7 in the UPS and the outcome of the adRP causative mutations were unknown. In this study, we show that KLHL7 forms a dimer, assembles with Cul3 through its BTB and BACK domains, and exerts E3 activity. Lys-48-linked but not Lys-63-linked polyubiquitin chain co-localized with KLHL7, which increased upon proteasome inhibition suggesting that KLHL7 mediates protein degradation via UPS. An adRP-causative missense mutation in the BACK domain of KLHL7 attenuated only the Cul3 interaction but not dimerization. Nevertheless, the incorporation of the mutant as a heterodimer in the Cul3-KLHL7 complex diminished the E3 ligase activity. Together, our results suggest that KLHL7 constitutes a Cul3-based E3 and that the disease-causing mutation inhibits ligase activity in a dominant negative manner, which may lead to the inappropriate accumulation of the substrates targeted for proteasomal degradation.
Collapse
Affiliation(s)
- Yu Kigoshi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | |
Collapse
|
80
|
Herman AG, Hayano M, Poyurovsky MV, Shimada K, Skouta R, Prives C, Stockwell BR. Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov 2011; 1:312-25. [PMID: 22586610 DOI: 10.1158/2159-8290.cd-11-0104] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
E3 ubiquitin ligases are of interest as drug targets for their ability to regulate protein stability and function. The oncogene Mdm2 is an attractive E3 ligase to target, as it is the key negative regulator of the tumor suppressor p53, which controls the transcription of genes involved in cell fate. Overexpression of Mdm2 facilitates tumorigenesis by inactivating p53, and through p53-independent oncogenic effects. We developed a high-throughput cellular Mdm2 auto-ubiquitination assay, which we used to discover a class of small-molecule Mdm2 ligase activity inhibitors. These compounds inhibit Mdm2 and p53 ubiquitination in cells, reduce viability of cells with wild-type p53, and synergize with DNA-damaging agents to cause cell death. We determined that these compounds effectively inhibit the E3 ligase activity of the Mdm2-MdmX hetero-complex. This mechanism may be exploitable to create a new class of anti-tumor agents.
Collapse
Affiliation(s)
- Ariel G Herman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Berndsen CE, Wolberger C. A spectrophotometric assay for conjugation of ubiquitin and ubiquitin-like proteins. Anal Biochem 2011; 418:102-10. [PMID: 21771579 PMCID: PMC3178097 DOI: 10.1016/j.ab.2011.06.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/20/2023]
Abstract
Ubiquitination is a widely studied regulatory modification involved in protein degradation, DNA damage repair, and the immune response. Ubiquitin is conjugated to a substrate lysine in an enzymatic cascade involving an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. Assays for ubiquitin conjugation include electrophoretic mobility shift assays and detection of epitope-tagged or radiolabeled ubiquitin, which are difficult to quantitate accurately and are not amenable to high-throughput screening. We have developed a colorimetric assay that quantifies ubiquitin conjugation by monitoring pyrophosphate released in the first enzymatic step in ubiquitin transfer, the ATP-dependent charging of the E1 enzyme. The assay is rapid, does not rely on radioactive labeling, and requires only a spectrophotometer for detection of pyrophosphate formation. We show that pyrophosphate production by E1 is dependent on ubiquitin transfer and describe how to optimize assay conditions to measure E1, E2, and E3 activity. The kinetics of polyubiquitin chain formation by Ubc13-Mms2 measured by this assay are similar to those determined by gel-based assays, indicating that the data produced by this method are comparable to methods that measure ubiquitin transfer directly. This assay is adaptable to high-throughput screening of ubiquitin and ubiquitin-like conjugating enzymes.
