51
|
Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020279. [PMID: 33451089 PMCID: PMC7828503 DOI: 10.3390/cancers13020279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable hematological malignancy characterized by an increase in abnormal plasma cells. Disease progression, drug resistance, and immunosuppression in MM are associated with immune-related molecules, such as immune checkpoint and co-stimulatory molecules, present in the tumor microenvironment. Novel agents targeting these cell-surface molecules are currently under development, including monoclonal antibodies, bispecific monoclonal antibodies, and chimera antigen receptor T-cell therapies. In this review, we focus on the signaling lymphocytic activation molecule family receptors and provide an overview of their biological functions and novel therapies in MM. Abstract The signaling lymphocytic activation molecule (SLAM) family receptors are expressed on various immune cells and malignant plasma cells in multiple myeloma (MM) patients. In immune cells, most SLAM family molecules bind to themselves to transmit co-stimulatory signals through the recruiting adaptor proteins SLAM-associated protein (SAP) or Ewing’s sarcoma-associated transcript 2 (EAT-2), which target immunoreceptor tyrosine-based switch motifs in the cytoplasmic regions of the receptors. Notably, SLAMF2, SLAMF3, SLAMF6, and SLAMF7 are strongly and constitutively expressed on MM cells that do not express the adaptor proteins SAP and EAT-2. This review summarizes recent studies on the expression and biological functions of SLAM family receptors during the malignant progression of MM and the resulting preclinical and clinical research involving four SLAM family receptors. A better understanding of the relationship between SLAM family receptors and MM disease progression may lead to the development of novel immunotherapies for relapse prevention.
Collapse
|
52
|
Harsha Krovi S, Zhang J, Michaels-Foster MJ, Brunetti T, Loh L, Scott-Browne J, Gapin L. Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nat Commun 2020; 11:6238. [PMID: 33288744 PMCID: PMC7721697 DOI: 10.1038/s41467-020-20073-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Most T lymphocytes leave the thymus as naïve cells with limited functionality. However, unique populations of innate-like T cells differentiate into functionally distinct effector subsets during their development in the thymus. Here, we profiled >10,000 differentiating thymic invariant natural killer T (iNKT) cells using single-cell RNA sequencing to produce a comprehensive transcriptional landscape that highlights their maturation, function, and fate decisions at homeostasis. Our results reveal transcriptional profiles that are broadly shared between iNKT and mucosal-associated invariant T (MAIT) cells, illustrating a common core developmental program. We further unmask a mutual requirement for Hivep3, a zinc finger transcription factor and adapter protein. Hivep3 is expressed in early precursors and regulates the post-selection proliferative burst, differentiation and functions of iNKT cells. Altogether, our results highlight the common requirements for the development of innate-like T cells with a focus on how Hivep3 impacts the maturation of these lymphocytes.
Collapse
Affiliation(s)
- S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Evergrande Center for Immunologic diseases at Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jingjing Zhang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Stanford Health Care, Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James Scott-Browne
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
53
|
Merli P, Algeri M, Gaspari S, Locatelli F. Novel Therapeutic Approaches to Familial HLH (Emapalumab in FHL). Front Immunol 2020; 11:608492. [PMID: 33424859 PMCID: PMC7793976 DOI: 10.3389/fimmu.2020.608492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Primary Hemophagocytic lymphohistiocytosis (pHLH) is a rare, life-threatening, hyperinflammatory disorder, characterized by uncontrolled activation of the immune system. Mutations affecting several genes coding for proteins involved in the cytotoxicity machinery of both natural killer (NK) and T cells have been found to be responsible for the development of pHLH. So far, front-line treatment, established on the results of large international trials, is based on the use of glucocorticoids, etoposide ± cyclosporine, followed by allogeneic hematopoietic stem cell transplantation (HSCT), the sole curative treatment for the genetic forms of the disease. However, despite major efforts to improve the outcome of pHLH, many patients still experience unfavorable outcomes, as well as severe toxicities; moreover, treatment-refractory or relapsing disease is a major challenge for pediatricians/hematologists. In this article, we review the epidemiology, etiology and pathophysiology of pHLH, with a particular focus on different cytokines at the origin of the disease. The central role of interferon-γ (IFNγ) in the development and maintenance of hyperinflammation is analyzed. The value of emapalumab, a novel IFNγ-neutralizing monoclonal antibody is discussed. Available data support the use of emapalumab for treatment of pHLH patients with refractory, recurrent or progressive disease, or intolerance to conventional therapy, recently, leading to FDA approval of the drug for these indications. Additional data are needed to define the role of emapalumab in front-line treatment or in combination with other drugs.
Collapse
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Maternal, Infantile, and Urological Sciences, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
54
|
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020; 77:4315-4324. [PMID: 32367191 PMCID: PMC7223886 DOI: 10.1007/s00018-020-03538-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement the very same immune control that protects healthy EBV carriers.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Carol S Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
55
|
Pediatric hemophagocytic lymphohistiocytosis. Blood 2020; 135:1332-1343. [PMID: 32107531 DOI: 10.1182/blood.2019000936] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome describing patients with severe systemic hyperinflammation. Characteristic features include unremitting fever, cytopenias, hepatosplenomegaly, and elevation of typical HLH biomarkers. Patients can develop hepatitis, coagulopathy, liver failure, central nervous system involvement, multiorgan failure, and other manifestations. The syndrome has a high mortality rate. More and more, it is recognized that while HLH can be appropriately used as a broad summary diagnosis, many pediatric patients actually suffer from an expanding spectrum of genetic diseases that can be complicated by the syndrome of HLH. Classic genetic diseases in which HLH is a typical and common manifestation include pathogenic changes in familial HLH genes (PRF1, UNC13D, STXBP2, and STX11), several granule/pigment abnormality genes (RAB27A, LYST, and AP3B1), X-linked lymphoproliferative disease genes (SH2D1A and XIAP), and others such as NLRC4, CDC42, and the Epstein-Barr virus susceptibility diseases. There are many other genetic diseases in which HLH is an infrequent complication of the disorder as opposed to a prominent manifestation of the disease caused directly by the genetic defect, including other primary immune deficiencies and inborn errors of metabolism. HLH can also occur in patients with underlying rheumatologic or autoinflammatory disorders and is usually designated macrophage activation syndrome in those settings. Additionally, HLH can develop in patients during infections or malignancies without a known (or as-yet-identified) genetic predisposition. This article will attempt to summarize current concepts in the pediatric HLH field as well as offer a practical diagnostic and treatment overview.
Collapse
|
56
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
57
|
Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 2020; 135:644-655. [PMID: 31942615 DOI: 10.1182/blood.2019000928] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/14/2019] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr virus (EBV) is an enigma; on one hand, it infects and persists in latent form in the vast majority of the global population, causing relatively benign disease in otherwise healthy individuals. On the other hand, EBV represents the first identified oncogenic virus, capable of causing ≥7 different types of malignancies, usually in immunocompromised individuals. Furthermore, some individuals with defined inborn errors of immunity exhibit extreme susceptibility to EBV-induced disease, developing severe and often fatal infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, and/or EBV+ B-cell lymphoma. Thus, host and pathogen have coevolved to enable viral persistence and survival with minimal collateral damage to the healthy host. However, acquired or genetic disruptions to host defense that tip the balance in favor of EBV can have catastrophic effects. The study of primary immunodeficiencies has provided opportunities to define nonredundant requirements for host defense against EBV infection. This has not only revealed mechanisms underlying EBV-induced disease in these primary immunodeficiencies but also identified molecules and pathways that could be targeted to enhance the efficacy of an EBV-specific vaccine or treat severe EBV infection and pathological consequences in immunodeficient hosts.
Collapse
|
58
|
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare but severe form of immune dysregulation often presenting as unremitting fever, cytopenia, hepatosplenomegaly, coagulopathy, and elevation of typical HLH biomarkers. HLH is universally fatal, if left untreated. The HLH-2004 criteria are widely used to diagnose this condition, but there is growing concerns across different settings that its application may result in undertreatment of certain patients. There is an expanding spectrum of genetic conditions that can be complicated by HLH. This review summarizes the current concepts in HLH, the lessons learned from the past, and provide an overview of the latest diagnostic and treatment modalities.
