51
|
Satoh A, Konishi S, Tamura H, Stickland HG, Whitney HM, Smith AG, Matsumura H, Inoue T. Substrate-Induced Closing of the Active Site Revealed by the Crystal Structure of Pantothenate Synthetase from Staphylococcus aureus. Biochemistry 2010; 49:6400-10. [DOI: 10.1021/bi1004206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsuko Satoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Saki Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruka Tamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hannah G. Stickland
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Heather M. Whitney
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
52
|
Sikora AL, Wilson DJ, Aldrich CC, Blanchard JS. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli. Biochemistry 2010; 49:3648-57. [PMID: 20359185 PMCID: PMC2860672 DOI: 10.1021/bi100350c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inhibition of siderophore biosynthetic pathways in pathogenic bacteria represents a promising strategy for antibacterial drug development. Escherichia coli synthesize and secrete the small molecule iron chelator siderophore, enterobactin, in response to intracellular iron depletion. Here we describe a detailed kinetic analysis of EntE, one of six enzymes in the enterobactin synthetase gene cluster. EntE catalyzes the ATP-dependent condensation of 2,3-dihydroxybenzoic acid (DHB) and phosphopantetheinylated EntB (holo-EntB) to form covalently arylated EntB, a product that is vital for the final assembly of enterobactin. Initial velocity studies show that EntE proceeds via a bi-uni-uni-bi ping-pong kinetic mechanism with a k(cat) equal to 2.8 s(-1) and K(m) values of 2.5, 430, and 2.9 microM for DHB, ATP, and holo-EntB-ArCP, respectively. Inhibition and direct binding experiments suggest that, during the first half-reaction (adenylation), DHB binds first to the free enzyme, followed by ATP and the release of pyrophosphate to form the adenylate intermediate. During the second half-reaction (ligation), phosphopantetheinylated EntB binds to the enzyme followed by the release of products, AMP and arylated EntB. Two hydrolytically stable adenylate analogues, 5'-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) and 5'-O-[N-(2,3-dihydroxybenzoyl)sulfamoyl]adenosine (DHB-AMS), are shown to act as slow-onset tight-binding inhibitors of the enzyme with (app)K(i) values of 0.9 and 3.8 nM, respectively. Direct binding experiments, via isothermal titration calorimetry, reveal low picomolar dissociation constants for both analogues with respect to EntE. The tight binding of Sal-AMS and DHB-AMS to EntE suggests that these compounds may be developed further as effective antibiotics targeted to this enzyme.
Collapse
Affiliation(s)
- Alison L. Sikora
- Albert Einstein College of Medicine, Department of Biochemistry 1300 Morris Park Avenue, Bronx, NY 10461
| | - Daniel J. Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - Courtney C. Aldrich
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - John S. Blanchard
- Albert Einstein College of Medicine, Department of Biochemistry 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
53
|
Sledz P, Silvestre HL, Hung AW, Ciulli A, Blundell TL, Abell C. Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. J Am Chem Soc 2010; 132:4544-5. [PMID: 20232910 PMCID: PMC4441724 DOI: 10.1021/ja100595u] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragment-based methods are a new and emerging approach for the discovery of protein binders that are potential new therapeutic agents. Several ways of utilizing structural information to guide the inhibitor assembly have been explored to date. One of the approaches, application of interligand Overhauser effect (ILOE) observations, is of particular interest, as it does not require the availability of a three-dimensional protein structure and is an NMR-based method that can be applied to targets that cannot be observed directly because of their size. Fragments, as small and often hydrophobic molecules, suffer from problems including compound aggregation in an aqueous environment and nonspecific binding contributions, especially when screened at higher concentrations suitable for ILOE observations. Here we report how this problem can be overcome by applying a step-by-step iterative procedure that includes the application of optimized probe molecules with known binding modes to elucidate the unknown binding modes of fragments. An enzyme substrate with well-characterized binding was used as a starting point, and the relative binding modes of modified fragments derived from ILOE observations were used to guide the fragment linking, leading to a potent inhibitor of our model system, Mycobacterium tuberculosis pantothenate synthetase, a potential drug target. We have supported our NMR data with crystal structures, thus establishing the guidelines for optimizing the ILOE observations. This model study should expand the application of the technique in drug discovery.
Collapse
Affiliation(s)
- Pawel Sledz
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H. Leonardo Silvestre
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Alvin W. Hung
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alessio Ciulli
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
54
|
Chakrabarti KS, Thakur KG, Gopal B, Sarma SP. X-ray crystallographic and NMR studies of pantothenate synthetase provide insights into the mechanism of homotropic inhibition by pantoate. FEBS J 2010; 277:697-712. [PMID: 20059543 DOI: 10.1111/j.1742-4658.2009.07515.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural basis for the homotropic inhibition of pantothenate synthetase by the substrate pantoate was investigated by X-ray crystallography and high-resolution NMR spectroscopic methods. The tertiary structure of the dimeric N-terminal domain of Escherichia coli pantothenate synthetase, determined by X-ray crystallography to a resolution of 1.7 A, showed a second molecule of pantoate bound in the ATP-binding pocket. Pantoate binding to the ATP-binding site induced large changes in structure, mainly for backbone and side chain atoms of residues in the ATP binding HXGH(34-37) motif. Sequence-specific NMR resonance assignments and solution secondary structure of the dimeric N-terminal domain, obtained using samples enriched in (2)H, (13)C, and (15)N, indicated that the secondary structural elements were conserved in solution. Nitrogen-15 edited two-dimensional solution NMR chemical shift mapping experiments revealed that pantoate, at 10 mm, bound at these two independent sites. The solution NMR studies unambiguously demonstrated that ATP stoichiometrically displaced pantoate from the ATP-binding site. All NMR and X-ray studies were conducted at substrate concentrations used for enzymatic characterization of pantothenate synthetase from different sources [Jonczyk R & Genschel U (2006) J Biol Chem 281, 37435-37446]. As pantoate binding to its canonical site is structurally conserved, these results demonstrate that the observed homotropic effects of pantoate on pantothenate biosynthesis are caused by competitive binding of this substrate to the ATP-binding site. The results presented here have implications for the design and development of potential antibacterial and herbicidal agents.