Collapse
Affiliation(s)
- Christopher E Berndsen
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute and the Johns Hopkins University School of Medicine, Baltimore, MD 21202, USA
| | | |
Collapse
|
82
|
Kim J, Roeder RG. Nucleosomal H2B ubiquitylation with purified factors. Methods 2011; 54:331-8. [PMID: 21443952 PMCID: PMC3118980 DOI: 10.1016/j.ymeth.2011.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 11/25/2022] Open
Abstract
Diverse histone modifications play important roles in transcriptional regulation throughout eukaryotes, and recent studies have implicated histone H2B ubiquitylation in active transcription. The necessity of at least three enzymes (E1-E3), as well as ongoing transcription events, for efficient H2B ubiquitylation complicates mechanistic studies of H2B ubiquitylation relative to other histone modifications. Here we describe experimental protocols for preparation of human H2B ubiquitylation factors, ubiquitylation substrates and transcription factors, as well as the use of these factors to establish H2B ubiquitylation mechanisms during transcription. The methods include reliable protein interaction and E3 ubiquitylation assays that can be widely applied to confirm cognate E2-E3 pairs in other protein ubiquitylation systems, optimized in vitro ubiquitylation assays for various histone substrates, and a transcription-coupled H2B ubiquitylation assay in a highly purified transcription system. These comprehensive analyses have revealed (i) that RAD6 serves as the cognate E2 for the BRE1 complex in human cells, as previously established in yeast, (ii) that RAD6, through direct interaction with the BRE1 complex, ubiquitylates chromatinized H2B at lysine 120 and (iii) that PAF1 complex-mediated transcription is required for efficient H2B ubiquitylation. This experimental system permits detailed mechanistic analyses of H2B ubiquitylation during transcription by providing information concerning both precise enzyme functions and physical interactions between the transcription and histone modification machineries.
Collapse
Affiliation(s)
- Jaehoon Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
83
|
Nai G, Marques M. Role of ROC1 protein in the control of cyclin D1 protein expression in skin melanomas. Pathol Res Pract 2011; 207:174-81. [PMID: 21300445 DOI: 10.1016/j.prp.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/03/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
A decrease in the level of the ROC1 protein, which is involved in cyclin D1 degradation, might explain an increase in cyclin D1 protein in the absence of gene overexpression. This study aimed to investigate the relationship between ROC1 and cyclin D1 expression in skin melanomas. A total of 62 cases of primary skin melanomas and 58 cases of compound melanocytic nevi were assessed. Immunohistochemistry was performed using cyclin D1 and ROC1 antibodies, and fluorescent in situ hybridization was used to assess the amplification of the CCND1 gene. ROC1 was expressed in >50% of cells in 87.9% of the melanocytic nevus cases and in 45.2% of the melanoma cases (p=0.0014). There was a significant negative correlation between ROC1 and cyclin D1 expression in all cases (p=0.0008985). In comparison with cyclin D1, ROC1 expression was increased in 86.2% of the melanocytic nevi and in 45.2% of the melanomas (p<0.001). Among the non-amplified melanomas, 50% expressed cyclin D1 in >50% of the cells and expressed ROC1 in <25%. ROC1 expression is negatively correlated with cyclin D1 expression, demonstrating its importance in the degradation of cyclin D1 in melanomas.
Collapse
Affiliation(s)
- Gisele Nai
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Brazil.
| | | |
Collapse
|
84
|
Ryu YS, Lee Y, Lee KW, Hwang CY, Maeng JS, Kim JH, Seo YS, You KH, Song B, Kwon KS. TRIM32 protein sensitizes cells to tumor necrosis factor (TNFα)-induced apoptosis via its RING domain-dependent E3 ligase activity against X-linked inhibitor of apoptosis (XIAP). J Biol Chem 2011; 286:25729-38. [PMID: 21628460 DOI: 10.1074/jbc.m111.241893] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.
