51
|
de Serrano V, D'Antonio J, Franzen S, Ghiladi RA. Structure of dehaloperoxidase B at 1.58 A resolution and structural characterization of the AB dimer from Amphitrite ornata. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:529-38. [PMID: 20445228 PMCID: PMC2865366 DOI: 10.1107/s0907444910004580] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/08/2010] [Indexed: 11/10/2022]
Abstract
As members of the globin superfamily, dehaloperoxidase (DHP) isoenzymes A and B from the marine annelid Amphitrite ornata possess hemoglobin function, but they also exhibit a biologically relevant peroxidase activity that is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. Here, a comprehensive structural study of recombinant DHP B, both by itself and cocrystallized with isoenzyme A, using X-ray diffraction is presented. The structure of DHP B refined to 1.58 A resolution exhibits the same distal histidine (His55) conformational flexibility as that observed in isoenzyme A, as well as additional changes to the distal and proximal hydrogen-bonding networks. Furthermore, preliminary characterization of the DHP AB heterodimer is presented, which exhibits differences in the AB interface that are not observed in the A-only or B-only homodimers. These structural investigations of DHP B provide insights that may relate to the mechanistic details of the H(2)O(2)-dependent oxidative dehalogenation reaction catalyzed by dehaloperoxidase, present a clearer description of the function of specific residues in DHP at the molecular level and lead to a better understanding of the paradigms of globin structure-function relationships.
Collapse
|
52
|
Davis MF, Bobay BG, Franzen S. Determination of separate inhibitor and substrate binding sites in the dehaloperoxidase-hemoglobin from Amphitrite ornata. Biochemistry 2010; 49:1199-206. [PMID: 20067301 DOI: 10.1021/bi9018576] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dehaloperoxidase-hemoglobin (DHP A) is a dual function protein found in the terrebellid polychaete Amphitrite ornata. A. ornata is an annelid, which inhabits estuary mudflats with other polychaetes that secrete a range of toxic brominated phenols. DHP A is capable of binding and oxidatively dehalogenating some of these compounds. DHP A possesses the ability to bind halophenols in a distinct, internal distal binding pocket. Since its discovery, the distal binding pocket has been reported as the sole binding location for halophenols; however, data herein suggest a distinction between inhibitor (monohalogenated phenol) and substrate (trihalogenated phenol) binding locations. Backbone (13)Calpha, (13)Cbeta, carbonyl (13)C, amide (1)H, and amide (15)N resonance assignments have been made, and various halophenols were titrated into the protein. (1)H-(15)N HSQC experiments were collected at stoichiometric intervals during each titration, and binding locations specific for mono- and trihalogenated phenols have been identified. Titration of monohalogenated phenol induced primary changes around the distal binding pocket, while introduction of trihalogenated phenols created alterations of the distal histidine and the local area surrounding W120, a structural region that corresponds to a possible dimer interface region recently observed in X-ray crystal structures of DHP A.
Collapse
Affiliation(s)
- Michael F Davis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | |
Collapse
|
53
|
Osborne RL, Coggins MK, Raner GM, Walla M, Dawson JH. The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates. Biochemistry 2009; 48:4231-8. [PMID: 19371065 DOI: 10.1021/bi900367e] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic globin, dehaloperoxidase (DHP), from the terebellid polychaete Amphitrite ornata is designed to catalyze the oxidative dehalogenation of halophenol substrates. In this study, the ability of DHP to catalyze this reaction by a mechanism involving two consecutive one-electron steps via the normal order of addition of the oxidant cosubstrate (H(2)O(2)) before organic substrate [2,4,6-trichlorophenol (TCP)] is demonstrated. Specifically, 1 equiv of H(2)O(2) will fully convert 1 equiv of TCP to 2,6-dichloro-1,4-benzoquinone, implicating the role of multiple ferryl [Fe(IV)O] species. A significant amount of heterolytic cleavage of the O-O bond of cumene hydroperoxide, consistent with transient formation of a Compound I [Fe(IV)O/porphyrin pi-cation radical] species, is observed upon its reaction with ferric DHP. In addition, a more stable high-valent Fe(IV)O-containing DHP intermediate [Compound II (Cpd II) or Compound ES] is characterized by UV-visible absorption and magnetic circular dichroism spectroscopy. Spectral similarities are seen between this intermediate and horse heart myoglobin Cpd II. It is also shown in single-turnover experiments that the DHP Fe(IV)O intermediate is an active oxidant in halophenol oxidative dehalogenation. Furthermore, reaction of DHP with 4-chlorophenol leads to a dimeric product. The results presented herein are consistent with a normal peroxidase order of addition of the oxidant cosubstrate (H(2)O(2)) followed by organic substrate (TCP) and indicate that the enzymatic mechanism of DHP-catalyzed oxidative halophenol dehalogenation involves two consecutive one-electron steps with a dissociable radical intermediate.
