51
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
52
|
Oostendorp RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 2009; 35:137-47. [DOI: 10.1016/j.ctrv.2008.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/17/2008] [Accepted: 09/20/2008] [Indexed: 11/27/2022]
|
53
|
Marasanapalle VP, Crison JR, Ma J, Li X, Jasti BR. Investigation of some factors contributing to negative food effects. Biopharm Drug Dispos 2009; 30:71-80. [DOI: 10.1002/bdd.647] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
54
|
Fenneteau F, Turgeon J, Couture L, Michaud V, Li J, Nekka F. Assessing drug distribution in tissues expressing P-glycoprotein through physiologically based pharmacokinetic modeling: model structure and parameters determination. Theor Biol Med Model 2009; 6:2. [PMID: 19146691 PMCID: PMC2661039 DOI: 10.1186/1742-4682-6-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/15/2009] [Indexed: 02/06/2023] Open
Abstract
Background The expression and activity of P-glycoproteins due to genetic or environmental factors may have a significant impact on drug disposition, drug effectiveness or drug toxicity. Hence, characterization of drug disposition over a wide range of conditions of these membrane transporters activities is required to better characterize drug pharmacokinetics and pharmacodynamics. This work aims to improve our understanding of the impact of P-gp activity modulation on tissue distribution of P-gp substrate. Methods A PBPK model was developed in order to examine activity and expression of P-gp transporters in mouse brain and heart. Drug distribution in these tissues was first represented by a well-stirred (WS) model and then refined by a mechanistic transport-based (MTB) model that includes P-gp mediated transport of the drug. To estimate transport-related parameters, we developed an original three-step procedure that allowed extrapolation of in vitro measurements of drug permeability to the in vivo situation. The model simulations were compared to a limited set of data in order to assess the model ability to reproduce the important information of drug distributions in the considered tissues. Results This PBPK model brings insights into the mechanism of drug distribution in non eliminating tissues expressing P-gp. The MTB model accounts for the main transport mechanisms involved in drug distribution in heart and brain. It points out to the protective role of P-gp at the blood-brain barrier and represents thus a noticeable improvement over the WS model. Conclusion Being built prior to in vivo data, this approach brings an interesting alternative to fitting procedures, and could be adapted to different drugs and transporters. The physiological based model is novel and unique and brought effective information on drug transporters.
Collapse
|
55
|
Ikemura K, Urano K, Matsuda H, Mizutani H, Iwamoto T, Okuda M. Decreased oral absorption of cyclosporine A after liver ischemia-reperfusion injury in rats: the contribution of CYP3A and P-glycoprotein to the first-pass metabolism in intestinal epithelial cells. J Pharmacol Exp Ther 2009; 328:249-55. [PMID: 18842703 DOI: 10.1124/jpet.108.145581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The bioavailability of orally administrated cyclosporine A (CsA) is poor and variable in liver transplantation recipients. Little information is available about the effect of liver ischemia-reperfusion (I/R) injury, which is associated with liver transplantation, on the intestinal first-pass metabolism of CsA. In the present study, we investigated the pharmacokinetics of CsA after liver I/R and assessed the effect of liver I/R via CYP3A and P-glycoprotein (P-gp) on its intestinal first-pass metabolism. When CsA alone was administrated orally, the area under the concentration-time curve (AUC) in the I/R rats was significantly decreased compared with that in the sham rats. On the other hand, there were no significant differences in the AUC between I/R and sham rats when CsA was administrated intravenously or orally with ketoconazole. After intraloop administration of CsA to the small intestine (upper, middle, and lower portions) of the I/R and sham rats, the AUC(0-15 min) in the upper intestine was significantly lower in the I/R rats than in the sham rats. CYP3A activity and the expression levels of P-gp in the upper intestine of the I/R rats were significantly higher than those of the sham rats. Our study clearly demonstrates for the first time that liver I/R decreases the oral bioavailability of CsA and that this is attributable principally to increased first-pass metabolism mediated by CYP3A and P-gp in the upper small intestine. The present findings provide useful information for the etiology of liver I/R injury and appropriate use of CsA after liver transplantation.
Collapse
Affiliation(s)
- Kenji Ikemura
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Föger F, Kafedjiiski K, Hoyer H, Loretz B, Bernkop-Schnürch A. Enhanced transport of P-glycoprotein substrate saquinavir in presence of thiolated chitosan. J Drug Target 2008; 15:132-9. [PMID: 17365284 DOI: 10.1080/10611860601140798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It was the aim of this study to investigate the effect of chitosan-4-thiobutylamidine (Ch-TBA) and reduced glutathione (GSH) on the absorption of P-glycoprotein (P-gp) and multidrug resistance protein (MRP) substrate saquinavir in vitro and in vivo. Bidirectional transport studies were performed with Caco-2 cell monolayers and additionally with freshly excised rat small intestinal mucosa mounted in Ussing type chambers. Furthermore, a delivery system based on Ch-TBA and GSH was evaluated in vivo in rats. The functional activity of the efflux pumps in Caco-2 cells and rat intestinal mucosa during the experiment was proven by the efflux ratio of saquinavir, which was 6.4 for Caco-2 cells and 2.1 for rat intestinal mucosa, respectively. Ch-TBA and particularly the combination of Ch-TBA with GSH enhanced apical (AP) absorption and decreased the secretory transport of saquinavir. In presence of 0.5% Ch-TBA and 0.5% GSH, the uptake of saquinavir was 1.6-fold improved in Caco-2 monolayer and 2.1-fold improved in rat intestinal mucosa. In vivo, the area under the plasma concentration time curve (AUC) of saquinavir was 1.4-fold and Cmax 1.6-fold increased, in comparison with control. Results of this study showed that Ch-TBA in combination with GSH can be an interesting tool for increasing the oral bioavailability of actively secreted compounds.
Collapse
Affiliation(s)
- Florian Föger
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innrain 52, Josef Möller Haus, Innsbruck, A-6020, Austria.
| | | | | | | | | |
Collapse
|
57
|
Lai Y, Chiang PC, Blom JD, Li N, Shevlin K, Brayman TG, Hu Y, Selbo JG, Hu L. Comparison of In vitro Nanoparticles Uptake in Various Cell Lines and In vivo Pulmonary Cellular Transport in Intratracheally Dosed Rat Model. NANOSCALE RESEARCH LETTERS 2008; 3:321. [PMCID: PMC3244889 DOI: 10.1007/s11671-008-9160-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/18/2008] [Indexed: 05/29/2023]
Abstract
In present study, the potential drug delivery of nanoformulations was validated via the comparison of cellular uptake of nanoparticles in various cell lines and in vivo pulmonary cellular uptake in intratracheally (IT) dosed rat model. Nanoparticles were prepared by a bench scale wet milling device and incubated with a series of cell lines, including Caco-2, RAW, MDCK and MDCK transfected MDR1 cells. IT dosed rats were examined for the pulmonary cellular uptake of nanoparticles. The processes of nanoparticle preparation did not alter the crystalline state of the material. The uptake of nanoparticles was observed most extensively in RAW cells and the least in Caco-2 cells. Efflux transporter P-gp did not prevent cell from nanoparticles uptake. The cellular uptake of nanoparticles was also confirmed in bronchoalveolar lavage (BAL) fluid cells and in bronchiolar epithelial cells, type II alveolar epithelial cells in the intratracheally administrated rats. The nanoparticles uptake in MDCK, RAW cells and in vivo lung epithelial cells indicated the potential applications of nanoformulation for poorly soluble compounds. The observed limited direct uptake of nanoparticles in Caco-2 cells suggests that the improvement in oral bioavailability by particle size reduction is via increased dissolution rate rather than direct uptake.
Collapse
Affiliation(s)
- Yurong Lai
- Pharmacokinetic, Dynamics, & Metabolism, Pfizer, Inc. St. Louis Laboratory, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
| | - Po-Chang Chiang
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
- Pharmaceutical Science, Pfizer, Inc. St. Louis Laboratory, Chesterfield, USA
| | - Jason D Blom
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
| | - Na Li
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
| | - Kimberly Shevlin
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
| | - Timothy G Brayman
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
| | - Yiding Hu
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
| | - Jon G Selbo
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
| | - LiangbiaoGeorge Hu
- Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc, St. Louis, MO, 63017, USA
- Drug Safety Research Development, Pfizer, Inc. St. Louis Laboratory, Chesterfield, USA
| |
Collapse
|
58
|
Lo Y, Ho C, Tsai F. Inhibit multidrug resistance and induce apoptosis by using glycocholic acid and epirubicin. Eur J Pharm Sci 2008; 35:52-67. [DOI: 10.1016/j.ejps.2008.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 01/21/2023]
|
59
|
Barta CA, Sachs-Barrable K, Feng F, Wasan KM. Effects of Monoglycerides on P-Glycoprotein: Modulation of the Activity and Expression in Caco-2 Cell Monolayers. Mol Pharm 2008; 5:863-75. [DOI: 10.1021/mp800050q] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheri A. Barta
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina Sachs-Barrable
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Florina Feng
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kishor M. Wasan
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
60
|
Murakami T, Takano M. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol 2008; 4:923-39. [DOI: 10.1517/17425255.4.7.923] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
61
|
Species Difference in Intestinal Absorption Mechanism of Etoposide and Digoxin between Cynomolgus Monkey and Rat. Pharm Res 2008; 25:2467-76. [DOI: 10.1007/s11095-008-9658-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 06/05/2008] [Indexed: 02/05/2023]
|
62
|
Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm 2008; 5:760-75. [PMID: 18547054 DOI: 10.1021/mp8000155] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This article describes the use of physiologically based models of intestinal drug absorption to guide the research and development of new drugs. Applications range from lead optimization in the drug discovery phase through clinical candidate selection and extrapolation to human to phase 2 formulation development. Early simulations in preclinical species integrate multiple screening data and add value by transforming these individual properties into a prediction of in vivo absorption. Comparison of simulations to plasma levels measured after oral dosing in animals highlights unexpected behavior, and parameter sensitivity analysis can explore the impact of uncertainties in key properties, point toward factors which are limiting absorption and contribute to assessment of compound developability. Physiological models provide reliable prediction of human absorption and with refinement based on phase 1 data are useful guides to further market formulation development. Improvements in the accuracy of simulations are expected as better in vitro methods generate more in vivo relevant solubility and permeability data, and modeling will play a central role in the development of more predictive methods for transporter-related effects on drug absorption.