Collapse
Affiliation(s)
- Yeung Sook Ryu
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Lass A, Cocklin R, Scaglione KM, Skowyra M, Korolev S, Goebl M, Skowyra D. The loop-less tmCdc34 E2 mutant defective in polyubiquitination in vitro and in vivo supports yeast growth in a manner dependent on Ubp14 and Cka2. Cell Div 2011; 6:7. [PMID: 21453497 PMCID: PMC3080790 DOI: 10.1186/1747-1028-6-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The S73/S97/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and growth regulation. The inability of the loop-less Δ12Cdc34 mutant to support growth was linked to its inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in other E2s, supports growth. Whether tmCdc34 supports growth despite defective polyubiquitination, or the S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are unknown. RESULTS tmCdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sic1 substrate polyubiquitination is similar to the defect observed in reactions with Δ12Cdc34 that cannot support growth. The synthesis of free polyubiquitin by tmCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCFCdc4. Phosphorylation of C-terminal serines in tmCdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin chains, likely by promoting their attachment to substrate. Nevertheless, tmCDC34 yeast are sensitive to loss of the Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains produced in tmCDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from substrates, have an altered structure. CONCLUSIONS The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust polyubiquitination mediated by the S73/S97/loop motif is thus not necessary for Cdc34 role in yeast viability, at least under typical laboratory conditions.
Collapse
Affiliation(s)
- Agnieszka Lass
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ross Cocklin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth M Scaglione
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Goebl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
86
|
Ahn J, Novince Z, Concel J, Byeon CH, Makhov AM, Byeon IJL, Zhang P, Gronenborn AM. The Cullin-RING E3 ubiquitin ligase CRL4-DCAF1 complex dimerizes via a short helical region in DCAF1. Biochemistry 2011; 50:1359-67. [PMID: 21226479 PMCID: PMC3072279 DOI: 10.1021/bi101749s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cullin4A-RING E3 ubiquitin ligase (CRL4) is a multisubunit protein complex, comprising cullin4A (CUL4), RING H2 finger protein (RBX1), and DNA damage-binding protein 1 (DDB1). Proteins that recruit specific targets to CRL4 for ubiquitination (ubiquitylation) bind the DDB1 adaptor protein via WD40 domains. Such CRL4 substrate recognition modules are DDB1- and CUL4-associated factors (DCAFs). Here we show that, for DCAF1, oligomerization of the protein and the CRL4 complex occurs via a short helical region (residues 845-873) N-terminal to DACF1's own WD40 domain. This sequence was previously designated as a LIS1 homology (LisH) motif. The oligomerization helix contains a stretch of four Leu residues, which appear to be essential for α-helical structure and oligomerization. In vitro reconstituted CRL4-DCAF1 complexes (CRL4(DCAF1)) form symmetric dimers as visualized by electron microscopy (EM), and dimeric CRL4(DCAF1) is a better E3 ligase for in vitro ubiquitination of the UNG2 substrate compared to a monomeric complex.
Collapse
Affiliation(s)
- Jinwoo Ahn
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Zach Novince
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Jason Concel
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Chang-Hyeock Byeon
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Alexander M. Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - In-Ja L. Byeon
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Peijun Zhang
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Angela M. Gronenborn
- University of Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| |
Collapse
|
87
|
Abstract
The SCF multisubunit complex (Skp1, Cullins, F-box proteins) E3 ubiquitin ligase, also known as CRL (Cullin-RING ubiquitin Ligase) is the largest E3 ubiquitin ligase family that promotes the ubiquitination of various regulatory proteins for targeted degradation, thus regulating many biological processes, including cell cycle progression, signal transduction, and DNA replication. The efforts to discover small molecule inhibitors of a SCF-type ligase or its components were expedited by the FDA approval of Bortezomib (also known as Velcade or PS-341), the first (and only) class of general proteasome inhibitor, for the treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma. Although Bortezomib has demonstrated a certain degree of cancer cell selectivity with measurable therapeutic index, the drug is, in general, cytotoxic due to its inhibition of overall protein degradation. An alternative and ideal approach is to target a specific E3 ligase, known to be activated in human cancer, for a high level of specificity and selectivity with less associated toxicity, since such inhibitors would selectively stabilize a specific set of cellular proteins regulated by this E3. Here, we review recent advances in validation of SCF E3 ubiquitin ligase complex as an attractive anti-cancer target and discuss how MLN4924, a small molecule inhibitor of NEDD8-activating enzyme, can be developed as a novel class of anticancer agents by inhibiting SCF E3 ligase complex via removal of cullin neddylation. Finally, we discuss under future perspective how basic research on SCF biology will direct the drug discovery efforts surrounding this target.