Collapse
Affiliation(s)
- Robert L Osborne
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
54
|
Davis MF, Gracz H, Vendeix FAP, de Serrano V, Somasundaram A, Decatur SM, Franzen S. Different Modes of Binding of Mono-, Di-, and Trihalogenated Phenols to the Hemoglobin Dehaloperoxidase from Amphitrite ornata. Biochemistry 2009; 48:2164-72. [DOI: 10.1021/bi801568s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael F. Davis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, and Chemistry Department, Oberlin College, Oberlin, Ohio 44074
| | - Hanna Gracz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, and Chemistry Department, Oberlin College, Oberlin, Ohio 44074
| | - Franck A. P. Vendeix
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, and Chemistry Department, Oberlin College, Oberlin, Ohio 44074
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, and Chemistry Department, Oberlin College, Oberlin, Ohio 44074
| | - Aswin Somasundaram
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, and Chemistry Department, Oberlin College, Oberlin, Ohio 44074
| | - Sean M. Decatur
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, and Chemistry Department, Oberlin College, Oberlin, Ohio 44074
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, and Chemistry Department, Oberlin College, Oberlin, Ohio 44074
| |
Collapse
|
55
|
Mikšovská J, Horsa S, Davis MF, Franzen S. Conformational Dynamics Associated with Photodissociation of CO from Dehaloperoxidase Studied Using Photoacoustic Calorimetry. Biochemistry 2008; 47:11510-7. [DOI: 10.1021/bi8012033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaroslava Mikšovská
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Simona Horsa
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael F. Davis
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Stefan Franzen
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
56
|
Nienhaus K, Deng P, Belyea J, Franzen S, Nienhaus GU. Spectroscopic study of substrate binding to the carbonmonoxy form of dehaloperoxidase from Amphitrite ornata. J Phys Chem B 2007; 110:13264-76. [PMID: 16805641 DOI: 10.1021/jp060278z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dehaloperoxidase (DHP) is a globular heme enzyme found in the marine worm Amphitrite ornata that can catalyze the dehalogenation of halophenols to the corresponding quinones by using hydrogen peroxide as a cosubstrate. Its three-dimensional fold is surprisingly similar to that of the oxygen storage protein myoglobin (Mb). A key structural feature common to both DHP and Mb is the existence of multiple conformations of the distal histidine. In DHP, the conformational flexibility may be involved in promotion of substrate and cosubstrate entry and exit. Here we have explored the dynamics of substrate binding in DHP using Fourier transform infrared spectroscopy and flash photolysis. A number of discrete conformations at the active site were identified from the appearance of multiple CO absorbance bands in the infrared region of the spectrum. Upon photolysis at cryogenic temperatures, the CO molecules are trapped at docking sites within the protein matrix, as inferred from the appearance of several photoproduct bands characteristic of each site. Substrate binding stabilizes the protein by approximately 20 kJ/mol. The low yield of substrate-bound DHP at ambient temperature points toward a steric inhibition of substrate binding by carbon monoxide.
Collapse
Affiliation(s)
- Karin Nienhaus
- Department of Biophysics, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
57
|
Fereshteh G, . BY, . AMM, . AZ, . MH. Phytoremediation of Arsenic by Macroalga: Implication in Natural Contaminated Water, Northeast Iran. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jas.2007.1614.1619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
58
|
Trandafir F, Hoogewijs D, Altieri F, Rivetti di Val Cervo P, Ramser K, Van Doorslaer S, Vanfleteren JR, Moens L, Dewilde S. Neuroglobin and cytoglobin as potential enzyme or substrate. Gene 2007; 398:103-13. [PMID: 17555889 DOI: 10.1016/j.gene.2007.02.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 11/16/2022]
Abstract
The possible enzymatic activities of neuro- and cytoglobin as well as their potential function as substrates in enzymatic reactions were studied. Neuro- and cytoglobin are found to show no appreciable superoxide dismutase, catalase, and peroxidase activities. However, the internal disulfide bond (CD7-D5) of human neuroglobin can be reduced by thioredoxin reductase. Furthermore, our in vivo and in vitro studies show that Escherichia coli cells contain an enzymatic reducing system that keeps the heme iron atom of neuroglobin in the Fe(2+) form in the presence of dioxygen despite the high autoxidation rate of the molecule. This reducing system needs a low-molecular-weight compound as co-factor. In vitro tests show that both NADH and NADPH can play this role. Furthermore, the reducing system is not specific for neuroglobin but allows the reduction of the ferric forms of other globins such as cytoglobin and myoglobin. A similar reducing system is present in eukaryotic tissue protein extracts.