Collapse
Affiliation(s)
- Neil Parrott
- F. Hoffmann-La Roche Ltd. Pharmaceuticals Division, Pharma Research Non-Clinical Development, Non-Clinical Drug Safety, Basel, Switzerland.
| | | |
Collapse
|
63
|
Bioavailability of probucol from lipid and surfactant based formulations in minipigs: Influence of droplet size and dietary state. Eur J Pharm Biopharm 2008; 69:553-62. [DOI: 10.1016/j.ejpb.2007.12.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/01/2007] [Accepted: 12/12/2007] [Indexed: 11/21/2022]
|
64
|
Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008; 46:813-41. [DOI: 10.1016/j.fct.2007.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/25/2007] [Accepted: 12/03/2007] [Indexed: 01/16/2023]
|
65
|
Abstract
Human jejunal permeability (P(eff)) is determined in the intestinal region with the highest expression of carrier proteins and largest surface area. Intestinal P(eff) are often based on multiple parallel transport processes. Site-specific jejunal P(eff) cannot reflect the permeability along the intestinal tract, but they are useful for approximating the fraction oral dose absorbed. It seems like drugs with a jejunal P(eff) > 1.5 x 10(-4) cm s(-1) will be completely absorbed no matter which transport mechanism(s) are utilized. Many drugs that are significantly effluxed in vitro have a rapid and complete intestinal absorption (i.e. >85%) mediated by passive transcellular diffusion. The determined jejunal P(eff) for drugs transported mainly by absorptive carriers (such as peptide and amino acid transporters) will accurately predict the fraction of the dose absorbed as a consequence of the regional expression. The data also show that: (1) the human intestinal epithelium has a large resistance towards large and hydrophilic compounds; and (2) the paracellular route has a low contribution for compounds larger than approximately molecular weight 200. There is a need for more exploratory in vivo studies to clarify drug absorption and first-pass extraction along the intestine. One is encouraged to develop in vivo perfusion techniques for more distal parts of the gastrointestinal tract in humans. This would stimulate the development of more relevant and complex in vitro absorption models and form the basis for an accurate physiologically based pharmacokinetic modelling of oral drug absorption.
Collapse
Affiliation(s)
- H Lennernäs
- Biopharmaceutics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
66
|
Collett A, Stephens RH, Harwood MD, Humphrey M, Dallman L, Bennett J, Davis J, Carlson GL, Warhurst G. Investigation of regional mechanisms responsible for poor oral absorption in humans of a modified release preparation of the alpha-adrenoreceptor antagonist, 4-amino-6,7-dimethoxy-2-(5-methanesulfonamido-1,2,3,4 tetrahydroisoquinol-2-yl)-5-(2-pyridyl)quinazoline (UK-338,003): the rational use of ex vivo intestine to predict in vivo absorption. Drug Metab Dispos 2008; 36:87-94. [PMID: 17932223 DOI: 10.1124/dmd.107.016865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Modified release (MR) formulations are used to enhance the safety and compliance of existing drugs by improving their pharmacokinetics. Predicting the likely success of MR formulations is often difficult before clinical studies. A systematic in vitro approach using mouse and human tissues was adopted to rationalize the in vivo pharmacokinetics of 9- and 15-h MR formulations of an alpha-adrenoreceptor antagonist, 4-amino-6,7-dimethoxy-2-(5-methanesulfonamido-1,2,3,4 tetrahydroisoquinol-2-yl)-5-(2-pyridyl)quinazoline (UK-338,003). Immediate release UK-338,003 was well absorbed in humans consistent with moderate Caco-2 cell monolayer permeability. In contrast, 9- and 15-h modified release formulations showed marked reductions in C(max) (47.1 and 68.9%) and AUC(0-72) (32.6 and 54.0%). Colonic intubation resulted in 81.3 and 73.8% reductions in C(max) and AUC(0-72). Mechanistic studies in isolated mouse tissues showed that colonic UK-338,003 permeability (P(app) < 0.5 x 10(-6) cm/s) was at least 40 times lower than that for ileum with marked asymmetry. UK-338,003 was found to be a substrate for P-glycoprotein (PGP) with a weaker interaction for multidrug resistance-associated protein-type transporters in mouse intestine. PGP inhibition dramatically increased colonic UK-338,003 permeability to the levels observed in ileum. Low UK-338,003 apical to basolateral permeability was also observed in ex vivo human distal intestine, but both the asymmetry and increase in permeability after PGP inhibition were significantly lower. In conclusion, the poor absorption of MR UK-338,003 in humans can be explained by a combination of PGP-dependent efflux and low intrinsic permeability in the lower bowel. Regional permeability studies in ex vivo tissues used during drug development can highlight absorption problems in the distal bowel and assess the feasibility of developing successful MR formulations.
Collapse
Affiliation(s)
- A Collett
- Gut Barrier Group, Faculty of Medical and Human Sciences, University of Manchester, Hope Hospital, Salford M6 8HD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Transmembrane located transporter proteins can be responsible for the low bioavailability of orally administered drugs. Drug delivery systems which can overcome this barrier caused by efflux pumps are therefore highly on demand. Within the current review, intestinal located efflux transporters, methods to identify efflux pump substrates and inhibitors as well as strategies to minimize efflux pump mediated transport of drugs are discussed. Methods include in silico screening, transport and accumulation studies and monitoring of the ATPase activity. An emphasis has been placed on efflux pump inhibitors including low molecular mass inhibitors such as cyclosporine, PSC833 or KR30031 and polymeric inhibitors such as myrj, thiomers and cremophor EL. Also formulation approaches to circumvent intestinal segments with high efflux pump expression are briefly addressed.
Collapse
Affiliation(s)
- Martin Werle
- ThioMatrix GmbH, Research Center Innsbruck, Mitterweg 24, A-6020 Innsbruck, Austria.
| |
Collapse
|
68
|
Videmann B, Tep J, Cavret S, Lecoeur S. Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). Food Chem Toxicol 2007; 45:1938-47. [PMID: 17543436 DOI: 10.1016/j.fct.2007.04.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 03/14/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Deoxynivalenol (DON) is a major mycotoxic contaminant of cereal grains in Europe and North America. Human and animal contamination occurs mainly orally, and the toxin must traverse the intestinal epithelial barrier before inducing potential health effects. This study investigates the mechanisms of DON transepithelial transfer. Investigations using the human intestinal Caco-2 cell line showed a basal-to-apical polarized transport of the toxin. Both apical-basolateral (AP-BL) and basolateral-apical (BL-AP) transfers were time- and concentration-dependent, and not saturable between 5 and 30 microM DON. Arrhenius plot analysis revealed that transfer of 10 microM DON was temperature-dependent, with apparent activation energy E(a)=3.2 kcal mol(-1) in the AP-BL direction, and E(a)=10.4 kcal mol(-1) in the BL-AP direction. Intracellular DON accumulation was increased and DON efflux was decreased by ATP depletion, by P-glycoprotein inhibitor valspodar and by MRP2 inhibitor MK571, but not by BCRP inhibitor Ko143. Intracellular DON accumulation was then investigated using epithelial cell lines transfected with human P-glycoprotein or MRP2. This accumulation was decreased in LLCPK1-MDR1 and MDCKII-MRP2 cells, compared to wild-type cells, and the decrease could be reversed by valspodar or MK571. Taken together, these results suggest that DON is a substrate for both P-glycoprotein and MRP2.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Biological Transport, Active
- Caco-2 Cells
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Cyclosporins/pharmacology
- Data Interpretation, Statistical
- Dogs
- Epithelium/metabolism
- Flow Cytometry
- Humans
- LLC-PK1 Cells
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Propionates/pharmacology
- Quinolines/pharmacology
- Swine
- Temperature
- Transfection
- Trichothecenes/metabolism
Collapse
Affiliation(s)
- Bernadette Videmann
- UMR 1233, Métabolisme et Toxicologie Comparée des Xénobiotiques, INRA-DGER, Ecole Nationale Vétérinaire de Lyon, 1 av. Bourgelat, 69280 Marcy l'Etoile, France
| | | | | | | |
Collapse
|
69
|
Tep J, Videmann B, Mazallon M, Balleydier S, Cavret S, Lecoeur S. Transepithelial transport of fusariotoxin nivalenol: mediation of secretion by ABC transporters. Toxicol Lett 2007; 170:248-58. [PMID: 17481833 DOI: 10.1016/j.toxlet.2007.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/26/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
Mycotoxin nivalenol (NIV) is a natural contaminant of various cereal crops, animal feed and processed grains throughout the world. Human and animal contamination occurs mainly orally, and the toxin must traverse the intestinal epithelial barrier before inducing potential health effects. In this study, we investigated the mechanisms involved in NIV transepithelial transfer. The human intestinal Caco-2 cell line showed a basal-to-apical polarized transport of NIV. Using metabolic inhibitors and temperature-dependent experiments, we demonstrated that basolateral-apical (BL-AP) transfer of NIV involved an energy-dependent transport whereas apical-basolateral (AP-BL) transfer was governed by passive diffusion. NIV efflux was significantly decreased in the presence of the P-glycoprotein (P-gp) inhibitor valspodar, the multi-drug resistance-associated proteins (MRPs) inhibitor MK571, but was not modified by the breast cancer resistance protein (BCRP) inhibitor Ko143. Intracellular NIV accumulation was investigated using epithelial cell lines transfected with either human P-glycoprotein or MRP2. This accumulation was significantly decreased in LLCPK1/MDR1 and MDCKII/MRP2 cells, compared to wild-type cells, and this effect was reversed by valspodar and MK571, respectively. These in vitro results suggested that NIV was a substrate for both P-glycoprotein and MRP2. This interaction may play a key role in weak intestinal absorption of NIV and the mainly predominant excretion of NIV in faeces in animal studies.