Collapse
Affiliation(s)
- L. Jia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 4424B Medical Science-I, 1301 Catherine Street, Ann Arbor, MI 48109, USA
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Y. Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 4424B Medical Science-I, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
88
|
Helmstaedt K, Schwier EU, Christmann M, Nahlik K, Westermann M, Harting R, Grond S, Busch S, Braus GH. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 2010; 22:153-64. [PMID: 21119001 PMCID: PMC3016973 DOI: 10.1091/mbc.e10-08-0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left.
Collapse
Affiliation(s)
- Kerstin Helmstaedt
- Institute of Microbiology and Genetics, Georg-August-Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
A vaccinia virus deletion mutant reveals the presence of additional inhibitors of NF-kappaB. J Virol 2010; 85:883-94. [PMID: 20980497 DOI: 10.1128/jvi.01267-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The classical nuclear factor kappa B (NF-κB) signaling pathway is an important regulator of inflammation and innate immunity that is activated by a wide variety of stimuli, including virus infection, tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β). Poxviruses, including vaccinia virus (VV) and ectromelia virus, encode multiple proteins that function in immune evasion. Recently, a growing number of genes encoded by poxviruses have been shown to target and disrupt the NF-κB signaling pathway. To determine if additional gene products that interfere with NF-κB signaling existed, we used a vaccinia virus deletion mutant, VV811, which is missing 55 open reading frames lacking all known inhibitors of TNF-α-induced NF-κB activation. Immunofluorescence analysis of HeLa cells treated with TNF-α and IL-1β revealed that NF-κB translocation to the nucleus was inhibited in VV811-infected cells. This was further confirmed through Western blotting of cytoplasmic and nuclear extracts for NF-κB. Additionally, VV811 infection inhibited TNF-α-induced IκBα degradation. In contrast to vaccinia virus strain Copenhagen (VVCop)-infected cells, VV811 infection resulted in the dramatic accumulation of phosphorylated IκBα. Correspondingly, coimmunoprecipitation assays demonstrated that the NF-κB-inhibitory IκBα-p65-p50 complex was intact in VV811-infected cells. Significantly, cells treated with 1-β-d-arabinofuranosylcytosine, an inhibitor of poxvirus late gene expression, demonstrated that an additional vaccinia virus late gene was involved in the stabilization of IκBα. Overall, this work indicates that unidentified inhibitors of NF-κB exist in vaccinia virus. The complex inhibition of NF-κB by vaccinia virus illustrates the importance of NF-κB activation in the antiviral response.
Collapse
|
90
|
Kanarek N, London N, Schueler-Furman O, Ben-Neriah Y. Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold Spring Harb Perspect Biol 2010; 2:a000166. [PMID: 20182612 DOI: 10.1101/cshperspect.a000166] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The key step in NF-kappaB activation is the release of the NF-kappaB dimers from their inhibitory proteins, achieved via proteolysis of the IkappaBs. This irreversible signaling step constitutes a commitment to transcriptional activation. The signal is eventually terminated through nuclear expulsion of NF-kappaB, the outcome of a negative feedback loop based on IkappaBalpha transcription, synthesis, and IkappaBalpha-dependent nuclear export of NF-kappaB (Karin and Ben-Neriah 2000). Here, we review the process of signal-induced IkappaB ubiquitination and degradation by comparing the degradation of several IkappaBs and discussing the characteristics of IkappaBs' ubiquitin machinery.