Collapse
Affiliation(s)
- F Trandafir
- Department of Physics of the University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ouellet H, Ranguelova K, Labarre M, Wittenberg JB, Wittenberg BA, Magliozzo RS, Guertin M. Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: evidence for peroxidatic activity and formation of protein-based radicals. J Biol Chem 2007; 282:7491-503. [PMID: 17218317 DOI: 10.1074/jbc.m609155200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we investigated the reaction of ferric Mycobacterium tuberculosis truncated hemoglobin O (trHbO) with hydrogen peroxide. Stopped-flow spectrophotometric experiments under single turnover conditions showed that trHbO reacts with H(2)O(2) to give transient intermediate(s), among which is an oxyferryl heme, different from a typical peroxidase Compound I (oxyferryl heme pi-cation radical). EPR spectroscopy indicated evidence for both tryptophanyl and tyrosyl radicals, whereas redox titrations demonstrated that the peroxide-treated protein product retains 2 oxidizing eq. We propose that Compound I formed transiently is reduced with concomitant oxidation of Trp(G8) to give the detected oxoferryl heme and a radical on Trp(G8) (detected by EPR of the trHbO Tyr(CD1)Phe mutant). In the wild-type protein, the Trp(G8) radical is in turn reduced rapidly by Tyr(CD1). In a second cycle, Trp(G8) may be reoxidized by the ferryl heme to yield ferric heme and two protein radicals. In turn, these migrate to form tyrosyl radicals on Tyr(55) and Tyr(115), which lead, in the absence of a reducing substrate, to oligomerization of the protein. Steady-state kinetics in the presence of H(2)O(2) and the one-electron donor 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) indicated that trHbO has peroxidase activity, in accord with the presence of typical peroxidase intermediates. These findings suggest an oxidation/reduction function for trHbO and, by analogy, for other Group II trHbs.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Biochemistry and Microbiology, Laval University, Quebec G1K 7P4, Canada
| | | | | | | | | | | | | |
Collapse
|
60
|
Belyea J, Belyea CM, Lappi S, Franzen S. Resonance Raman Study of Ferric Heme Adducts of Dehaloperoxidase from Amphitrite ornata. Biochemistry 2006; 45:14275-84. [PMID: 17128967 DOI: 10.1021/bi0609218] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of axial ligation by anionic ligands to ferric heme iron by resonance Raman spectroscopy provides a basis for comparison of the intrinsic electron donor ability of the proximal histidine in horse heart myoglobin (HHMb), dehaloperoxidase (DHP), and horseradish peroxidase (HRP). DHP is a dimeric hemoglobin (Hb) originally isolated from the terebellid polychaete Amphitrite ornata. The monomers are structurally related to Mb and yet DHP has a peroxidase function. The core size marker modes, v2 and v3, were observed using Soret excitation, and DHP-X was compared to HHMb-X for the ligand series X = F, Cl, Br, SCN, OH, N3, and CN. Special attention was paid to the hydroxide adduct, which is also formed during the catalytic cycle of peroxidases. The Fe-OH stretching frequency was observed and confirmed by deuteration and is higher in DHP than in HHMb. The population of high-spin states of the heme iron in DHP was determined to be intermediate between HHMb and HRP. The data provide the first direct measurement of the effect of axial ligation on the heme iron in DHP. The Raman data support a modified charge relay in DHP, in which a strongly hydrogen-bonded backbone carbonyl (>C=O) polarizes the proximal histidine. The charge relay mechanism by backbone carbonyl >C=O-His-Fe is the analogue of the Asp-His-Fe of peroxidases and Glu-His-Fe of flavohemoglobins.