Collapse
Affiliation(s)
- Jonathan Tep
- UMR 1233, Métabolisme et Toxicologie Comparée des Xénobiotiques, INRA-DGER, Ecole Nationale Vétérinaire de Lyon, 1 av. Bourgelat, 69280 Marcy l'Etoile, France
| | | | | | | | | | | |
Collapse
|
70
|
Tian X, Yang X, Wang K, Yang X. The efflux of flavonoids morin, isorhamnetin-3-O-rutinoside and diosmetin-7-O-beta-D-xylopyranosyl-(1-6) -beta-D-glucopyranoside in the human intestinal cell line caco-2. Pharm Res 2007; 23:1721-8. [PMID: 16832612 DOI: 10.1007/s11095-006-9030-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 04/07/2006] [Indexed: 02/01/2023]
Abstract
PURPOSE In this study, we chose three of the flavonoids isorhamnetin-3-O-rutinoside(IRR) diosmetin-7-O-beta-D-xylopyranosyl-(1-6)-beta-D-glucopyranoside(DXG) and morin, which showed obvious efflux, to test the hypothesis that a specific efflux transporter is responsible for their transportation. METHODS The intestinal epithelial membrane transport of the flavonoids were examined using the monolayer of the human Caco-2 cell line grown in Transwells, a common model of intestinal absorption. The flavonoids were measured by high performance liquid chromatography with UV detector. RESULT The efflux of morin, IRR and DXG, across Caco-2 cell monolayers was examined over the concentration range from 2 to 200 microM and showed a saturable process. The depletion of the cellular ATP stores with 5 mM iodoacetamide led to a significant inhibition of the efflux. Fifty micromolar verapamil, a chemical inhibitor of P-glycoprotein, had no effect on the transport of the three flavonoids, while the presence of 50 microM MK-571 and 1 mM probenecid, MRP inhibitors, resulted in an obvious reduction in the efflux. Moreover, inhibition of morin transport by MK-571 demonstrated concentration dependence. The transportation of the three flavonoids was compared with apigenin. CONCLUSION These data support a role for MRPs in the intestinal transcellular efflux of morin, IRR, DXG and possibly other hydrophilic flavonoid aglycons and glycosides.
Collapse
Affiliation(s)
- Xiaojuan Tian
- Department of Chemical Biology and State Key laboratories of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
71
|
Barta CA, Sachs-Barrable K, Jia J, Thompson KH, Wasan KM, Orvig C. Lanthanide containing compounds for therapeutic care in bone resorption disorders. Dalton Trans 2007:5019-30. [DOI: 10.1039/b705123a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Bertelsen KM, Greenblatt DJ, von Moltke LL. Apparent active transport of MDMA is not mediated by P-glycoprotein: a comparison with MDCK and Caco-2 monolayers. Biopharm Drug Dispos 2006; 27:219-27. [PMID: 16552717 DOI: 10.1002/bdd.501] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amphetamines and their methylenedioxy derivatives generically display similar behavioral, physiologic and toxic effects. Inconsistent pharmacokinetic and toxicity data for methylenedioxymethamphetamine (MDMA) may suggest that active drug transporters are interacting with these compounds, and thus altering drug absorption and tissue distribution. In vitro models of CNS accumulation and intestinal drug transport were used to assess efflux transport of MDMA. Madin-Darby kidney cell epithelial (MDCK) monolayers displayed a 4-fold increase in accumulation in the basolateral to apical orientation relative to the apical to basolateral orientation, although no differential accumulation was noted between MDCK-WT and MDCK-MDR1 monolayers. Caco-2 monolayers demonstrated an approximate 2-fold increase in accumulation of MDMA. Exposure of various inhibitors of active drug transporters demonstrated mixed results; ritonavir, progesterone and indomethacin produced an approximately 50% reduction of MDMA transport, while verapamil, MK-571 and probenecid had no effect. Based on these data, it is concluded that MDMA efflux is mediated via the activity of a transporter distinct from P-glycoprotein. The possible inhibitory effects of amphetamines on rhodamine-123 transport were also assessed. MDMA, methylenedioxyamphetamine, amphetamine and methamphetamine, at physiologically relevant concentrations, did not significantly alter the transport of rhodamine-123 in Caco-2 monolayers or the LS180 cell line, suggesting that these compounds do not alter the function of P-glycoprotein.
Collapse
Affiliation(s)
- Kirk M Bertelsen
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
73
|
Li M, Anderson GD, Wang J. Drug-drug interactions involving membrane transporters in the human kidney. Expert Opin Drug Metab Toxicol 2006; 2:505-32. [PMID: 16859401 DOI: 10.1517/17425255.2.4.505] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The kidneys play a critical role in the elimination of xenobiotics. Factors affecting the ability of the kidney to eliminate drugs may result in marked changes in the pharmacokinetics of a given compound. Drug-drug interactions due to competitive inhibition of renal organic anion or cation secretion systems have been noticed clinically for a long time. However, our understanding of the physical sites of interactions, that is, the specific transport proteins that the interacting drugs act on, has just begun very recently. This review summarises the latest progress in molecular identification and functional characterisation of major drug transporters in the human kidney. In particular, the review focuses on relating cloned renal drug transporters to clinically observed drug-drug interactions. The authors' opinion on the current status and future directions of research in these areas is also offered.
Collapse
Affiliation(s)
- Meng Li
- University of Washington, Department of Pharmaceutics, School of Pharmacy, Seattle, 98195, USA
| | | | | |
Collapse
|
74
|
Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P. In Silico Modeling of Non-Linear Drug Absorption for the P-gp Substrate Talinolol and of Consequences for the Resulting Pharmacodynamic Effect. Pharm Res 2006; 23:1712-20. [PMID: 16832615 DOI: 10.1007/s11095-006-9020-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of the present work was to demonstrate P-glycoprotein's involvement in the non-linear talinolol pharmacokinetics using an advanced compartment and transit model (ACAT) and to compare the results predicted from the model to the finding of a phase I dose escalation study with oral talinolol doses increasing from 25 to 400 mg. MATERIALS AND METHODS Besides minimum input parameters for the compound (pKa(s), solubility at one or more pH's, Peff, doses, formulation, diffusivity), physiological and pharmacokinetic properties, transporter data are included in these predictions. The simulations assumed higher expression levels in lower gastrointestinal regions, in particular in the colon, which is in accordance with the results of intestinal rat perfusion studies and intestinal distribution data from rats, catfishes, micropigs and humans reported in the literature. Optimized values for P-glycoprotein (P-gp) Km and Vmax were used for the final simulation results and for a stochastic virtual trial with 12 patients. RESULTS Talinolol, a P-gp substrate, exhibits non-linear dose AUC relationship after administration of 25, 50, 100 and 400 mg immediate-release tablets. This dose dependency is due to a decrease of efflux transport caused by saturation of P-gp by talinolol. It was found that oral bioavailability increases after administration of higher doses of talinolol. The predicted bioavailability of the p.o. 25, 50, 100 and 400 mg doses of talinolol was 64, 76, 85, 94%, respectively. Pharmacokinetic parameters (AUC, Cmax) from in silico simulations are within acceptable range comparing with data, observed in vivo. However, the in vitro value of Km for talinolol's interactions with P-gp could not be used in the simulation and still reproduce the observed non-linear dose dependence. For each of the four doses, GastroPlus was used to model pharmacodynamic (PD) response and to optimize the values of CLe, Emax, and EC5o with the effect compartment linked indirectly to the central compartment. For all simulations, EC50 was 114 nM and E0 was 83 bpm. CONCLUSION Comparison between the results of the in vivo study and the in silico simulations determined the quality and reliability of the in silico predictions and demonstrate the simulation of dose dependent absorption. In contrast to previous simulation work for the non-linear dose dependence of interaction with intestinal transporters or enterocyte metabolism, optimized Km and Vmax values were required to reproduce the clinically observed non-linear dose dependence. The model developed may be useful in the prediction of absorption of other P-gp substrates including pharmacodynamic consequences.
Collapse
Affiliation(s)
- Marija Tubic
- Pharmazeutische Technologie und Biopharmazie, Institut fuer Pharmazie, Johannes Gutenberg-Universitaet, Staudinger Weg 5, 55099, Mainz, Germany
| | | | | | | | | |
Collapse
|
75
|
Abstract
AIM: To characterize the intestinal transport and mechanism of metformin in rats and to investigate whether or not metformin is a substrate for P-glycoprotein (P-gp).
METHODS: The effective intestinal permeability of metformin was investigated using single-pass intestinal perfusion (SPIP) technique in male Waster rats. SPIP was performed in three isolated intestinal segments (duodenum, jejunum and ileum) at the same concentration of metformin (50 μg/mL) to test if the intestinal transport of metformin exhibited site-dependent changes, and in a same isolated intestinal segment (duodenal segment) at three different concentrations of metformin (10, 50, 200 μg/mL) to test if the intestinal transport of metformin exhibited concentration-dependent changes. Besides, P-gp inhibitor verapamil (400 μg/mL) was co-perfused with metformin (50 μg/mL) in the duodenum segment to find out if the intestinal absorption of metformin was affected by P-gp exiting along the gastrointestinal track. Stability studies were conducted to ensure that the loss of metformin could be attributed to intestinal absorption.
