51
|
Kim HJ, Seo EH, Bae DH, Haam K, Jang HR, Park JL, Kim JH, Kim M, Kim SY, Jeong HY, Song KS, Kim YS. Methylation of the CDX2 promoter in Helicobacter pylori-infected gastric mucosa increases with age and its rapid demethylation in gastric tumors is associated with upregulated gene expression. Carcinogenesis 2021; 41:1341-1352. [PMID: 32706861 DOI: 10.1093/carcin/bgaa083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pathological changes in the epigenetic landscape of chromatin are hallmarks of cancer. The caudal-type homeobox gene CDX2 is not expressed in normal gastric epithelia but rather in adult intestinal epithelia, and it is overexpressed in intestinal metaplasia (IM). However, it remains unclear how CDX2 transcription is suppressed in normal gastric epithelial cells and overexpressed in IM. Here, we demonstrate that methylation of the CDX2 promoter increases with age in Helicobacter pylori-positive, noncancerous gastric tissue, whereas the promoter is demethylated in paired gastric tumors in which CDX2 is upregulated. Moreover, we also found that the CDX2 promoter is demethylated in IM as well as gastric tumor. Immunohistochemistry revealed that CDX2 is present in foci of parts of the gastric mucosae but highly expressed in IM as well as in gastric tumors, suggesting that the elevated level of CDX2 in IM and gastric tumors may be attributable to promoter demethylation. Our data suggest that CDX2 repression may be associated with promoter methylation in noncancerous H. pylori-positive mucosa but its upregulation might be attributable to increased promoter activity mediated by chromatin remodeling during gastric carcinogenesis.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Hye Seo
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Hyuck Bae
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Keeok Haam
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hay-Ran Jang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Hyun-Yong Jeong
- Department of Internal Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
52
|
Shi J, Thakur C, Zhao Y, Li Y, Nie L, Zhang Q, Bi Z, Fu Y, Wadgaonkar P, Almutairy B, Xu L, Zhang W, Qiu Y, Rice M, Cui H, Chen F. Pathological and Prognostic Indications of the mdig Gene in Human Lung Cancer. Cell Physiol Biochem 2021; 55:13-28. [PMID: 33423409 PMCID: PMC8140388 DOI: 10.33594/000000322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS The mineral-dust-induced gene mdig is a lung-cancer-associated oncogene. The focus of this study is to evaluate the expression status of mdig in lung cancer and to assess its influence in predicting the patient's overall survival. METHODS Using high-density tissue microarrays and clinical samples of synchronous multiple primary lung cancer (SMPLC), we investigated the expression of mdig through immunohistochemistry and utilized the open-access lung cancer patient databases containing genomic and transcriptomic data from the UCSC Xena and TCGA web platforms to determine the prognostic values of mdig expression status among different subtypes of lung cancer. RESULTS mdig is upregulated in smokers and in lung squamous cell carcinoma. High mdig expression predicted poor overall survival in lung squamous cell carcinoma and female smokers. Among tumor tissues from SMPLC patients, we not only unraveled the highest positive rate of mdig expression, but also revealed a unique cytoplasmic, rather than nuclear localization of mdig protein. Furthermore, by inspecting some pathological but not cancerous lung tissues, we believe that mdig is required for the transformation of non-cancerous lung cells to the fully-fledged cancer cells. CONCLUSION These data suggested that mdig is involved in various stages of lung carcinogenesis, possibly through the epigenetic regulation on some critical cancer-associated genes, and increased mdig expression is an important prognostic factor for some types of lung cancer.
Collapse
Affiliation(s)
- Junwei Shi
- The First Geriatric Hospital of Nantong, and Nantong Pulmonary Hospital, Nantong, China
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,
| | - Yuzu Zhao
- Engineering Research Center for Cancer Biomedical and Translational Medicine, State Key Laboratory of Silkworm Biology, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Yongsen Li
- Engineering Research Center for Cancer Biomedical and Translational Medicine, State Key Laboratory of Silkworm Biology, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lishen Nie
- The First Geriatric Hospital of Nantong, and Nantong Pulmonary Hospital, Nantong, China
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxuan Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yiran Qiu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - M'kya Rice
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hongjuan Cui
- Engineering Research Center for Cancer Biomedical and Translational Medicine, State Key Laboratory of Silkworm Biology, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
53
|
Pettini F, Visibelli A, Cicaloni V, Iovinelli D, Spiga O. Multi-Omics Model Applied to Cancer Genetics. Int J Mol Sci 2021; 22:ijms22115751. [PMID: 34072237 PMCID: PMC8199287 DOI: 10.3390/ijms22115751] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
In this review, we focus on bioinformatic oncology as an integrative discipline that incorporates knowledge from the mathematical, physical, and computational fields to further the biomedical understanding of cancer. Before providing a deeper insight into the bioinformatics approach and utilities involved in oncology, we must understand what is a system biology framework and the genetic connection, because of the high heterogenicity of the backgrounds of people approaching precision medicine. In fact, it is essential to providing general theoretical information on genomics, epigenomics, and transcriptomics to understand the phases of multi-omics approach. We consider how to create a multi-omics model. In the last section, we describe the new frontiers and future perspectives of this field.
Collapse
Affiliation(s)
- Francesco Pettini
- Department of Medical Biotechnology, University of Siena, Via M. Bracci 2, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-3755461426
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.V.); (D.I.); (O.S.)
| | - Vittoria Cicaloni
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy;
| | - Daniele Iovinelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.V.); (D.I.); (O.S.)
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.V.); (D.I.); (O.S.)
| |
Collapse
|
54
|
Li Y, Li F, Bai X, Li Y, Ni C, Zhao X, Zhang D. ITGA3 Is Associated With Immune Cell Infiltration and Serves as a Favorable Prognostic Biomarker for Breast Cancer. Front Oncol 2021; 11:658547. [PMID: 34094951 PMCID: PMC8172804 DOI: 10.3389/fonc.2021.658547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background ITGA3 is a member of the integrin family, a cell surface adhesion molecule that can interact with extracellular matrix (ECM) proteins. The purpose of this study was to explore the significance of ITGA3 expression in the prognosis and clinical diagnosis of breast cancer patients. Methods Oncomine, the Human Protein Atlas (HPA) and UALCAN were used to analyze the expression of ITGA3 in various cancers. PrognoScan, GEPIA, Kaplan–Meier plotter and Easysurv were utilized to analyze the prognosis of ITGA3 in certain cancers. Based on TCGA data, a receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of ITGA3 expression. cBio-Portal and MethSurv were used to evaluate the genomic mechanism. LinkedOmics, NetworkAnalyst and Metascape were used to build the signaling network. TIMER is a web server for comprehensive analysis of tumor infiltrating immune cells and tumor infiltrating lymphocytes (TILs). Results The expression of ITGA3 in normal breast tissues was greater than that in breast cancer tissues at both the mRNA and protein levels. High expression of ITGA3 was associated with better prognosis of breast cancer patients. ROC analysis indicated that ITGA3 had significant diagnostic value. Genomic analysis revealed that promoter methylation of ITGA3 leads to transcriptional silencing, which may be one of the mechanisms underlying ITGA3 downregulation in BRCA. Immune infiltration analysis showed that ITGA3 may be involved in the recruitment of immune cells. Conclusions This study identified ITGA3 as a novel biomarker to estimate the diagnosis and prognosis of breast cancer. In addition, ITGA3 is involved in ECM regulation and immune cell infiltration.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
55
|
Yalcin D, Otu HH. An Unbiased Predictive Model to Detect DNA Methylation Propensity of CpG Islands in the Human Genome. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200724145835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Epigenetic repression mechanisms play an important role in gene
regulation, specifically in cancer development. In many cases, a CpG island’s (CGI) susceptibility
or resistance to methylation is shown to be contributed by local DNA sequence features.
Objective:
To develop unbiased machine learning models–individually and combined for different
biological features–that predict the methylation propensity of a CGI.
Methods:
We developed our model consisting of CGI sequence features on a dataset of 75
sequences (28 prone, 47 resistant) representing a genome-wide methylation structure. We tested
our model on two independent datasets that are chromosome (132 sequences) and disease (70
sequences) specific.
Results:
We provided improvements in prediction accuracy over previous models. Our results
indicate that combined features better predict the methylation propensity of a CGI (area under the
curve (AUC) ~0.81). Our global methylation classifier performs well on independent datasets
reaching an AUC of ~0.82 for the complete model and an AUC of ~0.88 for the model using select
sequences that better represent their classes in the training set. We report certain de novo motifs
and transcription factor binding site (TFBS) motifs that are consistently better in separating prone
and resistant CGIs.
Conclusion:
Predictive models for the methylation propensity of CGIs lead to a better
understanding of disease mechanisms and can be used to classify genes based on their tendency to
contain methylation prone CGIs, which may lead to preventative treatment strategies. MATLAB®
and Python™ scripts used for model building, prediction, and downstream analyses are available
at https://github.com/dicleyalcin/methylProp_predictor.