Collapse
Affiliation(s)
- Jennifer Belyea
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
61
|
Franzen S, Gilvey LB, Belyea JL. The pH dependence of the activity of dehaloperoxidase from Amphitrite ornata. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1774:121-30. [PMID: 17182294 DOI: 10.1016/j.bbapap.2006.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/18/2006] [Accepted: 09/29/2006] [Indexed: 11/17/2022]
Abstract
Dehaloperoxidase (DHP) from the terebellid polychaete, Amphitrite ornata, is the first hemoglobin that has peroxidase activity as part of its native function. The substrate 2,4,6-tribromophenol (TBP) is oxidatively debrominated by DHP to form 2,6-dibromoquinone (DBQ) in a two-electron process. There is a well-defined internal binding site for TBP above the heme, a feature not observed in other hemoglobins or peroxidases. A study of the pH dependence of the activity of DHP reveals a substantial difference in mechanism. From direct observation of the Soret band of the heme it is shown that the pKa for heme activation in protein DHP is 6.5. Below this pH the heme absorbance decreases in the presence of H2O2 with or without addition of substrate. The low pH data are consistent with significant heme degradation. Above pH 6.5 addition of H2O2 causes the heme to shift rapidly to a compound II spectrum and then slowly to an unidentified intermediate with an absorbance of 410 nm. However, the pKa of the substrate TBP is 6.8 and the greatest enzyme activity is observed above the pKa of TBP under conditions where the substrate is a phenolate anion (TPBO-). Although the mechanisms may differ, the data show that both neutral TBP and anionic TPBO- are converted to the quinone product. The mechanistic implications of the pH dependence are discussed by comparison other known peroxidases, which oxidize substrates at the heme edge.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
62
|
Franzen S, Belyea J, Gilvey LB, Davis MF, Chaudhary CE, Sit TL, Lommel SA. Proximal cavity, distal histidine, and substrate hydrogen-bonding mutations modulate the activity of Amphitrite ornata dehaloperoxidase. Biochemistry 2006; 45:9085-94. [PMID: 16866354 DOI: 10.1021/bi060020z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehaloperoxidase (DHP) from Amphitrite ornata is the first globin that has peroxidase activity that approaches that of heme peroxidases. The substrates 2,4,6-tribromophenol (TBP) and 2,4,6-trichlorophenol are oxidatively dehalogenated by DHP to form 2,6-dibromo-1,4-benzoquinone and 2,6-dichloro-1,4-benzoquinone, respectively. There is a well-defined internal substrate-binding site above the heme, a feature not observed in other globins or peroxidases. Given that other known heme peroxidases act on the substrate at the heme edge there is great interest in understanding the possible modes of substrate binding in DHP. Stopped-flow studies (Belyea, J., Gilvey, L. B., Davis, M. F., Godek, M., Sit, T. L., Lommel, S. A., and Franzen, S. (2005) Biochemistry 44, 15637-15644) show that substrate binding must precede the addition of H2O2. This observation suggests that the mechanism of DHP relies on H2O2 activation steps unlike those of other known peroxidases. In this study, the roles of the distal histidine (H55) and proximal histidine (H89) were probed by the creation of site-specific mutations H55R, H55V, H55V/V59H, and H89G. Of these mutants, only H55R shows significant enzymatic activity. H55R is 1 order of magnitude less active than wild-type DHP and has comparable activity to sperm whale myoglobin. The role of tyrosine 38 (Y38), which hydrogen bonds to the hydroxyl group of the substrate, was probed by the mutation Y38F. Surprisingly, abolishing this hydrogen bond increases the activity of the enzyme for the substrate TBP. However, it may open a pathway for the escape of the one-electron product, the phenoxy radical leading to polymeric products.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Franzen S, Jasaitis A, Belyea J, Brewer SH, Casey R, MacFarlane AW, Stanley RJ, Vos MH, Martin JL. Hydrophobic Distal Pocket Affects NO−Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin. J Phys Chem B 2006; 110:14483-93. [PMID: 16854160 DOI: 10.1021/jp056790m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recombination dynamics of NO with dehaloperoxidase (DHP) from Amphitrite ornata following photolysis were measured by femtosecond time-resolved absorption spectroscopy. Singular value decomposition (SVD) analysis reveals two important basis spectra. The first SVD basis spectrum reports on the population of photolyzed NO molecules and has the appearance of the equilibrium difference spectrum between the deoxy and NO forms of DHP. The first basis time course has two kinetic components with time constants of tau(11) approximately 9 ps and tau(12) approximately 50 ps that correspond to geminate recombination. The fast geminate