Collapse
Affiliation(s)
- Naama Kanarek
- Department of Immunology and Genetics and Biotechnology, Hebrew University-Hadassah Medical School, Institute of Medical Research Israel-Canada, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
91
|
Tan M, Zhu Y, Kovacev J, Zhao Y, Pan ZQ, Spitz DR, Sun Y. Disruption of Sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-kappaB activation in mouse embryonic stem cells. Free Radic Biol Med 2010; 49:976-83. [PMID: 20638939 PMCID: PMC2921456 DOI: 10.1016/j.freeradbiomed.2010.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/19/2010] [Accepted: 05/28/2010] [Indexed: 01/16/2023]
Abstract
SAG (sensitive to apoptosis gene; also known as RBX2 or ROC2) is a dual-function protein with antioxidant activity when acting alone or E3 ligase activity when complexed with other components of SCF (Skp1, cullins, F-box proteins) E3 ubiquitin ligases. SAG acts as a survival protein to inhibit apoptosis induced by a variety of stresses. Our recent work showed that SAG siRNA silencing sensitized cancer cells to radiation but the mechanism responsible remains elusive. Here we report that complete elimination of Sag expression via a gene-trapping strategy significantly sensitized mouse embryonic stem (ES) cells to radiation, with a sensitizing enhancement rate of 1.5-1.6. Radiosensitization was associated with increased steady-state levels of intracellular ROS (including superoxide) 24h after irradiation as well as enhancement of radiation-induced apoptosis. Furthermore, Sag elimination abrogated IkappaBalpha degradation leading to inhibition of NF-kappaB activation. Further detailed analysis revealed that IkappaBalpha is a direct substrate of SAG-SCF(beta-TrCP) E3 ubiquitin ligase. Taken together, these results support the hypothesis that Sag elimination via gene disruption sensitizes ES cells to radiation-induced cell killing by mechanisms that involve increased steady-state levels of ROS and decreased activation of NF-kappaB.
Collapse
Affiliation(s)
- Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109
| | - Yueming Zhu
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242
| | - Jordan Kovacev
- Department of Oncological Sciences, 1425 Madison Avenue, Room 15-26, Mount Sinai School of Medicine, New York, NY 10029
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, 1425 Madison Avenue, Room 15-26, Mount Sinai School of Medicine, New York, NY 10029
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109
| |
Collapse
|
92
|
Scott DC, Monda JK, Grace CRR, Duda DM, Kriwacki RW, Kurz T, Schulman BA. A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell 2010; 39:784-96. [PMID: 20832729 PMCID: PMC3001161 DOI: 10.1016/j.molcel.2010.08.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/29/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
In ubiquitin-like protein (UBL) cascades, a thioester-linked E2∼UBL complex typically interacts with an E3 enzyme for UBL transfer to the target. Here we demonstrate a variant mechanism, whereby the E2 Ubc12 functions with two E3s, Hrt1 and Dcn1, for ligation of the UBL Rub1 to Cdc53's WHB subdomain. Hrt1 functions like a conventional RING E3, with its N terminus recruiting Cdc53 and C-terminal RING activating Ubc12∼Rub1. Dcn1's "potentiating neddylation" domain (Dcn1(P)) acts as an additional E3, reducing nonspecific Hrt1-mediated Ubc12∼Rub1 discharge and directing Ubc12's active site to Cdc53. Crystal structures of Dcn1(P)-Cdc53(WHB) and Ubc12 allow modeling of a catalytic complex, supported by mutational data. We propose that Dcn1's interactions with both Cdc53 and Ubc12 would restrict the otherwise flexible Hrt1 RING-bound Ubc12∼Rub1 to a catalytically competent orientation. Our data reveal mechanisms by which two E3s function synergistically to promote UBL transfer from one E2 to a target.
