51
|
Sun H, Hu N. Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes. Biophys Chem 2005; 110:297-308. [PMID: 15228965 DOI: 10.1016/j.bpc.2004.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/01/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
A novel hemoglobin (Hb)-coated polystyrene (PS) latex bead film was deposited on pyrolytic graphite (PG) electrode surface. In the first step, positively charged Hb molecules in pH 5.0 buffers were adsorbed on the surface of negatively charged, 500 nm diameter PS latex beads bearing sulfate groups by electrostatic interaction. The aqueous dispersion of Hb-coated PS particles was then deposited on the surface of PG electrodes and, after evaporation of the solvent, Hb-PS films were formed. The Hb-PS film electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about -0.36 V vs. SCE in pH 7.0 buffers, characteristic of Hb heme Fe(III)/Fe(II) redox couples. Positions of Soret absorption band of Hb-PS films suggest that Hb retains its near-native structure in the films in its dry form and in solution at medium pH. The Hb in PS films was also acted as a catalyst to catalyze electrochemical reduction of various substrates such as trichloroacetic acid (TCA), nitrite, oxygen and hydrogen peroxide.
Collapse
Affiliation(s)
- Hong Sun
- Department of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | | |
Collapse
|
52
|
Li YM, Chen XT, Li J, Liu HH. Direct voltammetry and catalysis of hemoenzymes in methyl cellulose film. Electrochim Acta 2004. [DOI: 10.1016/j.electacta.2004.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Ledru S, Boujtita M. Electrocatalytic oxidation of ascorbate by heme-FeIII/heme-FeII redox couple of the HRP and its effect on the electrochemical behaviour of an l-lactate biosensor. Bioelectrochemistry 2004; 64:71-8. [PMID: 15219249 DOI: 10.1016/j.bioelechem.2004.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/25/2004] [Accepted: 03/04/2004] [Indexed: 11/15/2022]
Abstract
The measurements of L-lactate using the carbon paste electrode modified with lactate oxidase (LOD), horseradish peroxidase (HRP) and ferrocene (FcH) operating at low working potential in flow injection mode showed that the intensity as well as the shape of peaks were dependent on the concentration of the reducing species present in samples (e.g. ascorbate) even at low operating potentials (-200 to 0 mV vs. Ag/AgCl). The mechanism of the electrochemical contribution of ascorbate to the L-lactate response was examined by using cyclic voltammetry, hydrodynamic voltammetry and FIA results. Comparative studies showed that HRP was catalytically active for the oxidation of ascorbate leading to a decrease in the cathodic electrochemical signal of L-lactate. The results of our investigation postulated that the direct electron transfer from the HRP-Fe(III)/HRP-Fe(II) redox couple to the electrode surface was involved in the electrocatalytic oxidation of ascorbate at the electrode surface.
Collapse
Affiliation(s)
- Sophie Ledru
- Groupe Méthodologie Electrochimique-UMR-CNRS 6006, FCUN-CNRS 2465, Faculté des Sciences et des Techniques 2, rue de la Houssinière, B.P. 92208 44322 Nantes Cedex 03, France
| | | |
Collapse
|
54
|
Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2003.11.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Zhang Y, He P, Hu N. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim Acta 2004. [DOI: 10.1016/j.electacta.2003.12.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
56
|
Shen L, Hu N. Heme protein films with polyamidoamine dendrimer: direct electrochemistry and electrocatalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:23-33. [PMID: 14741582 DOI: 10.1016/j.bbabio.2003.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompatible nanosized polyamidoamine (PAMAM) dendrimer films provided a suitable microenvironment for heme proteins to transfer electron directly with underlying pyrolytic graphite (PG) electrodes. Hemoglobin (Hb), myoglobin (Mb), horseradish peroxidase (HRP), and catalase (Cat) incorporated in PAMAM films exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks, respectively, characteristic of the protein heme Fe(III)/Fe(II) redox couples. While Hb-, Mb-, and HRP-PAMAM films showed the cyclic voltammetry (CV) peaks at about -0.34 V vs. saturated calomel electrode (SCE) in pH 7.0 buffers, Cat-PAMAM films displayed the peak pair at a more negative potential of -0.47 V. The protein-PAMAM films demonstrated a surface-confined or thin-layer voltammetric behavior. The electrochemical parameters such as apparent heterogeneous electron transfer rate constants (k(s)) and formal potentials (E (degrees ')) were estimated by square wave voltammetry with nonlinear regression analysis. UV-vis and IR spectroscopy showed that the proteins retained their near-native secondary structures in PAMAM films. Oxygen, hydrogen peroxide, and nitrite were catalytically reduced at the protein-PAMAM film electrodes, showing the potential applicability of the films as the new type of biosensors or bioreactors based on direct electrochemistry of the proteins.