process tau(11) arises from a contact pair with the heme iron in a bound state with S = 3/2 spin. The slow geminate process tau(12) corresponds to the recombination from a more remote docking site >3 A from the heme iron with the greater barrier corresponding to a S = 5/2 spin state. The second SVD basis spectrum represents a time-dependent Soret band shift indicative of heme photophysical processes and protein relaxation with time constants of tau(21) approximately 3 ps and tau(22) approximately 17 ps, respectively. A comparison between the more rapid rate constant of the slow geminate phase in DHP-NO and horse heart myoglobin (HHMbNO) or sperm whale myoglobin (SWMbNO) suggests that protein interactions with photolyzed NO are weaker in DHP than in the wild-type MbNOs, consistent with the hydrophobic distal pocket of DHP. The slower protein relaxation rate tau(22) in DHP-NO relative to HHMbNO implies less effective trapping in the docking site of the distal pocket and is consistent with a greater yield for the fast geminate process. The trends observed for DHP-NO also hold for the H64V mutant of SWMb (H64V MbNO), consistent with a more hydrophobic distal pocket for that protein as well. We examine the influence of solution viscosity on NO recombination by varying the glycerol content in the range from 0% to 90% (v/v). The dominant effect of increasing viscosity is the increase of the rate of the slow geminate process, tau(12), coupled with a population decrease of the slow geminate component. Both phenomena are similar to the effect of viscosity on wild-type Mb due to slowing of protein relaxation resulting from an increased solution viscosity and protein surface dehydration.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Vallone B, Nienhaus K, Matthes A, Brunori M, Nienhaus GU. The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. Proc Natl Acad Sci U S A 2004; 101:17351-6. [PMID: 15548613 PMCID: PMC536024 DOI: 10.1073/pnas.0407633101] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb), a globular heme protein expressed in the brain of vertebrates, binds oxygen reversibly, with an affinity comparable to myoglobin (Mb). Despite low sequence identity, the overall 3D fold of Ngb and Mb is very similar. Unlike in Mb, in Ngb the sixth coordination position of the heme iron is occupied by the distal histidine, in the absence of an exogenous ligand. Endogenous ligation has been proposed as a unique mechanism for affinity regulation and ligand discrimination in heme proteins. This peculiarity might be related to the still-unknown physiological function of Ngb. Here, we present the x-ray structure of CO-bound ferrous murine Ngb at 1.7 A and a comparison with the 1.5-A structure of ferric bis-histidine Ngb. We have also used Fourier transform IR spectroscopy of WT and mutant CO-ligated Ngb to examine structural heterogeneity in the active site. Upon CO binding, the distal histidine retains (by and large) its position, whereas the heme group slides deeper into a preformed crevice, thereby reshaping the large cavity ( approximately 290 A(3)) connecting the distal and proximal heme sides with the bulk. The heme relocation is accompanied by a significant decrease of structural disorder, especially of the EF loop, which may be the signal whereby Ngb communicates hypoxic conditions. This unexpected structural change unveils a heme-sliding mechanism of affinity control that may be of significance to understanding Ngb's role in the pathophysiology of the brain.
Collapse
Affiliation(s)
- Beatrice Vallone
- Department of Biochemical Sciences and Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
65
|
Valverde C, Orozco A, Becerra A, Jeziorski MC, Villalobos P, Solís JC. Halometabolites and cellular dehalogenase systems: an evolutionary perspective. ACTA ACUST UNITED AC 2004; 234:143-99. [PMID: 15066375 DOI: 10.1016/s0074-7696(04)34004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
We review the role of iodothyronine deiodinases (IDs) in the evolution of vertebrate thyroidal systems within the larger context of biological metabolism of halogens. Since the beginning of life, the ubiquity of organohalogens in the biosphere has provided a major selective pressure for the evolution and conservation of cellular mechanisms specialized in halogen metabolism. Among naturally available halogens, iodine emerged as a critical component of unique developmental and metabolic messengers. Metabolism of iodinated compounds occurs in the three major domains of life, and invertebrate deuterostomes possess several biochemical traits and molecular homologs of vertebrate thyroidal systems, including ancestral homologs of IDs identified in urochordates. The finely tuned cellular regulation of iodometabolite uptake and disposal is a remarkable event in evolution and might have been decisive for the explosive diversification of ontogenetic strategies in vertebrates.