Collapse
|
55
|
Sikora AL, Cahill SM, Blanchard JS. Enterobactin synthetase-catalyzed formation of P(1),P(3)-diadenosine-5'-tetraphosphate. Biochemistry 2009; 48:10827-9. [PMID: 19852513 DOI: 10.1021/bi901680m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The EntE enzyme, involved in the synthesis of the iron siderophore enterobactin, catalyzes the adenylation of 2,3-dihydroxybenzoic acid, followed by its transfer to the phosphopantetheine arm of holo-EntB, an aryl carrier protein. In the absence of EntB, EntE catalyzes the formation of Ap(4)A, a molecule that is implicated in regulating cell division during oxidative stress. We propose that the expression of EntE during iron starvation produces Ap(4)A to slow growth until intracellular iron stores can be restored.
Collapse
Affiliation(s)
- Alison L Sikora
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
56
|
Scott DE, Dawes GJ, Ando M, Abell C, Ciulli A. A fragment-based approach to probing adenosine recognition sites by using dynamic combinatorial chemistry. Chembiochem 2009; 10:2772-9. [PMID: 19827080 PMCID: PMC4458376 DOI: 10.1002/cbic.200900537] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Indexed: 11/06/2022]
Abstract
A new strategy that combines the concepts of fragment-based drug design and dynamic combinatorial chemistry (DCC) for targeting adenosine recognition sites on enzymes is reported. We demonstrate the use of 5'-deoxy-5'-thioadenosine as a noncovalent anchor fragment in dynamic combinatorial libraries templated by Mycobacterium tuberculosis pantothenate synthetase. A benzyl disulfide derivative was identified upon library analysis by HPLC. Structural and binding studies of protein-ligand complexes by X-ray crystallography and isothermal titration calorimetry informed the subsequent optimisation of the DCC hit into a disulfide containing the novel meta-nitrobenzyl fragment that targets the pantoate binding site of pantothenate synthetase. Given the prevalence of adenosine-recognition motifs in enzymes, our results provide a proof-of-concept for using this strategy to probe adjacent pockets for a range of adenosine binding enzymes, including other related adenylate-forming ligases, kinases, and ATPases, as well as NAD(P)(H), CoA and FAD(H2) binding proteins.
Collapse
Affiliation(s)
- Duncan E. Scott
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Gwen J. Dawes
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Michiyo Ando
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Alessio Ciulli
- University Chemical Laboratory, University of Cambridge Lensfield Road, Cambridge, CB2 1EW (UK)
| |
Collapse
|
57
|
Hung A, Silvestre H, Wen S, Ciulli A, Blundell T, Abell C. Application of Fragment Growing and Fragment Linking to the Discovery of Inhibitors ofMycobacterium tuberculosisPantothenate Synthetase. Angew Chem Int Ed Engl 2009; 48:8452-6. [DOI: 10.1002/anie.200903821] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
58
|
Hung A, Silvestre H, Wen S, Ciulli A, Blundell T, Abell C. Application of Fragment Growing and Fragment Linking to the Discovery of Inhibitors ofMycobacterium tuberculosisPantothenate Synthetase. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903821] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
59
|
Yao J, Dotson GD. Kinetic characterization of human phosphopantothenoylcysteine synthetase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1743-50. [PMID: 19683078 DOI: 10.1016/j.bbapap.2009.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Phosphopantothenoylcysteine synthetase (PPCS) catalyzes the formation of phosphopantothenoylcysteine from (R)-phosphopantothenate and L-cysteine with the concomitant consumption of a nucleotide triphosphate. Herein, the human coaB gene encoding PPCS is cloned into pET23a and overexpressed in E. coli BL21(DE3), to yield 10mg of purified enzyme per liter of culture. Detailed kinetic studies found that this PPCS follows a similar Bi Uni Uni Bi Ping Pong mechanism as previously described for the E. faecalis PPCS, except that the human enzyme can use both ATP and CTP with similar affinity. One significant difference for human PPCS catalysis with respect to ATP and CTP is that the enzyme shows cooperative binding of ATP, measured as a Hill constant of 1.7. PPCS catalysis under CTP conditions displayed Michaelis constants of 265 microM, 57 microM, and 16 microM for CTP, PPA, and cysteine, respectively, with a kcat of 0.53+/-0.01 s(-1) for the reaction. Taking into account the cooperativity under ATP condition, PPCS exhibited Michaelis constants of 269 microM, 13 microM, and 14 microM for ATP, PPA, and cysteine, respectively, with a kcat of 0.56 s(-1) for the reaction. Oxygen transfer studies found that 18O from [carboxyl-18O] phosphopantothenate is incorporated into the AMP or CMP produced during PPCS catalysis, consistent with the formation of a phosphopantothenoyl cytidylate or phosphopantothenoyl adenylate intermediate, supporting similar catalytic mechanisms under both CTP and ATP conditions. Inhibition studies with GTP and UTP as well as product inhibition studies with CMP and AMP suggest that human PPCS lacks strong nucleotide selectivity.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | |
Collapse
|
60
|
