51
|
Baltaci O, Pedersen ME, Sherry T, Handley A, Snieckute G, Cao W, Haas M, Archer S, Pocock R. Atypical TGF-β signaling controls neuronal guidance in Caenorhabditis elegans. iScience 2022; 25:103791. [PMID: 35146399 PMCID: PMC8819019 DOI: 10.1016/j.isci.2022.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Coordinated expression of cell adhesion and signaling molecules is crucial for brain development. Here, we report that the Caenorhabditis elegans transforming growth factor β (TGF-β) type I receptor SMA-6 (small-6) acts independently of its cognate TGF-β type II receptor DAF-4 (dauer formation-defective-4) to control neuronal guidance. SMA-6 directs neuronal development from the hypodermis through interactions with three, orphan, TGF-β ligands. Intracellular signaling downstream of SMA-6 limits expression of NLR-1, an essential Neurexin-like cell adhesion receptor, to enable neuronal guidance. Together, our data identify an atypical TGF-β-mediated regulatory mechanism to ensure correct neuronal development.
Collapse
Affiliation(s)
- Oguzhan Baltaci
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Mikael Egebjerg Pedersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Goda Snieckute
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Wei Cao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Matilda Haas
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Stuart Archer
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| |
Collapse
|
52
|
Aripiprazole Offsets Mutant ATXN3-Induced Motor Dysfunction by Targeting Dopamine D2 and Serotonin 1A and 2A Receptors in C. elegans. Biomedicines 2022; 10:biomedicines10020370. [PMID: 35203579 PMCID: PMC8962381 DOI: 10.3390/biomedicines10020370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
The atypical antipsychotic aripiprazole is a Food and Drug Administration-approved drug for the treatment of psychotic, mood, and other psychiatric disorders. Previous drug discovery efforts pinpointed aripiprazole as an effective suppressor of Machado–Joseph disease (MJD) pathogenesis, as its administration resulted in a reduced abundance and aggregation of mutant Ataxin-3 (ATXN3) proteins. Dopamine partial agonism and functional selectivity have been proposed as the main pharmacological mechanism of action of aripiprazole in the treatment of psychosis; however, this mechanism remains to be determined in the context of MJD. Here, we focus on confirming the efficacy of aripiprazole to reduce motor dysfunction in vivo, using a Caenorhabditis elegans (C. elegans) model of MJD, and on unveiling the drug targets required for its positive action against mutant ATXN3 pathogenesis. We employed pharmacogenetics and pharmacological approaches to identify which dopamine and serotonin receptors are critical for aripiprazole-mediated improvements in motor function. We demonstrated that dopamine D2-like and serotonin 5-HT1A and 5-HT2A receptors play important roles in this process. Our findings strengthen the relevance of dopaminergic and serotoninergic signaling modulation against mutant ATXN3-mediated pathogenesis. The identification of aripiprazole’s cellular targets, relevant for MJD and perhaps other neurodegenerative diseases, may pave the way for prospective drug discovery and development campaigns aiming to improve the features of this prototypical compound and reduce side effects not negligible in the case of aripiprazole.
Collapse
|
53
|
Schwartz EKC, Sosner EN, Desmond HE, Lum SJ, Sze JY, Mobbs CV. Serotonin and Dopamine Mimic Glucose-Induced Reinforcement in C. elegans: Potential Role of NSM Neurons and the Serotonin Subtype 4 Receptor. Front Physiol 2022; 12:783359. [PMID: 34987416 PMCID: PMC8721000 DOI: 10.3389/fphys.2021.783359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Food produces powerful reinforcement that can lead to overconsumption and likely contributes to the obesity epidemic. The present studies examined molecular mechanisms mediating food-induced reinforcement in the model system C. elegans. After a 1-h training session during which food (bacteria) is paired with the odorant butanone, odor preference for butanone robustly increased. Glucose mimicked this effect of bacteria. Glucose-induced odor preference was enhanced similarly by prior food withdrawal or blocking glucose metabolism in the presence of food. Food- and glucose-induced odor preference was mimicked by serotonin signaling through the serotonin type-4 (5-HT4) receptor. Dopamine (thought to act primarily through a D1-like receptor) facilitated, whereas the D2 agonist bromocriptine blocked, food- and glucose-induced odor preference. Furthermore, prior food withdrawal similarly influenced reward produced by serotonin, dopamine, or food, implying post-synaptic enhancement of sensitivity to serotonin and dopamine. These results suggest that glucose metabolism plays a key role in mediating both food-induced reinforcement and enhancement of that reinforcement by prior food withdrawal and implicate serotonergic signaling through 5-HT4 receptor in the re-enforcing properties of food.
Collapse
Affiliation(s)
- Elizabeth K C Schwartz
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eitan N Sosner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hayley E Desmond
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie J Lum
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Charles V Mobbs
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
54
|
Schiffer JA, Stumbur SV, Seyedolmohadesin M, Xu Y, Serkin WT, McGowan NG, Banjo O, Torkashvand M, Lin A, Hosea CN, Assié A, Samuel BS, O’Donnell MP, Venkatachalam V, Apfeld J. Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a niche that provides both food and protection from hydrogen peroxide. PLoS Pathog 2021; 17:e1010112. [PMID: 34941962 PMCID: PMC8699984 DOI: 10.1371/journal.ppat.1010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.
Collapse
Affiliation(s)
- Jodie A. Schiffer
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephanie V. Stumbur
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Maedeh Seyedolmohadesin
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Yuyan Xu
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - William T. Serkin
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Natalie G. McGowan
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Oluwatosin Banjo
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Mahdi Torkashvand
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Albert Lin
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ciara N. Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivek Venkatachalam
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Javier Apfeld
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
- Bioengineering Department, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
55
|
Wellenberg A, Brinkmann V, Bornhorst J, Ventura N, Honnen S, Fritz G. Cisplatin-induced neurotoxicity involves the disruption of serotonergic neurotransmission. Pharmacol Res 2021; 174:105921. [PMID: 34601079 DOI: 10.1016/j.phrs.2021.105921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Neurotoxicity is a frequent side effect of cisplatin (CisPt)-based anticancer therapy whose pathophysiology is largely vague. Here, we exploited C. elegans as a 3R-compliant in vivo model to elucidate molecular mechanisms contributing to CisPt-induced neuronal dysfunction. To this end, we monitored the impact of CisPt on various sensory functions as well as pharyngeal neurotransmission by recording electropharyngeograms (EPGs). CisPt neither affected food and odor sensation nor mechano-sensation, which involve dopaminergic and glutaminergic neurotransmission. However, CisPt reduced serotonin-regulated pharyngeal pumping activity independent of changes in the morphology of related neurons. CisPt-mediated alterations in EPGs were fully rescued by addition of serotonin (5-HT) (≤ 2 mM). Moreover, the CisPt-induced pharyngeal injury was prevented by co-incubation with the clinically approved serotonin re-uptake inhibitory drug duloxetine. A protective effect of 5-HT was also observed with respect to CisPt-mediated impairment of another 5-HT-dependent process, the egg laying activity. Importantly, CisPt-induced apoptosis in the gonad and learning disability were not influenced by 5-HT. Using different C. elegans mutants we found that CisPt-mediated (neuro)toxicity is independent of serotonin biosynthesis and re-uptake and likely involves serotonin-receptor subtype 7 (SER-7)-related functions. In conclusion, by measuring EPGs as a surrogate parameter of neuronal dysfunction, we provide first evidence that CisPt-induced neurotoxicity in C. elegans involves 5-HT-dependent neurotransmission and SER-7-mediated signaling mechanisms and can be prevented by the clinically approved antidepressant duloxetine. The data highlight the particular suitability of C. elegans as a 3R-conform in vivo model in molecular (neuro)toxicology and, moreover, for the pre-clinical identification of neuroprotective candidate drugs.
Collapse
Affiliation(s)
- Anna Wellenberg
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Vanessa Brinkmann
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Julia Bornhorst
- Faculty of Mathematics and Natural Sciences, Food Chemistry, University of Wuppertal, D-42119 Wuppertal, Germany
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University and Leibniz Research Institute for Environmental Medicine (IUF), D-40225 Düsseldorf, Germany
| | - Sebastian Honnen
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany.