RESULTS: The effective permeability values (Peff) of metformin in the jejunum and ileum at 50 μg/mL were significantly lower than those in the duodenum at the same concentration. Besides, Peff values in the duodenum at high concentration (200 μg/mL) were found to be significantly lower than those at low and medium concentrations (10 and 50 μg/mL). Moreover the co-perfusion with verapamil did not increase the Peff value of metformin at 50 μg/mL in the duodenum.
CONCLUSION: Metformin could be absorbed from the whole intestine, with the main absorption site at duodenum. This concentration-dependent permeability behavior in the duodenum indicates that metformin is transported by both passive and active carrier-mediated saturable mechanism. The Peff value can not be increased by co-perfusion with verapamil, indicating that absorption of metformin is not efficiently transported by P-gp in the gut wall. Furthermore metformin is neither a substrate nor an inducer of P-gp. Based on the Peff values obtained in the present study and using established relationships, the human fraction dose absorbed for metformin is estimated to be 74%-90% along human intestine.
Collapse
Affiliation(s)
- Nai-Ning Song
- School of Chemical Engineering and Technology, Tianjin University, China
| | | | | |
Collapse
|
76
|
Sutton SC, Evans LA, Fortner JH, McCarthy JM, Sweeney K. Dog Colonoscopy Model for Predicting Human Colon Absorption. Pharm Res 2006; 23:1554-63. [PMID: 16783662 DOI: 10.1007/s11095-006-0252-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE This study was conducted to develop and validate a dog colon model that predicts colon permeability in humans. METHODS The following compounds were studied: Class 1 highly soluble (HS)/highly permeable (HP): aminophylline, propranolol, CP-409092; Class 2 LS/HP: nifedipine; trovafloxacin, sertraline; Class 3 HS/LP: azithromycin, atenolol, CP-331684, CP-424391; Class 4 LS/LP: CJ-13610. Administration to dogs was made 30 cm cranial to the anal sphincter with a lubricated Schott Model VFS-5 flexible endoscope. The bioavailability of the compound following the colon administration in dogs, relative to the same formulation administered orally (relative bioavailability), was determined. RESULTS Except for atenolol, a small hydrophillic molecule, the relative bioavailability from administration to the colon of the dog correlated well with the following compound properties: high solubility and high, passive permeability > high solubility, low permeability > low solubility, high, passive permeability approximately low solubility, low permeability. CONCLUSION The dog colon model is proposed as a surrogate for human intubation studies when the controlled release candidate falls in BCS Classes 2 (LS/HP), 3 (HS/LP), and 4 (LS/LP). However, no human intubation or dog colon studies are required for Class 1 (HS/HP), as these compounds are likely to be well absorbed from the colon.
Collapse
Affiliation(s)
- Steven C Sutton
- BioPharmaceutics Group, Pharmaceutical R&D Department, Pfizer Global R&D, Groton, Connecticut 06357, USA.
| | | | | | | | | |
Collapse
|
77
|
Kandimalla KK, Donovan MD. Transport of hydroxyzine and triprolidine across bovine olfactory mucosa: role of passive diffusion in the direct nose-to-brain uptake of small molecules. Int J Pharm 2006; 302:133-44. [PMID: 16105724 DOI: 10.1016/j.ijpharm.2005.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/22/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Hydroxyzine and triprolidine have both been reported to reach the CNS following nasal administration. The objective of this study was to investigate their in vitro permeation across bovine olfactory mucosa in order to further characterize the biological and physicochemical parameters that influence direct nose-to-brain transport. In vitro experiments were conducted using Sweetana-Grass (Navicyte) vertical diffusion cells to evaluate the effect of directionality, donor concentration and pH on the permeation of hydroxyzine and triprolidine across excised bovine olfactory mucosa. These studies demonstrated that the Jm-s (mucosal-submucosal flux) and Js-m (submucosal-mucosal flux) of hydroxyzine and triprolidine across the olfactory mucosa were linearly dependent upon the donor concentration without any evidence of saturable transport. Hydroxyzine inhibited the efflux of P-gp substrates like etoposide and chlorpheniramine across the olfactory mucosa. Both hydroxyzine and triprolidine reduced the net flux (Js-m-Jm-s) of etoposide with IC50 values of 39.2 and 130.6 microM, respectively. The lipophilicty of these compounds, coupled with their ability to inhibit P-gp, enable them to freely permeate across the olfactory mucosa. Despite the presence of a number of protective barriers such as efflux transporters and metabolizing enzymes in the olfactory system, lipophilic compounds such as hydroxyzine and triprolidine can access the CNS primarily by passive diffusion when administered via the nasal cavity.
Collapse
|
78
|
Englund G, Rorsman F, Rönnblom A, Karlbom U, Lazorova L, Gråsjö J, Kindmark A, Artursson P. Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells. Eur J Pharm Sci 2006; 29:269-77. [PMID: 16822659 DOI: 10.1016/j.ejps.2006.04.010] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 04/19/2006] [Indexed: 01/28/2023]
Abstract
A vast number of drugs are subjected to active or facilitated transport and multiple transport mechanism may contribute to the net flux during drug absorption. The main objective of this study was to quantify the regional mRNA expression and determine the co-expression of drug transporters from the ABC (Pgp, BCRP, MRP2, MRP3) and SLC (PEPT1, MCT1, OATPB, OCTN2, OCT1) families along the human intestine (duodenum, jejunum, ileum, and colon). A second objective was to compare the transporter expression between the different intestinal regions and Caco-2 cells. Eight out of nine of the investigated transporters exhibited significant regional differences in expression. OATPB was the only transporter that did not show a region-dependency in the expression along the human intestinal canal. The expression of Pgp, BCRP, OCTN2 and MCT1 differed along the small intestine, but the expression differences were greater than five-fold only for Pgp. The rank order of transcript prevalence was identical in the ileum and the jejunum. Between the ileum and colon, seven transcripts were differentially expressed, and MCT1, OCTN2 and MRP3 were expressed at higher levels in the colon than in the small intestine. The expression of transporters in Caco-2 was closest to the expression pattern in the small intestine, although the expression of OATPB, BCRP and MRP2 differed more than five-fold between the Caco-2 cells and ileum. In conclusion, this study provides quantitative data on the expression of transporters from the ABC and SLC families along the human intestine, which can be useful in the interpretation of clinical studies where more than one intestinal transporter contribute to the net transport and in the computer modelling of drug absorption.
Collapse
Affiliation(s)
- Gunilla Englund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Saitoh H, Saikachi Y, Kobayashi M, Yamaguchi M, Oda M, Yuhki Y, Achiwa K, Tadano K, Takahashi Y, Aungst BJ. Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine. Eur J Pharm Sci 2006; 28:34-42. [PMID: 16457995 DOI: 10.1016/j.ejps.2005.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 12/09/2005] [Accepted: 12/18/2005] [Indexed: 10/25/2022]
Abstract
The significance of intestinal P-glycoprotein (P-gp) in determining the oral bioavailability of tacrolimus has been still controversial. In this study, we reevaluated the interaction of tacrolimus with P-gp in the rat small intestine, by evaluating its absorption from the rat small intestine and its modulating effect on the absorption of known P-gp substrates (digoxin, methylprednisolone, and vinblastine). Intestinal absorption of tacrolimus itself was as extensive as other P-gp modulators such as cyclosporine and verapamil. While cyclosporine and verapamil significantly increased the absorption of methylprednisolone and vinblastine through potent inhibition of intestinal P-gp, tacrolimus failed to achieve this. When cyclosporine and tacrolimus were intravenously administered to rats, digoxin absorption was significantly increased by cyclosporine but not by tacrolimus. When tacrolimus was coadministered with clotrimazole, a specific CYP3A inhibitor, into the rat small intestine, the area under the curve of tacrolimus blood concentrations increased more than seven-fold compared with that of tacrolimus alone. Our present results strongly suggest that the interaction between tacrolimus and P-gp is limited in the rat small intestine and that extensive metabolism by CYP3A enzymes is more responsible for the low oral bioavailability of tacrolimus. It was considered that the extensive absorption of cyclosporine and verapamil was closely associated with their potent ability to inhibit intestinal P-gp.
Collapse
Affiliation(s)
- Hiroshi Saitoh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Werle M, Hoffer M. Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J Control Release 2006; 111:41-6. [PMID: 16377016 DOI: 10.1016/j.jconrel.2005.11.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to evaluate the influence of glutathione (GSH), the thiomer chitosan-4-thiobutylamidine (chitosan-TBA) and a combination of both compounds on P-glycoprotein (P-gp) activity. Permeation studies were performed with freshly excised guinea pig ileum mounted in Ussing chambers using the fluorescent dye rhodamine-123 (Rho-123) as P-gp substrate. Apparent permeability coefficients (Papp) as well as efflux ratios (secretory Papp/absorptive Papp) were calculated and compared with values gained from experiments with the well-established P-gp inhibitors terfenadine and verapamil. In the presence of terfenadine, verapamil as well as GSH, the absorptive transport of Rho-123 across intestinal tissue increased, while the secretory decreased with efflux ratios around 1.0. Chitosan-TBA and especially chitosan-TBA/GSH not only enhanced absorption of Rho-123, but also reduced the basolateral to apical secretion of Rho-123 resulting in efflux ratios of 1.1, 0.8 and 0.5. The study indicates that chitosan-TBA/GSH is a potentially valuable tool for inhibiting the ATPase activity of P-gp in the intestine.