Collapse
Affiliation(s)
- Dicle Yalcin
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| |
Collapse
|
56
|
Shekhawat J, Gauba K, Gupta S, Choudhury B, Purohit P, Sharma P, Banerjee M. Ten-eleven translocase: key regulator of the methylation landscape in cancer. J Cancer Res Clin Oncol 2021; 147:1869-1879. [PMID: 33913031 DOI: 10.1007/s00432-021-03641-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Methylation of 5th residue of cytosine in CpG island forms 5-methylcytosine which is stable, heritable epigenetic mark. Methylation levels are broadly governed by methyltransferases and demethylases. An aberration in the demethylation process contributes to the silencing of gene expression. Ten eleven translocation (TET) dioxygenase (1-3) the de novo demethylase is responsible for conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosisne (5-fC) and 5-carboxycytosine (5-caC) during demethylation process. Mutations and abnormal expression of TET proteins contribute to carcinogenesis. Discovery of TET proteins has offered various pathways for the reversal of methylation levels thus, enhancing our knowledge as to how methylation effects cancer progression. METHODS We searched "PubMed" and "Google scholar" databases and selected studies with the following keywords "TET enzyme", "cancer", "5-hmC", and "DNA demethylation". In this review, we have discussed combinatorial use of vitamin C in inhibiting tumour growth by enhancing the catalytic activity of TET enzymes and consequently, increasing the 5-hmC levels. 5-Hydroxymethylcytosine holds promise as a prognostic biomarker in solid cancers. The contribution of induction and suppression of TET enzymes and 5-hmC carcinogenesis are discussed in haematological and solid cancers. RESULTS We found that TET enzymes play central role in maintaining the methylation balance. Any anomaly in their expression may dip the balance towards cancer progression. Low levels of TET enzymes and 5-hmC correlate with tumour invasion, progression and metastasis. Also, use of vitamin C enhances TET activity. CONCLUSION TET enzymes play vital role in shaping the methylation landscape in body. 5-hmC can be used as prognostic marker in solid cancers.
Collapse
Affiliation(s)
- Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Bikram Choudhury
- Department of E.N.T.-Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
57
|
Wang YH, Chang SC, Ansar M, Hung CS, Lin RK. Eps15 Homology Domain-Containing Protein 3 Hypermethylation as a Prognostic and Predictive Marker for Colorectal Cancer. Biomedicines 2021; 9:biomedicines9050453. [PMID: 33922189 PMCID: PMC8145505 DOI: 10.3390/biomedicines9050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) arises from chromosomal instability, resulting from aberrant hypermethylation in tumor suppressor genes. This study identified hypermethylated genes in CRC and investigated how they affect clinical outcomes. Methylation levels of specific genes were analyzed from The Cancer Genome Atlas dataset and 20 breast cancer, 16 esophageal cancer, 33 lung cancer, 15 uterine cancer, 504 CRC, and 9 colon polyp tissues and 102 CRC plasma samples from a Taiwanese cohort. In the Asian cohort, Eps15 homology domain-containing protein 3 (EHD3) had twofold higher methylation in 44.4% of patients with colonic polyps, 37.3% of plasma from CRC patients, and 72.6% of CRC tissues, which was connected to vascular invasion and high microsatellite instability. Furthermore, EHD3 hypermethylation was detected in other gastrointestinal cancers. In the Asian CRC cohort, low EHD3 mRNA expression was found in 45.1% of patients and was connected to lymph node metastasis. Multivariate Cox proportional-hazards survival analysis revealed that hypermethylation in women and low mRNA expression were associated with overall survival. In the Western CRC cohort, EHD3 hypermethylation was also connected to overall survival and lower chemotherapy and antimetabolite response rates. In conclusion, EHD3 hypermethylation contributes to the development of CRC in both Asian and Western populations.
Collapse
Affiliation(s)
- Yu-Han Wang
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan;
| | - Shih-Ching Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Ruo-Kai Lin
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei 11031, Taiwan
- Clinical Trial Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
58
|
Liu W, Jiang K, Wang J, Mei T, Zhao M, Huang D. Upregulation of GNPNAT1 Predicts Poor Prognosis and Correlates With Immune Infiltration in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:605754. [PMID: 33842535 PMCID: PMC8027087 DOI: 10.3389/fmolb.2021.605754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glucosamine 6-phosphate N-acetyltransferase (GNPNAT1) is a key enzyme in the hexosamine biosynthetic pathway (HBP), which functions as promoting proliferation in some tumors, yet its potential biological function and mechanism in lung adenocarcinoma (LUAD) have not been explored. METHODS The mRNA differential expression of GNPNAT1 in LUAD and normal tissues was analyzed using the Cancer Genome Atlas (TCGA) database and validated by real-time PCR. The clinical value of GNPNAT1 in LUAD was investigated based on the data from the TCGA database. Then, immunohistochemistry (IHC) of GNPNAT1 was applied to verify the expression and clinical significance in LUAD from the protein level. The relationship between GNPNAT1 and epigenetics was explored using the cBioPortal database, and the miRNAs regulating GNPNAT1 were found using the miRNA database. The association between GNPNAT1 expression and tumor-infiltrating immune cells in LUAD was observed through the Tumor IMmune Estimation Resource (TIMER). Finally, Gene set enrichment analysis (GSEA) was used to explore the biological signaling pathways involved in GNPNAT1 in LUAD. RESULTS GNPNAT1 was upregulated in LUAD compared with normal tissues, which was verified through qRT-PCR in different cell lines (P < 0.05), and associated with patients' clinical stage, tumor size, and lymphatic metastasis status (all P < 0.01). Kaplan-Meier (KM) analysis suggested that patients with upregulated GNPNAT1 had a relatively poor prognosis (P < 0.0001). Furthermore, multivariate Cox regression analysis indicated that GNPNAT1 was an independent prognostic factor for LUAD (OS, TCGA dataset: HR = 1.028, 95% CI: 1.013-1.044, P < 0.001; OS, validation set: HR = 1.313, 95% CI: 1.130-1.526, P < 0.001). GNPNAT1 overexpression was correlated with DNA copy amplification (P < 0.0001), low DNA methylation (R = -0.52, P < 0.0001), and downregulation of hsa-miR-30d-3p (R = -0.17, P < 0.001). GNPNAT1 expression was linked to B cells (R = -0.304, P < 0.0001), CD4+T cells (R = -0.218, P < 0.0001), and dendritic cells (R = -0.137, P = 0.002). Eventually, GSEA showed that the signaling pathways of the cell cycle, ubiquitin-mediated proteolysis, mismatch repair and p53 were enriched in the GNPNAT1 overexpression group. CONCLUSION GNPNAT1 may be a potential prognostic biomarker and novel target for intervention in LUAD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
59
|
Evaluation of Methylation Profiles of An Epidermal Growth Factor Receptor Gene in a Head and Neck Squamous Cell Carcinoma Patient Group. Balkan J Med Genet 2021; 23:65-72. [PMID: 33816074 PMCID: PMC8009575 DOI: 10.2478/bjmg-2020-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upregulation of the epidermal growth factor receptor (EGFR) gene has shown an important impact on the development of head and neck cancers due to its important regulation role on multiple cell signaling pathways. The aim of this study was to investigate the methylation pattern of the promoter region of the EGFR gene between head and neck squamous cell carcinoma (HNSCC) patients and a control group. Forty-seven unrelated HNSCC patients, clinically diagnosed at the Department of Otorhinolaryngology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey, and 48 unrelated healthy volunteers from different geographic regions of Turkey, were included in this study. Methylation status of the promoter region of the EGFR gene was detected by methylation-specific-polymerase chain reaction (MS-PCR). The correlation between EGFR gene promoter methylation profiles and clinical characteristics were examined using the χ2 test. Methylation was observed in 79.0% of HNSCC patients, whereas this ratio was 90.0% in healthy individuals. The results show that promoter region methylation of the EGFR gene was not associated with HNSCC development in the studied Turkish patient group. In addition, the methylation status of the EGFR gene promoter was not found to be related to age, gender or tumor stage.