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
56
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
57
|
Plasticity in gustatory and nociceptive neurons controls decision making in C. elegans salt navigation. Commun Biol 2021; 4:1053. [PMID: 34504291 PMCID: PMC8429449 DOI: 10.1038/s42003-021-02561-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
A conventional understanding of perception assigns sensory organs the role of capturing the environment. Better sensors result in more accurate encoding of stimuli, allowing for cognitive processing downstream. Here we show that plasticity in sensory neurons mediates a behavioral switch in C. elegans between attraction to NaCl in naïve animals and avoidance of NaCl in preconditioned animals, called gustatory plasticity. Ca2+ imaging in ASE and ASH NaCl sensing neurons reveals multiple cell-autonomous and distributed circuit adaptation mechanisms. A computational model quantitatively accounts for observed behaviors and reveals roles for sensory neurons in the control and modulation of motor behaviors, decision making and navigational strategy. Sensory adaptation dynamically alters the encoding of the environment. Rather than encoding the stimulus directly, therefore, we propose that these C. elegans sensors dynamically encode a context-dependent value of the stimulus. Our results demonstrate how adaptive sensory computation can directly control an animal’s behavioral state. Martijn Dekkers and Felix Salfelder et al. combine experimental approaches and mathematical modeling to determine the contribution of the two main NaCl sensory neurons (termed ASEL and ASER) and the nociceptive neurons (termed ASH) in C. elegans to the context-dependent switching between NaCl attraction and avoidance. Their results show that regulated sensitivity of these sensory neurons to NaCl allows the animal to dynamically modulate its behavioral response and suggest a role for sensory modulation in balancing exploration and exploitation during foraging.
Collapse
|
58
|
Ke W, Reed JN, Yang C, Higgason N, Rayyan L, Wählby C, Carpenter AE, Civelek M, O’Rourke EJ. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genet 2021; 17:e1009736. [PMID: 34492009 PMCID: PMC8462697 DOI: 10.1371/journal.pgen.1009736] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan N. Reed
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chenyu Yang
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Noel Higgason
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Leila Rayyan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mete Civelek
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
59
|
Metabolic and behavioral effects of olanzapine and fluoxetine on the model organism Caenorhabditis elegans. Saudi Pharm J 2021; 29:917-929. [PMID: 34408550 PMCID: PMC8363109 DOI: 10.1016/j.jsps.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The use of many psychotropic drugs (PDs) is associated with increased caloric intake, significant weight gain, and metabolic disorders. The nematode Caenorhabditis elegans (C. elegans) has been used to study the effects of PDs on food intake. However, little is known about PDs effects on the body fat of C. elegans. In C. elegans, feeding behavior and fat metabolism are regulated through independent mechanisms. This study aims to evaluate the body fat and food intake of C. elegans in response to treatment olanzapine and fluoxetine. Here we report that, with careful consideration to the dosage used, administration of fluoxetine and olanzapine increases body fat and food intake in C. elegans.
Collapse
|
60
|
Tsai CE, Yang FJ, Lee CH, Hsueh YP, Kuo CJ, Chen CS. The conserved regulator of autophagy and innate immunity hlh-30/TFEB mediates tolerance of enterohemorrhagic Escherichia coli in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683370 DOI: 10.1093/genetics/iyaa052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022] Open
Abstract
Infection with antibiotic-resistant bacteria is an emerging life-threatening issue worldwide. Enterohemorrhagic Escherichia coli O157: H7 (EHEC) causes hemorrhagic colitis and hemolytic uremic syndrome via contaminated food. Treatment of EHEC infection with antibiotics is contraindicated because of the risk of worsening the syndrome through the secreted toxins. Identifying the host factors involved in bacterial infection provides information about how to combat this pathogen. In our previous study, we showed that EHEC colonizes in the intestine of Caenorhabditis elegans. However, the host factors involved in EHEC colonization remain elusive. Thus, in this study, we aimed to identify the host factors involved in EHEC colonization. We conducted forward genetic screens to isolate mutants that enhanced EHEC colonization and named this phenotype enhanced intestinal colonization (Inc). Intriguingly, four mutants with the Inc phenotype showed significantly increased EHEC-resistant survival, which contrasts with our current knowledge. Genetic mapping and whole-genome sequencing (WGS) revealed that these mutants have loss-of-function mutations in unc-89. Furthermore, we showed that the tolerance of unc-89(wf132) to EHEC relied on HLH-30/TFEB activation. These findings suggest that hlh-30 plays a key role in pathogen tolerance in C. elegans.
Collapse
Affiliation(s)
- Chia-En Tsai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fang-Jung Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11490, Taiwan.,Taiwan International Graduate Program, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11490, Taiwan.,Taiwan International Graduate Program, National Defense Medical Center, Taipei 11490, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Ju Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
61
|
A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo. Nat Commun 2021; 12:4795. [PMID: 34373460 PMCID: PMC8352926 DOI: 10.1038/s41467-021-24690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a Hydra-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode Caenorhabditis elegans. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors. Engineering de novo synapse-like connections between neurons could enhance our understanding of neuronal circuits and how they generate behaviour. The authors present a two-component system that creates synthetic neuromodulatory connections to manipulate intracellular Ca2+ levels in in vivo neural circuits.
Collapse
|
62
|
Emerson S, Hay M, Smith M, Granger R, Blauch D, Snyder N, El Bejjani R. Acetylcholine signaling genes are required for cocaine-stimulated egg laying in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkab143. [PMID: 33914087 PMCID: PMC8763240 DOI: 10.1093/g3journal/jkab143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
The toxicity and addictive liability associated with cocaine abuse are well-known. However, its mode of action is not completely understood, and effective pharmacotherapeutic interventions remain elusive. The cholinergic effects of cocaine on acetylcholine receptors, synthetic enzymes, and degradative enzymes have been the focus of relatively little empirical investigation. Due to its genetic tractability and anatomical simplicity, the egg laying circuit of the hermaphroditic nematode, Caenorhabditis elegans, is a powerful model system to precisely examine the genetic and molecular targets of cocaine in vivo. Here, we report a novel cocaine-induced behavioral phenotype in C. elegans, cocaine-stimulated egg laying. In addition, we present the results of an in vivo candidate suppression screen of synthetic enzymes, receptors, degradative enzymes, and downstream components of the intracellular signaling cascades of the main neurotransmitter systems that control C. elegans egg laying. Our results show that cocaine-stimulated egg laying is dependent on acetylcholine synthesis and synaptic release, functional nicotinic acetylcholine receptors, and the C. elegans acetylcholinesterases.
Collapse
Affiliation(s)
- Soren Emerson
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
| | - Megan Hay
- Biology Department, Davidson College, Davidson, NC 28035, USA
| | - Mark Smith
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
- Psychology Department, Davidson College, Davidson, NC 28035, USA
| | - Ricky Granger
- Biology Department, Davidson College, Davidson, NC 28035, USA
| | - David Blauch
- Chemistry Department, Davidson College, Davidson, NC 28035 USA
| | - Nicole Snyder
- Chemistry Department, Davidson College, Davidson, NC 28035 USA
| | - Rachid El Bejjani
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
- Biology Department, Davidson College, Davidson, NC 28035, USA
| |
Collapse
|
63
|
The transcription factor LAG-1/CSL plays a Notch-independent role in controlling terminal differentiation, fate maintenance, and plasticity of serotonergic chemosensory neurons. PLoS Biol 2021; 19:e3001334. [PMID: 34232959 PMCID: PMC8289040 DOI: 10.1371/journal.pbio.3001334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/19/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
During development, signal-regulated transcription factors (TFs) act as basal repressors and upon signalling through morphogens or cell-to-cell signalling shift to activators, mediating precise and transient responses. Conversely, at the final steps of neuron specification, terminal selector TFs directly initiate and maintain neuron-type specific gene expression through enduring functions as activators. C. elegans contains 3 types of serotonin synthesising neurons that share the expression of the serotonin biosynthesis pathway genes but not of other effector genes. Here, we find an unconventional role for LAG-1, the signal-regulated TF mediator of the Notch pathway, as terminal selector for the ADF serotonergic chemosensory neuron, but not for other serotonergic neuron types. Regulatory regions of ADF effector genes contain functional LAG-1 binding sites that mediate activation but not basal repression. lag-1 mutants show broad defects in ADF effector genes activation, and LAG-1 is required to maintain ADF cell fate and functions throughout life. Unexpectedly, contrary to reported basal repression state for LAG-1 prior to Notch receptor activation, gene expression activation in the ADF neuron by LAG-1 does not require Notch signalling, demonstrating a default activator state for LAG-1 independent of Notch. We hypothesise that the enduring activity of terminal selectors on target genes required uncoupling LAG-1 activating role from receiving the transient Notch signalling.