Fan F, Blanchard JS. Toward the catalytic mechanism of a cysteine ligase (MshC) from Mycobacterium smegmatis: an enzyme involved in the biosynthetic pathway of mycothiol. Biochemistry 2009; 48:7150-9. [PMID: 19505149 PMCID: PMC2748416 DOI: 10.1021/bi900457x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis and other members of the actinomycete family produce mycothiol (MSH or acetylcysteine-glucosamine-inositol, AcCys-GlcN-Ins) to protect the organism against oxidative and antibiotic stress. The biosynthesis of MSH proceeds via a five-step process that involves four unique enzymes, MshA-D, which represent specific targets for inhibitor design. Recombinant Mycobacterium smegmatis MshC catalyzes the ATP-dependent condensation of glucosamine-inositol (GlcN-Ins) and cysteine to form Cys-GlcN-Ins. The 1.6 A three-dimensional structure of MshC in complex with a tight binding bisubstrate analogue, 5'-O-[N-(L-cysteinyl)sulfamonyl]adenosine (CSA), has suggested specific roles for T46, H55, T83, W227, and D251. In addition, a catalytic role for H55 has been proposed on the basis of studies of related aminoacyl-tRNA synthetases. Site-directed mutagenesis was conducted to evaluate the functional roles of these highly conserved residues. All mutants exhibited significantly decreased k(cat) values, with the exception of T83V for which a <7-fold decrease was observed compared to that of the wild type (WT). For the T46V, H55A, W227F, and D251N mutants, the rate of cysteine activation decreased 100-1400-fold compared to that of WT, consistent with the important roles of these residues in the first half-reaction. The approximately 2000-fold decrease in k(cat)/K(m) as well as the approximately 20-fold decrease in K(m) for cysteine suggested a significant role for T46 in cysteine binding. Kinetic studies also indicate a function for W227 in cysteine binding but not in substrate discrimination against serine. H55 was also observed to play a significant role in ATP binding as well as cysteine adenylation. The activity of H55A was partially rescued with exogenous imidazole at acidic pH values, suggesting that the protonated form of histidine is exerting a catalytic role. The pH dependence of the kinetic parameters with the WT enzyme suggests an additional requirement for a catalytic base in cysteinyl ligation.
Collapse
Affiliation(s)
- Fan Fan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
61
|
Yao J, Patrone JD, Dotson GD. Characterization and kinetics of phosphopantothenoylcysteine synthetase from Enterococcus faecalis. Biochemistry 2009; 48:2799-806. [PMID: 19182993 PMCID: PMC2892170 DOI: 10.1021/bi802240w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme phosphopantothenoylcysteine synthetase (PPCS) catalyzes the nucleotide-dependent formation of phosphopantothenoylcysteine from (R)-phosphopantothenate and L-cysteine in the biosynthetic pathway leading to the formation of the essential biomolecule, coenzyme A. The Enterococcus faecalis gene coaB encodes a novel monofunctional PPCS which has been cloned into pET23a and expressed in Escherichia coli BL21 AI. The heterologous expression system yielded 30 mg of purified PPCS per liter of cell culture. The purified enzyme chromatographed as a homodimer of 28 kDa subunits on Superdex HR 200 gel filtration resin. The monofunctional protein displayed a nucleotide specificity for cytidine 5'-triphosphate (CTP) analogous to that seen for bifunctional PPCS expressed by most prokaryotes. Kinetic characterization, utilizing initial velocity and product inhibition studies, found the mechanism of PPCS to be Bi Uni Uni Bi Ping-Pong, with the nucleotide CTP binding first and CMP released last. Michaelis constants were 156, 17, and 86 microM for CTP, (R)-phosphopantothenate, and L-cysteine, respectively, and the k(cat) was 2.9 s(-1). [carboxyl-(18)O]Phosphopantothenate was prepared by hydrolysis of methyl pantothenate with Na(18)OH, followed by enzymatic phosphorylation with E. faecalis pantothenate kinase (PanK). The fate of the carboxylate oxygen of labeled phosphopantothenate, during the course of the PPCS-catalyzed reaction with CTP and L-cysteine, was monitored by (31)P NMR spectroscopy. The results show that the carboxylate oxygen of the phosphopantothenate is recovered with the CMP formed during the reaction, indicative of the formation of a phosphopantothenoyl cytidylate catalytic intermediate, which is consistent with the kinetic mechanism.
Collapse
Affiliation(s)
| | | | - Garry D. Dotson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| |
Collapse
|
62
|
Tremblay L, Fan F, Vetting M, Blanchard J. The 1.6 A crystal structure of Mycobacterium smegmatis MshC: the penultimate enzyme in the mycothiol biosynthetic pathway. Biochemistry 2008; 47:13326-35. [PMID: 19053270 PMCID: PMC2628295 DOI: 10.1021/bi801708f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium smegmatis MshC catalyzes the ATP-dependent condensation of GlcN-Ins and l-cysteine to form l-Cys-GlcN-Ins, the penultimate step in mycothiol biosynthesis. Attempts to crystallize the native, full-length MshC have been unsuccessful. However, incubation of the enzyme with the cysteinyl adenylate analogue, 5'-O-[N-(l-cysteinyl)-sulfamonyl]adenosine (CSA), followed by a 24-h limited trypsin proteolysis yielded an enzyme preparation that readily crystallized. The three-dimensional structure of MshC with CSA bound in the active site was solved and refined to 1.6 A. The refined structure exhibited electron density corresponding to the entire 47 kDa MshC molecule, with the exception of the KMSKS loop (residues 285-297), a loop previously implicated in the formation of the adenylate in related tRNA synthases. The overall tertiary fold of MshC is similar to that of cysteinyl-tRNA synthetase, with a Rossmann fold catalytic domain. The interaction of the thiolate of CSA with a zinc ion at the base of the active site suggests that the metal ion participates in amino acid binding and discrimination. A number of active site residues were observed to interact with the ligand, suggesting a role in substrate binding and catalysis. Analysis utilizing modeling of the proteolyzed loop and GlcN-Ins docking, as well as the examination of sequence conservation in the active site suggests similarities and differences between cysteinyl-tRNA synthetases and MshC in recognition of the substrates for their respective reactions.