Collapse
|
60
|
Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood 2021; 136:674-683. [PMID: 32285126 DOI: 10.1182/blood.2019004143] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
This phase 2 study was designed to compare systemic decitabine exposure, demethylation activity, and safety in the first 2 cycles with cedazuridine 100 mg/decitabine 35 mg vs standard decitabine 20 mg/m2 IV. Adults with International Prognostic Scoring System intermediate-1/2- or high-risk myelodysplastic syndromes (MDS) or chronic myelomonocytic leukemia (CMML) were randomized 1:1 to receive oral cedazuridine/decitabine or IV decitabine in cycle 1, followed by crossover to the other treatment in cycle 2. All patients received oral cedazuridine/decitabine in subsequent cycles. Cedazuridine and decitabine were given initially as separate capsules in a dose-confirmation stage and then as a single fixed-dose combination (FDC) tablet. Primary end points: mean decitabine systemic exposure (geometric least-squares mean [LSM]) of oral/IV 5-day area under curve from time 0 to last measurable concentration (AUClast), percentage long interspersed nuclear element 1 (LINE-1) DNA demethylation for oral cedazuridine/decitabine vs IV decitabine, and clinical response. Eighty patients were randomized and treated. Oral/IV ratios of geometric LSM 5-day AUClast (80% confidence interval) were 93.5% (82.1-106.5) and 97.6% (80.5-118.3) for the dose-confirmation and FDC stages, respectively. Differences in mean %LINE-1 demethylation between oral and IV were ≤1%. Clinical responses were observed in 48 patients (60%), including 17 (21%) with complete response. The most common grade ≥3 adverse events regardless of causality were neutropenia (46%), thrombocytopenia (38%), and febrile neutropenia (29%). Oral cedazuridine/decitabine (100/35 mg) produced similar systemic decitabine exposure, DNA demethylation, and safety vs decitabine 20 mg/m2 IV in the first 2 cycles, with similar efficacy. This study is registered at www.clinicaltrials.gov as #NCT02103478.
Collapse
|
61
|
Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021; 83:570-583. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India.
| | - Saurabh Singh
- Novartis Healthcare Pvt Ltd., Hyderabad 500032, Telangana, India.
| |
Collapse
|
62
|
Li CC, Chen HY, Dong YH, Luo X, Hu J, Zhang CY. Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
63
|
Gray JS, Campbell MJ. Challenges and Opportunities of Genomic Approaches in Therapeutics Development. Methods Mol Biol 2021; 2194:107-126. [PMID: 32926364 DOI: 10.1007/978-1-0716-0849-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The magnitude of all therapeutic responses is significantly determined by genome structure, variation, and functional interactions. This determination occurs at many levels which are discussed in the current review. Well-established examples of structural variation between individuals are known to dictate an individual's response to numerous drugs, as clearly illustrated by warfarin. The exponential rate of genomic-based interrogation is coupled with an expanding repertoire of genomic technologies and applications. This is leading to an ever more sophisticated appreciation of how structural variation, regulation of transcription and genomic structure, both individually and collectively, define cell therapeutic responses.
Collapse
Affiliation(s)
- Jaimie S Gray
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
64
|
Castro-Piedras I, Vartak D, Sharma M, Pandey S, Casas L, Molehin D, Rasha F, Fokar M, Nichols J, Almodovar S, Rahman RL, Pruitt K. Identification of Novel MeCP2 Cancer-Associated Target Genes and Post-Translational Modifications. Front Oncol 2020; 10:576362. [PMID: 33363010 PMCID: PMC7758440 DOI: 10.3389/fonc.2020.576362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Vartak
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Somnath Pandey
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Laura Casas
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
65
|
Li S, Wang L, Zhao Q, Wang Z, Lu S, Kang Y, Jin G, Tian J. Genome-Wide Analysis of Cell-Free DNA Methylation Profiling for the Early Diagnosis of Pancreatic Cancer. Front Genet 2020; 11:596078. [PMID: 33424927 PMCID: PMC7794002 DOI: 10.3389/fgene.2020.596078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most malicious cancers, pancreatic cancer is difficult to treat due to the lack of effective early diagnosis. Therefore, it is urgent to find reliable diagnostic and predictive markers for the early detection of pancreatic cancer. In recent years, the detection of circulating cell-free DNA (cfDNA) methylation in plasma has attracted global attention for non-invasive and early cancer diagnosis. Here, we carried out a genome-wide cfDNA methylation profiling study of pancreatic ductal adenocarcinoma (PDAC) patients by methylated DNA immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq). Compared with healthy individuals, 775 differentially methylated regions (DMRs) located in promoter regions were identified in PDAC patients with 761 hypermethylated and 14 hypomethylated regions; meanwhile, 761 DMRs in CpG islands (CGIs) were identified in PDAC patients with 734 hypermethylated and 27 hypomethylated regions (p-value < 0.0001). Then, 143 hypermethylated DMRs were further selected which were located in promoter regions and completely overlapped with CGIs. After performing the least absolute shrinkage and selection operator (LASSO) method, a total of eight markers were found to fairly distinguish PDAC patients from healthy individuals, including TRIM73, FAM150A, EPB41L3, SIX3, MIR663, MAPT, LOC100128977, and LOC100130148. In conclusion, this work identified a set of eight differentially methylated markers that may be potentially applied in non-invasive diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Shengyue Li
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Lei Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihao Wang
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Shuxian Lu
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jing Tian
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
66
|
Pisanic TR, Wang Y, Sun H, Considine M, Li L, Wang TH, Wang TL, Shih IM. Methylomic Landscapes of Ovarian Cancer Precursor Lesions. Clin Cancer Res 2020; 26:6310-6320. [PMID: 32817081 PMCID: PMC7710556 DOI: 10.1158/1078-0432.ccr-20-0270] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The current paradigm in the development of high-grade serous ovarian carcinoma (HGSC) proposes that the majority of HGSCs arise from precursor serous tubal intraepithelial carcinoma (STIC) lesions of the fallopian tube. Here we survey genome-wide methylation in HGSC precursor lesions to identify genomic regions that exhibit high-specificity differential hypermethylation for potential use as biomarkers for detecting STIC and HGSC at stages when curative intervention likely remains feasible. EXPERIMENTAL DESIGN We first identified quality control criteria for performing reliable methylomic analysis of DNA-limited tubal precursor lesions with the Illumina Infinium MethylationEPIC array. We then used this platform to compare genome-wide methylation among 12 STICs with paired adjacent-normal epithelia, one p53 signature lesion and two samples of concurrent HGSC. The resulting methylomic data were analyzed by unsupervised hierarchical clustering and multidimensional analysis. Regions of high-confidence STIC-specific differential hypermethylation were identified using selective bioinformatic criteria and compared with published MethylationEPIC data from 23 HGSC tumors and 11 healthy fallopian tube mucosae. RESULTS Unsupervised analysis showed that STICs largely clustered with HGSCs, but were clearly distinct from adjacent-normal fallopian tube epithelia. Forty-two genomic regions exhibited high-confidence STIC-specific differential hypermethylation, of which 17 (40.5%) directly overlapped with HGSC-specific differentially methylated regions. Methylation at these shared loci was able to completely distinguish STIC and HGSC samples from normal and adjacent-normal specimens. CONCLUSIONS Our results suggest that most STICs are epigenetically similar to HGSCs and share regions of differential hypermethylation that warrant further evaluation for potential use as biomarkers for early detection of ovarian HGSC.See related commentary by Ishak and De Carvalho, p. 6083.
Collapse
Affiliation(s)
- Thomas R Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| | - Yeh Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanru Sun
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Michael Considine
- Department of Biostatistics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lihong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tza-Huei Wang
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
67
|
Zheng D, Bi X, Zhang T, Han C, Ma T, Wang L, Sun M, Cui K, Yang L, Liu L. Epigenetic Alterations of the Promoter Region of the POMC Gene in Adolescent Depressive Disorder Patients with Nonsuicidal Self-injury Behaviors. Psychol Res Behav Manag 2020; 13:997-1008. [PMID: 33235529 PMCID: PMC7678717 DOI: 10.2147/prbm.s272445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The incidence of nonsuicidal self-injury (NSSI) behavior among adolescents increases year by year. Patients with a history of both depression and NSSI behaviors tend to have greater risk of suicide. At present, the mechanism of adolescent depressive disorder patients with NSSI behaviors is not clear, epigenetic mechanism may be involved. Proopiomelanocortin (POMC) gene may be associated with depressive disorder. The purpose of this study was to investigate DNA methylation of POMC gene promoter region of adolescent depressive disorder patients with NSSI behaviors. METHODS Bisulfite Sequencing PCR (BSP) was used to test the methylation level of POMC promoter of 15 adolescent depressive disorder patients with NSSI behaviors and 15 healthy controls (HC). Self-made questionnaires were used to collect clinical data of the case group and control group. Hamilton depression scale-24 (HAMD-24), Hamilton anxiety scale (HAMA), Symptom Checklist-90 (SCL-90) were used to evaluate the characteristics and severity of depressive, anxiety and psychotic symptoms. Adolescent self-injury questionnaire was used to assess NSSI behaviors and its severity. RESULTS BSP analysis found that the POMC methylation level of cytosine-guanine dinucleotide 1 (CpG1) site was higher in the case group than that of HC (P<0.05). The significance in POMC methylation at CpG1 between case group and HC was gender-independent, and CpG1 methylation level was higher in both male (P<0.05) and female (P<0.05) patients than that in HC. The CpG1 methylation level had a little correlation trends with family history of psychosis (P=0.05). We also found that POMC methylation level at CpG17 in female patients was significantly higher than that of the female HC (P<0.05). CONCLUSION There was abnormal methylation in the POMC promoter region of adolescent depressive disorder patients with NSSI behaviors, the methylation of CpG1 may act as epigenetic markers for those adolescents.