Collapse
|
64
|
Calahorro F, Holden-Dye L, O'Connor V. Impact of drug solvents on C. elegans pharyngeal pumping. Toxicol Rep 2021; 8:1240-1247. [PMID: 34195015 PMCID: PMC8233170 DOI: 10.1016/j.toxrep.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 02/05/2023] Open
Abstract
Caenorhabditis elegans provides a multi-cellular model organism for toxicology and drug discovery. These studies usually require solvents such as dimethyl sulfoxide (DMSO), ethanol or acetone as a vehicle. This raises the need to carefully consider whether the chemical vehicles used in these screens are anodyne towards C. elegans. Here, we use pharyngeal pumping as a bioassay to assess this. Pharyngeal pumping is a visually scoreable behaviour that is controlled by environmental cues activating sensory and integrative neural signalling to coordinate pharyngeal activity. As such it serves as a rich bioassay to screen for chemical modulation. We found that while pumping was insensitive to high concentrations of the widely used drug solvents ethanol and acetone, it was perturbed by concentrations of DMSO above 0.5 % v/v encompassing concentrations used as drug vehicle. This was manifested as an inhibition of pharyngeal pump rate followed by a slow recovery in the continued presence of the solvent. The inhibition was not observed in a neuroligin mutant, nlg-1, consistent with DMSO acting at the level of sensory processing that modulates pumping. We found that bus-17 mutants, which have enhanced cuticle penetration to drugs are more sensitive to DMSO. The effect of DMSO is accompanied by a progressive morphological disruption in which internal membrane-like structures of varying size accumulate. These internal structures are seen in all three genotypes investigated in this study and likely arise independent of the effects on pharyngeal pumping. Overall, these results highlight sensory signalling and strain dependent vehicle sensitivity. Although we define concentrations at which this can be mitigated, it highlights the need to consider time-dependent vehicle effects when evaluating control responses in C. elegans chemical biology.
Collapse
|
65
|
Faerberg DF, Gurarie V, Ruvinsky I. Inferring temporal organization of postembryonic development from high-content behavioral tracking. Dev Biol 2021; 475:54-64. [PMID: 33636188 PMCID: PMC8107144 DOI: 10.1016/j.ydbio.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
Understanding temporal regulation of development remains an important challenge. Whereas average, species-typical timing of many developmental processes has been established, less is known about inter-individual variability and correlations in timing of specific events. We addressed these questions in the context of postembryonic development in Caenorhabditis elegans. Based on patterns of locomotor activity of freely moving animals, we inferred durations of four larval stages (L1-L4) in over 100 individuals. Analysis of these data supports several conclusions. Individuals have consistently faster or slower rates of development because durations of L1 through L3 stages are positively correlated. The last larval stage, the L4, is less variable than the earlier stages and its duration is largely independent of the rate of early larval development, implying existence of two distinct larval epochs. We describe characteristic patterns of variation and correlation, as well as the fact that stage durations tend to scale relative to total developmental time. This scaling relationship suggests that each larval stage is not limited by an absolute duration, but is instead terminated when a subset of events that must occur prior to adulthood have been completed. The approach described here offers a scalable platform that will facilitate the study of temporal regulation of postembryonic development.
Collapse
Affiliation(s)
- Denis F Faerberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Victor Gurarie
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
66
|
Wang S, Liu H, Qu M, Wang D. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112239. [PMID: 33892344 DOI: 10.1016/j.ecoenv.2021.112239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 05/21/2023]
Abstract
Neurotransmission related signals are involved in the control of response to toxicants. We here focused on the tyramine and the glutamate related signals to determine their roles in regulating nanoplastic toxicity in Caenorhabditis elegans. In the range of μg/L, exposure to nanopolystyrene (100 nm) increased the expression of tdc-1 encoding a tyrosine decarboxylase required for synthesis of tyramine, and decreased the expression of eat-4 encoding a glutamate transporter. Both TDC-1 and EAT-4 could act in the neurons to regulate the nanopolystyrene toxicity. Meanwhile, neuronal RNAi knockdown of tdc-1 induced a susceptibility to nanopolystyrene toxicity, and neuronal RNAi knockdown of eat-4 induced a resistance to nanopolystyrene toxicity. In the neurons, TYRA-2 functioned as the corresponding receptor of tyramine and acted upstream of MPK-1 signaling to regulate the nanopolystyrene toxicity. Moreover, during the control of nanopolystyrene toxicity, GLR-4 and GLR-8 were identified as the corresponding glutamate receptors, and acted upstream of JNK-1 signaling and DBL-1 signaling, respectively. Our results demonstrated the crucial roles of tyramine and glutamate related signals in regulating the toxicity of nanoplastics in organisms.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.
| |
Collapse
|
67
|
Lyu Y, Promislow DEL, Pletcher SD. Serotonin signaling modulates aging-associated metabolic network integrity in response to nutrient choice in Drosophila melanogaster. Commun Biol 2021; 4:740. [PMID: 34131274 PMCID: PMC8206115 DOI: 10.1038/s42003-021-02260-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Aging arises from complex interactions among multiple biochemical products. Systems-level analyses of biological networks may provide insights into the causes and consequences of aging that evade single-gene studies. We have previously found that dietary choice is sufficient to modulate aging in the vinegar fly, Drosophila melanogaster. Here we show that nutrient choice influenced several measures of metabolic network integrity, including connectivity, community structure, and robustness. Importantly, these effects are mediated by serotonin signaling, as a mutation in serotonin receptor 2A (5-HT2A) eliminated the effects of nutrient choice. Changes in network structure were associated with organism resilience and increased susceptibility to genetic perturbation. Our data suggest that the behavioral or perceptual consequences of exposure to individual macronutrients, involving serotonin signaling through 5-HT2A, qualitatively change the state of metabolic networks throughout the organism from one that is highly connected and robust to one that is fragmented, fragile, and vulnerable to perturbations.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel E L Promislow
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
68
|
Wang X, Zhang C, Chen Q, Ma Z, Liu H, Huang J. Guanylate cyclases link serotoninergic signaling to modulate ethanol-induced food intake in C. elegans. Biochem Biophys Res Commun 2021; 567:29-34. [PMID: 34133999 DOI: 10.1016/j.bbrc.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Ethanol affects the nervous system of animals to cause a boost of feeding, sexual, verbal, and locomotor behaviors. To understand the neural mechanisms of these ethanol-induced behaviors, we investigated a neural pathway of ethanol-induced feeding behavior by guanylate cyclases and serotonin signals in C. elegans. We recorded the intracellular calcium signaling of seven sensory neurons in response to ethanol, and only found a significant increase of calcium signaling in BAG among the seven sensor neurons. And both guanylate cyclases GCY-31 and GCY-33 were crucial signaling protein of calcium response in BAG neurons. In addition, serotonin, released from NSM motor neurons, promoted feeding behavior under ethanol stimulation. And the rescue experiment of double mutant indicated the guanylate cyclases and serotonin in the same signaling pathway. So BAG neurons respond to alcohol through the promotion of intracellular calcium signaling, and then the downstream motor neurons NSM release serotonin to regulate the feeding behavior in C. elegans. These findings revealed a neural circuit to understand how the nervous system responds to ethanol and generates corresponding behavior.