Collapse
|
59
|
Marasco M, Carlomagno T. Specificity and regulation of phosphotyrosine signaling through SH2 domains. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100026. [PMID: 32647828 PMCID: PMC7337045 DOI: 10.1016/j.yjsbx.2020.100026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 10/26/2022]
Abstract
Phosphotyrosine (pY) signaling is instrumental to numerous cellular processes. pY recognition occurs through specialized protein modules, among which the Src-homology 2 (SH2) domain is the most common. SH2 domains are small protein modules with an invariant fold, and are present in more than a hundred proteins with different function. Here we ask the question of how such a structurally conserved, small protein domain can recognize distinct phosphopeptides with the breath of binding affinity, specificity and kinetic parameters necessary for proper control of pY-dependent signaling and rapid cellular response. We review the current knowledge on structure, thermodynamics and kinetics of SH2-phosphopeptide complexes and conclude that selective phosphopeptide recognition is governed by both structure and dynamics of the SH2 domain, as well as by the kinetics of the binding events. Further studies on the thermodynamic and kinetic properties of SH2-phosphopeptide complexes, beyond their structure, are required to understand signaling regulation.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Leibniz University Hannover, Institute of Organic Chemistry and Centre for Biomolecular Drug Research, Schneiderberg 38, 30167 Hannover, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Institute of Organic Chemistry and Centre for Biomolecular Drug Research, Schneiderberg 38, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, Group of Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
60
|
Wegehaupt O, Wustrau K, Lehmberg K, Ehl S. Cell Versus Cytokine - Directed Therapies for Hemophagocytic Lymphohistiocytosis (HLH) in Inborn Errors of Immunity. Front Immunol 2020; 11:808. [PMID: 32457750 PMCID: PMC7225316 DOI: 10.3389/fimmu.2020.00808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a heterogeneous hyperinflammatory syndrome with different pathways of pathogenesis resulting in similar clinical presentations. It is best defined and understood if presenting in the context of genetic immunodeficiencies associated with defects of lymphocyte cytotoxicity. In these "primary" forms of HLH, cellular and soluble immune effectors are relatively well characterized. While etoposide-based broad cell-directed therapies remain standard of care, more specific therapies targeting these effectors individually are increasingly available. Anti-CD52 as a cell-directed therapy and anti-IFN-gamma, IL-18BP, and JAK-inhibition as cytokine-directed therapies are expected to broaden the therapeutic options, but the precise role of these drugs in first-line and rescue treatment indications remains to be defined. A number of additional inborn errors of immunity are associated with episodes of immune activation fulfilling the clinical criteria of HLH. Impaired pathogen control is a key driver of hyperinflammation in some conditions, while others are characterized by a strong autoinflammatory component. This heterogeneity of disease-driving factors and the variable severity in disease progression in these conditions do not allow a simple adaptation of protocols established for "primary" HLH to HLH in the context of other inborn errors of immunity. Cytokine-directed therapies hold significant promise in these increasingly recognized disorders.
Collapse
Affiliation(s)
- Oliver Wegehaupt
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Katharina Wustrau
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
61
|
Jiang X, Wang Y, Li X, He L, Yang Q, Wang W, Liu J, Zha B. Microarray profile of B cells from Graves' disease patients reveals biomarkers of proliferation. Endocr Connect 2020; 9:405-417. [PMID: 32432440 PMCID: PMC7274554 DOI: 10.1530/ec-20-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes are the source of autoantibodies against the thyroid-stimulating hormone receptor (TSHR) in Graves' disease (GD). Characterization of autoimmune B-cell expression profiles might enable a better understanding of GD pathogenesis. To reveal this, the expression levels of long noncoding RNAs (lncRNAs) and mRNAs (genes) in purified B cells from patients with newly diagnosed GD and healthy individuals were compared using microarrays, which elucidated 604 differentially expressed lncRNAs (DE-lncRNAs) and 410 differentially expressed genes (DEGs). GO and pathway analyses revealed that the DEGs are mainly involved in immune response. A protein-protein interaction network presented experimentally validated interactions among the DEGs. Two independent algorithms were used to identify the DE-lncRNAs that regulate the DEGs. Functional annotation of the deregulated lncRNA-mRNA pairs identified 14 pairs with mRNAs involved in cell proliferation. The lncRNAs TCONS_00022357-XLOC_010919 and n335641 were predicted to regulate TCL1 family AKT coactivator A (TCL1A), and the lncRNA n337845 was predicted to regulate SH2 domain containing 1A (SH2D1A). TCL1A and SH2D1A are highly involved in B-cell proliferation. The differential expression of both genes was validated by qRT-PCR. In conclusion, lncRNA and mRNA expression profiles of B cells from patients with GD indicated that the lncRNA-mRNA pairs n335641-TCL1A, TCONS_00022357-XLOC_010919-TCL1A, and n337845-SH2D1A may participate in GD pathogenesis by modulating B-cell proliferation and survival. Therefore, the identified lncRNA and mRNA may represent novel biomarkers and therapeutic targets for GD.
Collapse
Affiliation(s)
- Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghui Wang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Leqi He
- Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Qian Yang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Wei Wang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Correspondence should be addressed to B Zha:
| |
Collapse
|
62
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
63
|
The genetics of macrophage activation syndrome. Genes Immun 2020; 21:169-181. [PMID: 32291394 DOI: 10.1038/s41435-020-0098-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Macrophage activation syndrome (MAS), or secondary hemophagocytic lymphohistiocytosis (HLH), is a cytokine storm syndrome associated with multi-organ system dysfunction and high mortality rates. Laboratory and clinical features resemble primary HLH, which arises in infancy (1 in 50,000 live births) from homozygous mutations in various genes critical to the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. MAS/secondary HLH is about ten times more common and typically presents beyond infancy extending into adulthood. The genetics of MAS are far less defined than for familial HLH. However, the distinction between familial HLH and MAS/secondary HLH is blurred by the finding of heterozygous perforin-pathway mutations in MAS patients, which may function as hypomorphic or partial dominant-negative alleles and contribute to disease pathogenesis. In addition, mutations in a variety of other pathogenic pathways have been noted in patients with MAS/secondary HLH. Many of these genetically disrupted pathways result in a similar cytokine storm syndrome, and can be broadly categorized as impaired viral control (e.g., SH2P1A), dysregulated inflammasome activity (e.g., NLRC4), other immune defects (e.g., IKBKG), and dysregulated metabolism (e.g., LIPA). Collectively these genetic lesions likely combine with states of chronic inflammation, as seen in various rheumatic diseases (e.g., still disease), with or without identified infections, to result in MAS pathology as explained by the threshold model of disease. This emerging paradigm may ultimately support genetic risk stratification for high-risk chronic and even acute inflammatory disorders. Moving forward, continued whole-exome and -genome sequencing will likely identify novel MAS gene associations, as well as noncoding mutations altering levels of gene expression.
Collapse
|
64
|
Torralba-Raga L, Tesi B, Chiang SCC, Schlums H, Nordenskjöld M, Horne A, Henter JI, Meeths M, Abdelhaleem M, Weitzman S, Bryceson Y. Diagnostic challenges for a novel SH2D1A mutation associated with X-linked lymphoproliferative disease. Pediatr Blood Cancer 2020; 67:e28184. [PMID: 31994322 DOI: 10.1002/pbc.28184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 11/10/2022]
Abstract
Mutations in SH2D1A, encoding the intracellular adaptor signaling lymphocyte activation molecule associated protein (SAP), are associated with X-linked lymphoproliferative disease type 1 (XLP1). We identified a novel hemizygous SH2D1A c.49G > A (p.E17K) variant in a 21-year-old patient with fatal Epstein-Barr virus infection-associated hemophagocytic lymphohistiocytosis. Cellular and biochemical assays revealed normal expression of the SAP variant protein, yet binding to phosphorylated CD244 receptor was reduced by >95%. Three healthy brothers carried the SH2D1A c.49G > A variant. Thus, data suggest that this variant represents a pathogenic mutation, but with variable expressivity. Importantly, our results highlight challenges in the clinical interpretation of SH2D1A variants and caution in using functional flow cytometry assays for the diagnosis of XLP1.