Collapse
Affiliation(s)
- Martin Werle
- ThioMatrix Forschung- und Beratungs-GmbH, Mitterweg 24, 6020 Innsbruck, Austria.
| | | |
Collapse
|
81
|
Kaddoumi A, Fleisher D, Heimbach T, Li LY, Cole S. Factors influencing regional differences in intestinal absorption of UK-343,664 in rat: Possible role in dose-dependent pharmacokinetics. J Pharm Sci 2006; 95:435-45. [PMID: 16381015 DOI: 10.1002/jps.20527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to evaluate potential contributions of intestinal export and metabolism to the oral dose-dependent pharmacokinetics of the human cGMP-specific phosphodiesterase type 5 inhibitor, UK-343,664. Differences between jejunal and ileal handling of this CYP3A and P-gp substrate were investigated. CYP3A and P-gp display differing activities in the upper and lower mammalian small intestine and their impact on variable drug absorption can be mechanistically assessed for individual compounds with in situ perfusion of rat's small intestine. Isolated segments of rat jejunum and ileum were perfused with UK-343,664 solution and measurements were made as a function of drug concentration for dose dependence and in the presence of CYP3A and P-gp inhibitors. Intestinal permeability and metabolism were measured by total drug disappearance and major metabolite, UK-347,334 (N-desethyl metabolite), appearance in the intestinal lumen. Intestinal tissue and mesenteric blood measurements of drug and metabolite were also determined. The effective permeability (P(eff)) of UK-343,664 and metabolite formation (F(met)) increased as a function of concentration. Regional differences in P(eff) and F(met) were observed with low-intestinal metabolism of UK-343,664 in both regions (<10%). P-gp inhibition caused significant increase in P(eff) and F(met) in jejunum and ileum while ketoconazole, a P-gp and CYP3A inhibitor, has only limited effect on metabolism. In conclusion, UK-343,664 absorption is mainly regulated by P-gp in jejunum and ileum while CYP3A intestinal metabolism has minimal effect. This role of P-gp could explain the dose-dependent pharmacokinetics of UK-343,664 and its unusual behavior of t(max) as a function of dose.
Collapse
Affiliation(s)
- Amal Kaddoumi
- School of Pharmacy, University of Washington, Seattle, 98195-7610, USA.
| | | | | | | | | |
Collapse
|
82
|
Lindahl A, Sjöberg A, Bredberg U, Toreson H, Ungell AL, Lennernäs H. Regional intestinal absorption and biliary excretion of fluvastatin in the rat: possible involvement of mrp2. Mol Pharm 2005; 1:347-56. [PMID: 16026004 DOI: 10.1021/mp0499297] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first purpose of this study was to investigate the in vivo absorption, biliary secretion, and first-pass effect of fluvastatin following regional intestinal dosing in the rat. We also examined the membrane transport mechanisms and made in silico predictions of the relative importance of various intestinal regions to the human absorption of fluvastatin. Fluvastatin was administered intravenously (2, 10, and 20 micromol/kg) and into the duodenum (1.46, 2.92, 7.32, and 14.6 micromol/kg), jejunum (14.6 micromol/kg), ileum (1.46 and 14.6 mciromol/kg), and colon (1.46 and 14.6 micromol/kg) as a solution to conscious rats. In a separate group of rats, bile was collected after an i.v. dose of fluvastatin (2 micromol/kg). In the Caco-2 model the bidirectional transport of fluvastatin (16 microM) was investigated with and without various efflux inhibitors (verapamil, vinblastine, probenecid, and indomethacin, 160 microM). The human in vivo absorption of fluvastatin from an oral immediate release tablet and that from an oral extended release tablet (both 40 mg) were simulated in GastroPlus. Neither the dose nor the intestinal region influenced the bioavailability of fluvastatin significantly. The rate of absorption was, however, affected by both the dose and the site of administration; duodenum = jejunum > colon > ileum, and higher following the high dose. Increasing the i.v. dose from 2 to 20 micromol/kg decreased the clearance (26 +/- 3 to 12 +/- 1 mL/min/kg), the hepatic extraction (66 +/- 8 to 30 +/- 2%), and the volume of distribution (7.3 +/- 0.3 to 2.1 +/- 0.7 L/kg) for fluvastatin (p < 0.05). Neither bile cannulation nor bile sampling affected the pharmacokinetics. Fluvastatin was secreted into the bile, probably by active transport. The in vitro permeability for fluvastatin was high (>10 x 10(-6) cm/s). Indomethacin, but not the other inhibitors, affected the transport in both directions suggesting mrp2 to be involved. In silico, 93% of the dose was absorbed from the small intestine and 6% from the colon when given as an immediate release formulation. The corresponding values for an extended release formulation were 21% and 74%, respectively. In conclusion, fluvastatin exhibits dose-dependent pharmacokinetics in the rat. The rate of absorption (Cmax, Tmax, and Cmax/AUC(lqc)) from the intestinal tract is both region and dose-dependent in the rat. This may be due to the involvement of mrp2 in the intestine and/or in the liver. These absorption properties have to be considered in the development of an extended release formulation of fluvastatin.
Collapse
Affiliation(s)
- Anders Lindahl
- Department of Pharmacy, Box 580, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
83
|
Kandimalla KK, Donovan MD. Localization and Differential Activity of P-glycoprotein in the Bovine Olfactory and Nasal Respiratory Mucosae. Pharm Res 2005; 22:1121-8. [PMID: 16028013 DOI: 10.1007/s11095-005-5420-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to demonstrate that P-glycoprotein (P-gp) is localized in the olfactory mucosa and is capable of limiting the nose-to-brain transport of substrates. Bovine olfactory and nasal respiratory mucosae were compared to both localize P-gp and to measure its activity within the epithelia. METHODS Immunolocalization was performed on the bovine olfactory and nasal respiratory mucosa using the C219 monoclonal antibody. Flux of etoposide, a substrate reported to be primarily effluxed by P-gp, across bovine olfactory and nasal respiratory mucosae was measured using Sweetana-Grass (Navicyte) vertical diffusion cells. Experiments were performed to evaluate the effect of directionality, donor concentration, and the presence of inhibitors. RESULTS Dense staining was observed on the apical surface of the ciliated epithelial cells and within the submucosal lymphatics/vasculature and mucosal glands of the bovine olfactory and nasal respiratory mucosae. Staining in the nasal respiratory epithelium was weak and patchy when compared to that observed in the olfactory mucosa. The secretory transport (Js-m) kinetics of etoposide in the olfactory (Km = 260.5 microM, Vmax = 0.179 microM/cm(2) min) and nasal respiratory (Km = 46.9 microM, Vmax = 0.034 microM/cm(2) min) mucosae were observed to be saturable and concentration-dependent. The flux of etoposide in the submucosal-mucosal (Js-m) direction was significantly greater than the flux in the mucosal-submucosal (Jm-s) direction in both the olfactory and nasal respiratory mucosa. The efflux ratios (Js-m/Jm-s) of etoposide across the olfactory and the nasal respiratory mucosae were 2.02 and 2.10, respectively. In the presence of inhibitors such as 2,4-dinitrophenol (1 mM) and quinidine (1 mM), etoposide showed an increase in Jm-s and a decrease in Js-m. The etoposide efflux was unaffected in the presence of a specific multiresistance associated protein 1 (MRP1) inhibitor (MK571) and methotrexate, a substrate for BCRP and MRP1-4. CONCLUSIONS P-gp was localized in the epithelial cells, nasal glands, and the vascular endothelium of both the bovine olfactory and nasal respiratory mucosae, and the expressed P-gp was capable of effluxing a substrate such as etoposide. The Km and Vmax of etoposide efflux were higher in the olfactory mucosa compared to the nasal respiratory mucosa, and the expression of P-gp seems to be greater in the olfactory epithelium compared to the nasal respiratory epithelium based on the staining density observed using immunohistochemistry.
Collapse
|
84
|
Zhou Y, Yokel RA. The Chemical Species of Aluminum Influences Its Paracellular Flux across and Uptake into Caco-2 Cells, a Model of Gastrointestinal Absorption. Toxicol Sci 2005; 87:15-26. [PMID: 15933224 DOI: 10.1093/toxsci/kfi216] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aluminum (Al) can cause neurotoxicity, a low-turnover osteomalacia, and microcytic anemia. To test the null hypothesis that the chemical form (species) of Al does not influence its mechanism or rate of absorption from the gastrointestinal tract, Al flux across and uptake into Caco-2 cells was investigated. Caco-2 cells were grown on porous membranes mounted in vertical diffusion chambers or in 35-mm-diameter plastic cell culture dishes. When 8 mM 27Al was introduced as the ion, citrate, maltolate, fluoride, or hydroxide, the apical to basolateral apparent permeability (Papp) of Al correlated highly with the Papp of lucifer yellow (LY), a paracellular marker, except when introduced as Al hydroxide. The uptake rate of Al when introduced as the fluoride was > when introduced as the ion > maltolate > citrate > hydroxide. The activation energy of Al introduced as the ion, citrate, maltolate, and fluoride, determined from Arrhenius plots, was 13-22 KJ/mol, suggesting diffusion-mediated uptake. With exposure to 2 microM Al (containing 26Al as a tracer) introduced as the ion, hydroxide, citrate, and fluoride, Al and LY Papp were consistent with results obtained with 8 mM Al, but were not Al species dependent. Approximately 0.015% of the 26Al fluxed across the cell monolayer; 0.75% was associated with cells. Lumogallion staining imaged by confocal laser microscopy showed Al co-localized with DAPI in the nucleus. The results suggest that (1) soluble Al species predominantly diffuse through the paracellular pathway, (2) the ligand-dependent flux rate of Al is due to an effect on the tight junctions, (3) Caco-2 cell uptake of Al is a diffusion process, and (4) the ligand can influence the rate of cellular Al uptake.