Collapse
Affiliation(s)
- Doudou Zheng
- Department of Psychiatry, School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiaojiao Bi
- Department of Psychology, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tianliang Zhang
- Department of Psychiatry, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chao Han
- Department of Psychiatry, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tantan Ma
- Department of Psychiatry, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Lina Wang
- Department of Psychology, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Mengmeng Sun
- Department of Psychiatry, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Kaiyan Cui
- Department of Psychiatry, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Limin Yang
- Department of Psychiatry, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Lanfen Liu
- Department of Psychiatry, Shandong Mental Health Center Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
68
|
Xiao M, Yang X, Yu J, Zhang L. CGIDLA:Developing the Web Server for CpG Island Related Density and LAUPs (Lineage-Associated Underrepresented Permutations) Study. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:2148-2154. [PMID: 31443042 DOI: 10.1109/tcbb.2019.2935971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is well known that CpG island plays an important role in gene methylation. Since CpG island is closely related to human genetic characteristics such as TATA-box, tissue expression specificity, and LAUPs (Lineage-associated Underrepresented Permutations), it is important to investigate the sequence specificity of CpG island as well as the potential genetic characteristics related to CpG island to further understand the methylation related regulation mechanism. Therefore, this study develops such an online service website for CpG island related density and LAUPs analysis (CGIDLA, www.combio-lezhang.online/cgidla/index.html), that not only can investigate the relationship among the CpG island density, TATA-box feature, and expression breadth of human genes, but also deposit LAUPs of 32 representative species to help molecular biologists investigate the relationship between CpG island and LUAPs. Moreover, CGIDLA provides the source code download service and the related LAUPs counting functions.
Collapse
|
69
|
Kojima N, Suda T, Fujii S, Hirano K, Namihira M, Kurita R. Quantitative analysis of global 5-methyl- and 5-hydroxymethylcytosine in TET1 expressed HEK293T cells. Biosens Bioelectron 2020; 167:112472. [PMID: 32763827 DOI: 10.1016/j.bios.2020.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
DNA methylation at the 5-position of cytosine bases (5-methylcytosine, 5mC) in genomic DNA is representative epigenetic modification and is involved in many cellular processes, including gene expression and embryonic development. The hydroxylation of 5mC provide 5-hydroxymethylcytosine (5hmC), the so-called sixth base rediscovered recently in mammalian cells, is also considered to act as an epigenetic regulator. We report herein the immunochemical assessment of 5hmC achieved by an enzyme-linked immunosorbent assay (ELISA) using our linker technology. The keys to this assay are 1) the immobilization of genomic DNA with the bifunctional linker molecule, and 2) quantitative analysis by using guaranteed standard samples containing defined amounts of 5hmC. We succeeded in the sensitive and quantitative detection of 5hmC as well as 5mC in HEK293T cells transfected with TET1, and also monitored the effect of ascorbate on the TET1 catalyzed conversion of 5mC to 5hmC. Our linker technology enables the rapid and stable immobilization of genomic samples and thus contributes to the realization of a reproducible 5hmC evaluation method.
Collapse
Affiliation(s)
- Naoshi Kojima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomomi Suda
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinichiro Fujii
- National Metrology Institute of Japan (NMIJ), AIST, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Kazumi Hirano
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Ryoji Kurita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
70
|
Chen D, Yan Y, Xie J, Pan J, Chen Y, Li Q, Yuan Y, Zeng W, Xing W. Amide-type local anesthetics may suppress tumor cell proliferation and sensitize Human Hepatocellular Carcinoma Cells to Cisplatin via upregulation of RASSF1A expression and demethylation. J Cancer 2020; 11:7312-7319. [PMID: 33193895 PMCID: PMC7646167 DOI: 10.7150/jca.46630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background: It has been reported that local anesthetics are toxic to various types of cells. Furthermore, several local anesthetics have been confirmed to exert demethylation effects and regulate the proliferation of human cancer cells. Our previous findings suggest that lidocaine may exert potential antitumor activity and enhance the sensitivity of cisplatin to hepatocellular carcinoma in vitro and in vivo. A recent study proved that lidocaine sensitizes breast cancer cells to cisplatin via upregulation of RASSF1A, a promotor of tumor suppressive gene (TSG) demethylation. We sought to determine whether amide-type local anesthetics (lidocaine, ropivacaine and bupivacaine) exert growth-inhibitory effects on human hepatoma cells and to determine whether amide-type local anesthetics sensitize human hepatoma cells to cisplatin-mediated cytotoxicity via upregulation of RASSF1A expression. Methods: Human hepatoma cell lines HepG2 and BEL-7402 were incubated with lidocaine, ropivacaine and bupivacaine. The viability of local anesthetic-treated cells with or without cisplatin was investigated. Further, we evaluated RASSF1A expression after treatment of HepG2 and BEL-7402 cells with three local anesthetics and determined the influence of RASSF1A expression on the toxicity of cisplatin to these cells. Results: The viability of HepG2 and BEL-7402 cells was significantly decreased by treatment with amide-type local anesthetics (lidocaine, ropivacaine and bupivacaine). In these cells, the combination treatment with cisplatin and local anesthetics exhibited a stronger reduction in viability. Lidocaine, ropivacaine and bupivacaine promoted a significant increase in RASSF1A expression and a decrease in RASSF1A methylation. The combined treatment with both local anesthetics and cisplatin resulted in a significantly lower level of HepG2 and BEL-7402 cell viability than that with singular local anesthetics or cisplatin treatment. Moreover, local anesthetics enhanced the cytotoxicity of cisplatin against HepG2 and BEL-7402 cells, accompanied by an increase in RASSF1A expression. Conclusions: These data indicated that amide-type local anesthetics (lidocaine, ropivacaine and bupivacaine) have growth-inhibitory and demethylation effects in human hepatoma cells. We also found that these amide local anesthetics may enhance the cytotoxicity of cisplatin in human hepatocellular carcinoma cells possibly via upregulation of RASSF1A expression and demethylation.
Collapse
Affiliation(s)
- Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yan Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Anesthesiology, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jiahao Pan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yonghua Chen
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yunfei Yuan
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
71
|
Sill M, Plass C, Pfister SM, Lipka DB. Molecular tumor classification using DNA methylome analysis. Hum Mol Genet 2020; 29:R205-R213. [PMID: 32657331 DOI: 10.1093/hmg/ddaa147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor classifiers based on molecular patterns promise to define and reliably classify tumor entities. The high tissue- and cell type-specificity of DNA methylation, as well as its high stability, makes DNA methylation an ideal choice for the development of tumor classifiers. Herein, we review existing tumor classifiers using DNA methylome analysis and will provide an overview on their emerging impact on cancer classification, the detection of novel cancer subentities and patient stratification with a focus on brain tumors, sarcomas and hematopoietic malignancies. Furthermore, we provide an outlook on the enormous potential of DNA methylome analysis to complement classical histopathological and genetic diagnostics, including the emerging field of epigenomic analysis in liquid biopsies.
Collapse
Affiliation(s)
- Martin Sill
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniel B Lipka
- Division of Translational Medical Oncology, Section Translational Cancer Epigenomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
72
|
Li S, Tollefsbol TO. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2020; 187:28-43. [PMID: 33039572 DOI: 10.1016/j.ymeth.2020.10.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation provides a pivotal layer of epigenetic regulation in eukaryotes that has significant involvement for numerous biological processes in health and disease. The function of methylation of cytosine bases in DNA was originally proposed as a "silencing" epigenetic marker and focused on promoter regions of genes for decades. Improved technologies and accumulating studies have been extending our understanding of the roles of DNA methylation to various genomic contexts including gene bodies, repeat sequences and transcriptional start sites. The demand for comprehensively describing DNA methylation patterns spawns a diversity of DNA methylation profiling technologies that target its genomic distribution. These approaches have enabled the measurement of cytosine methylation from specific loci at restricted regions to single-base-pair resolution on a genome-scale level. In this review, we discuss the different DNA methylation analysis technologies primarily based on the initial treatments of DNA samples: bisulfite conversion, endonuclease digestion and affinity enrichment, involving methodology evolution, principles, applications, and their relative merits. This review may offer referable information for the selection of various platforms for genome-wide analysis of DNA methylation.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
73
|
Shih IM, Wang Y, Wang TL. The Origin of Ovarian Cancer Species and Precancerous Landscape. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:26-39. [PMID: 33011111 DOI: 10.1016/j.ajpath.2020.09.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Unlike other human cancers, in which all primary tumors arise de novo, ovarian epithelial cancers are primarily imported from either endometrial or fallopian tube epithelium. The prevailing paradigm in the genesis of high-grade serous carcinoma (HGSC), the most common ovarian cancer, posits to its development in fallopian tubes through stepwise tumor progression. Recent progress has been made not only in gathering terabytes of omics data but also in detailing the histologic-molecular correlations required for looking into, and making sense of, the tissue origin of HGSC. This emerging paradigm is changing many facets of ovarian cancer research and routine gynecology practice. The precancerous landscape in fallopian tubes contains multiple concurrent precursor lesions, including serous tubal intraepithelial carcinoma (STIC), with genetic heterogeneity providing a platform for HGSC evolution. Mathematical models imply that a prolonged time (decades) elapses from the development of a TP53 mutation, the earliest known molecular alteration, to an STIC, followed by a shorter span (6 years) for progression to an HGSC. Genetic predisposition accelerates the trajectory. This timeline may allow for the early diagnosis of HGSC and STIC, followed by intent-to-cure surgery. This review discusses the recent advances in this tubal paradigm and its biological and clinical implications, alongside the promise and challenge of studying STIC and other precancerous lesions of HGSC.