Collapse
Affiliation(s)
- Lamberto Torralba-Raga
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bianca Tesi
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Samuel C C Chiang
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Heinrich Schlums
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - AnnaCarin Horne
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Paediatric Rheumatology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marie Meeths
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mohamed Abdelhaleem
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sheila Weitzman
- Division of Pediatric Hematology/Oncology, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Yenan Bryceson
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Broegelmann Research Laboratory, Institute of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
65
|
Dienz O, DeVault VL, Musial SC, Mistri SK, Mei L, Baraev A, Dragon JA, Krementsov D, Veillette A, Boyson JE. Critical Role for SLAM/SAP Signaling in the Thymic Developmental Programming of IL-17- and IFN-γ-Producing γδ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1521-1534. [PMID: 32024701 PMCID: PMC7065973 DOI: 10.4049/jimmunol.1901082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
During thymic development, mouse γδ T cells commit to either an IFN-γ- or an IL-17-producing phenotype through mechanisms that remain unclear. In this study, we investigated the extent to which the SLAM/SAP signaling pathway regulates the functional programming of γδ T cells. Characterization of SLAM family receptor expression revealed that thymic γδ T cell subsets were each marked by distinct coexpression profiles of SLAMF1, SLAMF4, and SLAMF6. In the thymus, Vγ1 and Vγ4 T cells that exhibited an SLAMF1+SLAMF6+ double positive phenotype were largely contained within immature CD24+CD73- and CD24+CD73+ subsets, whereas SLAMF1 single positive, SLAMF6 single positive, or SLAMF1SLAMF6 double negative cells were found within mature CD24-CD73+ and CD24-CD73- subsets. In the periphery, SLAMF1 and SLAMF6 expression distinguished IL-17- and IFN-γ-producing γδ T cells, respectively. Disruption of SLAM family receptor signaling through deletion of SAP resulted in impaired thymic Vγ1 and Vγ4 T cell maturation at the CD24+CD73-SLAMF1+SLAMF6+ double positive stage that was associated with a decreased frequency of CD44+RORγt+ γδ T cells. Impaired development was in turn associated with decreased γδ T cell IL-17 and IFN-γ production in the thymus as well as in peripheral tissues. The role for SAP was subset-specific, as Vγ1Vδ6.3, Vγ4, Vγ5, but not Vγ6 subsets were SAP-dependent. Together, these data suggest that the SLAM/SAP signaling pathway plays a larger role in γδ T cell development than previously appreciated and represents a critical checkpoint in the functional programming of both IL-17- and IFN-γ-producing γδ T cell subsets.
Collapse
Affiliation(s)
- Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Victoria L DeVault
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Shawn C Musial
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Linda Mei
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Aleksandr Baraev
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Dimitry Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405; and
| | - Andre Veillette
- Montreal Clinical Research Institute, Montreal, Quebec H2W 1R7, Canada
| | - Jonathan E Boyson
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405;
| |
Collapse
|
66
|
Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet 2020; 139:885-901. [PMID: 32152698 DOI: 10.1007/s00439-020-02145-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting > 90% of the adult population. In the vast majority of healthy individuals, infection with EBV runs a relatively benign course. However, EBV is by no means a benign pathogen. Indeed, apart from being associated with at least seven different types of malignancies, EBV infection can cause severe and often fatal diseases-hemophagocytic lymphohistiocytosis, lymphoproliferative disease, B-cell lymphoma-in rare individuals with specific monogenic inborn errors of immunity. The discovery and detailed investigation of inborn errors of immunity characterized by heightened susceptibility to, or increased frequency of, EBV-induced disease have elegantly revealed cell types and signaling pathways that play critical and non-redundant roles in host-defense against EBV. These analyses have revealed not only mechanisms underlying EBV-induced disease in rare genetic conditions, but also identified molecules and pathways that could be targeted to treat severe EBV infection and pathological consequences in immunodeficient hosts, or even potentially enhance the efficacy of an EBV-specific vaccine.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of NSW Sydney, Darlinghurst, NSW, 2010, Australia. .,Clincial Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW, Australia.
| |
Collapse
|
67
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
68
|
Henderson LA, Cron RQ. Macrophage Activation Syndrome and Secondary Hemophagocytic Lymphohistiocytosis in Childhood Inflammatory Disorders: Diagnosis and Management. Paediatr Drugs 2020; 22:29-44. [PMID: 31732958 PMCID: PMC7334831 DOI: 10.1007/s40272-019-00367-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrophage activation syndrome (MAS), a form of secondary hemophagocytic lymphohistiocytosis, is a frequently fatal complication of a variety of pediatric inflammatory disorders. MAS has been most commonly associated with systemic juvenile idiopathic arthritis (sJIA), as approximately 10% of children with sJIA develop fulminant MAS, with another 30-40% exhibiting a more subclinical form of the disease. Children with other rheumatologic conditions such as systemic lupus erythematosus and Kawasaki disease are also at risk for MAS. Moreover, MAS also complicates various genetic autoinflammatory disorders such as gain of function mutations in the cytosolic inflammasome NLRC4, pediatric hematologic malignancies (e.g., T-cell lymphoma), and primary immunodeficiencies characterized by immune dysregulation. Disease-specific and broadly inclusive diagnostic criteria have been developed to facilitate the diagnosis of MAS. Recently, simple screening tools such as the serum ferritin to erythrocyte sedimentation rate ratio have been proposed. Early diagnosis and rapid initiation of immunosuppression are essential for the effective management of MAS. With a better understanding of the pathophysiology of MAS and the advent of novel therapeutics, a broad immunosuppressive approach to treatment is giving way to targeted anti-cytokine therapies. These treatments include agents that block interleukin-1 (IL-1), IL-6, IL-18, interferon-γ, as well as inhibitors of downstream targets of cytokine signaling (e.g., Janus kinases). Increased early recognition of MAS among pediatric inflammatory disorders combined with the use of effective and less toxic cytokine-targeted therapies should lower the mortality of this frequently fatal disorder.