Collapse
Affiliation(s)
- Daniel C. Scott
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH
| | - Julie K. Monda
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christy R. R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David M. Duda
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thimo Kurz
- The Scottish Institute for Cell Signalling, Protein Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Brenda A. Schulman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH
| |
Collapse
|
93
|
Wei D, Sun Y. Small RING Finger Proteins RBX1 and RBX2 of SCF E3 Ubiquitin Ligases: The Role in Cancer and as Cancer Targets. Genes Cancer 2010; 1:700-7. [PMID: 21103004 PMCID: PMC2983490 DOI: 10.1177/1947601910382776] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The SCF (Skp1-cullin-F-box proteins), also known as CRL (cullin-based RING ligase), is the largest family of E3 ubiquitin ligases that mediate approximately 20% ubiquitinated protein substrates for 26S proteasome degradation. Through promoting timely degradation of many key regulatory proteins, SCF E3 ligase controls numerous cellular processes; its dysfunction contributes to a number of human diseases, including cancer. The RING component of SCF complex consists of 2 family members, RBX1 (RING box protein 1), also known as ROC1 (regulator of cullins), and RBX2/ROC2 (also known as SAG [sensitive to apoptosis gene]), both of which are essential for the catalytic activity of SCF. RBX1 and RBX2 are evolutionarily conserved from yeast to humans and play an essential role during mouse embryonic development. Moreover, RBX1 and RBX2 are both overexpressed in multiple human cancer tissues and required for the growth and survival of cancer cells. In this review, we will discuss the similarities and differences between 2 RING family members, their regulation of SCF E3 ligase activity, and their role in development, cancer cell survival, and skin carcinogenesis, along with a brief discussion of RBX-SCF E3 ligases as the cancer targets and a recently discovered small molecule inhibitor of SCF E3 ligases as a novel class of anticancer drugs.
Collapse
Affiliation(s)
- Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | | |
Collapse
|
94
|
Abstract
The cullin family of ubiquitin ligases can potentially assemble hundreds of RING-type E3 complexes (CRLs) by utilizing different substrate receptors that share common interaction domains. Cullin receptors dictate substrate specificity, and cullin-mediated substrate degradation controls a wide range of cellular processes, including proliferation, differentiation, and apoptosis. Dysregulation of cullin activity has been shown to contribute to oncogenesis through the accumulation of oncoproteins or the excessive degradation of tumor suppressors. In this review, we will discuss cullin complexes and their substrates, the regulatory pathways that affect cullin activity, and the mechanisms by which cullins may facilitate or inhibit carcinogenesis.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | | |
Collapse
|
95
|
Nillegoda NB, Theodoraki MA, Mandal AK, Mayo KJ, Ren HY, Sultana R, Wu K, Johnson J, Cyr DM, Caplan AJ. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol Biol Cell 2010; 21:2102-16. [PMID: 20462952 PMCID: PMC2893976 DOI: 10.1091/mbc.e10-02-0098] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ubr1 and Ubr2 ubiquitin ligases are shown to promote degradation of misfolded cytosolic polypeptides in vivo and in a purified system in association with Hsp70. Quality control systems facilitate polypeptide folding and degradation to maintain protein homeostasis. Molecular chaperones promote folding, whereas the ubiquitin/proteasome system mediates degradation. We show here that Saccharomyces cerevisiae Ubr1 and Ubr2 ubiquitin ligases promote degradation of unfolded or misfolded cytosolic polypeptides. Ubr1 also catalyzes ubiquitinylation of denatured but not native luciferase in a purified system. This activity is based on the direct interaction of denatured luciferase with Ubr1, although Hsp70 stimulates polyubiquitinylation of the denatured substrate. We also report that loss of Ubr1 and Ubr2 function suppressed the growth arrest phenotype resulting from chaperone mutation. This correlates with increased protein kinase maturation and indicates partitioning of foldable conformers toward the proteasome. Our findings, based on the efficiency of this quality control system, suggest that the cell trades growth potential to avert the potential toxicity associated with accumulation of unfolded or misfolded proteins. Ubr1 and Ubr2 therefore represent E3 components of a novel quality control pathway for proteins synthesized on cytosolic ribosomes.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Choi YS, Wu K, Jeong K, Lee D, Jeon YH, Choi BS, Pan ZQ, Ryu KS, Cheong C. The human Cdc34 carboxyl terminus contains a non-covalent ubiquitin binding activity that contributes to SCF-dependent ubiquitination. J Biol Chem 2010; 285:17754-62. [PMID: 20353940 DOI: 10.1074/jbc.m109.090621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1.Cullin 1.F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206-215 and 216-225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys(48) and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe(206), Tyr(207), Tyr(210), and Tyr(211)) are probably positioned in the vicinity of ubiquitin C-terminal residue Val(70). Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val(70) by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1-215) but not Cdc34(1-200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IkappaBalpha ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe(206)/Tyr(207), Tyr(210)/Tyr(211)) in conjugation, with Tyr(210) exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr(210) was required for the transfer of the donor ubiquitin to a receptor lysine on either IkappaBalpha or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.