Collapse
Affiliation(s)
- Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Yeh Wang
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
74
|
Abstract
Cell-free DNA (cfDNA) has the potential to enable non-invasive detection of disease states and progression. Beyond its sequence, cfDNA also represents the nucleosomal landscape of cell(s)-of-origin and captures the dynamics of the epigenome. In this review, we highlight the emergence of cfDNA epigenomic methods that assess disease beyond the scope of mutant tumour genotyping. Detection of tumour mutations is the gold standard for sequencing methods in clinical oncology. However, limitations inherent to mutation targeting in cfDNA, and the possibilities of uncovering molecular mechanisms underlying disease, have made epigenomics of cfDNA an exciting alternative. We discuss the epigenomic information revealed by cfDNA, and how epigenomic methods exploit cfDNA to detect and characterize cancer. Future applications of cfDNA epigenomic methods to act complementarily and orthogonally to current clinical practices has the potential to transform cancer management and improve cancer patient outcomes.
Collapse
Affiliation(s)
| | | | - Srinivas Ramachandran
- RNA Bioscience Initiative, and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Mail Stop: 8101, 12801 East 17th Avenue L18–9102, Aurora, CO 80045, USA
| |
Collapse
|
75
|
May S, Parry C, Parry L. Berry chemoprevention: Do berries decrease the window of opportunity for tumorigenesis. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Stephanie May
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| | - Connor Parry
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| | - Lee Parry
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| |
Collapse
|
76
|
Damgacioglu H, Celik E, Celik N. Intra-Cluster Distance Minimization in DNA Methylation Analysis Using an Advanced Tabu-Based Iterative k-Medoids Clustering Algorithm (T-CLUST). IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1241-1252. [PMID: 30530337 DOI: 10.1109/tcbb.2018.2886006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in DNA methylation profiling have paved the way for understanding the underlying epigenetic mechanisms of various diseases such as cancer. While conventional distance-based clustering algorithms (e.g., hierarchical and k-means clustering) have been heavily used in such profiling owing to their speed in conduct of high-throughput analysis, these methods commonly converge to suboptimal solutions and/or trivial clusters due to their greedy search nature. Hence, methodologies are needed to improve the quality of clusters formed by these algorithms without sacrificing from their speed. In this study, we introduce three related algorithms for a complete high-throughput methylation analysis: a variance-based dimension reduction algorithm to handle high-dimensionality in data, an outlier detection algorithm to identify the outliers of data, and an advanced Tabu-based iterative k-medoids clustering algorithm (T-CLUST) to reduce the impact of initial solutions on the performance of conventional k-medoids algorithm. The performance of the proposed algorithms is demonstrated on nine different real DNA methylation datasets obtained from the Gene Expression Omnibus DataSets database. The accuracy of the cluster identification obtained by our proposed algorithms is higher than those of hierarchical and k-means clustering, as well as the conventional methods. The algorithms are implemented in MATLAB, and available at: http://www.coe.miami.edu/simlab/tclust.html.
Collapse
|
77
|
Yang J, Li H, Hu S, Zhou Y. ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: implication for COVID-19. Aging (Albany NY) 2020; 12:6518-6535. [PMID: 32339157 PMCID: PMC7202533 DOI: 10.18632/aging.103100] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/04/2020] [Indexed: 04/11/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a member of the renin-angiotension system, however, the correlation between ACE2 and prognosis in UCEC (Uterine Corpus Endometrial Carcinoma) and KIRP (Kidney Renal Papillary Cell Carcinoma) is not clear. We analyzed the expression levels of ACE2 in the Oncomine and TIMER databases, the correlation between ACE2 and overall survival in the PrognoScan, GEPIA and Kaplan-Meier plotter databases. The correlation between ACE2 and immune infiltration level and the type markers of immune cells was investigated in TIMER database. A prognosis analysis based on the expression levels of ACE2 was further performed in related immune cells subgroup. The ACE2 promoter methylation profile was tested in the UALCAN database. In addition, we used GSE30589 and GSE52920 databases to elucidate the changes of ACE2 expression in vivo and in vitro after SARS-CoV infection. ACE2 was elevated in UCEC and KIRP, and high ACE2 had a favorable prognosis. The expression of ACE2 was positively correlated with the level of immune infiltration of macrophage in KIRP, B cell, CD4+T cell, neutrophil and dendritic cell immune infiltration levels in UCEC. ACE2 was significantly positively correlated with the type markers of B cells and neutrophils, macrophages in UCEC, while ACE2 in KIRP was positively correlated with the type markers of macrophages. High ACE2 expression level had a favorable prognosis in different enriched immune cells subgroups in UCEC and KIRP. And the promoter methylation levels of ACE2 in UCEC and KIRP were significantly reduced. What's more, we found that the expression of ACE2 decreased in vivo and in vitro after SARS-CoV infection. In conclusion, ACE2 expression increased significantly in UCEC and KIRP, elevated ACE2 was positively correlated with immune infiltration and prognosis. Moreover, tumor tissues may be more susceptible to SARS-CoV-2 infection in COVID-19 patients with UCEC and KIRP, which may worsen the prognosis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shengda Hu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yafeng Zhou
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
78
|
He Z, Wang F, Zhang W, Ding J, Ni S. Comprehensive and integrative analysis identifies COX7A1 as a critical methylation-driven gene in breast invasive carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:682. [PMID: 31930083 DOI: 10.21037/atm.2019.11.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Aberrant DNA methylation plays a crucial part in cancer progression through the silencing of gene expression. The purpose of this article was to investigate the DNA methylation-driven genes in breast invasive carcinoma (BRCA) by using integrated bioinformatics analysis and in vitro experiments. Methods The methylation and expression profile data of BRCA patients were downloaded from the TCGA database. Besides, the MethylMix algorithm was performed to distinguish differentially methylation-driven genes. Moreover, methylation-specific PCR was used to test the methylation-driven genes. Results A total of 218 differentially expressed methylation-driven genes were obtained. Then, four of these genes were applied to establish a prognostic risk model. Moreover, we found that hypermethylation was in the CpG islands of the promoter of COX7A1 gene in BRCA tissues. Furthermore, we found that COX7A1 was significantly down-regulated BRCA tissues and the COX7A1 expression level was markedly increased in BRCA cells after 5-Aza-dC treatment. Conclusions Our study reveals that aberrant promoter hypermethylation is critical for COX7A1 gene silencing in BRCA and that COX7A1 emerge as a new biomarker and therapeutic target for BRCA.
Collapse
Affiliation(s)
- Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wei Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jinhua Ding
- Department of Breast and Thyroid Surgery, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo 315000, China
| | - Sujie Ni
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
79
|
|
80
|
Tzelepi V, Logotheti S, Efstathiou E, Troncoso P, Aparicio A, Sakellakis M, Hoang A, Perimenis P, Melachrinou M, Logothetis C, Zolota V. Epigenetics and prostate cancer: defining the timing of DNA methyltransferase deregulation during prostate cancer progression. Pathology 2019; 52:218-227. [PMID: 31864524 DOI: 10.1016/j.pathol.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023]
Abstract
DNA methyltransferases (DNMTs) regulate gene expression by methylating cytosine residues within CpG dinucleotides. Aberrant methylation patterns have been shown in a variety of human tumours including prostate cancer. However, the expression of DNMTs in clinical samples across the spectrum of prostate cancer progression has not been studied before. Tissue microarrays were constructed from the prostatectomy specimens of 309 patients across the spectrum of prostate cancer progression: hormone-naïve low-grade prostate cancer (n=49), hormone-naïve high-grade prostate cancer (n=151), hormonally treated high-grade prostate cancer (n=65), and castrate-resistant prostate cancer (CRPC) including neuroendocrine carcinoma (n=44). Adjacent non-neoplastic parenchyma was also available in 100 patients. In 71 patients with high-grade carcinoma and lymph node metastasis, tissue from the metastasis was also available for analysis. Immunohistochemical staining was performed with antibodies against DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L. Our results showed that DNMT1 and DNMT3L were upregulated early in prostate cancer progression, whereas DNMT2 was upregulated as a response to androgen ablation. DNMT1, DNMT3A, and DNMT3B were higher in the late stages of prostate cancer progression, i.e., the emergence of castrate resistance and androgen-independent growth. Lastly, DNMT1, DNMT2, and DNMT3L were upregulated in lymph node metastases compared to primary carcinomas. Our results highlight a cascade of epigenetic events in prostate cancer progression.