Collapse
Affiliation(s)
- Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, 1 Blackfan Circle, 10th Floor Karp Family Research Building, Boston, MA 02115, USA
| | - Randy Q. Cron
- Division of Pediatric Rheumatology, Children’s of Alabama, 1600 7th Ave. S., CPPN, suite G10, Birmingham, AL 35233-1711, USA
| |
Collapse
|
69
|
Valenzuela-Vazquez L, Núñez-Enríquez JC, Sánchez-Herrera J, Jiménez-Hernández E, Martín-Trejo JA, Espinoza-Hernández LE, Medina-Sanson A, Flores-Villegas LV, Peñaloza-González JG, Refugio Torres-Nava J, Espinosa-Elizondo RM, Amador-Sánchez R, Santillán-Juárez JD, Flores-Lujano J, Pérez-Saldívar ML, García-López LR, Castañeda-Echevarría A, Rodríguez-Leyva F, Rosas-Vargas H, Mata-Rocha M, Duarte-Rodríguez DA, Sepúlveda-Robles OA, Mancilla-Herrera I, Mejía-Aranguré JM, Cruz-Munoz ME. Functional characterization of NK cells in Mexican pediatric patients with acute lymphoblastic leukemia: Report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia. PLoS One 2020; 15:e0227314. [PMID: 31951638 PMCID: PMC6968843 DOI: 10.1371/journal.pone.0227314] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children around the globe. Mexico City has one of the highest incidence rates of childhood leukemia worldwide with 49.5 cases per million children under the age of 15 which is similar to that reported for Hispanic populations living in the United States. In addition, it has been noted a dismal prognosis in Mexican and Hispanic ALL pediatric population. Although ALL, like cancer in general, has its origins in endogenous, exogenous, and genetic factors, several studies have shown that the immune system also plays a deterministic role in cancer development. Among various elements of the immune system, T lymphocytes and NK cells seem to dominate the immune response against leukemia. The aim of the present study was to perform a phenotypic and functional characterization of NK cells in ALL Mexican children at the moment of diagnosis and before treatment initiation. A case-control study was conducted by the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia (MIGICCL). 41 cases were incident ALL children younger than 17 years old and residents of Mexico City. 14 controls were children without leukemia, matched by age and sex with cases. NK cell function was evaluated by degranulation assays towards K562 cells and SLAM-associated protein (SAP) expression was measured by intracellular staining. All assays were performed using peripheral blood mononuclear cells from controls and patients. The results indicate that NK mediated cytotoxicity, measured by CD107a degranulation assays in response to K562 cells, was reduced in ALL patients compared to controls. Interestingly, an impaired NK cell killing of target cells was not equally distributed among ALL patients. In contrast to patients classified as high-risk, standard-risk patients did not display a significant reduction in NK cell-mediated cytotoxicity. Moreover, patients presenting a leukocyte count ≥ 50,000xmm3 displayed a reduction in NK-cell mediated cytotoxicity and a reduction in SAP expression, indicating a positive correlation between a reduced SAP expression and an impaired NK cell-mediated citotoxicity. In the present study it was observed that unlike patients with standard-risk, NK cells from children presenting high-risk ALL, harbor an impaired cytotoxicity towards K562 at diagnosis. In addition, NK cell function was observed to be compromised in patients with a leukocyte count ≥50,000xmm3, where also it was noticed a decreased expression of SAP compared to patients with a leukocyte count <50,000xmm3. These data indicate NK cell-mediated cytotoxicity is not equally affected in ALL patients, nevertheless a positive correlation between low SAP expression and decreased NK cell-mediated cytotoxicity was observed in ALL patients with a leukocyte count ≥50,000xmm3. Finally, an abnormal NK cell-mediated cytotoxicity may represent a prognostic factor for high-risk acute lymphoblastic leukemia.
Collapse
Affiliation(s)
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) "La Raza", IMSS, Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Laura Eugenia Espinoza-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) "La Raza", IMSS, Mexico City, Mexico
| | - Aurora Medina-Sanson
- Servicio de Hemato-Oncologia, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud del D.F., Mexico City, Mexico
| | | | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 "Carlos McGregor Sánchez Navarro", IMSS, Mexico City, Mexico
| | | | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luis Ramiro García-López
- Servicio de Pediatría, Hospital Pediátrico de Tacubaya, Secretaría de Salud (SS), Mexico City, Mexico
| | | | | | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", IMSS, Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de infectología e inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- * E-mail: (MECM); (JMMA)
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- * E-mail: (MECM); (JMMA)
| |
Collapse
|
70
|
Biram A, Davidzohn N, Shulman Z. T cell interactions with B cells during germinal center formation, a three-step model. Immunol Rev 2019; 288:37-48. [PMID: 30874355 DOI: 10.1111/imr.12737] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long-lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity-based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B-cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B-cell and T-cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long-lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T-cell receptor: peptide-loaded major histocompatibility class II (pMHCII), and LFA-1:ICAMs. These essential components support a three-step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long-lasting antibody-mediated immunity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
71
|
A Novel Missense Mutation Affecting the N-terminal Domain of SAP Protein in X-linked Lymphoproliferative Disease. J Pediatr Hematol Oncol 2019; 41:e550-e551. [PMID: 31415280 DOI: 10.1097/mph.0000000000001585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
72
|
Della Chiesa M, De Maria A, Muccio L, Bozzano F, Sivori S, Moretta L. Human NK Cells and Herpesviruses: Mechanisms of Recognition, Response and Adaptation. Front Microbiol 2019; 10:2297. [PMID: 31636622 PMCID: PMC6788305 DOI: 10.3389/fmicb.2019.02297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/20/2019] [Indexed: 12/01/2022] Open
Abstract
NK cells contribute to early defenses against viruses through their inborn abilities that include sensing of PAMPs and inflammatory signals such as cytokines or chemokines, recognition, and killing of infected cells through activating surface receptors engagement. Moreover, they support adaptive responses via Ab-dependent mechanisms, triggered by CD16, and DC editing. Their fundamental role in anti-viral responses has been unveiled in patients with NK cell deficiencies suffering from severe Herpesvirus infections. Notably, these infections, often occurring as primary infections early in life, can be efficiently cleared by NK, T, and B cells in healthy hosts. Herpesviruses however, generate a complicated balance with the host immune system through their latency cycle moving between immune control and viral reactivation. This lifelong challenge has contributed to the development of numerous evasion mechanisms by Herpesviruses, many of which devoted to elude NK cell surveillance from viral reactivations rather than primary infections. This delicate equilibrium can be altered in proportions of healthy individuals promoting virus reactivation and, more often, in immunocompromised subjects. However, the constant stimulus provided by virus-host interplay has also favored NK-cell adaptation to Herpesviruses. During anti-HCMV responses, NK cells can reshape their receptor repertoire and function, through epigenetic remodeling, and acquire adaptive traits such as longevity and clonal expansion abilities. The major mechanisms of recognition and effector responses employed by NK cells against Herpesviruses, related to their genomic organization will be addressed, including those allowing NK cells to generate memory-like responses. In addition, the mechanisms underlying virus reactivation or control will be discussed.
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Department of Health Sciences (DISSAL), School of Medical and Pharmaceutical Sciences University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Federica Bozzano
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| |
Collapse
|
73
|
Qi X, Wang T, Li Z, Wan Y, Yang B, Zeng W, Zhang Y, Wang J. MicroRNA-218 Regulates Signaling Lymphocyte Activation Molecular (SLAM) Mediated Peste des Petits Ruminants Virus Infectivity in Goat Peripheral Blood Mononuclear Cells. Front Immunol 2019; 10:2201. [PMID: 31616415 PMCID: PMC6763950 DOI: 10.3389/fimmu.2019.02201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) has emerged as a significant threat to the productivity of small ruminants worldwide. SLAM was identified as the primary receptor for PPRV and other Morbilliviruses, although the regulation of SLAM expression is not yet fully understood. In this study, we revealed a novel mechanism by which PPRV upregulates its receptor SLAM expression and thereby benefits its replication via suppressing miR-218, a novel negative miRNA directly targeting SLAM gene. We demonstrated that PPRV infection downregulates miR-218, which in turn enhances SLAM expression on the surface of goat peripheral blood mononuclear cells (PBMCs), thus promoting PPRV replication. Since SLAM signaling may modulate the immune responses induced by PPRV infection, we further examined the effect of SLAM expression on the production of various cytokines by PBMCs in the absence or presence of PPRV. We demonstrated that miR-218-mediated SLAM expression modulates the expression of IFN-γ, TNF-α, and IL-10, importantly, these modulatory effects were enhanced in the presence of PPRV infection. Furthermore, our data clearly showed that PPRV H protein is sufficient to regulate miR-218-mediated SLAM expression. Taken together, our results suggest a novel mechanism involving post-transcriptional regulation of SLAM receptor expression on goat PBMCs during PPRV infection.