Collapse
Affiliation(s)
- Carlos Valverde
- Instituto de Neurobiologia, Campus UNAM-UAQ Juriquilla, Querétaro 76230 Mexico
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Globins are an ancient and diverse superfamily of proteins. The globins of microorganisms were relatively ignored for many decades after their discovery by Warburg in the 1930s and rediscovery by Keilin in the 1950s. The relatively recent focus on them has been fuelled by recognition of their structural diversity and fine-tuning to fulfill (probably) discrete functions but particularly by the finding that a major role of certain globins is in protection from the stresses caused by exposure to nitric oxide (NO)--itself a molecule that has attracted intense curiosity recently. At least three classes of microbial globin are recognised, all having features of the classical globin protein fold. The first class is typified by the myoglobin-like haemprotein Vgb from the bacterium Vitreoscilla, which has attracted considerable attention because of its ability to improve growth and metabolism for biotechnological gain in a variety of host cells, even though its physiological function is not fully understood. The truncated globins are widely distributed in bacteria, microbial eukaryotes as well as plants and are characterised by being 20-40 residues shorter than Vgb. The polypeptide is folded into a two-over-two helical structure while retaining the essential features of the globin superfamily. Roles in oxygen and NO metabolism have been proposed. The third and best understood class comprises the flavohaemoglobins, which were first discovered and partly characterised in yeast. These are distinguished by the presence of an additional domain with binding sites for FAD and NAD(P)H. Widely distributed in bacteria, these proteins undoubtedly confer protection from NO and nitrosative stresses, probably by direct consumption of NO. However, a bewildering array of enzymatic capabilities and the presence of an active site in the haem pocket reminiscent of peroxidases hint at other functions. A full understanding of microbial globins promises advances in controlling the interactions of pathogenic bacteria with their animal and plant hosts, and manipulations of microbial oxygen transfer with biotechnological applications.
Collapse
Affiliation(s)
- Guanghui Wu
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, England, UK
| | | | | |
Collapse
|
67
|
Burmester T, Ebner B, Weich B, Hankeln T. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 2002; 19:416-21. [PMID: 11919282 DOI: 10.1093/oxfordjournals.molbev.a004096] [Citation(s) in RCA: 367] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vertebrates possess multiple respiratory globins that differ in terms of structure, function, and tissue distribution. Three types of globins have been described so far: hemoglobin facilitates the transport of oxygen in the blood, myoglobin serves oxygen transport and storage in the muscle, and neuroglobin has a yet unidentified function in nerve cells. Here we report the identification of a fourth and novel type of globin in mouse, man, and zebrafish. It is expressed in apparently all types of human tissue and therefore has been called cytoglobin (CYGB). Mouse and human CYGBs comprise 190 amino acids; the zebrafish CYGB, 174 amino acids. The human CYGB gene is located on chromosome 17q25. The mammalian genes display a unique exon-intron pattern with an additional exon resulting in a C-terminal extension of the protein, which is absent in the fish CYGB. Phylogenetic analyses suggest that the CYGBs had a common ancestor with vertebrate myoglobins. This indicates that the vertebrate myoglobins are in fact a specialized intracellular globin that evolved in adaptation to the special needs of muscle cells.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology, Biosafety Research and Consulting, Johannes Gutenberg University Mainz, Becherweg 32, D-55099 Mainz, Germany.
| | | | | | | |
Collapse
|
68
|
Abstract
Hemoglobin (Hb) occurs in all the kingdoms of living organisms. Its distribution is episodic among the nonvertebrate groups in contrast to vertebrates. Nonvertebrate Hbs range from single-chain globins found in bacteria, algae, protozoa, and plants to large, multisubunit, multidomain Hbs found in nematodes, molluscs and crustaceans, and the giant annelid and vestimentiferan Hbs comprised of globin and nonglobin subunits. Chimeric hemoglobins have been found recently in bacteria and fungi. Hb occurs intracellularly in specific tissues and in circulating red blood cells (RBCs) and freely dissolved in various body fluids. In addition to transporting and storing O(2) and facilitating its diffusion, several novel Hb functions have emerged, including control of nitric oxide (NO) levels in microorganisms, use of NO to control the level of O(2) in nematodes, binding and transport of sulfide in endosymbiont-harboring species and protection against sulfide, scavenging of O(2 )in symbiotic leguminous plants, O(2 )sensing in bacteria and archaebacteria, and dehaloperoxidase activity useful in detoxification of chlorinated materials. This review focuses on the extensive variation in the functional properties of nonvertebrate Hbs, their O(2 )binding affinities, their homotropic interactions (cooperativity), and the sensitivities of these parameters to temperature and heterotropic effectors such as protons and cations. Whenever possible, it attempts to relate the ligand binding properties to the known molecular structures. The divergent and convergent evolutionary trends evident in the structures and functions of nonvertebrate Hbs appear to be adaptive in extending the inhabitable environment available to Hb-containing organisms.