Collapse
Affiliation(s)
- Vasiliki Tzelepi
- Department of Pathology, Medical School, University of Patras, Greece.
| | - Souzana Logotheti
- Department of Pathology, Medical School, University of Patras, Greece
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Minas Sakellakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Anh Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Petros Perimenis
- Department of Urology, Medical School, University of Patras, Greece
| | - Maria Melachrinou
- Department of Pathology, Medical School, University of Patras, Greece
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Vasiliki Zolota
- Department of Pathology, Medical School, University of Patras, Greece
| |
Collapse
|
81
|
Zhang L, Meng X, Pan C, Qu F, Gan W, Xiang Z, Han X, Li D. piR-31470 epigenetically suppresses the expression of glutathione S-transferase pi 1 in prostate cancer via DNA methylation. Cell Signal 2019; 67:109501. [PMID: 31837464 DOI: 10.1016/j.cellsig.2019.109501] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023]
Abstract
Inactivation of glutathione S-transferase pi 1 (GSTP1) via hypermethylation is an early and common event in prostate carcinogenesis. Functional inactivation of GSTP1 increases the susceptibility to oxidative stress and enhance progression risk of the prostatic carcinoma. In this study, we hypothesized that the Piwi-interacting RNA (piRNA) could be a sequence-recognition and guidance molecule for induction of promoter methylation of GSTP1 facilitating prostate carcinogenesis. We found that piR-31470 was highly expressed in prostate cancer cells, and piR-31470 could bind to piwi-like RNA-mediated gene silencing 4 (PIWIL4) to form the PIWIL4/piR-31470 complex. This complex could bind to the nascent RNA transcripts of GSTP1, and recruit DNA methyltransferase 1, DNA methyltransferase 3 alpha and methyl-CpG binding domain protein 2 to initiate and maintain the hypermethylation and inactivation of GSTP1. Our data demonstrated that the overexpression of piR-31470 inhibited the levels of GSTP1 and increased vulnerability to oxidative stress and DNA damage in human prostate epithelial RWPE1 cells. In conclusion, this study characterized the roles of the PIWIL4/piR-31470 complex in the regulation of the transcription of GSTP1 by methylating the CpG island of GSTP1. This discovery may provide a novel therapeutic strategy by targeting piRNAs for the epigenetic treatment of prostate cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Feng Qu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu Province 210008, China.
| | - Weidong Gan
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu Province 210008, China.
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
82
|
Borchiellini M, Ummarino S, Di Ruscio A. The Bright and Dark Side of DNA Methylation: A Matter of Balance. Cells 2019; 8:cells8101243. [PMID: 31614870 PMCID: PMC6830319 DOI: 10.3390/cells8101243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
DNA methylation controls several cellular processes, from early development to old age, including biological responses to endogenous or exogenous stimuli contributing to disease transition. As a result, minimal DNA methylation changes during developmental stages drive severe phenotypes, as observed in germ-line imprinting disorders, while genome-wide alterations occurring in somatic cells are linked to cancer onset and progression. By summarizing the molecular events governing DNA methylation, we focus on the methods that have facilitated mapping and understanding of this epigenetic mark in healthy conditions and diseases. Overall, we review the bright (health-related) and dark (disease-related) side of DNA methylation changes, outlining how bulk and single-cell genomic analyses are moving toward the identification of new molecular targets and driving the development of more specific and less toxic demethylating agents.
Collapse
Affiliation(s)
- Marta Borchiellini
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy.
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy.
| | - Simone Ummarino
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Annalisa Di Ruscio
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy.
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
83
|
Disruption of the Molecular Circadian Clock and Cancer: An Epigenetic Link. Biochem Genet 2019; 58:189-209. [DOI: 10.1007/s10528-019-09938-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
|
84
|
Tian Q, Zou J, Fang Y, Yu Z, Tang J, Song Y, Fan S. A Hybrid Ensemble Approach for Identifying Robust Differentially Methylated Loci in Pan-Cancers. Front Genet 2019; 10:774. [PMID: 31543899 PMCID: PMC6739624 DOI: 10.3389/fgene.2019.00774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a widely investigated epigenetic mark that plays a vital role in tumorigenesis. Advancements in high-throughput assays, such as the Infinium 450K platform, provide genome-scale DNA methylation landscapes in single-CpG locus resolution, and the identification of differentially methylated loci has become an insightful approach to deepen our understanding of cancers. However, the situation with extremely unbalanced numbers of samples and loci (approximately 1:1,000) makes it rather difficult to explore differential methylation between the sick and the normal. In this article, a hybrid approach based on ensemble feature selection for identifying differentially methylated loci (HyDML) was proposed by incorporating instance perturbation and multiple function models. Experiments on data from The Cancer Genome Atlas showed that HyDML not only achieved effective DML identification, but also outperformed the single-feature selection approach in terms of classification performance and the robustness of feature selection. The intensive analysis of the DML indicated that different types of cancers have mutual patterns, and the stable DML sharing in pan-cancers is of the great potential to be biomarkers, which may strengthen the confidence of domain experts to implement biological validations.
Collapse
Affiliation(s)
- Qi Tian
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Jianxiao Zou
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Yuan Fang
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Zhongli Yu
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Jianxiong Tang
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Ying Song
- School of Automation Engineering, University of Electronic Science and Technology of China
| | - Shicai Fan
- School of Automation Engineering, University of Electronic Science and Technology of China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
85
|
Savona MR, Odenike O, Amrein PC, Steensma DP, DeZern AE, Michaelis LC, Faderl S, Harb W, Kantarjian H, Lowder J, Oganesian A, Azab M, Garcia-Manero G. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes: a multicentre, open-label, dose-escalation, phase 1 study. LANCET HAEMATOLOGY 2019; 6:e194-e203. [PMID: 30926081 DOI: 10.1016/s2352-3026(19)30030-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Decitabine, a DNA methyltransferase 1 inhibitor or DNA hypomethylating compound, is not readily orally bioavailable because of rapid clearance by cytidine deaminase (CDA) in the gut and liver. This dose-escalation study, guided by pharmacokinetic and pharmacodynamic observations, evaluated whether simultaneous oral administration with the novel CDA inhibitor cedazuridine increases decitabine bioavailability for the treatment of myelodysplastic syndromes. METHODS In this phase 1 study, we enrolled patients aged 18 years or older with myelodysplastic syndromes or chronic myelomonocytic leukaemia. Eligible patients were assigned to cohorts to receive escalating oral doses of decitabine and cedazuridine. The starting dose was decitabine 20 mg and cedazuridine 40 mg. Treatment cycles lasted 28 days, with 5 days of drug administration. In cycle 1, each patient received a cohort-defined dose of oral decitabine on day -3, a 1-h intravenous infusion of decitabine 20 mg/m2 on day 1, and cohort-defined doses of oral decitabine plus cedazuridine on days 2-5. In cycles 2 and beyond, the oral decitabine and cedazuridine were given on days 1-5. The dose of cedazuridine was escalated first and decitabine was escalated once CDA inhibition by cedazuridine approached the maximum effect. The drug dose was escalated if mean decitabine area under the curve (AUC) of the oral drug was less than 90% of that for intravenous decitabine in the cohort and if no dose-limiting toxicity was observed. Dose-limiting toxicity was defined as a grade 3 or greater non-haematologic toxicity or grade 4 haematologic toxicity lasting more than 14 days and unrelated to the underlying disease. Once the decitabine AUC target range set as the primary endpoint, and established with intravenous decitabine, was reached at a dose deemed to be safe, the cohort that most closely approximated intravenous decitabine exposure was expanded to 18 evaluable patients. The primary objectives were to assess the safety of decitabine plus cedazuridine, and to determine the dose of each drug needed to achieve a mean AUC for decitabine exposure similar to that for intravenous decitabine exposure. This study is registered with ClinicalTrials.gov, number NCT02103478. FINDINGS Between Oct 28, 2014, and Nov 13, 2015, we enrolled 44 eligible patients (of 75 screened) with previously treated or newly diagnosed myelodysplastic syndromes or chronic myelomonocytic leukaemia; 43 of the enrolled patients were evaluable. Participants were treated in five cohorts: cohorts 1-4 included six evaluable patients each; cohort 5 included 19 patients in a 13-patient expansion. Dose-dependent increases in decitabine AUC and peak plasma concentration occurred with each cohort dose escalation. There was no evident increase in toxicity compared with that reported for intravenous decitabine. Decitabine 30 mg and 40 mg plus cedazuridine 100 mg produced mean day-5 decitabine AUCs (146 ng × h/mL for decitabine 30 mg, and 221 ng × h/mL for decitabine 40 mg) closest to the mean intravenous-decitabine AUC (164 ng × h/mL). The most common grade 3 or more adverse events were thrombocytopenia (18 [41%] of 44 patients), neutropenia (13 [30%]), anaemia (11 [25%]), leukopenia (seven [16%]), febrile neutropenia (seven [16%]), and pneumonia (seven [16%]). Four (9%) patients died because of adverse events, none of which was considered drug related, and three (7%) patients died more than 30 days after discontinuing treatment because of progressive disease (two [5%]) and respiratory failure (one [2%]). INTERPRETATION Oral decitabine plus cedazuridine emulated the pharmacokinetics of intravenous decitabine, with a similar safety profile and dose-dependent demethylation. Clinical responses were similar to intravenous decitabine treatment for 5 days. Further study of decitabine plus cedazuridine as an alternative to parenteral therapy or in combination with other new oral agents for myeloid disorders is warranted. FUNDING Astex Pharmaceuticals, Inc.