Collapse
Affiliation(s)
- Yuzhao Zhou
- Graduate Center for Toxicology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0305, USA
| | | |
Collapse
|
85
|
Weitschies W, Bernsdorf A, Giessmann T, Zschiesche M, Modess C, Hartmann V, Mrazek C, Wegner D, Nagel S, Siegmund W. The Talinolol Double-Peak Phenomenon Is Likely Caused by Presystemic Processing After Uptake from Gut Lumen. Pharm Res 2005; 22:728-35. [PMID: 15906167 DOI: 10.1007/s11095-005-2588-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 02/04/2005] [Indexed: 12/18/2022]
Abstract
PURPOSE Evaluation of the double-peak phenomenon during absorption of the beta(1)-selective blocker talinolol relative to paracetamol, which is well absorbed from all parts of the gut, and relative to vitamin A, which is absorbed via the lymphatic pathway. METHODS Talinolol was given with paracetamol and retinyl palmitate in fast-disintegrating, enteric-coated, and rectal soft capsules to 8 fasting male healthy subjects (21-29 years, 68-86 kg). To evaluate whether the talinolol double-peak is associated with processes of food absorption, a breakfast was served 1 h after administration of a fast disintegrating capsule. RESULTS Bioavailability of talinolol in enteric-coated and rectal capsules was significantly reduced by about 50% and 80%, respectively, despite unchanged bioavailability of paracetamol. Double-peaks appeared after 2-3 h and 4-6 h with talinolol given as fast-liberating capsules. Food increased the maximum concentrations significantly (223 +/- 76 microg/ml vs. 315 +/- 122 microg/ml, p < 0.05) and shifted the second peak of talinolol to shorter t(max) values (3.8 +/- 1.2 h vs. 2.1 +/- 0.6 h, p < 0.05), which was associated with faster absorption of retinyl palmitate. Pharmacokinetic model fits showed that about half of the oral talinolol dose given with and without meal is drained from the intestine via a presystemic storage compartment. CONCLUSIONS The double-peak phenomenon of talinolol is likely caused by a presystemic storage compartment, which represents the complex interplay of heterogeneous uptake and kick-back transport processes along the intestinal-hepatic absorption pathway.
Collapse
Affiliation(s)
- Werner Weitschies
- Department of Biopharmacy and Pharmaceutical Technology, Peter Holtz Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Xia CQ, Liu N, Yang D, Miwa G, Gan LS. Expression, localization, and functional characteristics of breast cancer resistance protein in Caco-2 cells. Drug Metab Dispos 2005; 33:637-43. [PMID: 15716365 DOI: 10.1124/dmd.104.003442] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of breast cancer resistance protein (BCRP) and its role in drug absorption, distribution, and elimination has recently been evaluated. The objective of the present study was to examine the expression, localization, and functional characteristics of BCRP in Caco-2 cells, a widely used human intestinal epithelial cell model for investigating intestinal drug absorption. The expression of BCRP in Caco-2 cells was measured by Western blotting using the antibody BXP-21. Localization of BCRP was determined by an immunofluorescence technique using both antibodies BXP-21 and BXP-34. The drug efflux function of BCRP was evaluated via the epithelial transport of methotrexate (MTX) and estrone-3-sulfate (E3S) across Caco-2 cell monolayers in the presence or absence of the BCRP inhibitors Ko143 or GF120918 (N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide). Results from Western blot assay indicated that Caco-2 cells in the late passage (p56) expressed a higher level of BCRP as compared with the level in the early passages (p33). The total amount of BCRP protein did not change after the cells were confluent. Immunofluorescence studies revealed the positive staining of BCRP on the apical membrane of Caco-2 cells but not on the basolateral membrane after cell confluence. MTX and E3S showed a preferential basolateral-toapical (B-to-A) transport across Caco-2 cell monolayers. Both BCRP inhibitors Ko143 and GF120918 increased the apical-to-basolateral (A-to-B) transport but decreased the B-to-A transport of MTX and E3S. Caco-2 cells may therefore be used as an in vitro model to study the transport characteristics of BCRP.
Collapse
Affiliation(s)
- Cindy Q Xia
- Department of Drug Metabolism and Pharmacokinetics, Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
87
|
Ofer M, Wolffram S, Koggel A, Spahn-Langguth H, Langguth P. Modulation of drug transport by selected flavonoids: Involvement of P-gp and OCT? Eur J Pharm Sci 2005; 25:263-71. [PMID: 15911222 DOI: 10.1016/j.ejps.2005.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 12/20/2004] [Accepted: 03/02/2005] [Indexed: 01/09/2023]
Abstract
Flavonoids, as a common component of daily nutrition, are a possible source of interference with absorption processes, due to modulation of transporting proteins. In this study, the influence of selected flavonoids (quercetin, isoquercitrin, spiraeoside, rutin, kaempferol, naringenin, naringin, and kaempferol) on the transport of the P-gp substrate [3H]talinolol across Caco-2 cell monolayers was investigated. To elucidate the mechanism behind the interaction observed in this system the potency of the flavonoids to replace [3H]talinolol from its P-gp binding site as well as their activity to inhibit OCT2-mediated [14C]TEA uptake into LLC-PK(1) cells were measured, as P-gp and OCT have been shown to be present in Caco-2 cells. Six of the investigated flavonoids reduced the secretory flux of talinolol across Caco-2 cells (IC50-values: hesperetin<quercetin<kaempferol<<spiraeoside<isoquercitrin<naringin). But none of the selected flavonoids was able to replace [3H]talinolol from its binding to P-gp. However, the investigated flavonoids did show potency to inhibit OCT-mediated transport (IC50-values: quercetin<kaempferol<<naringenin<isoquercitrin<spiraeoside<<rutin<hesperetin<naringin). The present in vitro results demonstrate that flavonoids bear the ability to interfere with secretory intestinal transport processes. This might be due to an interaction with P-gp, but apparently not via competition at the talinolol binding site of P-gp. Another mode of interaction may be the inhibition of members of the OCT-family, which is located at the basolateral membrane of intestinal epithelial cells.
Collapse
Affiliation(s)
- Monika Ofer
- School of Pharmacy, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
88
|
Kandimalla KK, Donovan MD. Carrier mediated transport of chlorpheniramine and chlorcyclizine across bovine olfactory mucosa: Implications on nose‐to‐brain transport. J Pharm Sci 2005; 94:613-24. [PMID: 15666293 DOI: 10.1002/jps.20284] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Delivery to the CNS via the nasal cavity has been pursued as a means to circumvent the blood-brain barrier (BBB), yet the mechanism of drug transport across this novel route is not well understood. Hydroxyzine and triprolidine have been reported to readily reach the CNS following nasal administration, whereas no measurable amounts of chlorcyclizine or chlorpheniramine, structurally similar antihistamines, were observed in the CSF. The permeation of chlorpheniramine and chlorcyclizine in vitro across the bovine olfactory mucosa was studied to investigate the biological and physicochemical characteristics that contribute to the limited CNS disposition of these compounds following nasal administration. The submucosal to mucosal fluxes (J(s-m)) of chlorcyclizine and chlorpheniramine across the olfactory mucosa were significantly greater than the mucosal to submucosal fluxes (J(m-s)). Moreover, the submucosal-mucosal permeability of both compounds was temperature dependent and saturable. In the presence of metabolic inhibitors (ouabain and 2,4-dinitrophenol) and P-glycoprotein (P-gp)/multidrug resistance protein 1 (MRP1) inhibitors (quinidine and verapamil), the J(m-s) increased and J(s-m) decreased significantly. These results indicate that chlorpheniramine and chlorcyclizine are effluxed from the olfactory mucosa by efflux transporters such as P-gp and MRP1. Transport studies across inert polymeric membranes demonstrated that the permeability of chlorpheniramine and chlorcyclizine decreased at donor concentrations higher than 3 mM suggesting that physicochemical properties such as self-aggregation also play a role in the reduced olfactory mucosal permeability of these compounds at higher concentrations.
Collapse
|
89
|
Lampen A, Ebert B, Stumkat L, Jacob J, Seidel A. Induction of gene expression of xenobiotic metabolism enzymes and ABC-transport proteins by PAH and a reconstituted PAH mixture in human Caco-2 cells. ACTA ACUST UNITED AC 2005; 1681:38-46. [PMID: 15566942 DOI: 10.1016/j.bbaexp.2004.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
It was shown recently that in epithelial Caco-2 cells the food contaminant benzo[a]pyrene (B[a]P) is metabolized and B[a]P-sulfate metabolites were transported out of the cells. The aim of this study was to investigate whether B[a]P and other polycyclic aromatic hydrocarbons (PAH) such as chrysene, phenanthrene, benzo[k]fluoranthene (B[k]F), dibenzo[a,l]pyrene (DB[a,l]P), and pyrene alone or in a mixture in a ratio as they occur in tobacco smoke have effects on gene expression of intestinal cytochrome P450 enzymes (CYP), Phase II enzymes and ATP-binding cassette (ABC)-transport proteins in the human Caco-2 cells. B[a]P induced its own metabolism. Treatment of the Caco-2 cells with B[a]P, chrysene, B[k]F, or DB[a,l]P induced mRNA expression of CYP1A1 and CYP1B1 specifically as measured by RT-PCR. In contrast, the mRNA expression of the microsomal epoxide hydrolase (mEH) was not affected by PAH. The gene expression of the Phase II enzymes UDP-glucuronosyltransferase 1A6 (UGT1A6) and UGT1A7 was also induced by these PAH but treatment with them had no effect on gene expression of sulfotransferases (SULT) at all. Of the ABC-transport proteins, MDR1 mRNA expression was induced by treatment with carcinogenic PAH, whereas MRP2 mRNA expression was not changed. The mixture of PAH also induced CYP1A1, CYP1B1, UGT1A6, and UGT1A7 mRNA expression. We conclude that B[a]P, chrysene, B[k]F, and DB[a,l]P have specific effects on intestinal CYP1A1, CYP1B1, UGT1A6, and UDP1A7 mRNA expression but no effects on the expression of SULT.