Collapse
Affiliation(s)
- R E Weber
- Danish Centre for Respiratory Adaptation, Department of Zoophysiology, Institute of Biology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
69
|
Mukai M, Mills CE, Poole RK, Yeh SR. Flavohemoglobin, a globin with a peroxidase-like catalytic site. J Biol Chem 2001; 276:7272-7. [PMID: 11092893 DOI: 10.1074/jbc.m009280200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biochemical studies of flavohemoglobin (Hmp) from Escherichia coli suggest that instead of aerobic oxygen delivery, a dioxygenase converts NO to NO3(-) and anaerobically, an NO reductase converts NO to N(2)O. To investigate the structural features underlying the chemical reactivity of Hmp, we have measured the resonance Raman spectra of the ligand-free ferric and ferrous protein and the CO derivatives of the ferrous protein. At neutral pH, the ferric protein has a five-coordinate high-spin heme, similar to peroxidases. In the ferrous protein, a strong iron-histidine stretching mode is present at 244 cm(-1). This frequency is much higher than that of any other globin discovered to date, although it is comparable to those of peroxidases, suggesting that the proximal histidine has imidazolate character. In the CO derivative, an open and a closed conformation were detected. The distal environment of the closed conformation is very polar, where the heme-bound CO strongly interacts with the B10 Tyr and/or the E7 Gln. These data demonstrate that the active site structure of Hmp is very similar to that of peroxidases and is tailored to perform oxygen chemistry.
Collapse
Affiliation(s)
- M Mukai
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
70
|
Gardner PR, Gardner AM, Martin LA, Dou Y, Li T, Olson JS, Zhu H, Riggs AF. Nitric-oxide dioxygenase activity and function of flavohemoglobins. sensitivity to nitric oxide and carbon monoxide inhibition. J Biol Chem 2000; 275:31581-7. [PMID: 10922365 DOI: 10.1074/jbc.m004141200] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Widely distributed flavohemoglobins (flavoHbs) function as NO dioxygenases and confer upon cells a resistance to NO toxicity. FlavoHbs from Saccharomyces cerevisiae, Alcaligenes eutrophus, and Escherichia coli share similar spectra, O(2), NO, and CO binding kinetics, and steady-state NO dioxygenation kinetics. Turnover numbers (V(max)) for S. cerevisiae, A. eutrophus, and E. coli flavoHbs are 112, 290, and 365 NO heme(-1) s(-1), respectively, at 37 degrees C with 200 microm O(2). The K(M) values for NO are low and range from 0.1 to 0.25 microm. V(max)/K(M)(NO) ratios of 900-2900 microm(-1) s(-1) indicate an extremely efficient dioxygenation mechanism. Approximate K(M) values for O(2) range from 60 to 90 microm. NO inhibits the dioxygenases at NO:O(2) ratios of > or =1:100 and makes true K(M)(O(2)) values difficult to determine. High and roughly equal second order rate constants for O(2) and NO association with the reduced flavoHbs (17-50 microm(-1) s(-1)) and small NO dissociation rate constants suggest that NO inhibits the dioxygenase reaction by forming inactive flavoHbNO complexes. Carbon monoxide also binds reduced flavoHbs with high affinity and competitively inhibits NO dioxygenases with respect to O(2) (K(I)(CO) = approximately 1 microm). These results suggest that flavoHbs and related hemoglobins evolved as NO detoxifying components of nitrogen metabolism capable of discriminating O(2) from inhibitory NO and CO.