Collapse
Affiliation(s)
- Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangli Wan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
74
|
Tabellini G, Patrizi O, Dobbs K, Lougaris V, Baronio M, Coltrini D, Plebani A, Badolato R, Notarangelo LD, Parolini S. From Natural Killer Cell Receptor Discovery to Characterization of Natural Killer Cell Defects in Primary Immunodeficiencies. Front Immunol 2019; 10:1757. [PMID: 31396241 PMCID: PMC6668486 DOI: 10.3389/fimmu.2019.01757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
Alessandro Moretta was Professor of Histology at University of Brescia from 1994 to 1997. It was in that period that we met and started a collaboration that continued in the years to follow. He immediately involved us in the production of monoclonal antibodies (mAbs) that allowed the identification and fine characterization of novel receptor molecules that were able to activate or inhibit human Natural Killer cell function, including several antibodies specific for Natural Cytotoxicity Receptor (NCR) and Killer-cell Immunoglobulin-like Receptor (KIR) molecules. These reagents, generated in our laboratory in Brescia, contributed to complete the studies aimed to characterize innate lymphoid NK cells, that had been initiated by Alessandro and his brother Lorenzo in Genoa. Soon, we identified an anti-KIR3DL2 that was subsequently shown to be helpful for the diagnosis and treatment of various forms of cutaneous T cell lymphoma. While in Brescia, Alessandro established a partnership with those of us who were working in the Department of Pediatrics; together, in short time we tackled the goal of studying the role of NK cells in patients with primary immunodeficiencies. This collaboration led to novel discoveries that shed light on the critical role played by NK cells in the immune response against virus and tumors in humans, as best exemplified by our characterization of the molecular mechanisms of impaired control of Epstein-Barr Virus (EBV) infection in patients with X-linked lymphoproliferative (XLP) disease. After Alessandro left Brescia to return to Genoa, our collaboration continued with the same enthusiasm, and even from a distance he remained an extraordinary example of an inspirational and generous mentor. This review is a sign of our gratitude to a mentor and a friend whom we deeply miss.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
75
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
MESH Headings
- Adaptor Protein Complex 3/immunology
- Adaptor Protein Complex 3/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigen Presentation/immunology
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Humans
- Lymphocyte Activation/immunology
- Mice
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- Signaling Lymphocytic Activation Molecule Family/immunology
- Signaling Lymphocytic Activation Molecule Family/metabolism
Collapse
Affiliation(s)
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
76
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
77
|
Dragovich MA, Adam K, Strazza M, Tocheva AS, Peled M, Mor A. SLAMF6 clustering is required to augment T cell activation. PLoS One 2019; 14:e0218109. [PMID: 31199820 PMCID: PMC6568412 DOI: 10.1371/journal.pone.0218109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors that are expressed exclusively on hematopoietic cells. Most of these transmembrane receptors are homotypic by nature and downstream signaling occurs when cells that express the same SLAM receptor interact. Previous studies have determined that anti-SLAMF6 antibodies can have a therapeutic effect in autoimmunity and cancer. However, little is known about the role of SLAMF6 in the adaptive immune responses and in order to utilize SLAMF6 interventional approaches, a better understanding of the biology of this receptor in T cell is warranted. Accordingly, the objective of our study was to investigate both functionally and structurally the role of SLAMF6 in T cell receptor (TCR) mediated responses. Biochemical and genetic experiments revealed that SLAMF6 was required for productive TCR downstream signaling. Interestingly, SLAMF6 ectodomain was required for its function, but not for its recruitment to the immunological synapse. Flow-cytometry analysis demonstrated that tyrosine 308 of the tail of SLAMF6 was crucial for its ability to enhance T cell function. Imaging studies revealed that SLAMF6 clustering, specifically with the TCR, resulted in dramatic increase in downstream signaling. Mechanistically, we showed that SLAMF6 enhanced T cell function by increasing T cell adhesiveness through activation of the small GTPase Rap1. Taken together SLAMF6 is an important regulator of T cell activation where both its ectodomain and its endodomain contribute differentially to T cell functions. Additional studies are underway to better evaluate the role of anti-SLAMF6 approaches in specific human diseases.
Collapse
Affiliation(s)
- Matthew A. Dragovich
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Kieran Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Marianne Strazza
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Anna S. Tocheva
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Michael Peled
- Division of Pulmonary Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
78
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
79
|
Barros SP, Hefni E, Nepomuceno R, Offenbacher S, North K. Targeting epigenetic mechanisms in periodontal diseases. Periodontol 2000 2019; 78:174-184. [PMID: 30198133 DOI: 10.1111/prd.12231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic factors are heritable genome modifications that potentially impact gene transcription, contributing to disease states. Epigenetic marks play an important role in chronic inflammatory conditions, as observed in periodontal diseases, by allowing microbial persistence or by permitting microbial insult to play a role in the so-called 'hit-and-run' infectious mechanism, leading to lasting pathogen interference with the host genome. Epigenetics also affects the health sciences by providing a dynamic mechanistic framework to explain the way in which environmental and behavioral factors interact with the genome to alter disease risk. In this article we review current knowledge of epigenome regulation in light of the multifactorial nature of periodontal diseases. We discuss epigenetic tagging in identified genes, and consider the potential implications of epigenetic changes on host-microbiome dynamics in chronic inflammatory states and in response to environmental stressors. The most recent advances in genomic technologies have placed us in a position to analyze interaction effects (eg, between periodontal disease and type 2 diabetes mellitus), which can be investigated through epigenome-wide association analysis. Finally, because of the individualized traits of epigenetic biomarkers, pharmacoepigenomic perspectives are also considered as potentially novel therapeutic approaches for improving periodontal disease status.
Collapse
Affiliation(s)
- Silvana P Barros
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Eman Hefni
- Department of Periodontology, School of Dentistry, Umm Al Qura University, Makkah, Saudi Arabia
| | - Rafael Nepomuceno
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Steven Offenbacher
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Kari North
- Department of Epidemiology and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
80
|
NK cell recognition of hematopoietic cells by SLAM-SAP families. Cell Mol Immunol 2019; 16:452-459. [PMID: 30911116 DOI: 10.1038/s41423-019-0222-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family of receptors (SFRs) are ubiquitously expressed on immune cells, and they regulate multiple immune events by recruiting SH2 (Src homology 2) domain-containing SAP family adapters, including SAP and its homologs, Ewing's sarcoma-associated transcript 2 (EAT-2) and EAT-2 related transducer (ERT). In human patients with X-linked lymphoproliferative (XLP) disease, which is caused by SAP mutations, SFRs alternatively bind other inhibitory SH2 domain-containing molecules to suppress immune cell activation and development. NK cells express multiple SFRs and all SAP family adapters. In recent decades, SFRs have been found to be critical for enhancing NK cell activation in response to abnormal hematopoietic cells in SAP-family-intact NK cells; however, SFRs might suppress NK cell activation in SAP-family-deficient mice or patients with XLP1. In this paper, we review how these two distinct SFR signaling pathways orchestrate NK cell activation and inhibition and highlight the importance of SFR regulation of NK cell biology and their physiological status and pathological relevance in patients with XLP1.
Collapse
|
81
|
Sheth J, Patel A, Shah R, Bhavsar R, Trivedi S, Sheth F. Rare cause of Hemophagocytic Lymphohistiocytosis due to mutation in PRF1 and SH2D1A genes in two children - a case report with a review. BMC Pediatr 2019; 19:73. [PMID: 30849948 PMCID: PMC6407181 DOI: 10.1186/s12887-019-1444-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background Hemophagocytic Lymphohistiocytosis (HLH) is a rare, complex, life-threatening hyper-inflammatory condition due to over activation of lymphocytes mediated secretory cytokines in the body. It occurs as a primary HLH due to genetic defect that mostly occurs in the childhood and associated with early neonatal death. Secondary HLH is triggered by secondary to infection and can occur at any age. Case presentation The current report presents two cases of HLH. Case 1, three-months-old boy born to second degree consanguineous parents was clinically suspected with HLH. A pathogenic variant in exon 2 of PRF1 gene [c.386G > C (p.Trp129Ser); FLH-type2] was detected. The parents and the fetus under investigation were shown to be heterozygous carriers, while Case-1 was homozygous for the said variant. Case 2, a one and half-year old male child referred for work-up was born to non-consanguineous young parents. His HLH suspicion was in accordance with HLH-2004 Revised diagnostic guidelines (fulfilling 5/8 criteria). Molecular study revealed hemizygous likely pathogenic variant c.138-3C > G in intron 1 of SH2D1A gene. Both the mother and younger sister were confirmed to be the carrier of the same variant. Conclusion This study has represented two rare cases of HLH carrying missense variant in PRF1 and splice site variant in SH2D1A gene. Detailed molecular analysis has helped the families with precise genetic counselling and prenatal diagnosis during subsequent pregnancy. It is advocated that male patients presenting with EBV-associated HLH may be screened for XLP that may lead to early diagnosis and therapeutic implication if any. Electronic supplementary material The online version of this article (10.1186/s12887-019-1444-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, 380015, India.