Collapse
Affiliation(s)
- Li Shen
- Department of Chemistry, Beijing Normal University, 100875 Beijing, China
| | | |
Collapse
|
57
|
Immoos CE, Chou J, Bayachou M, Blair E, Greaves J, Farmer PJ. Electrocatalytic Reductions of Nitrite, Nitric Oxide, and Nitrous Oxide by Thermophilic Cytochrome P450 CYP119 in Film-Modified Electrodes and an Analytical Comparison of Its Catalytic Activities with Myoglobin. J Am Chem Soc 2004; 126:4934-42. [PMID: 15080699 DOI: 10.1021/ja038925c] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous investigations of nitrite and nitric oxide reduction by myoglobin in surfactant film modified electrodes characterized several distinct steps in the denitrification pathway, including isolation of a nitroxyl adduct similar to that proposed in the P450nor catalytic cycle. To investigate the effect of the axial ligand on these biomimetic reductions, we report here a comparison of the electrocatalytic activity of myoglobin (Mb) with a thermophilic cytochrome P450 CYP119. Electrocatalytic nitrite reduction by CYP119 is very similar to that by Mb: two catalytic waves at analogous potentials are observed, the first corresponding to the reduction of nitric oxide, the second to the production of ammonia. CYP119 is a much more selective catalyst, giving almost exclusively ammonia during the initial half-hour of reductive electrolysis of nitrite. More careful investigations of specific steps in the catalytic cycle show comparable rates of nitrite dehydration and almost identical potentials and lifetimes for ferrous nitroxyl intermediate (Fe(II)-NO(-)) in CYP119 and Mb. The catalytic efficiency of nitric oxide reduction is reduced for CYP119 as compared to Mb, attributable to both a lower affinity of the protein for NO and a decreased rate of N-N coupling. Isotopic labeling studies show ammonia incorporation into nitrous oxide produced during nitrite reduction, as has been termed co-denitrification for certain bacterial and fungal nitrite reductases. Mb has a much higher co-denitrification activity than CYP119. Conversely, CYP119 is shown to be slightly more efficient at the two-electron reduction of N(2)O to N(2). These results suggest that thiolate ligation does not significantly alter the catalytic reactivity, but the dramatic difference in product distribution may suggest an important role for protein stability in the selectivity of biocatalysts.
Collapse
Affiliation(s)
- Chad E Immoos
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | | | | | | | |
Collapse
|
58
|
Song Y, Chen X, Wu H, Shao H. Direct Electrochemistry with Nitrate Reductase in Chitosan Films. J CHIN CHEM SOC-TAIP 2004. [DOI: 10.1002/jccs.200400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
59
|
Huang H, He P, Hu N, Zeng Y. Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry 2003; 61:29-38. [PMID: 14642907 DOI: 10.1016/s1567-5394(03)00057-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein-CMC films were made by casting a solution of myoglobin (Mb) or hemoglobin (Hb) and carboxymethyl cellulose (CMC) on pyrolytic graphite electrodes. In pH 7.0 buffers, Mb and Hb incorporated in CMC films gave a pair of well-defined and quasi-reversible cyclic voltammetric peaks at about -0.34 V vs. SCE, respectively, characteristic of heme Fe(III)/Fe(II) redox couples of the proteins. The electrochemical parameters such as apparent standard heterogeneous electron transfer rate constants (k(s)) and formal potentials (E degrees ') were estimated by square wave voltammetry with nonlinear regression analysis. In aqueous solution, stable CMC films absorbed large amounts of water and formed hydrogel. Scanning electron microscopy of the films showed that interaction between Mb or Hb and CMC would make the morphology of dry protein-CMC films different from the CMC films alone. Positions of Soret absorbance band suggest that Mb and Hb in CMC films retain their secondary structure similar to the native states in the medium pH range. Trichloroacetic acid, nitrite, oxygen, and hydrogen peroxide were catalytically reduced at protein-CMC film electrodes.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, PR China
| | | | | | | |
Collapse
|
60
|
Huang R, Hu N. Direct voltammetry and electrochemical catalysis with horseradish peroxidase in polyacrylamide hydrogel films. Biophys Chem 2003; 104:199-208. [PMID: 12834838 DOI: 10.1016/s0301-4622(02)00367-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper reports the direct voltammetry of horseradish peroxidase (HRP) incorporated in amphiphilic polyacrylamide (PAM) films modified on pyrolytic graphite (PG) electrodes. Cyclic voltammetry of HRP-PAM films showed a pair of well-defined, nearly reversible peaks at approximately -0.33 V vs. SCE in pH 7.0 buffers, characteristic of HRP heme Fe(III)/Fe(II) redox couple. The PAM films in solution contained large amounts of water and formed a hydrogel, and provided a favorable microenvironment for HRP and facilitated its direct electron transfer with underlying PG electrodes. The apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E*') were estimated by fitting the data of square wave voltammetry (SWV) with the non-linear regression analysis. UV-vis absorption spectra demonstrated that HRP in PAM films retained its secondary structure similar to its native state. The embedded HRP in PAM films showed the electrocatalytic activity to various substrates such as nitrite, oxygen and hydrogen peroxide. The possible mechanism of catalytic reaction of H(2)O(2) with HRP-PAM films was proposed.