Collapse
Affiliation(s)
- Xin Wang
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Chunlong Zhang
- Laboratory for Neuroscience, The Central Hospital of Tujia&Miao Autonomous Prefecture, Enshi, Hubei, 435000, PR China
| | - Qirui Chen
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Zhaowu Ma
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Hui Liu
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| | - Jiangrong Huang
- Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| |
Collapse
|
69
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
70
|
Joshi KK, Matlack TL, Pyonteck S, Vora M, Menzel R, Rongo C. Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis. EMBO Rep 2021; 22:e51063. [PMID: 33470040 PMCID: PMC7926251 DOI: 10.15252/embr.202051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoans use protein homeostasis (proteostasis) pathways to respond to adverse physiological conditions, changing environment, and aging. The nervous system regulates proteostasis in different tissues, but the mechanism is not understood. Here, we show that Caenorhabditis elegans employs biogenic amine neurotransmitters to regulate ubiquitin proteasome system (UPS) proteostasis in epithelia. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq and mass spectrometry, we found that biogenic amines promote eicosanoid production from poly-unsaturated fats (PUFAs) by regulating expression of cytochrome P450 monooxygenases. Mutants for one of these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-6 eicosanoids is required for UPS substrate turnover, whereas accumulation of n-6 eicosanoids accelerates turnover. Our results suggest that sensory neurons secrete biogenic amines to modulate lipid signaling, which in turn activates stress response pathways to maintain UPS proteostasis.
Collapse
Affiliation(s)
- Kishore K Joshi
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Tarmie L Matlack
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Stephanie Pyonteck
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Mehul Vora
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Ralph Menzel
- Institute of Biology and EcologyHumboldt University BerlinBerlinGermany
| | - Christopher Rongo
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
71
|
Carmichael MA, Thomson RL, Moran LJ, Wycherley TP. The Impact of Menstrual Cycle Phase on Athletes' Performance: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1667. [PMID: 33572406 PMCID: PMC7916245 DOI: 10.3390/ijerph18041667] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
The effect of the menstrual cycle on physical performance is being increasingly recognised as a key consideration for women's sport and a critical field for further research. This narrative review explores the findings of studies investigating the effects of menstrual cycle phase on perceived and objectively measured performance in an athletic population. Studies examining perceived performance consistently report that female athletes identify their performance to be relatively worse during the early follicular and late luteal phases. Studies examining objective performance (using anaerobic, aerobic or strength-related tests) do not report clear, consistent effects of the impact of menstrual cycle phase on physical performance. Overall sport performance can be influenced by both perceived and physical factors. Hence, to optimise performance and management of eumenorrheic female athletes, there is a need for further research to quantify the impact of menstrual cycle phase on perceived and physical performance outcomes and to identify factors affecting variability in objective performance outcomes between studies.
Collapse
Affiliation(s)
- Mikaeli Anne Carmichael
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia; (R.L.T.); (T.P.W.)
| | - Rebecca Louise Thomson
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia; (R.L.T.); (T.P.W.)
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Lisa Jane Moran
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
- Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, VIC 3168, Australia
| | - Thomas Philip Wycherley
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia; (R.L.T.); (T.P.W.)
| |
Collapse
|
72
|
Ishita Y, Chihara T, Okumura M. Different combinations of serotonin receptors regulate predatory and bacterial feeding behaviors in the nematode Pristionchus pacificus. G3-GENES GENOMES GENETICS 2021; 11:6104620. [PMID: 33598706 PMCID: PMC8022940 DOI: 10.1093/g3journal/jkab011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
Feeding behavior is one of the most fundamental behaviors in animals, and regulation of this behavior is critical for proper food intake. The nematode Pristionchus pacificus exhibits dimorphism in feeding behavior, bacterial feeding and predatory feeding on other nematodes, and the latter behavior is assumed to be an evolutionarily novel behavior. Both types of feeding behavior are modulated by serotonin; however, the downstream mechanism that modulates these behaviors is still to be clarified. Here, we focused on serotonin receptors and examined their expression patterns in P. pacificus. We also generated knockout mutants of the serotonin receptors using the CRISPR/Cas9 system and examined feeding behaviors. We found that Ppa-ser-5 mutants and the Ppa-ser-1; Ppa-ser-7 double mutant decreased predation. Detailed observation of the pharyngeal movement revealed that the Ppa-ser-1; Ppa-ser-7 double mutant reduces tooth movement, which is required for efficient predatory feeding. Conversely, Ppa-ser-7 and Ppa-mod-1 mutants decreased bacterial feeding. This study revealed that specific combinations of serotonin receptors are essential for the modulation of these distinct feeding behaviors, providing insight into the evolution of neural pathways to regulate novel feeding behavior.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
73
|
Pereira-Sousa J, Ferreira-Lomba B, Bellver-Sanchis A, Vilasboas-Campos D, Fernandes JH, Costa MD, Varney MA, Newman-Tancredi A, Maciel P, Teixeira-Castro A. Identification of the 5-HT 1A serotonin receptor as a novel therapeutic target in a C. elegans model of Machado-Joseph disease. Neurobiol Dis 2021; 152:105278. [PMID: 33516872 DOI: 10.1016/j.nbd.2021.105278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder that affects movement coordination leading to a premature death. Despite several efforts, no disease-modifying treatment is yet available for this disease. Previous studies pinpointed the modulation of serotonergic signaling, through pharmacological inhibition of the serotonin transporter SERT, as a promising therapeutic approach for MJD/SCA3. Here, we describe the 5-HT1A receptor as a novel therapeutic target in MJD, using a C. elegans model of ATXN3 proteotoxicity. Chronic and acute administration of befiradol (also known as NLX-112), a highly specific 5-HT1A agonist, rescued motor function and suppressed mutant ATXN3 aggregation. This action required the 5-HT1A receptor orthologue in the nematode, SER-4. Tandospirone, a clinically tested 5-HT1A receptor partial agonist, showed a limited impact on animals' motor dysfunction on acute administration and a broader receptor activation profile upon chronic treatment, its effect depending on 5-HT1A but also on the 5-HT6/SER-5 and 5-HT7/SER-7 receptors. Our results support high potency and specificity of befiradol for activation of 5-HT1A/SER-4 receptors and highlight the contribution of the auto- and hetero-receptor function to the therapeutic outcome in this MJD model. Our study deepens the understanding of serotonergic signaling modulation in the suppression of ATXN3 proteotoxicity and suggests that a potent and selective 5-HT1A receptor agonist such as befiradol could constitute a promising therapeutic agent for MJD.
Collapse
Affiliation(s)
- Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal; Behavioral & Molecular Lab (Bn'ML), University of Minho, Braga, Portugal
| | - Bruna Ferreira-Lomba
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Aina Bellver-Sanchis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Jorge H Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Marta D Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal.