Collapse
Affiliation(s)
| | | | - M.W. Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - J.S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
63
|
Tian Y, Suk DH, Cai F, Crich D, Mesecar AD. Bacillus anthracis o-succinylbenzoyl-CoA synthetase: reaction kinetics and a novel inhibitor mimicking its reaction intermediate. Biochemistry 2008; 47:12434-47. [PMID: 18973344 PMCID: PMC2710618 DOI: 10.1021/bi801311d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (EC 6.2.1.26) catalyzes the ATP-dependent condensation of o-succinylbenzoate (OSB) and CoA to form OSB-CoA, the fourth step of the menaquinone biosynthetic pathway in Bacillus anthracis. Gene knockout studies have highlighted this enzyme as a potential target for the discovery of new antibiotics. Here we report the first studies on the kinetic mechanism of B. anthracis OSB-CoA synthetase, classifying it as an ordered bi uni uni bi ping-pong mechanism. Through a series of pre-steady-state and steady-state kinetic studies in conjunction with direct binding studies, it is demonstrated that CoA, the last substrate to bind, strongly activates the first half-reaction after the first round of turnover. The activation of the first half-reaction is most likely achieved by CoA stabilizing conformations of the enzyme in the "F" form, which slowly isomerize back to the E form. Thus, the kinetic mechanism of OSB-CoA synthetase may be more accurately described as an ordered bi uni uni bi iso ping-pong mechanism. The substrate specificity of OSB-CoA synthetase was probed using a series of OSB analogues with alterations in the carboxylate groups. OSB-CoA shows a strong preference for OSB over all of the analogues tested as none were active except 4-[2-(trifluoromethyl)phenyl]-4-oxobutyric acid which exhibited a 100-fold decrease in k(cat)/K(m). On the basis of an understanding of OSB-CoA synthetase's kinetic mechanism and substrate specificity, a reaction intermediate analogue of OSB-AMP, 5'-O-{N-[2-(trifluoromethyl)phenyl]-4-oxobutyl}adenosine sulfonamide (TFMP-butyl-AMS), was designed and synthesized. This inhibitor was found to be an uncompetitive inhibitor to CoA and a mixed-type inhibitor to ATP and OSB with low micromolar inhibition constants. Collectively, these results should serve as an important forerunner to more detailed and extensive inhibitor design studies aimed at developing lead compounds against the OSB-CoA synthetase class of enzymes.
Collapse
Affiliation(s)
- Yang Tian
- Center for Pharmaceutical Biotechnology, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 South Ashland Ave. Chicago, IL 60607
| | - Dae-Hwan Suk
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Feng Cai
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - David Crich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Andrew D. Mesecar
- Center for Pharmaceutical Biotechnology, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 South Ashland Ave. Chicago, IL 60607
| |
Collapse
|
64
|
Ciulli A, Scott DE, Ando M, Reyes F, Saldanha SA, Tuck KL, Chirgadze DY, Blundell TL, Abell C. Inhibition of Mycobacterium tuberculosis pantothenate synthetase by analogues of the reaction intermediate. Chembiochem 2008; 9:2606-11. [PMID: 18821554 PMCID: PMC4441726 DOI: 10.1002/cbic.200800437] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Indexed: 11/11/2022]
Affiliation(s)
- Alessio Ciulli
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Duncan E. Scott
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Michiyo Ando
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Fernando Reyes
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - S. Adrian Saldanha
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Kellie L. Tuck
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA (UK)
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA (UK)
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK)
| |
Collapse
|
65
|
Neres J, Labello NP, Somu RV, Boshoff HI, Wilson DJ, Vannada J, Chen L, Barry CE, Bennett EM, Aldrich CC. Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5'-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 2008; 51:5349-70. [PMID: 18690677 PMCID: PMC2800054 DOI: 10.1021/jm800567v] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
5'-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) is a prototype for a new class of antitubercular agents that inhibit the aryl acid adenylating enzyme (AAAE) known as MbtA involved in biosynthesis of the mycobactins. Herein, we report the structure-based design, synthesis, biochemical, and biological evaluation of a comprehensive and systematic series of analogues, exploring the structure-activity relationship of the purine nucleobase domain of Sal-AMS. Significantly, 2-phenyl-Sal-AMS derivative 26 exhibited exceptionally potent antitubercular activity with an MIC99 under iron-deficient conditions of 0.049 microM while the N-6-cyclopropyl-Sal-AMS 16 led to improved potency and to a 64-enhancement in activity under iron-deficient conditions relative to iron-replete conditions, a phenotype concordant with the designed mechanism of action. The most potent MbtA inhibitors disclosed here display in vitro antitubercular activity superior to most current first line TB drugs, and these compounds are also expected to be useful against a wide range of pathogens that require aryl-capped siderphores for virulence.