Collapse
Affiliation(s)
- A Lampen
- Institut für Lebensmitteltoxikologie, Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | | | | | | | |
Collapse
|
90
|
Bachmeier CJ, Miller DW. A Fluorometric Screening Assay for Drug Efflux Transporter Activity in the Blood-Brain Barrier. Pharm Res 2005; 22:113-21. [PMID: 15771237 DOI: 10.1007/s11095-004-9016-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine the capability of a fluorometric assay to identify and characterize the drug efflux interactions of a broad spectrum of drug agents in an in vitro model of the blood-brain barrier (BBB). METHODS Various concentrations of drug agent (1, 10, and 100 microM) were evaluated for their effect on the cellular accumulation of the P-glycoprotein (P-gp) probe R123 (3.2 microM), and the mixed P-gp and multidrug resistance-associated protein (MRP) probe, BCECF (1 microM), in bovine brain microvessel endothelial cell (BBMEC) monolayers. Drugs demonstrating a significant effect were further quantitated using an expanded concentration range and a nonlinear regression curve fit to determine the potency (IC50) and efficacy (Imax) of the drug for P-gp and/or MRP. RESULTS Several of the 36 therapeutic agents examined showed drug efflux transporter interactions in BBMEC monlayers. Melphalan and risperidone significantly enhanced the accumulation of R123 over control (1.47- and 1.82-fold, respectively) with resulting IC50s of 1.4 and 14.6 microM, respectively. Chlorambucil and valproic acid significantly enhanced the accumulation of BCECF compared to control monolayers (2.02- and 4.01-fold, respectively) with resulting IC50s of 146.1 and 768.5 microM, respectively. CONCLUSIONS The current study demonstrates the feasibility of a fluorometric assay consisting of R123 and BCECF in assessing the drug efflux interactions of a variety of drugs in the BBB.
Collapse
Affiliation(s)
- Corbin J Bachmeier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
91
|
Iida A, Tomita M, Hayashi M. Regional Difference in P-glycoprotein Punction in Rat Intestine. Drug Metab Pharmacokinet 2005; 20:100-6. [PMID: 15855720 DOI: 10.2133/dmpk.20.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been reported that inhibition of the P-glycoprotein (P-gp) results in the improved absorption of P-gp substrate in the intestinal tract. In fact, the increased permeability of P-gp substrate across the intestinal epithelium was observed following inhibition of P-gp in in vitro experiments. To develop the formulation containing P-gp inhibitor and P-gp substrate for practical use, it is necessary to know whether the results obtained in the in vitro experiments are reproducible at whole body level. It is also important to find out the regional difference of the P-gp activity in the intestinal tract. In this study, we examined whether verapamil, a specific inhibitor of P-gp, improves the absorption of rhodamine123 (Rho123), a substrate of P-gp, from the jejunum, ileum, and colon of rats using the in situ loop method. The water content in the loop decreased during the experiment, resulting in a significant change of the Rho123 concentration in the loop. Thus, to accurately determine the absorption rate of Rho123, it was necessary to measure the water movement. It was found that there was a regional difference in the water movement, i.e., greatest in colon, followed by ileum. Verapamil did not change the water movement in any intestinal regions. When the concentration of Rho123 in the loop was corrected by water movement, the Rho123 clearance was in the order of ileum (1.15 microL/min/cm), colon (0.83 microL/min/cm) and jejunum (0.47 microL/min/cm). In the presence of verapamil, the Rho123 clearance was significantly increased at jejunum and ileum but not in colon (ileum: 2.08 microL/min/cm, colon: 1.14 microL/min/cm, jejunum: 1.28 microL/min/cm). These results suggest that P-gp inhibits the drug absorption in jejunum and ileum. From these results, it is possible to evaluate the role of P-gp and its regional difference in the in situ experiments. In particular, the inhibition of P-gp results in an increase in absorption of the P-gp substrate limited to jejunum and ileum.
Collapse
Affiliation(s)
- Aiko Iida
- Department of Drug Absorption and Pharmacokinetics, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | |
Collapse
|
92
|
Abstract
A simple, physiological model was used to illustrate the competing nature of transporters and metabolic enzymes in hepatic drug processing. Enalapril, a drug whose basolateral influx and canalicular efflux are mediated by rat organic anion-transporting polypeptide 1 (Oatp1) and rat multidrug resistance-associated protein 2 (Mrp2), respectively, and metabolism by the carboxylesterases, was enlisted as the example to illustrate how the transport and intrinsic clearances are inter-related in the estimation of the hepatic and metabolic, and excretion clearances. Moreover, simulations were performed to explore the effects of inhibitors or inducers of transporters/enzymes to unravel the compensatory changes of alternate pathways. Generally speaking, inhibition of one pathway led to an apparent increase in the alternate (competing) pathway and total hepatic clearance was decreased; induction would lead to an apparent decrease in the alternate pathway and an increase in total hepatic clearance. A reduction in influx clearance brought about parallel decreases in the biliary and metabolic clearances, whereas a reduction in efflux basolateral clearance evoked similar increases in biliary and metabolic clearances. However, the steady-state tissue concentration (C(L,ss)) or area under the tissue concentration-time curve (AUC(L)) was reliant only on the unbound fraction in liver, and the secretory and metabolic intrinsic clearances and not the influx and efflux clearances. Variations in the influx and efflux intrinsic clearances evoked temporal changes in the tissue concentration-time profile but not the AUC(L) or C(L,ss). The pharmacokinetic theory developed offers data interpretation from literature reports on P-glycoprotein and cytochrome P450 substrates with mdr1a/1b knockout versus wild-type mice, and rat liver perfusion studies, with and without the use of inhibitors. In some cases, critiques on data interpretation were made.
Collapse
Affiliation(s)
- Lichuan Liu
- Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, ON, Canada M5S 3G2
| | | |
Collapse
|
93
|
Green AK, Barnes DM, Karasov WH. A new method to measure intestinal activity of P-glycoprotein in avian and mammalian species. J Comp Physiol B 2004; 175:57-66. [PMID: 15645238 DOI: 10.1007/s00360-004-0462-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
Permeability-glycoprotein (Pgp) actively exports numerous potentially toxic compounds once they diffuse into the cell membrane of intestinal epithelial cells. We adapted the everted sleeve technique to make the first measures of intestinal Pgp function in an avian species (chicken) and in wild mammalian species, and compared them to laboratory rats. Tissues maintained both structural and functional integrity, and our method offers advantages over other in vitro techniques by using smaller intestinal sections (1 cm), and shorter incubation times (8-12 min). To determine Pgp function, we compared accumulation of [(3)H]-digoxin in sleeves incubated in Ringer solution with and without a transport-saturating concentration of a competitive inhibitor, cyclosporin A. We demonstrated significant variation in Pgp activity within individuals along the intestine, between populations fed different diets, and between species (laboratory rats had one-third to one-fifth the Pgp activity of wild rodents). In chicken, we also tested the effect of natural metabolites on digoxin accumulation. We found that among flavonoids, genistein (200 microM), found in soy and other legumes, but not quercetin (10, 30, 100, 330 microM) or the 3-beta-glycoside isoquercetrin (100 microM), significantly increased digoxin accumulation. Among fungal metabolites, sterigmatocystin (5 microM), but not aflatoxin B1 (5 microM), significantly increased digoxin accumulation.
Collapse
Affiliation(s)
- Adam K Green
- Department of Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA
| | | | | |
Collapse
|
94
|
Kwon H, Lionberger RA, Yu LX. Impact of P-Glycoprotein-Mediated Intestinal Efflux Kinetics on Oral Bioavailability of P-Glycoprotein Substrates†. Mol Pharm 2004; 1:455-65. [PMID: 16028357 DOI: 10.1021/mp049921x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies of many P-glycoprotein (Pgp) substrates have demonstrated a significant effect of Pgp-mediated efflux on intestinal drug transport. However, most of these studies were designed to detect whether a particular drug is a Pgp substrate and thus were conducted at very low concentrations. We performed two simulations to evaluate the effect of Pgp-mediated efflux on oral drug absorption at various concentrations. In the first simulation, a steady-state model allowed us to predict whether the contribution of Pgp to oral drug absorption would be significant at clinically relevant concentrations. Our second simulation investigated the role of Pgp-mediated efflux in oral absorption with a dynamic compartmental absorption and transit model linked to a pharmacokinetic model. For high-solubility drugs, Pgp-mediated efflux altered the bioavailability only at drug concentrations corresponding to doses much lower than the usual clinical dose. The ratio of transporter-mediated transport to passive transport determined whether intestinal Pgp transporters would reduce the bioavailability of high-solubility drugs.
Collapse
Affiliation(s)
- Hyojong Kwon
- Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20855, USA
| | | | | |
Collapse
|
95
|
Abstract
PURPOSE The contribution of the efflux transporter P-glycoprotein (P-gp) as a barrier to drug absorption may depend on its level of expression at the site of absorption. Accordingly, the distribution of P-gp was examined along the entire length of the human small intestine. METHODS Homogenates prepared from mucosal scrapings from every other 30-cm segment of four unrelated human donor small intestines were analyzed for P-gp and the control protein villin by Western blot. RESULTS In each donor intestine, relative P-gp expression (P-gp/villin integrated optical density ratio) progressively increased from proximal to distal regions. Among individuals, relative P-gp levels varied 2.1-fold in the duodenal/proximal jejunal region, 1.5- to 2.0-fold in the middle/distal jejunal region, and 1.2- to 1.9-fold in the ileal region. Within-donor variation was somewhat greater, from 1.5- to 3.0-fold. CONCLUSIONS These results provide further evidence that the site of absorption can represent another source for the interindividual variation in the oral bioavailability of drugs.