| |
Collapse
|
74
|
Patel DS, Diana G, Entchev EV, Zhan M, Lu H, Ch'ng Q. A Multicellular Network Mechanism for Temperature-Robust Food Sensing. Cell Rep 2020; 33:108521. [PMID: 33357442 PMCID: PMC7773553 DOI: 10.1016/j.celrep.2020.108521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022] Open
Abstract
Responsiveness to external cues is a hallmark of biological systems. In complex environments, it is crucial for organisms to remain responsive to specific inputs even as other internal or external factors fluctuate. Here, we show how the nematode Caenorhabditis elegans can discriminate between different food levels to modulate its lifespan despite temperature perturbations. This end-to-end robustness from environment to physiology is mediated by food-sensing neurons that communicate via transforming growth factor β (TGF-β) and serotonin signals to form a multicellular gene network. Specific regulations in this network change sign with temperature to maintain similar food responsiveness in the lifespan output. In contrast to robustness of stereotyped outputs, our findings uncover a more complex robustness process involving the higher order function of discrimination in food responsiveness. This process involves rewiring a multicellular network to compensate for temperature and provides a basis for understanding gene-environment interactions. Together, our findings unveil sensory computations that integrate environmental cues to govern physiology. C. elegans’ ability to modulate lifespan in response to food is robust to temperature Robustness requires TGF-β and serotonin signaling in a neuronal network Specific regulations in the neuronal network change sign with temperature Temperature-dependent regulations compensate for temperature
Collapse
Affiliation(s)
- Dhaval S Patel
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Giovanni Diana
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Eugeni V Entchev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Mei Zhan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
75
|
Higuchi-Sanabria R, Durieux J, Kelet N, Homentcovschi S, de Los Rios Rogers M, Monshietehadi S, Garcia G, Dallarda S, Daniele JR, Ramachandran V, Sahay A, Tronnes SU, Joe L, Dillin A. Divergent Nodes of Non-autonomous UPR ER Signaling through Serotonergic and Dopaminergic Neurons. Cell Rep 2020; 33:108489. [PMID: 33296657 DOI: 10.1016/j.celrep.2020.108489] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
In multicellular organisms, neurons integrate a diverse array of external cues to affect downstream changes in organismal health. Specifically, activation of the endoplasmic reticulum (ER) unfolded protein response (UPRER) in neurons increases lifespan by preventing age-onset loss of ER proteostasis and driving lipid depletion in a cell non-autonomous manner. The mechanism of this communication is dependent on the release of small clear vesicles from neurons. We find dopaminergic neurons are necessary and sufficient for activation of cell non-autonomous UPRER to drive lipid depletion in peripheral tissues, whereas serotonergic neurons are sufficient to drive protein homeostasis in peripheral tissues. These signaling modalities are unique and independent and together coordinate the beneficial effects of neuronal cell non-autonomous ER stress signaling upon health and longevity.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Naame Kelet
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mattias de Los Rios Rogers
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Samira Monshietehadi
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sofia Dallarda
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph R Daniele
- TRACTION, The University of Texas MD Anderson Cancer Center, South Campus Research, Houston, TX 77054, USA
| | - Vidhya Ramachandran
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arushi Sahay
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah U Tronnes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Larry Joe
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, The University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
76
|
Chen YC, Seyedsayamdost MR, Ringstad N. A microbial metabolite synergizes with endogenous serotonin to trigger C. elegans reproductive behavior. Proc Natl Acad Sci U S A 2020; 117:30589-30598. [PMID: 33199611 PMCID: PMC7720207 DOI: 10.1073/pnas.2017918117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural products are a major source of small-molecule therapeutics, including those that target the nervous system. We have used a simple serotonin-dependent behavior of the roundworm Caenorhabditis elegans, egg laying, to perform a behavior-based screen for natural products that affect serotonin signaling. Our screen yielded agonists of G protein-coupled serotonin receptors, protein kinase C agonists, and a microbial metabolite not previously known to interact with serotonin signaling pathways: the disulfide-bridged 2,5-diketopiperazine gliotoxin. Effects of gliotoxin on egg-laying behavior required the G protein-coupled serotonin receptors SER-1 and SER-7, and the Gq ortholog EGL-30. Furthermore, mutants lacking serotonergic neurons and mutants that cannot synthesize serotonin were profoundly resistant to gliotoxin. Exogenous serotonin restored their sensitivity to gliotoxin, indicating that this compound synergizes with endogenous serotonin to elicit behavior. These data show that a microbial metabolite with no structural similarity to known serotonergic agonists potentiates an endogenous serotonin signal to affect behavior. Based on this study, we suggest that microbial metabolites are a rich source of functionally novel neuroactive molecules.
Collapse
Affiliation(s)
- Yen-Chih Chen
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| | | | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
77
|
Littlejohn NK, Seban N, Liu CC, Srinivasan S. A feedback loop governs the relationship between lipid metabolism and longevity. eLife 2020; 9:58815. [PMID: 33078707 PMCID: PMC7575325 DOI: 10.7554/elife.58815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
The relationship between lipid metabolism and longevity remains unclear. Although fat oxidation is essential for weight loss, whether it remains beneficial when sustained for long periods, and the extent to which it may attenuate or augment lifespan remain important unanswered questions. Here, we develop an experimental handle in the Caenorhabditis elegans model system, in which we uncover the mechanisms that connect long-term fat oxidation with longevity. We find that sustained β-oxidation via activation of the conserved triglyceride lipase ATGL-1, triggers a feedback transcriptional loop that involves the mito-nuclear transcription factor ATFS-1, and a previously unknown and highly conserved repressor of ATGL-1 called HLH-11/AP4. This feedback loop orchestrates the dual control of fat oxidation and lifespan, and shields the organism from life-shortening mitochondrial stress in the face of continuous fat oxidation. Thus, we uncover one mechanism by which fat oxidation can be sustained for long periods without deleterious effects on longevity.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Nicolas Seban
- Department of Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Chung-Chih Liu
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, United States
| | - Supriya Srinivasan
- Department of Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
78
|
Crisford A, Calahorro F, Ludlow E, Marvin JMC, Hibbard JK, Lilley CJ, Kearn J, Keefe F, Johnson P, Harmer R, Urwin PE, O’Connor V, Holden-Dye L. Identification and characterisation of serotonin signalling in the potato cyst nematode Globodera pallida reveals new targets for crop protection. PLoS Pathog 2020; 16:e1008884. [PMID: 33007049 PMCID: PMC7556481 DOI: 10.1371/journal.ppat.1008884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/14/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
Plant parasitic nematodes are microscopic pathogens that invade plant roots and cause extensive damage to crops. We have used a chemical biology approach to define mechanisms underpinning their parasitic behaviour: We discovered that reserpine, a plant alkaloid that inhibits the vesicular monoamine transporter (VMAT), potently impairs the ability of the potato cyst nematode Globodera pallida to enter the host plant root. We show this is due to an inhibition of serotonergic signalling that is essential for activation of the stylet which is used to access the host root. Prompted by this we identified core molecular components of G. pallida serotonin signalling encompassing the target of reserpine, VMAT; the synthetic enzyme for serotonin, tryptophan hydroxylase; the G protein coupled receptor SER-7 and the serotonin-gated chloride channel MOD-1. We cloned each of these molecular components and confirmed their functional identity by complementation of the corresponding C. elegans mutant thus mapping out serotonergic signalling in G. pallida. Complementary approaches testing the effect of chemical inhibitors of each of these signalling elements on discrete sub-behaviours required for parasitism and root invasion reinforce the critical role of serotonin. Thus, targeting the serotonin signalling pathway presents a promising new route to control plant parasitic nematodes.
Collapse
Affiliation(s)
- Anna Crisford
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Elizabeth Ludlow
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jessica M. C. Marvin
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jennifer K. Hibbard
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Catherine J. Lilley
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - James Kearn
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Francesca Keefe
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Peter Johnson
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Rachael Harmer
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Vincent O’Connor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
79
|
Liu X, Jiang L, Li L, Yu H, Nie S, Xie M, Gong J. The Role of Neurotransmitters in the Protection of Caenorhabditis Elegans for Salmonella Infection by Lactobacillus. Front Cell Infect Microbiol 2020; 10:554052. [PMID: 33134188 PMCID: PMC7550654 DOI: 10.3389/fcimb.2020.554052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonellosis is a common foodborne disease. We previously reported the protection of Caenorhabditis elegans from Salmonella Typhimurium DT104 infection by Lactobacillus zeae LB1. However, the mechanism is not fully understood. C. elegans exhibits behavior plasticity when presented with diverse pathogenic or commensal bacteria. Whether it can exert approach avoidance to S. Typhimurium through altering its neurological activity remains to be determined. In the current study, both the wild type and mutants defective in serotonin or dopamine production of C. elegans were used to investigate olfactory preference of the nematode to L. zeae LB1, DT104, and Escherichia coli OP50 by choice assays, and its resistance to DT104 infection and the protection offered by L. zeae LB1 using a life-span assay. The expression of target genes in C. elegans was also examined by real-time quantitative PCR. Results showed that pre-exposure to L. zeae LB1 did not elicit aversive olfactory behavior of the nematode toward DT104. Both mutants tph-1 and cat-2 succumbed faster than the wild type when infected with DT104. While pre-exposure to L. zeae LB1 significantly increased the survival of both the wild type and mutant tph-1, it provided no protection to mutant cat-2. Supplementation of dopamine resulted in both the resistance of mutant cat-2 to S. Typhimurium infection and the protection from L. zeae LB1 to the same mutant. Gene expression data also supported the observations in the life-span assay. These results suggest that both serotonin and dopamine play a positive role in the host defense of C. elegans to S. Typhimurium infection and that the L. zeae LB1 protection is not dependent on modifying olfactory preference of the nematode but mediated by dopamine that may have involved the regulation of p38-mitogen-activated protein kinase and insulin/insulin-like growth factor signaling pathways.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China.,Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Leming Jiang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Linyan Li
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hai Yu
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Joshua Gong
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
80
|
Abstract
The last few decades have seen the structural and functional elucidation of small-molecule chemical signals called ascarosides in C. elegans. Ascarosides mediate several biological processes in worms, ranging from development, to behavior. These signals are modular in their design architecture, with their building blocks derived from metabolic pathways. Behavioral responses are not only concentration dependent, but also are influenced by the current physiological state of the animal. Cellular and circuit-level analyses suggest that these signals constitute a complex communication system, employing both synergistic molecular elements and sex-specific neuronal circuits governing the response. In this review, we discuss research from multiple laboratories, including our own, that detail how these chemical signals govern several different social behaviors in C. elegans. We propose that the ascaroside repertoire represents a link between diverse metabolic and neurobiological life-history traits and governs the survival of C. elegans in its natural environment.