Collapse
Affiliation(s)
- Rong Huang
- Department of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | | |
Collapse
|
61
|
Li Z, Hu N. Assembly of electroactive layer-by-layer films of myoglobin and ionomer poly(ester sulfonic acid). J Colloid Interface Sci 2002; 254:257-65. [PMID: 12702396 DOI: 10.1006/jcis.2002.8574] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Layer-by-layer films were assembled on solid substrates by alternate adsorption of negatively charged ionomer poly(ester sulfonic acid) or Eastman AQ55 from its aqueous dispersion and positively charged myoglobin (Mb) from its solution at pH 4.5. The film assembly process was monitored by cyclic voltammetry (CV), UV-vis spectroscopy, and quartz crystal microbalance (QCM). [AQ/Mb](n) films grown on pyrolytic graphite (PG) electrodes showed a pair of well-defined and nearly reversible CV peaks at about -0.20 V vs Ag/AgCl in pH 5.5 buffers, characteristic of the Mb heme Fe(III)/Fe(II) redox couple. Although the amount of Mb adsorbed in each bilayer was essentially the same, the fraction of electroactive Mb decreased dramatically with an increase of bilayer number (n). Soret absorption bands of [AQ/Mb](n) films on glass slides suggest that Mb in the films retains its native state in the medium pH range. Trichloroacetic acid, oxygen, and hydrogen peroxide were electrochemically catalyzed by [AQ/Mb](6) films with significant lowering of reduction overpotential.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | | |
Collapse
|
62
|
Huang H, Hu N, Zeng Y, Zhou G. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem 2002; 308:141-51. [PMID: 12234475 DOI: 10.1016/s0003-2697(02)00242-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein-chitosan (CS) films were made by casting a solution of proteins and CS on pyrolytic graphite electrodes. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) incorporated in CS films gave a pair of stable, well-defined, and quasi-reversible cyclic voltammetric peaks at about -0.33V vs saturated calomel electrode in pH 7 buffers, respectively, while catalase (Ct) in CS films showed a peak pair at about -0.46V which was not stable. All these peaks are located at the potentials characteristic of heme Fe(III)/Fe(II) redox couples of the proteins. The electrochemical parameters such as formal potentials (E degrees (')) and apparent heterogeneous electron-transfer rate constants (k(s)) were estimated by square-wave voltammetry with nonlinear regression analysis. Chitosan films contained considerable water and formed hydrogel in aqueous solution. Positions of the Soret absorbance band suggest that Mb and Hb in CS films keep their secondary structure similar to the native states in the medium pH range, while HRP and Ct retain their native conformation at least in the dry CS films. Scanning electron microscopy of the films demonstrated that interaction between the proteins and CS would make the morphology of dry protein-CS films very different from the CS films alone. Oxygen, trichloroacetic acid, nitrite, and hydrogen peroxide were catalytically reduced by all four proteins in CS films.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry, Beijing Normal University, China
| | | | | | | |
Collapse
|
63
|
He P, Hu N, Zhou G. Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium). Biomacromolecules 2002; 3:139-46. [PMID: 11866566 DOI: 10.1021/bm015599p] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Layer-by-layer (PDDA/Hb)(n) films were assembled by alternate adsorption of positively charged poly(diallyldimethylammonium) (PDDA) and negatively charged hemoglobin (Hb) at pH 9.2 from their aqueous solutions on pyrolytic graphite electrodes and other substrates. The assembly process was monitored and confirmed by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). CVs of (PDDA/Hb)(n) films showed a pair of well-defined, nearly reversible peaks at about -0.34 V vs SCE at pH 7.0, characteristic of Hb heme Fe(III)/Fe(II) redox couple. Positions of Soret absorption band and infrared amide II band of Hb in (PDDA/Hb)(8) films suggest that Hb in the films keeps its secondary structure similar to its native state. The electrochemical parameters of (PDDA/Hb)(8) films were estimated by square wave voltammetry, and the thickness of the PDDA/Hb bilayer was estimated by QCM and scanning electron microscopy. Trichloroacetic acid and nitrite (NO(2)(-)) were catalytically reduced at (PDDA/Hb)(8) film electrodes. The electrochemical catalytic reactions of O(2) and H(2)O(2) on (PDDA/Hb)(8) films were also studied.
Collapse
Affiliation(s)
- Pingli He
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | | | | |
Collapse
|