Collapse
Affiliation(s)
- Stéphane Mouly
- Hopital Lariboisiere, Service de Medecine Interne A, 75475 Paris Cedex 10, France
| | | |
Collapse
|
96
|
Willmann S, Schmitt W, Keldenich J, Dressman JB. A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm Res 2004; 20:1766-71. [PMID: 14661920 DOI: 10.1023/b:pham.0000003373.72652.c0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The development of a physiologically based absorption model for orally administered drugs in rats is described. METHODS Unlike other models that use a multicompartmental approach, the GI tract is modeled as a continuous tube with spatially varying properties. The mass transport through the intestinal lumen is described via an intestinal transit function. The only substance-specific input parameters of the model are the intestinal permeability coefficient and the solubility in the intestinal fluid. With this physiologic and physicochemical information, the complete temporal and spatial absorption profile can be calculated. RESULTS A first performance test using portal concentration data published in the literature yielded an excellent agreement between measured and simulated temporal absorption profiles in the portal vein. Furthermore, the dose dependence of a compound with solubility-limited fraction dose absorbed in rats (chlorothiazide) could be adequately described by the model. CONCLUSIONS The continuous absorption model is well suited to simulate drug flow and absorption in the GI tract of rats.
Collapse
Affiliation(s)
- Stefan Willmann
- Bayer AG, Bayer Technology Services, Biophysics, 51368 Leverkusen, Germany.
| | | | | | | |
Collapse
|
97
|
Abstract
BACKGROUND When the immunosuppressants cyclosporine (CsA) and sirolimus (SRL) are co-administered to transplant patients, lower doses are used than when either drug is given alone. Since both drugs share similar transport and metabolic pathways, there is the potential for an interaction leading to unpredictable effects. Furthermore, both drugs affect the activity of cytochrome P450 3A1/2 (CYP3A1/2), the rat parallel to human CYP3A4, and the multidrug transporter P-glycoprotein (Pgp). METHODS To clarify the role of metabolic enzymes and membrane transporters involved in the disposition of both drugs, we examined hepatic CYP3A1/2, Pgp, and multidrug resistance gene (mdr) mRNA during chronic therapy with CsA and SRL in salt-depleted rats. Specifically, rats were given intravenous doses of CsA 2.5 mg/kg and SRL 1 mg/kg, alone or in combination, for two weeks via constant rate intravenous infusion. RESULTS CsA treatment inhibited hepatic CYP3A1/2 protein expression, catalytic activity, and mRNA levels. SRL dosing suppressed CYP3A1/2 protein expression and catalytic activity, without affecting mRNA. With combined dosing, however, there was a much greater reduction. Hepatic Pgp protein levels were elevated after treatment with either drug alone, as well as with combined dosing. Compared to controls, there were significant increases in mdr1a and mdr1b mRNA levels in all treatment groups, with the combined drugs causing the greatest increase. CONCLUSIONS Both CYP3A1/2 and Pgp participate in the disposition of CsA and SRL in rats. Changes in the individual activities of CYP3A1/2 and Pgp may contribute to an interaction between CsA and SRL resulting in unanticipated effects during chronic therapy.
Collapse
Affiliation(s)
- Shuang Bai
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-0126, USA
| | | | | | | |
Collapse
|
98
|
Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2). BMC Med 2004; 2:16. [PMID: 15125776 PMCID: PMC411064 DOI: 10.1186/1741-7015-2-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 05/04/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of the present study was to continue the investigation of the membrane transport mechanisms of 20-(S)-camptothecin (CPT) in order to understand the possible role of membrane transporters on its oral bioavailability and disposition. METHODS The intestinal transport kinetics of CPT were characterized using Caco-2 cells, MDCKII wild-type cells and MDCKII cells transfected with human P-glycoprotein (PGP) (ABCB1) or human multidrug resistance protein 2 (MRP2) (ABCC2). The effects of drug concentration, inhibitors and temperature on CPT directional permeability were determined. RESULTS The absorptive (apical to basolateral) and secretory (basolateral to apical) permeabilities of CPT were found to be saturable. Reduced secretory CPT permeabilities with decreasing temperatures suggests the involvement of an active, transporter-mediated secretory pathway. In the presence of etoposide, the CPT secretory permeability decreased 25.6%. However, inhibition was greater in the presence of PGP and of the breast cancer resistant protein inhibitor, GF120918 (52.5%). The involvement of additional secretory transporters was suggested since the basolateral to apical permeability of CPT was not further reduced in the presence of increasing concentrations of GF120918. To investigate the involvement of specific apically-located secretory membrane transporters, CPT transport studies were conducted using MDCKII/PGP cells and MDCKII/MRP2 cells. CPT carrier-mediated permeability was approximately twofold greater in MDCKII/PGP cells and MDCKII/MRP2 cells than in MDCKII/wild-type cells, while the apparent Km values were comparable in all three cell lines. The efflux ratio of CPT in MDCKII/PGP in the presence of 0.2 microM GF120918 was not completely reversed (3.36 to 1.49). However, the decrease in the efflux ratio of CPT in MDCKII/MRP2 cells (2.31 to 1.03) suggests that CPT efflux was completely inhibited by MK571, a potent inhibitor of the Multidrug Resistance Protein transporter family. CONCLUSIONS The current results provide evidence that PGP and MRP2 mediate the secretory transport of CPT in vitro. However, the involvement of other transporters cannot be ruled out based on these studies. Since these transporters are expressed in the intestine, liver and kidney variations in their expression levels and/or regulation may be responsible for the erratic oral absorption and biliary excretion of CPT observed in human subjects.
Collapse
|
99
|
Bachmeier CJ, Trickler WJ, Miller DW. Drug Efflux Transport Properties of 2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein Acetoxymethyl Ester (BCECF-AM) and Its Fluorescent Free Acid, BCECF. J Pharm Sci 2004; 93:932-42. [PMID: 14999730 DOI: 10.1002/jps.20018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2',7'-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) is a fluorescent probe used to examine multidrug resistance-associated protein (MRP) transporter activity in cells. BCECF is introduced into the cell as the nonfluorescent membrane permeable acetoxymethyl ester, BCECF-AM, where it is hydrolyzed to the membrane impermeable BCECF. The lipophilic nature of BCECF-AM suggests it may be a substrate for other drug efflux transporters such as P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP). To assess the drug efflux transporter interactions of BCECF-AM and BCECF, accumulation studies were examined in various drug efflux-expressing cells. Inhibition of P-gp, BCRP, and/or MRP produced distinct changes in the time-dependent accumulation of BCECF in the cells. Treatment with GF120918 produced an immediate and sustained effect throughout the entire time course examined. Fumitremorgin C only affected BCECF accumulation at the early time points, whereas the impact of indomethacin on BCECF accumulation was observed only at the latter time points. Permeability studies in bovine brain microvessel endothelial cells indicated an increased basolateral-to-apical transport of BCECF, which could be reduced in the presence of either indomethacin or GF120918. These results indicate that the intracellular accumulation and transcellular permeability of BCECF are sensitive to a variety of drug efflux interactions. These results likely reflect an interaction of the ester form with P-gp and BCRP during the initial accumulation process, and an interaction of the free acid form with MRP after hydrolysis in the cell.
Collapse
Affiliation(s)
- Corbin J Bachmeier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | |
Collapse
|
100
|
Mutch DM, Anderle P, Fiaux M, Mansourian R, Vidal K, Wahli W, Williamson G, Roberts MA. Regional variations in ABC transporter expression along the mouse intestinal tract. Physiol Genomics 2004; 17:11-20. [PMID: 14679303 DOI: 10.1152/physiolgenomics.00150.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ATP-binding cassette (ABC) family of proteins comprise a group of membrane transporters involved in the transport of a wide variety of compounds, such as xenobiotics, vitamins, lipids, amino acids, and carbohydrates. Determining their regional expression patterns along the intestinal tract will further characterize their transport functions in the gut. The mRNA expression levels of murine ABC transporters in the duodenum, jejunum, ileum, and colon were examined using the Affymetrix MuU74v2 GeneChip set. Eight ABC transporters (Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abcd1, Abcg5, and Abcg8) displayed significant differential gene expression along the intestinal tract, as determined by two statistical models (a global error assessment model and a classic ANOVA, both with a P < 0.01). Concordance with semiquantitative real-time PCR was high. Analyzing the promoters of the differentially expressed ABC transporters did not identify common transcriptional motifs between family members or with other genes; however, the expression profile for Abcb9 was highly correlated with fibulin-1, and both genes share a common complex promoter model involving the NFkappaB, zinc binding protein factor (ZBPF), GC-box factors SP1/GC (SP1F), and early growth response factor (EGRF) transcription binding motifs. The cellular location of another of the differentially expressed ABC transporters, Abcc3, was examined by immunohistochemistry. Staining revealed that the protein is consistently expressed in the basolateral compartment of enterocytes along the anterior-posterior axis of the intestine. Furthermore, the intensity of the staining pattern is concordant with the expression profile. This agrees with previous findings in which the mRNA, protein, and transport function of Abcc3 were increased in the rat distal intestine. These data reveal regional differences in gene expression profiles along the intestinal tract and demonstrate that a complete understanding of intestinal ABC transporter function can only be achieved by examining the physiologically distinct regions of the gut.
Collapse
Affiliation(s)
- David M Mutch
- Nestlé Research Center, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|