Collapse
Affiliation(s)
- Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
81
|
Pretorius L, Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS? J Biomed Sci 2020; 27:95. [PMID: 32981524 PMCID: PMC7520957 DOI: 10.1186/s12929-020-00688-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Due to a lack of specific or sensitive biomarkers, drug discovery advances have been limited for individuals suffering from irritable bowel syndrome (IBS). While current therapies provide symptomatic relief, inflammation itself is relatively neglected, despite the presence of chronic immune activation and innate immune system dysfunction. Moreover, considering the microgenderome concept, gender is a significant aetiological risk factor. We believe that we have pinpointed a "missing link" that connects gender, dysbiosis, diet, and inflammation in the context of IBS, which may be manipulated as therapeutic target. The trace aminergic system is conveniently positioned at the interface of the gut microbiome, dietary nutrients and by-products, and mucosal immunity. Almost all leukocyte populations express trace amine associated receptors and significant amounts of trace amines originate from both food and the gut microbiota. Additionally, although IBS-specific data are sparse, existing data supports an interpretation in favour of a gender dependence in trace aminergic signalling. As such, trace aminergic signalling may be altered by fluctuations of especially female reproductive hormones. Utilizing a multidisciplinary approach, this review discusses potential mechanisms of actions, which include hyperreactivity of the immune system and aberrant serotonin signalling, and links outcomes to the symptomology clinically prevalent in IBS. Taken together, it is feasible that the additional level of regulation by the trace aminergic system in IBS has been overlooked, until now. As such, we suggest that components of the trace aminergic system be considered targets for future therapeutic action, with the specific focus of reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa.
| |
Collapse
|
82
|
Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the C. elegans Egg-Laying Circuit. J Neurosci 2020; 40:7475-7488. [PMID: 32847964 DOI: 10.1523/jneurosci.1357-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Maps of the synapses made and neurotransmitters released by all neurons in model systems, such as Caenorhabditis elegans have left still unresolved how neural circuits integrate and respond to neurotransmitter signals. Using the egg-laying circuit of C. elegans as a model, we mapped which cells express each of the 26 neurotransmitter GPCRs of this organism and also genetically analyzed the functions of all 26 GPCRs. We found that individual neurons express many distinct receptors, epithelial cells often express neurotransmitter receptors, and receptors are often positioned to receive extrasynaptic signals. Receptor knockouts reveal few egg-laying defects under standard laboratory conditions, suggesting that the receptors function redundantly or regulate egg-laying only in specific conditions; however, increasing receptor signaling through overexpression more efficiently reveals receptor functions. This map of neurotransmitter GPCR expression and function in the egg-laying circuit provides a model for understanding GPCR signaling in other neural circuits.SIGNIFICANCE STATEMENT Neurotransmitters signal through GPCRs to modulate activity of neurons, and changes in such signaling can underlie conditions such as depression and Parkinson's disease. To determine how neurotransmitter GPCRs together help regulate function of a neural circuit, we analyzed the simple egg-laying circuit in the model organism C. elegans We identified all the cells that express every neurotransmitter GPCR and genetically analyzed how each GPCR affects the behavior the circuit produces. We found that many neurotransmitter GPCRs are expressed in each neuron, that neurons also appear to use these receptors to communicate with other cell types, and that GPCRs appear to often act redundantly or only under specific conditions to regulate circuit function.
Collapse
|
83
|
Abstract
The serotonergic modulation of feeding behaviour has been intensively studied in several invertebrate groups, including Arthropoda, Annelida, Nematoda and Mollusca. These studies offer comparative information on feeding regulation across divergent phyla and also provide general insights into the neural control of feeding. Specifically, model invertebrates are ideal for parsing feeding behaviour into component parts and examining the underlying mechanisms at the levels of biochemical pathways, single cells and identified neural circuitry. Research has found that serotonin is crucial during certain phases of feeding behaviour, especially movements directly underlying food intake, but inessential during other phases. In addition, while the serotonin system can be manipulated systemically in many animals, invertebrate model organisms also allow manipulations at the level of single cells and molecules, revealing limited and precise serotonergic actions. The latter highlight the importance of local versus global modulatory effects of serotonin, a potentially significant consideration for drug and pesticide design.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Neuroscience Program, Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| |
Collapse
|
84
|
Lin L, Lemieux GA, Enogieru OJ, Giacomini KM, Ashrafi K. Neural production of kynurenic acid in Caenorhabditis elegans requires the AAT-1 transporter. Genes Dev 2020; 34:1033-1038. [PMID: 32675325 PMCID: PMC7397858 DOI: 10.1101/gad.339119.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
In this study, Lin et al. investigated the mechanisms that import kyneurine (Kyn), a prescursor to kynurenic acid (KynA), which links peripheral metabolic status to neural functions including learning and memory, into the nervous system. They provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production. Kynurenic acid (KynA) levels link peripheral metabolic status to neural functions including learning and memory. Since neural KynA levels dampen learning capacity, KynA reduction has been proposed as a therapeutic strategy for conditions of cognitive deficit such as neurodegeneration. While KynA is generated locally within the nervous system, its precursor, kynurenine (Kyn), is largely derived from peripheral resources. The mechanisms that import Kyn into the nervous system are poorly understood. Here, we provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production.
Collapse
Affiliation(s)
- Lin Lin
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - George A Lemieux
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Osatohanmwen Jessica Enogieru
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
85
|
Abstract
This review article highlights our efforts to decode the role of the nervous system in regulating intestinal lipid metabolism in Caenorhabditis elegans. Capitalizing on the prescient and pioneering work of Sydney Brenner and John Sulston in establishing C. elegans as an immensely valuable model system, we have uncovered critical roles for oxygen sensing, population density sensing and food sensing in orchestrating the balance between storing lipids and utilizing them for energy in the intestine, the major organ for lipid metabolism in this model system. Our long-term goal is to reveal the integrative mechanisms and regulatory logic that underlies the complex relationship between genes, environment and internal state in the regulation of energy and whole-body physiology.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
86
|
O'Donnell MP, Fox BW, Chao PH, Schroeder FC, Sengupta P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 2020; 583:415-420. [PMID: 32555456 PMCID: PMC7853625 DOI: 10.1038/s41586-020-2395-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms1. Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts2,3. However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that in Caenorhabditis elegans, the neuromodulator tyramine produced by commensal Providencia bacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine β-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis in Providencia, and show that these genes are necessary for the modulation of host behaviour. We further find that C. elegans colonized by Providencia preferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.