Collapse
Affiliation(s)
- João Neres
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Nicholas P. Labello
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ravindranadh V. Somu
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Daniel J. Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jagadeshwar Vannada
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Liqiang Chen
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Eric M. Bennett
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Courtney C. Aldrich
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
66
|
Abstract
The linear biosynthetic pathway leading from alpha-ketoisovalerate to pantothenate (vitamin B5) and on to CoA comprises eight steps in the Bacteria and Eukaryota. Genes for up to six steps of this pathway can be identified by sequence homology in individual archaeal genomes. However, there are no archaeal homologs to known isoforms of pantothenate synthetase (PS) or pantothenate kinase. Using comparative genomics, we previously identified two conserved archaeal protein families as the best candidates for the missing steps. Here we report the characterization of the predicted PS gene from Methanosarcina mazei, which encodes a hypothetical protein (MM2281) with no obvious homologs outside its own family. When expressed in Escherichia coli, MM2281 partially complemented an auxotrophic mutant without PS activity. Purified recombinant MM2281 showed no PS activity on its own, but the enzyme enabled substantial synthesis of [14C]4'-phosphopantothenate from [14C]beta-alanine, pantoate and ATP when coupled with E. coli pantothenate kinase. ADP, but not AMP, was detected as a coproduct of the coupled reaction. MM2281 also transferred the 14C-label from [14C]beta-alanine to pantothenate in the presence of pantoate and ADP, presumably through isotope exchange. No exchange took place when pantoate was removed or ADP replaced with AMP. Our results indicate that MM2281 represents a novel type of PS that forms ADP and is strongly inhibited by its product pantothenate. These properties differ substantially from those of bacterial PS, and may explain why PS genes, in contrast to other pantothenate biosynthetic genes, were not exchanged horizontally between the Bacteria and Archaea.
Collapse
Affiliation(s)
- Silvia Ronconi
- Lehrstuhl für Genetik, Technische Universität München, Freising, Germany
| | | | | |
Collapse
|
67
|
Abstract
Pantothenic acid, a precursor of coenzyme A (CoA), is essential for the growth of pathogenic microorganisms. Since the structure of pantothenic acid was determined, many analogues of this essential metabolite have been prepared. Several have been demonstrated to exert an antimicrobial effect against a range of microorganisms by inhibiting the utilization of pantothenic acid, validating pantothenic acid utilization as a potential novel antimicrobial drug target. This review commences with an overview of the mechanisms by which various microorganisms acquire the pantothenic acid they require for growth, and the universal CoA biosynthesis pathway by which pantothenic acid is converted into CoA. A detailed survey of studies that have investigated the inhibitory activity of analogues of pantothenic acid and other precursors of CoA follows. The potential of inhibitors of both pantothenic acid utilization and biosynthesis as novel antibacterial, antifungal and antimalarial agents is discussed, focusing on inhibitors and substrates of pantothenate kinase, the enzyme catalysing the rate-limiting step of CoA biosynthesis in many organisms. The best strategies are considered for identifying inhibitors of pantothenic acid utilization and biosynthesis that are potent and selective inhibitors of microbial growth and that may be suitable for use as chemotherapeutic agents in humans.
Collapse
Affiliation(s)
- Christina Spry
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
68
|
Velaparthi S, Brunsteiner M, Uddin R, Wan B, Franzblau SG, Petukhov PA. 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: initiating a quest for new antitubercular drugs. J Med Chem 2008; 51:1999-2002. [PMID: 18335974 DOI: 10.1021/jm701372r] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pantothenate synthetase (PS) is one of the potential new antimicrobial targets that may also be useful for the treatment of the nonreplicating persistent forms of Mycobacterium tuberculosis. In this Letter we present a series of 5- tert-butyl- N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[ d]isoxazole-3-carboxamide derivatives as novel potent Mycobacterium tuberculosis PS inhibitors, their in silico molecular design, synthesis, and inhibitory activity.
Collapse
Affiliation(s)
- Subash Velaparthi
- Department of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
69
|
Fan F, Luxenburger A, Painter GF, Blanchard JS. Steady-state and pre-steady-state kinetic analysis of Mycobacterium smegmatis cysteine ligase (MshC). Biochemistry 2007; 46:11421-9. [PMID: 17848100 PMCID: PMC2526253 DOI: 10.1021/bi7011492] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-d-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-MshD. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady-state and pre-steady-state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady-state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady-state kinetic parameters were determined to be kcat equal to 3.15 s-1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analogue, 5'-O-[N-(l-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and noncompetitive inhibition versus cysteine, with an inhibition constant of approximately 306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid-quench techniques, giving rates of approximately 9.4 and approximately 5.2 s-1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC.
Collapse
Affiliation(s)
- Fan Fan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Andreas Luxenburger
- Carbohydrate Chemistry Team, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
| | - Gavin F. Painter
- Carbohydrate Chemistry Team, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
70
|
Seetharamappa J, Oke M, Liu H, McMahon SA, Johnson KA, Carter L, Dorward M, Zawadzki M, Overton IM, van Niekirk CAJ, Graham S, Botting CH, Taylor GL, White MF, Barton GJ, Coote PJ, Naismith JH. Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:488-91. [PMID: 17554169 PMCID: PMC2335074 DOI: 10.1107/s1744309107020362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 04/24/2007] [Indexed: 11/10/2022]
Abstract
Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K. The protein crystallizes in a primitive triclinic lattice, with unit-cell parameters a = 45.3, b = 60.5, c = 117.6 A, alpha = 87.2, beta = 81.2, gamma = 68.4 degrees . A complete data set has been collected to 2.3 A resolution at the ESRF. Consideration of the likely solvent content suggested the asymmetric unit to contain four molecules. This has been confirmed by molecular-replacement phasing calculations, which give a solution with four monomers using a monomer of pantothenate synthetase from Escherichia coli (PDB code 1iho), which is 41% identical to Sar2676, as a search model.