| | - Akash Patel
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, 380015, India
| | - Raju Shah
- Ankur Institute of Child Health, Behind City Gold Cinema, Ashram Road, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Riddhi Bhavsar
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, 380015, India
| | - Sunil Trivedi
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, 380015, India
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, 380015, India
| |
Collapse
|
82
|
Hemophagocytic Lymphohistiocytosis: Clinical Presentations and Diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:824-832. [DOI: 10.1016/j.jaip.2018.11.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022]
|
83
|
Ishimura M, Eguchi K, Shiraishi A, Sonoda M, Azuma Y, Yamamoto H, Imadome KI, Ohga S. Systemic Epstein-Barr Virus-Positive T/NK Lymphoproliferative Diseases With SH2D1A/ XIAP Hypomorphic Gene Variants. Front Pediatr 2019; 7:183. [PMID: 31231620 PMCID: PMC6558365 DOI: 10.3389/fped.2019.00183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) is one of the X-linked primary immunodeficiency diseases (PIDs) with defective immune response to Epstein-Barr virus (EBV) infection. Chronic active EBV infection (CAEBV) and EBV-hemophagocytic lymphohistiocytosis (HLH) are recognized as systemic EBV-positive T-cell and natural killer (NK)-cell lymphoproliferative diseases (LPDs) arising from the clonal proliferations of EBV-infected T cells and NK cells. A high incidence of CAEBV in East Asia implies the unknown genetic predisposition. In patients with XLP, EBV-infected cells are generally B cells. No mutation of SH2D1A/XIAP genes has ever been identified in patients with systemic EBV-positive T-cell and NK-cell LPD. We report herewith a male case of NK-cell type CAEBV with SH2D1A hypomorphic mutation (c.7G > T, p.Ala3Ser), two male cases of CAEBV/EBV-HLH with XIAP hypomorphic variant (c.1045_1047delGAG, p.Glu349del), and another female case of CD4+CAEBV with the same XIAP variant. The female underwent bone marrow transplantation from an HLA-matched sister with the XIAP variant and obtained a complete donor chimerism and a cure of laryngeal LPD lesion, but then suffered from donor-derived CD4+ T cell EBV-LPD. These observations demonstrated that SH2D1A and XIAP genes are critical for the complete regulation of EBV-positive T/NK cell LPD. X-linked lymphoproliferative disease (XLP) is one of the X-linked primary immunodeficiency diseases (PIDs) reported to have a defective immune response to Epstein-Barr virus (EBV) infection. Mutations in SH2D1A and XIAP genes cause XLP. Systemic EBV-positive T-cell and natural killer (NK)-cell lymphoproliferative diseases (LPDs) consist of three major types: EBV-positive hemophagocytic lymphohistiocytosis (HLH), chronic active EBV infection (CAEBV), and EBV-positive T-cell/NK-cell lymphoma. CAEBV is recognized as a poor prognostic disease of EBV-associated T-cell and NK-cell LPD arising from the clonal proliferation of EBV-infected T cells (CD4+, CD8+, and TCRγδ+) and/or NK cells. The majority of cases with CAEBV were reported from East Asia and South America. In Caucasian patients with CAEBV disease, the target of infection is exclusively B cells. These imply a genetic predisposition to EBV-positive T/NK cell LPD according to ethnicity. In reported cases with XLP, EBV-infected cells are B cells. On the other hand, no mutation of SH2D1A/XIAP genes have been determined in patients with T/NK-cell-type (Asian type) CAEBV. We here describe, for the first time, four case series of CAEBV/EBV-HLH patients who carried the hypomorphic variants of XLP-related genes. These cases included a male patient with CAEBV carrying SH2D1A hypomorphic mutation (c.7G > T, p.Ala3Ser) and two male patients with CAEBV/EBV-HLH carrying the XIAP hypomorphic variant (c.1045_1047delGAG, p.Glu349del), along with another female patient with CAEBV carrying the same XIAP variant. The female case underwent bone marrow transplantation from a healthy HLA-matched sister having the same XIAP variant. Although a complete donor chimerism was achieved with the resolution of laryngeal LPD lesions, systemic donor-derived CD4+ T-cell EBV-LPD developed during the control phase of intractable graft- vs. -host-disease. These observations demonstrated that SH2D1A and XIAP genes are critical for the complete regulation of systemic EBV-positive T/NK-cell LPD.
Collapse
Affiliation(s)
- Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Shiraishi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hiroyuki Yamamoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken-Ichi Imadome
- Division of Advanced Medicine for Virus Infections, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
84
|
Agresta L, Hoebe KHN, Janssen EM. The Emerging Role of CD244 Signaling in Immune Cells of the Tumor Microenvironment. Front Immunol 2018; 9:2809. [PMID: 30546369 PMCID: PMC6279924 DOI: 10.3389/fimmu.2018.02809] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
In cancer, immune exhaustion contributes to the immunosuppressive tumor microenvironment. Exhausted immune cells demonstrate poor effector function and sustained expression of certain immunomodulatory receptors, which can be therapeutically targeted. CD244 is a Signaling Lymphocyte Activation Molecule (SLAM) family immunoregulatory receptor found on many immune cell types—including NK cells, a subset of T cells, DCs, and MDSCs—that represents a potential therapeutic target. Here, we discuss the role of CD244 in tumor-mediated immune cell regulation.
Collapse
Affiliation(s)
- Laura Agresta
- Cincinnati Children's Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH, United States
| | - Kasper H N Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
85
|
Transcriptional Profiling of Leucocyte Count Variation from Porcine Peripheral Blood Reveals Differential Gene Expression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1496536. [PMID: 30581844 PMCID: PMC6276489 DOI: 10.1155/2018/1496536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/08/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
Leucocytes have tremendous health-check importance related to the individual antiviral capacity of pigs and other mammals. However, the molecular mechanism of the immune response of blood leucocytes in pigs is not completely known. This study investigated the leucocyte-count variation before and after poly I:C stimulation in a Duroc–Erhualian F2 population. Pigs with increased and decreased differences in leucocyte counts were coded as increased responder (IR) and decreased responder (DR), respectively. Then, we used microarray technology to compare the gene-expression profiles of both groups of pigs. Transcriptomic analysis identified 129 differentially expressed genes (DEGs) in IR pigs and 136 DEGs in DR pigs. Forty-one common DEGs showed that both groups had similar expression patterns of immune responses. These results illustrated a differential expression in both groups. Furthermore, qPCR experiment was performed to verify the differential-expression profile. Functional annotation of the DEGs indicated that both IR and DR pigs were similar in several biological processes, including innate immune response, and also exhibited distinct differences in biological processes, molecular function, and pathways. These results provided insights into the mechanism underlying the antiviral capacity of pigs. Trial registration number is CAS Registry Number 24939-03-5.