Collapse
Affiliation(s)
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
87
|
Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory modalities. J Neurophysiol 2020; 123:2406-2425. [PMID: 32401124 PMCID: PMC7311732 DOI: 10.1152/jn.00034.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin's capacity for contextualizing sensory information according to the animal's physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
88
|
Xiao X, Tan C, Sun X, Zhao Y, Zhang J, Zhu Y, Bai J, Dong Y, Zhou X. Fermented barley β-glucan regulates fat deposition in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3408-3417. [PMID: 32166779 DOI: 10.1002/jsfa.10375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Barley contains a relatively high concentration of the mixed-linkage (1 → 3) (1 → 4) β-glucan, which has been reported to be a functional food with prebiotic potential. In the current study we compared the properties of two neutral barley β-glucans, obtained from raw barley: raw barley β-glucan (RBG) and Lactobacillus plantarum dy-1-fermented barley (FBG). RESULTS Molecular characteristics revealed that the molecular weight of barley β-glucan decreased from 1.13 × 105 D to 6.35 × 104 D after fermentation. Fermentation also improved the water / oil holding capacity, solubility, and swelling capacity of barley β-glucan. Both RBG and FBG significantly improved the locomotive behavior of nematodes, thereby increasing their energy consumption and reducing fat deposition - the effect was more significant with FBG. These effects could potentially depend on nhr-49, TGF-daf-7 mediated pathways and so on, in which nhr-49 factor is particularly required. CONCLUSION These results suggested that fermentation may enhance in vitro physiological activities of barley β-glucan, thereby altering the effects on the lipid metabolism in vivo. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinjuan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
89
|
Park JY, Cheong MC, Cho JY, Koo HS, Paik YK. A novel functional cross-interaction between opioid and pheromone signaling may be involved in stress avoidance in Caenorhabditis elegans. Sci Rep 2020; 10:7524. [PMID: 32371913 PMCID: PMC7200713 DOI: 10.1038/s41598-020-64567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Upon sensing starvation stress, Caenorhabditis elegans larvae (L2d) elicit two seemingly opposing behaviors to escape from the stressful condition: food-seeking roaming mediated by the opioid peptide NLP-24 and dauer formation mediated by pheromones. Because opioid and pheromone signals both originate in ASI chemosensory neurons, we hypothesized that they might act sequentially or competitively to avoid starvation stress. Our data shows that NPR-17 opioid receptor signaling suppressed pheromone biosynthesis and the overexpression of opioid genes disturbed dauer formation. Likewise, DAF-37 pheromone receptor signaling negatively modulated nlp-24 expression in the ASI neurons. Under short-term starvation (STS, 3 h), both pheromone and opioid signaling were downregulated in gpa-3 mutants. Surprisingly, the gpa-3;nlp-24 double mutants exhibited much higher dauer formation than seen in either of the single mutants. Under long-term starvation (LTS, >24 h), the stress-activated SKN-1a downregulated opioid signaling and then enhanced dauer formation. Both insulin and serotonin stimulated opioid signaling, whereas NHR-69 suppressed opioid signaling. Thus, GPA-3 and SKN-1a are proposed to regulate cross-antagonistic interaction between opioids and pheromones in a cell-specific manner. These regulatory functions are suggested to be exerted via the selective interaction of GPA-3 with NPR-17 and site-specific SKN-1 binding to the promoter of nlp-24 to facilitate stress avoidance.
Collapse
Affiliation(s)
- Jun Young Park
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Mi Cheong Cheong
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young-Ki Paik
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
90
|
Bianchetti G, Di Giacinto F, De Spirito M, Maulucci G. Machine-learning assisted confocal imaging of intracellular sites of triglycerides and cholesteryl esters formation and storage. Anal Chim Acta 2020; 1121:57-66. [PMID: 32493590 DOI: 10.1016/j.aca.2020.04.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
All living systems are maintained by a constant flux of metabolic energy and, among the different reactions, the process of lipids storage and lipolysis is of fundamental importance. Current research has focused on the investigation of lipid droplets (LD) as a powerful biomarker for the early detection of metabolic and neurological disorders. Efforts in this field aim at increasing selectivity for LD detection by exploiting existing or newly synthesized probes. However, LD constitute only the final product of a complex series of reactions during which fatty acids are transformed into triglycerides and cholesterol is transformed in cholesteryl esters. These final products can be accumulated in intracellular organelles or deposits other than LD. A complete spatial mapping of the intracellular sites of triglycerides and cholesteryl esters formation and storage is, therefore, crucial to highlight any potential metabolic imbalance, thus predicting and counteracting its progression. Here, we present a machine learning assisted, polarity-driven segmentation which enables to localize and quantify triglycerides and cholesteryl esters biosynthesis sites in all intracellular organelles, thus allowing to monitor in real-time the overall process of the turnover of these non-polar lipids in living cells. This technique is applied to normal and differentiated PC12 cells to test how the level of activation of biosynthetic pathways changes in response to the differentiation process.
Collapse
Affiliation(s)
- Giada Bianchetti
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy.
| |
Collapse
|
91
|
Yu CC(J, Barry NC, Wassie AT, Sinha A, Bhattacharya A, Asano S, Zhang C, Chen F, Hobert O, Goodman MB, Haspel G, Boyden ES. Expansion microscopy of C. elegans. eLife 2020; 9:e46249. [PMID: 32356725 PMCID: PMC7195193 DOI: 10.7554/elife.46249] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
We recently developed expansion microscopy (ExM), which achieves nanoscale-precise imaging of specimens at ~70 nm resolution (with ~4.5x linear expansion) by isotropic swelling of chemically processed, hydrogel-embedded tissue. ExM of C. elegans is challenged by its cuticle, which is stiff and impermeable to antibodies. Here we present a strategy, expansion of C. elegans (ExCel), to expand fixed, intact C. elegans. ExCel enables simultaneous readout of fluorescent proteins, RNA, DNA location, and anatomical structures at resolutions of ~65-75 nm (3.3-3.8x linear expansion). We also developed epitope-preserving ExCel, which enables imaging of endogenous proteins stained by antibodies, and iterative ExCel, which enables imaging of fluorescent proteins after 20x linear expansion. We demonstrate the utility of the ExCel toolbox for mapping synaptic proteins, for identifying previously unreported proteins at cell junctions, and for gene expression analysis in multiple individual neurons of the same animal.
Collapse
Affiliation(s)
- Chih-Chieh (Jay) Yu
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nicholas C Barry
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Asmamaw T Wassie
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Anubhav Sinha
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Shoh Asano
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Chi Zhang
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Fei Chen
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Gal Haspel
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-NewarkNewarkUnited States
- The Brain Research Institute, New Jersey Institute of TechnologyNewarkUnited States
| | - Edward S Boyden
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
92
|
Ishita Y, Chihara T, Okumura M. Serotonergic modulation of feeding behavior in Caenorhabditis elegans and other related nematodes. Neurosci Res 2020; 154:9-19. [DOI: 10.1016/j.neures.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
93
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
94
|
Cruz-Corchado J, Ooi FK, Das S, Prahlad V. Global Transcriptome Changes That Accompany Alterations in Serotonin Levels in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:1225-1246. [PMID: 31996358 PMCID: PMC7144078 DOI: 10.1534/g3.120.401088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), is a phylogenetically ancient molecule best characterized as a neurotransmitter that modulates multiple aspects of mood and social cognition. The roles that 5-HT plays in normal and abnormal behavior are not fully understood but have been posited to be due to its common function as a 'defense signal'. However, 5-HT levels also systemically impact cell physiology, modulating cell division, migration, apoptosis, mitochondrial biogenesis, cellular metabolism and differentiation. Whether these diverse cellular effects of 5-HT also share a common basis is unclear. C. elegans provides an ideal system to interrogate the systemic effects of 5-HT, since lacking a blood-brain barrier, 5-HT synthesized and released by neurons permeates the organism to modulate neuronal as well as non-neuronal cells throughout the body. Here we used RNA-Seq to characterize the systemic changes in gene expression that occur in C. elegans upon altering 5-HT levels, and compared the transcriptomes to published datasets. We find that an acute increase in 5-HT is accompanied by a global decrease in gene expression levels, upregulation of genes involved in stress pathways, changes that significantly correlate with the published transcriptomes of animals that have activated defense and immune responses, and an increase in levels of phosphorylated eukaryotic initiation factor, eIF2α. In 5-HT deficient animals lacking tryptophan hydroxylase (tph-1(mg280)II) there is a net increase in gene expression, with an overrepresentation of genes related to development and chromatin. Surprisingly, the transcriptomes of animals with acute increases in 5-HT levels, and 5-HT deficiency do not overlap with transcriptomes of mutants with whom they share striking physiological resemblance. These studies are the first to catalog systemic transcriptome changes that occur upon alterations in 5-HT levels. They further show that in C. elegans changes in gene expression upon altering 5-HT levels, and changes in physiology, are not directly correlated.