Collapse
Affiliation(s)
- P R Gardner
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
This study examined the effects of oxygen tensions ranging from 0 to 90 kPa on the metabolic rate (rate of carbon dioxide production), movement and survivorship of the free-living soil nematode Caenorhabditis elegans. C. elegans requires oxygen to develop and survive. However, it can maintain a normal metabolic rate at oxygen levels of 3.6 kPa and has near-normal metabolic rates at oxygen levels as low as 2 kPa. The ability to withstand low ambient oxygen levels appears to be a consequence of the small body size of C. elegans, which allows diffusion to supply oxygen readily to the cells without requiring any specialized respiratory or metabolic adaptations. Thus, the small size of this organism pre-adapts C. elegans to living in soil environments that commonly become hypoxic. Movement in C. elegans appears to have a relatively minor metabolic cost. Several developmental stages of C. elegans were able to withstand up to 24 h of anoxia without major mortality. Longer periods of anoxia significantly increased mortality, particularly for eggs. Remarkably, long-term exposure to 100 % oxygen had no effect on the metabolic rate of C. elegans, and populations were able to survive for a least 50 generations in 100 % (90 kPa) oxygen. Such hyperoxic conditions are fatal to most organisms within a short period.
Collapse
Affiliation(s)
- W A Van Voorhies
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
72
|
LaCount MW, Zhang E, Chen YP, Han K, Whitton MM, Lincoln DE, Woodin SA, Lebioda L. The crystal structure and amino acid sequence of dehaloperoxidase from Amphitrite ornata indicate common ancestry with globins. J Biol Chem 2000; 275:18712-6. [PMID: 10751397 DOI: 10.1074/jbc.m001194200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The full-length, protein coding sequence for dehaloperoxidase was obtained using a reverse genetic approach and a cDNA library from marine worm Amphitrite ornata. The crystal structure of the dehaloperoxidase (DHP) was determined by the multiple isomorphous replacement method and was refined at 1.8-A resolution. The enzyme fold is that of the globin family and, together with the amino acid sequence information, indicates that the enzyme evolved from an ancient oxygen carrier. The peroxidase activity of DHP arose mainly through changes in the positions of the proximal and distal histidines relative to those seen in globins. The structure of a complex of DHP with 4-iodophenol is also reported, and it shows that in contrast to larger heme peroxidases DHP binds organic substrates in the distal cavity. The binding is facilitated by the histidine swinging in and out of the cavity. The modeled position of the oxygen atom bound to the heme suggests that the enzymatic reaction proceeds via direct attack of the oxygen atom on the carbon atom bound to the halogen atom.
Collapse
Affiliation(s)
- M W LaCount
- Departments of Chemistry and Biochemistry and Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Gardner AM, Martin LA, Gardner PR, Dou Y, Olson JS. Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis. J Biol Chem 2000; 275:12581-9. [PMID: 10777548 DOI: 10.1074/jbc.275.17.12581] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli expresses an inducible flavohemoglobin possessing robust NO dioxygenase activity. At 37 degrees C, the enzyme shows a maximal turnover number (V(max)) of 670 s(-1) and K(m) values for NADH, NO, and O(2) equal to 4.8, 0.28, and approximately 100 microM, respectively. Individual reduction, ligand binding, and NO dioxygenation reactions were examined at 20 degrees C, where V(max) is approximately 94 s(-1). Reduction by NADH occurs in two steps. NADH reduces bound FAD with a rate constant of approximately 15 microM(-1) s(-1), and heme iron is reduced by FADH(2) with a rate constant of 150 s(-1). Dioxygen binds tightly to reduced flavohemoglobin, with association and dissociation rate constants equal to 38 microM(-1) s(-1) and 0.44 s(-1), respectively, and the oxygenated flavohemoglobin dioxygenates NO to form nitrate. NO also binds reversibly to reduced flavohemoglobin in competition with O(2), dissociates slowly, and inhibits NO dioxygenase activity at [NO]/[O(2)] ratios of 1:100. Replacement of the heme pocket B10 tyrosine with phenylalanine increases the O(2) dissociation rate constant approximately 80-fold and reduces NO dioxygenase activity approximately 30-fold, demonstrating the importance of the tyrosine hydroxyl for O(2) affinity and NO scavenging activity. At 37 degrees C, V(max)/K(m)(NO) is 2,400 microM(-1) s(-1), demonstrating that the enzyme is extremely efficient at converting toxic NO into nitrate under physiological conditions.
Collapse
Affiliation(s)
- A M Gardner
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | | | |
Collapse
|
74
|
|