Collapse
Affiliation(s)
- Jaldappagari Seetharamappa
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
- Department of Chemistry, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka State, India
| | - Muse Oke
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Huanting Liu
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Stephen A. McMahon
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Kenneth A. Johnson
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Lester Carter
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Mark Dorward
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Michal Zawadzki
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Ian M. Overton
- Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - C. A. Johannes van Niekirk
- Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Shirley Graham
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Catherine H. Botting
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Garry L. Taylor
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Malcolm F. White
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - Geoffrey J. Barton
- Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Peter J. Coote
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| | - James H. Naismith
- Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST, Scotland
| |
Collapse
|
71
|
White EL, Southworth K, Ross L, Cooley S, Gill RB, Sosa MI, Manouvakhova A, Rasmussen L, Goulding C, Eisenberg D, Fletcher TM. A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase. ACTA ACUST UNITED AC 2006; 12:100-5. [PMID: 17175524 DOI: 10.1177/1087057106296484] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pantothenate synthetase (PS; EC 6.3.2.1), encoded by the panC gene, catalyzes the essential adenosine triphosphate (ATP)-dependent condensation of D-pantoate and beta-alanine to form pantothenate in bacteria, yeast, and plants; pantothenate is a key precursor for the biosynthesis of coenzyme A (CoA) and acyl carrier protein (ACP). Because the enzyme is absent in mammals and both CoA and ACP are essential cofactors for bacterial growth, PS is an attractive chemotherapeutic target. An automated high-throughput screen was developed to identify drugs that inhibit Mycobacterium tuberculosis PS. The activity of PS was measured spectrophotometrically through an enzymatic cascade involving myokinase, pyruvate kinase, and lactate dehydrogenase. The rate of PS ATP utilization was quantitated by the reduction of absorbance due to the oxidation of NADH to NAD+ by lactate dehydrogenase, which allowed for an internal control to detect interference from compounds that absorb at 340 nm. This coupled enzymatic reaction was used to screen 4080 compounds in a 96-well format. This discussion describes a novel inhibitor of PS that exhibits potential as an antimicrobial agent.
Collapse
Affiliation(s)
- E Lucile White
- Southern Research Institute, Birmingham, AL 35205-5305, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Iancu CV, Zhou Y, Borza T, Fromm HJ, Honzatko RB. Cavitation as a mechanism of substrate discrimination by adenylosuccinate synthetases. Biochemistry 2006; 45:11703-11. [PMID: 16981730 PMCID: PMC4869520 DOI: 10.1021/bi0607498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adenylosuccinate synthetase catalyzes the first committed step in the de novo biosynthesis of AMP, coupling L-aspartate and IMP to form adenylosuccinate. Km values of IMP and 2'-deoxy-IMP are nearly identical with each substrate supporting comparable maximal velocities. Nonetheless, the Km value for L-aspartate and the Ki value for hadacidin (a competitive inhibitor with respect to L-aspartate) are 29-57-fold lower in the presence of IMP than in the presence of 2'-deoxy-IMP. Crystal structures of the synthetase ligated with hadacidin, GDP, and either 6-phosphoryl-IMP or 2'-deoxy-6-phosphoryl-IMP are identical except for the presence of a cavity normally occupied by the 2'-hydroxyl group of IMP. In the presence of 6-phosphoryl-IMP and GDP (hadacidin absent), the L-aspartate pocket can retain its fully ligated conformation, forming hydrogen bonds between the 2'-hydroxyl group of IMP and sequence-invariant residues. In the presence of 2'-deoxy-6-phosphoryl-IMP and GDP, however, the L-aspartate pocket is poorly ordered. The absence of the 2'-hydroxyl group of the deoxyribonucleotide may destabilize binding of the ligand to the L-aspartate pocket by disrupting hydrogen bonds that maintain a favorable protein conformation and by the introduction of a cavity into the fully ligated active site. At an approximate energy cost of 2.2 kcal/mol, the unfavorable thermodynamics of cavity formation may be the major factor in destabilizing ligands at the L-aspartate pocket.
Collapse
|
73
|
Jonczyk R, Genschel U. Molecular adaptation and allostery in plant pantothenate synthetases. J Biol Chem 2006; 281:37435-46. [PMID: 17040917 DOI: 10.1074/jbc.m607895200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pantothenate synthetase catalyzes the ATP-dependent condensation of pantoate and beta-alanine to yield pantothenate, the essential precursor to coenzyme A. Bacterial and plant pantothenate synthetases are dimeric enzymes that share significant sequence identity. Here we show that the two-step reaction mechanism of pantothenate synthetase is conserved between the enzymes from Arabidopsis thaliana and Escherichia coli. Strikingly, though, the Arabidopsis enzyme exhibits large allosteric effects, whereas the Escherichia coli enzyme displays essentially non-allosteric behavior. Our data suggest that specific subunit contacts were selected and maintained in the plant lineage of the pantothenate synthetase protein family and that the resulting allosteric interactions are balanced for efficient catalysis at low pantoate levels. This is supported by mutations in the putative subunit interface of Arabidopsis pantothenate synthetase, which strongly attenuated or otherwise modified its allosteric properties but did not affect the dimeric state of the enzyme. At the molecular level, plant pantothenate synthetases exemplify functional adaptation through allostery and without alterations to the active site architecture. We propose that the allosteric behavior confers a selective advantage in the context of the subcellular compartmentation of pantothenate biosynthesis in plants.