Collapse
Affiliation(s)
- Yun-Seok Choi
- Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Wu K, Kovacev J, Pan ZQ. Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 2010; 37:784-96. [PMID: 20347421 PMCID: PMC2862584 DOI: 10.1016/j.molcel.2010.02.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 12/02/2009] [Accepted: 02/08/2010] [Indexed: 01/17/2023]
Abstract
We describe a mechanistic model of polyubiquitination by the SCF(beta TrCP2) E3 ubiquitin (Ub) ligase using human I kappaB alpha as a substrate. Biochemical reconstitution experiments revealed that the polyubiquitination of I kappaB alpha began with the action of the UbcH5 E2 Ub-conjugating enzyme, transferring a single Ub to I kappaB alpha K21/K22 rapidly and efficiently. Subsequently, the Cdc34 E2 functioned in the formation of polyubiquitin chains. It was determined that a Ub fused at I kappaB alpha K21 acts as a receptor, directing Cdc34 for rapid and efficient K48-linked Ub chain synthesis that depends on SCF(beta TrCP2) and the substrate's N terminus. The I kappaB alpha-linked fusion Ub appears to mediate direct contacts with Cdc34 and the SCF's RING subcomplex. Taken together, these results suggest a role for the multifaceted interactions between the I kappaB alpha K21/K22-linked receptor Ub, the SCF's RING complex, and Cdc34 approximately S approximately Ub in establishing the optimal orientation of the receptor Ub to drive conjugation.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
98
|
Kanarek N, Horwitz E, Mayan I, Leshets M, Cojocaru G, Davis M, Tsuberi BZ, Pikarsky E, Pagano M, Ben-Neriah Y. Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCF{beta}-TrCP by single substrate depletion. Genes Dev 2010; 24:470-7. [PMID: 20194439 DOI: 10.1101/gad.551610] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
beta-TrCP, the substrate recognition subunit of a Skp1-Cul1-F-box (SCF) ubiquitin ligase, is ubiquitously expressed from two distinct paralogs, targeting many regulatory proteins for proteasomal degradation. We generated inducible beta-TrCP hypomorphic mice and found that they are surprisingly healthy, yet have a severe testicular defect. We show that the two beta-TrCP paralogs have a nonredundant role in spermatogenesis. The testicular defect is tightly associated with cell adhesion failure within the seminiferous tubules and is fully reversible upon beta-TrCP restoration. Remarkably, testicular depletion of a single beta-TrCP substrate, Snail1, rescued the adhesion defect and restored spermatogenesis. Our studies highlight an unexpected functional reserve of this central E3, as well as a bottleneck in a specific tissue: a single substrate whose stabilization is incompatible with testicular differentiation.
Collapse
Affiliation(s)
- Naama Kanarek
- The Lautenberg Center for Immunology, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34. Mol Cell Biol 2010; 30:2316-29. [PMID: 20194622 DOI: 10.1128/mcb.01094-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.
Collapse
|
100
|
Abstract
NF-κB transcription factors are critical regulators of many biological processes such as innate and adaptive immune responses, inflammation, cell proliferation and programmed cell death. This versatility necessitates a highly complex and tightly coordinated control of the signaling pathways leading to their activation. Here, we review the role of proteolysis in the regulation of NF-κB activity, more specifically the contribution of the well-known ubiquitin-proteasome system and the involvement of proteolytic activity of caspases and calpains.
Collapse
|