Collapse
|
86
|
Tamura A, Uemura S, Yamamoto N, Saito A, Kozaki A, Kishimoto K, Ishida T, Hasegawa D, Hiroki H, Okano T, Imai K, Morio T, Kanegane H, Kosaka Y. Hematopoietic cell transplantation for asymptomatic X-linked lymphoproliferative syndrome type 1. Allergy Asthma Clin Immunol 2018; 14:82. [PMID: 30459818 PMCID: PMC6236904 DOI: 10.1186/s13223-018-0306-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022] Open
Abstract
Background X-linked lymphoproliferative disease type 1 (XLP1) is a rare primary immune deficiency, which is caused by SH2D1A gene mutations. XLP1 is commonly associated with Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis, hypogammaglobulinemia, and/or lymphoma. The only curative treatment for XLP1 is allogeneic hematopoietic cell transplantation. However, published data detailing the clinical course of, and indications for, allogeneic hematopoietic cell transplantation in asymptomatic patients with XLP1 is lacking. Although relevant family history could be useful in identifying patients with XLP1 before disease onset, no guidelines have been established on the management of asymptomatic patients with XLP1. Therefore, clinicians and families face dilemmas in balancing between the risk of waiting for the disease onset, and the risk of transplant-related mortality associated with allogeneic hematopoietic cell transplantation, which is often performed at a very young age. We first describe the detailed clinical course of an asymptomatic patient with XLP1 who successfully underwent allogeneic hematopoietic cell transplantation. Case presentation A boy was born at 39 weeks of gestation, weighing 3016 g at birth. He appeared fine, but he underwent genetic testing because his maternal cousin had XLP1. He was found to have a novel c.207_208insC (p.Pro70ProfsX4) mutation in exon 3 of SH2D1A, which was also found in his cousin. There was no HLA-identical donor in his family. Immunoglobulin was administered monthly to prevent EBV infection while searching for an alternative donor. He underwent allogeneic bone marrow transplantation (BMT) from an allele HLA 8/8 fully matched, unrelated donor with a reduced-intensity conditioning (RIC) regimen consisting of fludarabine, melphalan, and low-dose total body irradiation (TBI) at 20 months of age. The patient has been doing well for 2 years post transplantation and maintaining complete donor chimerism without any evidence of chronic graft versus host disease. Conclusions We describe a case of an asymptomatic patient with XLP1, who successfully underwent unrelated BMT with RIC regimen consisting of fludarabine, melphalan, and 3 Gy TBI. That was well tolerated and successfully generated complete chimerism in every subpopulation. This case delineates the option of allogeneic hematopoietic cell transplantation even in asymptomatic patients with XLP1.
Collapse
Affiliation(s)
- Akihiro Tamura
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Suguru Uemura
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Pediatrics, Graduate School of Medicine, Kobe University Hospital, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, 650-0017 Japan
| | - Nobuyuki Yamamoto
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Atsuro Saito
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Aiko Kozaki
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Kenji Kishimoto
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Toshiaki Ishida
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Daiichiro Hasegawa
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| | - Haruka Hiroki
- 3Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Tsubasa Okano
- 3Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Kohsuke Imai
- 4Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Tomohiro Morio
- 3Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Hirokazu Kanegane
- 5Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Yoshiyuki Kosaka
- 1Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Minatojima-Minamimachi 1-6-7, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
87
|
Gordiienko I, Shlapatska L, Kovalevska L, Sidorenko SP. SLAMF1/CD150 in hematologic malignancies: Silent marker or active player? Clin Immunol 2018; 204:14-22. [PMID: 30616923 DOI: 10.1016/j.clim.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
SLAMF1/CD150 receptor is a founder of signaling lymphocyte activation molecule (SLAM) family of cell-surface receptors. It is widely expressed on cells within hematopoietic system. In hematologic malignancies CD150 cell surface expression is restricted to cutaneous T-cell lymphomas, few types of B-cell non-Hodgkin's lymphoma, near half of cases of chronic lymphocytic leukemia, Hodgkin's lymphoma, and multiple myeloma. Differential expression among various types of hematological malignancies allows considering CD150 as diagnostical and potential prognostic marker. Moreover, CD150 may be a target for antibody-based or measles virus oncolytic therapy. Due to CD150 signaling properties it is involved in regulation of malignant cell fate decision and tumor microenvironment in Hodgkin's lymphoma and chronic lymphocytic leukemia. This review summarizes evidence for the important role of CD150 in pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Inna Gordiienko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Larysa Shlapatska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa Kovalevska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svetlana P Sidorenko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
88
|
Yigit B, Wang N, Herzog RW, Terhorst C. SLAMF6 in health and disease: Implications for therapeutic targeting. Clin Immunol 2018; 204:3-13. [PMID: 30366106 DOI: 10.1016/j.clim.2018.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
89
|
SLAM family receptors in natural killer cells - Mediators of adhesion, activation and inhibition via cis and trans interactions. Clin Immunol 2018; 204:37-42. [PMID: 30359773 DOI: 10.1016/j.clim.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
SLAM family receptors are important for the fine-tuning of immune reactions. Their expression is restricted to cells of hematopoietic origin and most SLAM family receptors are their own ligand. Here we review how these receptors are involved in regulating the functions of Natural Killer (NK) cells. We discuss that promoting cellular adhesion may be a main function of SLAM family receptors in NK cells. The homophilic interactions of SLAM family receptors can not only occur in trans between different cells, but also in cis on the surface of the same cell. This cis interaction additionally modulates the function of the receptors and subsequently affects the activities of NK cells. Finally, SLAM-family receptors can also mediate inhibitory signals under certain conditions. These inhibitory signals can contribute to the functional maturation of NK cells during NK cell education. Therefore, SLAM family receptors are critically involved in many aspects of NK cell functionality.
Collapse
|
90
|
Malaer JD, Marrufo AM, Mathew PA. 2B4 (CD244, SLAMF4) and CS1 (CD319, SLAMF7) in systemic lupus erythematosus and cancer. Clin Immunol 2018; 204:50-56. [PMID: 30347240 DOI: 10.1016/j.clim.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023]
Abstract
Signaling Lymphocyte Activation Molecule (SLAM) family receptors are expressed on different types of hematopoietic cells and play important role in immune regulation in health and disease. 2B4 (CD244, SLAMF4) and CS1 (CD319, CRACC, SLAMF7) were originally identified as NK cell receptors regulating NK cell cytolytic activity. 2B4 is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Unlike other activating and inhibitory receptors, 2B4 (CD244) interaction with its ligand CD48 has been shown to mediate both activating and inhibitory functions. Defective signaling via 2B4 due to mutations in signaling adaptor SAP contributes to X-linked lymphoproliferative Disease (XLP). Expression of 2B4 and CS1 are altered in systemic lupus erythematosus (SLE). CS1 is overexpressed in multiple myeloma (MM) and anti-CS1 mab (Elotuzumab/Empliciti) has been approved by FDA as a breakthrough drug for treatment for MM patients. CAR -T cells or CAR- NK cells containing full length CS1 or the signaling domain of 2B4 with TCR-ζ have shown promising results to treat cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Joseph D Malaer
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Armando M Marrufo
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
91
|
Fujisawa M, Chiba S, Sakata-Yanagimoto M. Recent Progress in the Understanding of Angioimmunoblastic T-cell Lymphoma. J Clin Exp Hematop 2018; 57:109-119. [PMID: 29279549 DOI: 10.3960/jslrt.17019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) has been classified as a subtype of mature T-cell neoplasms. The recent revision of the WHO classification proposed a new category of nodal T-cell lymphoma with follicular helper T (TFH)-cell phenotype, which was classified into three diseases: AITL, follicular T-cell lymphoma, and nodal peripheral T-cell lymphoma with TFH phenotype. These lymphomas are defined by the expression of TFH-related antigens, CD279/PD-1, CD10, BCL6, CXCL13, ICOS, SAP, and CXCR5. Although recurrent mutations in TET2, IDH2, DNMT3A, RHOA, and CD28, as well as gene fusions, such as ITK-SYK and CTLA4-CD28, were not diagnostic criteria, they may be considered as novel criteria in the near future. Notably, premalignant mutations, tumor-specific mutations, and mutations specific to tumor-infiltrating B cells were identified in AITL. Thus, multi-step and multi-lineage genetic events may lead to the development of AITL.