Collapse
Affiliation(s)
- Rafal Jonczyk
- Lehrstuhl für Genetik, Technische Universität München, 85350 Freising, Germany
| | | |
Collapse
|
74
|
Tuck KL, Saldanha SA, Birch LM, Smith AG, Abell C. The design and synthesis of inhibitors of pantothenate synthetase. Org Biomol Chem 2006; 4:3598-610. [PMID: 16990935 DOI: 10.1039/b609482a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pantothenate synthetase catalyses the ATP-dependent condensation of D-pantoate and beta-alanine to form pantothenate. Ten analogues of the reaction intermediate pantoyl adenylate, in which the phosphodiester is replaced by either an ester or sulfamoyl group, were designed as potential inhibitors of the enzyme. The esters were all modest competitive inhibitors, the sulfamoyls were more potent, consistent with their closer structural similarity to the pantoyl adenylate intermediate.
Collapse
Affiliation(s)
- Kellie L Tuck
- University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | | | | | |
Collapse
|
75
|
Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisáková V, Pátek M, Kalinowski J, Brune I, Pühler A, Tauch A. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 2005; 71:3255-68. [PMID: 15933028 PMCID: PMC1151861 DOI: 10.1128/aem.71.6.3255-3268.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A "second-generation" production strain was derived from a Corynebacterium glutamicum pantothenate producer by rational design to assess its potential to synthesize and accumulate the vitamin pantothenate by batch cultivation. The new pantothenate production strain carries a deletion of the ilvA gene to abolish isoleucine synthesis, the promoter down-mutation P-ilvEM3 to attenuate ilvE gene expression and thereby increase ketoisovalerate availability, and two compatible plasmids to overexpress the ilvBNCD genes and duplicated copies of the panBC operon. Production assays in shake flasks revealed that the P-ilvEM3 mutation and the duplication of the panBC operon had cumulative effects on pantothenate production. During pH-regulated batch cultivation, accumulation of 8 mM pantothenate was achieved, which is the highest value reported for C. glutamicum. Metabolic flux analysis during the fermentation demonstrated that the P-ilvEM3 mutation successfully reoriented the carbon flux towards pantothenate biosynthesis. Despite this repartition of the carbon flux, ketoisovalerate not converted to pantothenate was excreted by the cell and dissipated as by-products (ketoisocaproate, DL-2,3,-dihydroxy-isovalerate, ketopantoate, pantoate), which are indicative of saturation of the pantothenate biosynthetic pathway. Genome-wide expression analysis of the production strain during batch cultivation was performed by whole-genome DNA microarray hybridization and agglomerative hierarchical clustering, which detected the enhanced expression of genes involved in leucine biosynthesis, in serine and glycine formation, in regeneration of methylenetetrahydrofolate, in de novo synthesis of nicotinic acid mononucleotide, and in a complete pathway of acyl coenzyme A conversion. Our strategy not only successfully improved pantothenate production by genetically modified C. glutamicum strains but also revealed new constraints in attaining high productivity.
Collapse
Affiliation(s)
- Andrea T Hüser
- Lehrstuhl für Genetik, Institut für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Stanitzek S, Augustin MA, Huber R, Kupke T, Steinbacher S. Structural basis of CTP-dependent peptide bond formation in coenzyme A biosynthesis catalyzed by Escherichia coli PPC synthetase. Structure 2005; 12:1977-88. [PMID: 15530362 DOI: 10.1016/j.str.2004.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 11/16/2022]
Abstract
Phosphopantothenoylcysteine (PPC) synthetase forms a peptide bond between 4'-phosphopantothenate and cysteine in coenzyme A biosynthesis. PPC synthetases fall into two classes: eukaryotic, ATP-dependent and eubacterial, CTP-dependent enzymes. We describe the first crystal structure of E. coli PPC synthetase as a prototype of bacterial, CTP-dependent PPC synthetases. Structures of the apo-form and the synthetase complexed with CTP, the activated acyl-intermediate, 4'-phosphopantothenoyl-CMP, and with the reaction product CMP provide snapshots along the reaction pathway and detailed insight into substrate binding and the reaction mechanism of peptide bond formation. Binding of the phosphopantothenate moiety of the acyl-intermediate in a cleft at the C-terminal end of the central beta sheet of the dinucleotide binding fold is accomplished by an otherwise flexible flap. A second disordered loop may control access of cysteine to the active site. The conservation of functionalities involved in substrate binding and catalysis provides insight into similarities and differences of prokaryotic and eukaryotic PPC synthetases.