Collapse
Affiliation(s)
- Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Olatoyosi Odenike
- Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA
| | - Philip C Amrein
- Medicine Service, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Laura C Michaelis
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WS, USA
| | - Stefan Faderl
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Wael Harb
- Horizon Oncology Center, Lafayette, IN, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
86
|
Meitzler JL, Konaté MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys 2019; 675:108076. [PMID: 31415727 DOI: 10.1016/j.abb.2019.108076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/03/2023]
Abstract
The cellular microenvironment plays a critical role in cancer initiation and progression. Exposure to oxidative stress, specifically hydrogen peroxide (H2O2), has been linked to aberrant cellular signaling through which the development of cancer may be promoted. Three members of the NADPH oxidase family (NOX4, DUOX1 and DUOX2) explicitly generate this non-radical oxidant in a wide range of tissues, often in support of the inflammatory response. This review summarizes the contributions of each H2O2-producing NOX to the invasive behaviors of tumors and/or the epithelial-mesenchymal transition (EMT) in cancer that plays an essential role in metastasis. Tissue localization in tumorigenesis is also highlighted, with patient-derived TCGA microarray data profiled across 31 cancer cohorts to provide a comprehensive guide to the relevance of NOX4/DUOX1/DUOX2 in cancer studies.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
87
|
Hwang SH, Yeom H, Eom SY, Lee YM, Lee M. Genome-wide DNA methylation changes in transformed foci induced by nongenotoxic carcinogens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:576-587. [PMID: 30848857 DOI: 10.1002/em.22285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
In vitro cell transformation assays (CTA) have been proposed as a method to identify possible nongenotoxic carcinogens. However, the current protocols do not provide information on the mechanism of action of the test articles. In this study, we combined an in vitro Bhas 42 CTA and sequencing-based DNA methylation profiling analysis to elucidate the carcinogenic mechanism associated with nongenotoxic carcinogens. Three nongenotoxic carcinogens were evaluated: cadmium chloride, methyl carbamate, and lithocholic acid. Methylation profiles were generated for the two nongenotoxic carcinogens (cadmium chloride and lithocholic acid) that were positive in Bhas 42 CTA. Methyl carbamate did not exhibit any promoter activity. Approximately 9.8% of all differentially methylated regions (DMRs) identified in cadmium chloride-induced transformed foci overlapped with DMRs in lithocholic acid-induced transformed foci. Interestingly, overlapping DMRs showed more hypermethylation than individual DMRs. In addition, the DMRs in CpG island elements common to both nongenotoxic carcinogens showed considerably more bias toward hypermethylated DMRs than those unique to either cadmium chloride or lithocholic acid. Pathway enrichment analysis revealed that genes harboring hypermethylated DMRs were significantly enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including pathways in cancer, basal cell carcinoma, and Wnt signaling. The genes harboring hypomethylated DMRs were significantly related to mRNA surveillance pathway, RNA transport, and autophagy. Taken together, our preliminary results on genome-wide methylation analysis of cell clones from nongenotoxic carcinogen-induced foci could be exploited for CTAs improvement, but further research will be required to standardize and assess the specificity and sensitivity of this combined approach. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sung-Hee Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hojin Yeom
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Seong Yun Eom
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Moon Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheoungju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- INU Human Genome Center, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
88
|
Genome-wide promoter DNA methylation profiling of hepatocellular carcinomas arising either spontaneously or due to chronic exposure to Ginkgo biloba extract (GBE) in B6C3F1/N mice. Arch Toxicol 2019; 93:2219-2235. [PMID: 31278416 DOI: 10.1007/s00204-019-02505-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications, such as DNA methylation, play an important role in carcinogenesis. In a recent NTP study, chronic exposure of B6C3F1/N mice to Ginkgo biloba extract (GBE) resulted in a high incidence of hepatocellular carcinomas (HCC). Genome-wide promoter methylation profiling on GBE-exposed HCC (2000 mg/kg group), spontaneous HCC (vehicle-control group), and age-matched vehicle control liver was performed to identify differentially methylated genes in GBE-exposed HCC and spontaneous HCC. DNA methylation alterations were correlated to the corresponding global gene expression changes. Compared to control liver, 1296 gene promoters (719 hypermethylated, 577 hypomethylated) in GBE-exposed HCC and 738 (427 hypermethylated, 311 hypomethylated) gene promoters in spontaneous HCC were significantly differentially methylated, suggesting an impact of methylation on GBE-exposed HCC. Differential methylation of promoter regions in relevant cancer genes (cMyc, Spry2, Dusp5) and their corresponding differential gene expression was validated by quantitative pyrosequencing and qRT-PCR, respectively. In conclusion, we have identified differentially methylated promoter regions of relevant cancer genes altered in GBE-exposed HCC compared to spontaneous HCC. Further study of unique sets of differentially methylated genes in chemical-exposed mouse HCC could potentially be used to differentiate treatment-related tumors from spontaneous-tumors in cancer bioassays and provide additional understanding of the underlying epigenetic mechanisms of chemical carcinogenesis.
Collapse
|
89
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
90
|
Sanaei M, Kavoosi F. Effect of DNA Methyltransferase in Comparison to and
in Combination with Histone Deacetylase Inhibitors on
Hepatocellular Carcinoma HepG2 Cell Line. Asian Pac J Cancer Prev 2019; 20:1119-1125. [PMID: 31030484 PMCID: PMC6948907 DOI: 10.31557/apjcp.2019.20.4.1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: DNA demethylating agents and histone deacetylase inhibitors can affect reactivation of gene expression and apoptosis induction by DNA acetylation and demethylation. The aim of the present study was to analyze the effects of DNA demethylating agent genistein (GE) and histone deacetylase inhibitor valproic acid VPA), alone and combined, on hepatocellular carcinoma Hep G2 cell line. Methods: The cells were treated with various doses of genistein and valproic acid (alone and combined) and the MTT assay and flow cytometry were used to determine cell viability and apoptosis. Results: Genistein and valproic acid inhibited the growth of HepG 2 cells significantly. Result of flow cytometry demonstrated that genistein and valproic acid (alone and combined) induce apoptosis significantly in a timedependent manner. Conclusions: Genistein and valproic acid can significantly inhibit proliferation and induce apoptosis in HepG2 cell line. The apoptotic effects of GE in combination with VPA were more significant that of each compound alone.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
91
|
Du W, Dong Q, Zhang Z, Liu B, Zhou T, Xu RM, Wang H, Zhu B, Li Y. Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger-type E3 ubiquitin ligase UHRF1. J Biol Chem 2019; 294:8907-8917. [PMID: 31018966 DOI: 10.1074/jbc.ra119.008008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/19/2019] [Indexed: 11/06/2022] Open
Abstract
Stella is a maternal gene required for oogenesis and early embryogenesis. Stella overexpression in somatic cells causes global demethylation. As we have recently shown, Stella sequesters nuclear ubiquitin-like with PHD and RING finger domains 1 (UHRF1), a RING finger-type E3 ubiquitin ligase essential for DNA methylation mediated by DNA methyltransferase 1 and triggers global demethylation. Here, we report an overexpressed mutant Stella protein without nuclear export activity surprisingly retained its ability to cause global demethylation. By combining biochemical interaction assays, isothermal titration calorimetry, immunostaining, and live-cell imaging with fluorescence recovery after photobleaching, we found that Stella disrupts UHRF1's association with chromatin by directly binding to the plant homeodomain of UHRF1 and competing for the interaction between UHRF1 and the histone H3 tail. Consistently, overexpression of Stella mutants that do not directly interact with UHRF1 fails to cause genome-wide demethylation. In the presence of nuclear Stella, UHRF1 could not bind to chromatin and exhibited increased dynamics in the nucleus. Our results indicate that Stella employs a multilayered mechanism to achieve robust UHRF1 inhibition, which involves the dissociation from chromatin and cytoplasmic sequestration of UHRF1.