Collapse
Affiliation(s)
- Johnny Cruz-Corchado
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| |
Collapse
|
95
|
Silva MH. Effects of low‐dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and
Caenorhabditis elegans. Birth Defects Res 2020; 112:445-479. [DOI: 10.1002/bdr2.1661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in regulatory toxicology and risk assessment
| |
Collapse
|
96
|
Wong WR, Brugman KI, Maher S, Oh JY, Howe K, Kato M, Sternberg PW. Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Hum Mol Genet 2020; 28:2271-2281. [PMID: 31220273 DOI: 10.1093/hmg/ddz051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) involves thousands of alleles in over 850 genes, but the current functional inference tools are not sufficient to predict phenotypic changes. As a result, the causal relationship of most of these genetic variants in the pathogenesis of ASD has not yet been demonstrated and an experimental method prioritizing missense alleles for further intensive analysis is crucial. For this purpose, we have designed a pipeline that uses Caenorhabditis elegans as a genetic model to screen for phenotype-changing missense alleles inferred from human ASD studies. We identified highly conserved human ASD-associated missense variants in their C. elegans orthologs, used a CRISPR/Cas9-mediated homology-directed knock-in strategy to generate missense mutants and analyzed their impact on behaviors and development via several broad-spectrum assays. All tested missense alleles were predicted to perturb protein function, but we found only 70% of them showed detectable phenotypic changes in morphology, locomotion or fecundity. Our findings indicate that certain missense variants in the C. elegans orthologs of human CACNA1D, CHD7, CHD8, CUL3, DLG4, GLRA2, NAA15, PTEN, SYNGAP1 and TPH2 impact neurodevelopment and movement functions, elevating these genes as candidates for future study into ASD. Our approach will help prioritize functionally important missense variants for detailed studies in vertebrate models and human cells.
Collapse
Affiliation(s)
- Wan-Rong Wong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katherine I Brugman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shayda Maher
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jun Young Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kevin Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Mihoko Kato
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
97
|
Mutlu AS, Gao SM, Zhang H, Wang MC. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans. Nat Commun 2020; 11:1450. [PMID: 32193370 PMCID: PMC7081233 DOI: 10.1038/s41467-020-15296-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
Olfactory and metabolic dysfunctions are intertwined phenomena associated with obesity and neurodegenerative diseases; yet how mechanistically olfaction regulates metabolic homeostasis remains unclear. Specificity of olfactory perception integrates diverse environmental odors and olfactory neurons expressing different receptors. Here, we report that specific but not all olfactory neurons actively regulate fat metabolism without affecting eating behaviors in Caenorhabditis elegans, and identified specific odors that reduce fat mobilization via inhibiting these neurons. Optogenetic activation or inhibition of the responsible olfactory neural circuit promotes the loss or gain of fat storage, respectively. Furthermore, we discovered that FLP-1 neuropeptide released from this olfactory neural circuit signals through peripheral NPR-4/neuropeptide receptor, SGK-1/serum- and glucocorticoid-inducible kinase, and specific isoforms of DAF-16/FOXO transcription factor to regulate fat storage. Our work reveals molecular mechanisms underlying olfactory regulation of fat metabolism, and suggests the association between olfactory perception specificity of each individual and his/her susceptibility to the development of obesity.
Collapse
Affiliation(s)
- Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Shihong Max Gao
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haining Zhang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
98
|
Li Z, Yu Z, Gao P, Yin D. Multigenerational effects of perfluorooctanoic acid on lipid metabolism of Caenorhabditis elegans and its potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134762. [PMID: 31761367 DOI: 10.1016/j.scitotenv.2019.134762] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 05/15/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs), especially perfluorooctanoic acid (PFOA), have been showed to induce obesogenic effects which may last over generations. However, the underlying mechanisms are not yet clear. In the present study, wild-type N2 Caenorhabditis elegans and the daf-2 mutant were exposed to PFOA for 4 consecutive generations (F0 to F3) at 1.0 ng/L. Effects on fat content and fat metabolism in the directly exposed F0 to F3 generations, the offspring of F0 (T1 to T3) and also those of F3 (T1' to T3'). Results showed that PFOA significantly stimulated the fat contents in F0 (with the percentage of the control as 184.1%), T1 (189.5%), F1 (167.3%), F2 (238.0%), T2' (193.9%) and T3' (159.4%) while inhibited them in T3 (70%). The changes of fat contents over generations were accompanied with significant changes in enzymes facilitating fatty acid synthesis (e.g., acetyl-CoA carboxylase, fatty acid synthase and desaturase, and glycerol phosphate acyltransferase) and those in fatty acid consumption (e.g., acetyl CoA synthetase, fatty acid transport protein, acyl-CoA oxidase and carnitine palmitoyl transferase). Furthermore, RNA-Seq analysis was performed on F0, F3 and T3 generations. Based on the KEGG analysis of differential genes, PFOA exposure affected lipid metabolism signaling pathways including MAPK, fatty acid degradation, TGF-β signaling pathways. Notably, PFOA exposure provoked significantly different effects in daf-2 nematodes on fat contents, lipid metabolizing enzymes and even different signaling pathways. The overall results demonstrated that the obesogenic effects of PFOA were resulted from a complex combination of various enzymes and pathways with essential involvement of insulin signaling pathway.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China.
| | - Pin Gao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
99
|
Lin Y, Yang N, Bao B, Wang L, Chen J, Liu J. Luteolin reduces fat storage inCaenorhabditis elegansby promoting the central serotonin pathway. Food Funct 2020; 11:730-740. [DOI: 10.1039/c9fo02095k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Luteolin promotes central serotonin signaling to induce fat loss.
Collapse
Affiliation(s)
- Yan Lin
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Nan Yang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Bin Bao
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Lu Wang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Juan Chen
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
| | - Jian Liu
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- China
- Engineering Research Center of Bio-process
| |
Collapse
|
100
|
Serotonin modulates behavior-related neural activity of RID interneuron in Caenorhabditis elegans. PLoS One 2019; 14:e0226044. [PMID: 31800640 PMCID: PMC6892467 DOI: 10.1371/journal.pone.0226044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/17/2019] [Indexed: 11/29/2022] Open
Abstract
Animals change their behaviors in response to external stimuli, and numerous neurotransmitters are involved in these behavioral changes. In Caenorhabditis elegans, serotonin (5-HT) affects various behaviors such as inhibition of locomotion, stimulation of egg laying, and pharyngeal pumping. Previous research has shown that the neural activity of the RID interneuron increases when the worm moves forward, and the RID is necessary for sustaining forward locomotion. However, the relationship between 5-HT and neural activity of RID, and how it modulates the behavior of the worm has not been investigated. In this article, we reveal the relationship among 5-HT, RID activity, and the behavior of worms using a custom-made tracking and imaging system. We simultaneously measured the neural activity of the RID and behavior in worms with three conditions: mock animals, animals pre-exposed to 5-HT, and 5-HT receptor mod-1 mutants. As shown in previous research, the neural activity of the RID increased during the transition from backward to forward, whereas it decreased during the transition from forward to backward in mock animals. These changes in neural activity were not observed in animals pre-exposed to 5-HT and mod-1 mutants. Moreover, RID activity was correlated with the velocity of the worm in mock animals. However, this correlation was not observed in animals pre-exposed to 5-HT and mod-1 mutants. Our results demonstrate that 5-HT modulates the activity of the RID interneuron, and we infer that the RID plays a role in modulating forward locomotion by changing its activity through 5-HT.
Collapse
|