Collapse
Affiliation(s)
- Manabu Fujisawa
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Shigeru Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| |
Collapse
|
92
|
Latour S, Winter S. Inherited Immunodeficiencies With High Predisposition to Epstein-Barr Virus-Driven Lymphoproliferative Diseases. Front Immunol 2018; 9:1103. [PMID: 29942301 PMCID: PMC6004768 DOI: 10.3389/fimmu.2018.01103] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Epstein–Barr Virus (EBV) is a gamma-herpes virus that infects 90% of humans without any symptoms in most cases, but has an oncogenic potential, especially in immunocompromised individuals. In the past 30 years, several primary immunodeficiencies (PIDs) associated with a high risk to develop EBV-associated lymphoproliferative disorders (LPDs), essentially consisting of virus-associated hemophagocytic syndrome, non-malignant and malignant B-cell LPDs including non-Hodgkin and Hodgkin’s types of B lymphomas have been characterized. Among them are SH2D1A (SAP), XIAP, ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. Penetrance of EBV infection ranges from 50 to 100% in those PIDs. Description of large cohorts and case reports has refined the specific phenotypes associated with these PIDs helping to the diagnosis. Specific pathways required for protective immunity to EBV have emerged from studies of these PIDs. SLAM-associated protein-dependent SLAM receptors and MAGT1-dependent NKG2D pathways are important for T and NK-cell cytotoxicity toward EBV-infected B-cells, while CD27–CD70 interactions are critical to drive the expansion of EBV-specific T-cells. CTPS1 and RASGRP1 deficiencies further strengthen that T-lymphocyte expansion is a key step in the immune response to EBV. These pathways appear to be also important for the anti-tumoral immune surveillance of abnormal B cells. Monogenic PIDs should be thus considered in case of any EBV-associated LPDs.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| |
Collapse
|
93
|
Comprehensive molecular diagnosis of Epstein-Barr virus-associated lymphoproliferative diseases using next-generation sequencing. Int J Hematol 2018; 108:319-328. [PMID: 29777376 DOI: 10.1007/s12185-018-2475-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Epstein-Barr virus (EBV) is associated with several life-threatening diseases, such as lymphoproliferative disease (LPD), particularly in immunocompromised hosts. Some categories of primary immunodeficiency diseases (PIDs) including X-linked lymphoproliferative syndrome (XLP), are characterized by susceptibility and vulnerability to EBV infection. The number of genetically defined PIDs is rapidly increasing, and clinical genetic testing plays an important role in establishing a definitive diagnosis. Whole-exome sequencing is performed for diagnosing rare genetic diseases, but is both expensive and time-consuming. Low-cost, high-throughput gene analysis systems are thus necessary. We developed a comprehensive molecular diagnostic method using a two-step tailed polymerase chain reaction (PCR) and a next-generation sequencing (NGS) platform to detect mutations in 23 candidate genes responsible for XLP or XLP-like diseases. Samples from 19 patients suspected of having EBV-associated LPD were used in this comprehensive molecular diagnosis. Causative gene mutations (involving PRF1 and SH2D1A) were detected in two of the 19 patients studied. This comprehensive diagnosis method effectively detected mutations in all coding exons of 23 genes with sufficient read numbers for each amplicon. This comprehensive molecular diagnostic method using PCR and NGS provides a rapid, accurate, low-cost diagnosis for patients with XLP or XLP-like diseases.
Collapse
|
94
|
Marsh RA, Haddad E. How i treat primary haemophagocytic lymphohistiocytosis. Br J Haematol 2018; 182:185-199. [DOI: 10.1111/bjh.15274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Rebecca A. Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
| | - Elie Haddad
- Department of Pediatrics; Department of Microbiology, Infectious Diseases and Immunology; CHU Sainte-Justine; University of Montreal; Montreal QC Canada
| |
Collapse
|
95
|
Dragovich MA, Mor A. The SLAM family receptors: Potential therapeutic targets for inflammatory and autoimmune diseases. Autoimmun Rev 2018; 17:674-682. [PMID: 29729453 DOI: 10.1016/j.autrev.2018.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors (SLAMF1 through SLAMF9) that are expressed on hematopoietic cells. All of these receptors, with the exception of SLAMF4, are homotypic by nature as downstream signaling occurs when hematopoietic cells that express the same SLAM receptor interact. The SLAM family receptor function is largely controlled via SLAM associated protein (SAP) family adaptors. The SAP family adaptors consist of SAP, Ewing sarcoma associated transcript (EAT)-2, and EAT-2-related transducer (ERT). These adaptors associate with the cytoplasmic domain of the SLAM family receptors through phosphorylated tyrosines. Defects in SLAM family members and SAP adaptors have been implicated in causing immune deficiencies. This is exemplified in patients with X-linked lymphoproliferative (XLP) disease, where SAP undergoes a loss of function mutation. Furthermore, evidence has been accumulating that SLAM family members are potential targets for inflammatory and autoimmune diseases. This review will discuss the structure and function of the SLAM family receptors and SAP family adaptors, their role in immune regulation, and potential approaches to target this family of receptors therapeutically.
Collapse
Affiliation(s)
- Matthew A Dragovich
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Adam Mor
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
96
|
Vince N, Mouillot G, Malphettes M, Limou S, Boutboul D, Guignet A, Bertrand V, Pellet P, Gourraud PA, Debré P, Oksenhendler E, Théodorou I, Fieschi C. Genetic screening of male patients with primary hypogammaglobulinemia can guide diagnosis and clinical management. Hum Immunol 2018; 79:571-577. [PMID: 29709555 DOI: 10.1016/j.humimm.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
The precise diagnosis of an immunodeficiency is sometimes difficult to assess, especially due to the large spectrum of phenotypic variation reported among patients. Common variable immunodeficiency disorders (CVID) do not have, for a large part, an identified genetic cause. The identification of a causal genetic mutation is important to confirm, or in some cases correct, the diagnosis. We screened >150 male patients with hypogammaglobulinemia for mutations in three genes involved in pediatric X-linked primary immunoglobulin deficiency: CD40LG, SH2D1A and BTK. The SH2D1A screening allowed to reclassify two individuals with an initial CVID presentation as XLP after mutations identification. All these mutations were associated with a lack of protein expression. In addition, 4 patients with a primary diagnosis of CVID and one with a primary IgG subclass deficiency were requalified as XLA after identifying BTK mutations. Interestingly, two out of these 5 patients carried a damaging coding BTK mutation associated with a lower, but detectable, BTK expression in monocytes, suggesting that a dysfunctional protein explains the disease phenotype in these patients. In conclusion, our results advocate to include SH2D1A and BTK in newly developed targeted NGS genetic testing, to contribute to providing the most appropriate medical treatment and genetic counselling.
Collapse
Affiliation(s)
- Nicolas Vince
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.
| | - Gaël Mouillot
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Marion Malphettes
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Ecole Centrale de Nantes, Nantes, France
| | - David Boutboul
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Angélique Guignet
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Véronique Bertrand
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Philippe Pellet
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Patrice Debré
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Eric Oksenhendler
- Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Ioannis Théodorou
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Claire Fieschi
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | |
Collapse
|
97
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
98
|
Panchal N, Booth C, Cannons JL, Schwartzberg PL. X-Linked Lymphoproliferative Disease Type 1: A Clinical and Molecular Perspective. Front Immunol 2018; 9:666. [PMID: 29670631 PMCID: PMC5893764 DOI: 10.3389/fimmu.2018.00666] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) was first described in the 1970s as a fatal lymphoproliferative syndrome associated with infection with Epstein–Barr virus (EBV). Features include hemophagocytic lymphohistiocytosis (HLH), lymphomas, and dysgammaglobulinemias. Molecular cloning of the causative gene, SH2D1A, has provided insight into the nature of disease, as well as helped characterize multiple features of normal immune cell function. Although XLP type 1 (XLP1) provides an example of a primary immunodeficiency in which patients have problems clearing primarily one infectious agent, it is clear that XLP1 is also a disease of severe immune dysregulation, even independent of EBV infection. Here, we describe clinical features of XLP1, how molecular and biological studies of the gene product, SAP, and the associated signaling lymphocyte activation molecule family receptors have provided insight into disease pathogenesis including specific immune cell defects, and current therapeutic approaches including the potential use of gene therapy. Together, these studies have helped change the outcome of this once almost uniformly fatal disease.
Collapse
Affiliation(s)
- Neelam Panchal
- Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Pediatric Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
99
|
Casanova JL, Abel L. Human genetics of infectious diseases: Unique insights into immunological redundancy. Semin Immunol 2018; 36:1-12. [PMID: 29254755 PMCID: PMC5910248 DOI: 10.1016/j.smim.2017.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious conditions.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU.
| |
Collapse
|
100
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|