Collapse
Affiliation(s)
- Susanne Stanitzek
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
77
|
Wang S, Eisenberg D. Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate. Protein Sci 2003; 12:1097-108. [PMID: 12717031 PMCID: PMC2323879 DOI: 10.1110/ps.0241803] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pantothenate biosynthesis is essential for the virulence of Mycobacterium tuberculosis, and this pathway thus presents potential drug targets against tuberculosis. We determined the crystal structure of pantothenate synthetase (PS) from M. tuberculosis, and its complexes with AMPCPP, pantoate, and a reaction intermediate, pantoyl adenylate, with resolutions from 1.6 to 2 A. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Its structure reveals a dimer, and each subunit has two domains with tight association between domains. The active-site cavity is on the N-terminal domain, partially covered by the C-terminal domain. One wall of the active site cavity is flexible, which allows the bulky AMPCPP to diffuse into the active site to nearly full occupancy when crystals are soaked in solutions containing AMPCPP. Crystal structures of the complexes with AMPCPP and pantoate indicate that the enzyme binds ATP and pantoate tightly in the active site, and brings the carboxyl oxygen of pantoate near the alpha-phosphorus atom of ATP for an in-line nucleophilic attack. When crystals were soaked with, or grown in the presence of, both ATP and pantoate, a reaction intermediate, pantoyl adenylate, is found in the active site. The flexible wall of the active site cavity becomes ordered when the intermediate is in the active site, thus protecting it from being hydrolyzed. Binding of beta-alanine can occur only after pantoyl adenylate is formed inside the active site cavity. The tight binding of the intermediate pantoyl adenylate suggests that nonreactive analogs of pantoyl adenylate may be inhibitors of the PS enzyme with high affinity and specificity.
Collapse
Affiliation(s)
- Shuishu Wang
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics, Molecular Biology Institute, University of California, Los Angeles, 90095-1570, USA
| | | |
Collapse
|
78
|
Badurina DS, Zolli-Juran M, Brown ED. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:196-206. [PMID: 12637027 DOI: 10.1016/s1570-9639(03)00019-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTP:glycerol 3-phosphate cytidylyltransferase catalyzes the formation of CDP-glycerol, an activated form of glycerol 3-phosphate and key precursor to wall teichoic acid biogenesis in Gram-positive bacteria. There is high sequence identity (69%) between the CTP:glycerol 3-phosphate cytidylyltransferases from Bacillus subtilis 168 (TagD) and Staphylococcus aureus (TarD). The B. subtilis TagD protein was shown to catalyze cytidylyltransferase via a random mechanism with millimolar K(m) values for both CTP and glycerol 3-phosphate [J. Biol. Chem. 268, (1993) 16648] and exhibited negative cooperativity in the binding of substrates but not in catalysis [J. Biol. Chem. 276, (2001) 37922]. In the work described here on the S. aureus TarD protein, we have elucidated a steady state kinetic mechanism that is markedly different from that determined for B. subtilis TagD. Steady state kinetic experiments with recombinant, purified TarD employed a high-performance liquid chromatography assay developed in this work. The data were consistent with a ternary complex model. The K(m) values for CTP and glycerol 3-phosphate were 36 and 21 microM, respectively, and the k(cat) was 2.6 s(-1). Steady state kinetic analysis of the reverse (pyrophosphorylase) reaction was also consistent with a ternary complex model. Product inhibition studies indicated an ordered Bi-Bi reaction mechanism where glycerol 3-phosphate was the leading substrate and the release of CDP-glycerol preceded that of pyrophosphate. Finally, we investigated the capacity of S. aureus tarD to substitute for tagD in B. subtilis. The tarD gene was placed under control of the xylose promoter in a B. subtilis 168 mutant defective in tagD (temperature-sensitive, tag-12). Growth of the resulting strain at the restrictive temperature (47 degrees C) was shown to be xylose-dependent.
Collapse
Affiliation(s)
- David S Badurina
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Room 4H2, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
79
|
Kupke T. Molecular characterization of the 4'-phosphopantothenoylcysteine synthetase domain of bacterial dfp flavoproteins. J Biol Chem 2002; 277:36137-45. [PMID: 12140293 DOI: 10.1074/jbc.m206188200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, coenzyme A is synthesized in five steps from pantothenate. The flavoprotein Dfp catalyzes the synthesis of the coenzyme A precursor 4'-phosphopantetheine in the presence of 4'-phosphopantothenate, cysteine, CTP, and Mg(2+) (Strauss, E., Kinsland, C., Ge, Y., McLafferty, F. W., and Begley, T. P. (2001) J. Biol. Chem. 276, 13513-13516). It has been shown that the NH(2)-terminal domain of Dfp has 4'-phosphopantothenoylcysteine decarboxylase activity (Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., and Steinbacher, S. (2000) J. Biol. Chem. 275, 31838-31846). Here I demonstrate that the COOH-terminal CoaB domain of Dfp catalyzes the synthesis of 4'-phosphopantothenoylcysteine. The exchange of conserved amino acid residues within the CoaB domain revealed that the synthesis of 4'-phosphopantothenoylcysteine occurs in two half-reactions. Using the mutant protein His-CoaB N210D the putative acyl-cytidylate intermediate of 4'-phosphopantothenate was detectable. The same intermediate was detectable for the wild-type CoaB enzyme if cysteine was omitted in the reaction mixture. Exchange of the conserved Lys(289) residue, which is part of the strictly conserved (289)KXKK(292) motif of the CoaB domain, resulted in complete loss of activity with neither the acyl-cytidylate intermediate nor 4'-phosphopantothenoylcysteine being detectable. Gel filtration experiments indicated that CoaB forms dimers. Residues that are important for dimerization are conserved in CoaB proteins from eubacteria, Archaea, and eukaryotes.
Collapse
Affiliation(s)
- Thomas Kupke
- Lehrstuhl für Mikrobielle Genetik, Universität Tübingen, Auf der Morgenstelle 15, Verfügungsgebäude, 72076 Tübingen, Germany.
| |
Collapse
|
80
|
Metzler DE, Metzler CM, Sauke DJ. The Metabolism of Nitrogen and Amino Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|