Collapse
Affiliation(s)
- Wenlong Du
- From the College of Life Sciences, Beijing Normal University, Beijing 100875.,the National Institute of Biological Sciences, Beijing 102206.,the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Qiang Dong
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Zhuqiang Zhang
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Baodong Liu
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, and
| | - Ting Zhou
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Rui-Ming Xu
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101.,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, and
| | - Bing Zhu
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101.,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingfeng Li
- the National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101,
| |
Collapse
|
92
|
Fan LH, Wang ZB, Li QN, Meng TG, Dong MZ, Hou Y, Ouyang YC, Schatten H, Sun QY. Absence of mitochondrial DNA methylation in mouse oocyte maturation, aging and early embryo development. Biochem Biophys Res Commun 2019; 513:912-918. [PMID: 31005257 DOI: 10.1016/j.bbrc.2019.04.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 01/24/2023]
Abstract
Mitochondrial DNA (mtDNA) is important for oxidative phosphorylation; dysfunctions can play a role in many mitochondrial diseases and can also affect the aging of cells and individuals. DNA methylation is an important epigenetic modification that plays a critical role in regulating gene expression. While recent studies have revealed the existence of mtDNA methylation there are still controversies about mtDNA methylation due to the special structure of mtDNA. Mitochondria and DNA methylation are both essential for regulating oocyte maturation and early embryo development, but whether mtDNA methylation changes during this process is unknown. By employing bisulfite sequencing, we found that in the process of mouse oocyte maturation, postovulatory oocyte aging, and early embryo development, all analyzed mitochondrial genes, including 16S-CpGI, DCR, ND6, 12S, and ATP8, lacked 5'mC. Thus, mtDNA methylation does not occur in the oocyte and early embryo.
Collapse
Affiliation(s)
- Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
93
|
Németh CG, Röcken C, Siebert R, Wiltfang J, Ammerpohl O, Gassling V. Recurrent chromosomal and epigenetic alterations in oral squamous cell carcinoma and its putative premalignant condition oral lichen planus. PLoS One 2019; 14:e0215055. [PMID: 30964915 PMCID: PMC6456184 DOI: 10.1371/journal.pone.0215055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects about 700.000 individuals per year worldwide with oral squamous cell carcinoma (OSCC) as a major subcategory. Despite a comprehensive treatment concept including surgery, radiation, and chemotherapy the 5-year survival rate is still only about 50 percent. Chronic inflammation is one of the hallmarks of carcinogenesis. Until now, little is known about the premalignant status of oral lichen planus (OLP) and molecular alterations in OLP are still poorly characterized. Our study aims to delineate differential DNA methylation patterns in OLP, OSCC, and normal oral mucosa. By applying a bead chip approach, we identified altered chromosomal patterns characteristic for OSCC while finding no recurrent alterations in OLP. In contrast, we identified numerous alterations in the DNA methylation pattern in OLP, as compared to normal controls, that were also present in OSCC. Our data support the hypothesis that OLP is a precursor lesion of OSCC sharing multiple epigenetic alterations with OSCC.
Collapse
Affiliation(s)
- Christopher G Németh
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Volker Gassling
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
94
|
Han M, Jia L, Lv W, Wang L, Cui W. Epigenetic Enzyme Mutations: Role in Tumorigenesis and Molecular Inhibitors. Front Oncol 2019; 9:194. [PMID: 30984620 PMCID: PMC6449417 DOI: 10.3389/fonc.2019.00194] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation and histone modification, result in heritable changes in gene expression without changing the DNA sequence. Epigenetic regulatory enzymes such as DNA methyltransferases, histone methyltransferases, and histone deacetylases are involved in epigenetic modification. Studies have shown that the dysregulation caused by changes in the amino acid sequence of these enzymes is closely correlated with tumor onset and progression. In addition, certain amino acid changes in the metabolic enzyme isocitrate dehydrogenase (IDH) are linked to altered epigenetic modifications in tumors. Some small molecule inhibitors targeting these aberrant enzymes have shown promising anti-cancer efficacy in preclinical and clinical trials. For example, the small molecule inhibitor ivosidenib, which targets IDH1 with a mutation at R132, has been approved by the FDA for the clinical treatment of acute myeloid leukemia. In this review, we summarize the recurrent “hotspot” mutations in these enzymes in various tumors and their role in tumorigenesis. We also describe candidate inhibitors of the mutant enzymes which show potential therapeutic value. In addition, we introduce some previously unreported mutation sites in these enzymes, which may be related to tumor development and provide opportunities for future study.
Collapse
Affiliation(s)
- Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wencai Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
95
|
Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol 2019; 3:7. [PMID: 30854468 PMCID: PMC6403339 DOI: 10.1038/s41698-019-0079-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cancers develop due to the accumulation of genetic and epigenetic alterations. Genetic alterations are induced by aging, mutagenic chemicals, ultraviolet light, and other factors; whereas, epigenetic alterations are mainly by aging and chronic inflammation. The accumulation and patterns of alterations in normal cells reflect our past exposure levels and life history. Most accumulated alterations are considered as passengers, but their accumulation is correlated with cancer drivers. This has been shown for aberrant DNA methylation but has only been speculated for genetic alterations. However, recent technological advancements have enabled measurement of rare point mutations, and studies have shown that their accumulation levels are indeed correlated with cancer risk. When the accumulation levels of aberrant DNA methylation and point mutations are combined, risk prediction becomes even more accurate. When high levels of alterations accumulate, the tissue has a high risk of developing cancer or even multiple cancers and is considered as a “cancerization field”, with or without expansion of physiological patches of clonal cells. In this review, we describe the formation of a cancerization field and how we can apply its detection in precision cancer risk diagnosis.
Collapse
Affiliation(s)
- Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045 Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045 Tokyo, Japan
| |
Collapse
|
96
|
Diagnostic utility of epigenetics in breast cancer - A review. Cancer Treat Res Commun 2019; 19:100125. [PMID: 30802811 DOI: 10.1016/j.ctarc.2019.100125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
Abstract
Epigenetic alterations are clearly involved in cancer initiation and progression as recent epigenetic studies of genomic DNA, histone modifications and micro-RNA alterations suggest that these are playing an important role in the incidence of breast cancer. Epigenetic information has recently gained the attention of researchers because epigenetic modification of the genome in breast cancer is still an evolving area for researchers. Several active compounds present in foods, poisons, drugs, and industrial chemicals may as a result of epigenetic mechanisms increase or decrease the risk of breast cancer. Epigenetic regulation is critical in normal growth and development and closely conditions the transcriptional potential of genes. Epigenetic mechanisms convey genomic adaption to an environment thereby ultimately contributing towards given phenotype. In addition to the use of epigenetic alterations as a means of screening, epigenetic alterations in a tumor or adjacent tissues or peripheral blood may also help clinicians in determining prognosis and treatment of breast cancer. As we understand specific epigenetic alterations contributing to breast tumorigenesis and prognosis, these discoveries will lead to significant advances for breast cancer treatment, like in therapeutics that target methylation and histone modifications in breast cancer and the newer versions of the drugs are likely to play an important role in future clinical treatment.
Collapse
|
97
|
Gonzalez-Fierro A, Dueñas-González A. Emerging DNA methylation inhibitors for cancer therapy: challenges and prospects. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:27-35. [DOI: 10.1080/23808993.2019.1571906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Affiliation(s)
| | - Alfonso Dueñas-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM/Instituto Nacional de Can cerología, México City, Mexico
| |
Collapse
|
98
|
Tabatabaiefar MA, Sajjadi RS, Narrei S. Epigenetics and Common Non Communicable Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1121:7-20. [PMID: 31392648 DOI: 10.1007/978-3-030-10616-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Common Non communicable diseases (NCDs), such as cardiovascular disease, cancer, schizophrenia, and diabetes, have become the major cause of death in the world. They result from an interaction between genetics, lifestyle and environmental factors. The prevalence of NCDs are increasing, and researchers hopes to find efficient strategies to predict, prevent and treat them. Given the role of epigenome in the etiology of NCDs, insight into epigenetic mechanisms may offer opportunities to predict, detect, and prevent disease long before its clinical onset.Epigenetic alterations are exerted through several mechanisms including: chromatin modification, DNA methylation and controlling gene expression by non-coding RNAs (ncRNAs). In this chapter, we will discuss about NCDs, with focus on cancer, diabetes and schizophrenia. Different epigenetic mechanisms, categorized into two main groups DNA methylation and chromatin modifications and non-coding RNAs, will be separately discussed for these NCDs.
Collapse
Affiliation(s)
- Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran.
| | - Roshanak S Sajjadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Narrei
- Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran
| |
Collapse
|
99
|
Fanipakdel A, Seilanian Toussi M, Rezazadeh F, Mohamadian Roshan N, Javadinia SA. Overexpression of cancer‐testis antigen melanoma‐associated antigen A1 in lung cancer: A novel biomarker for prognosis, and a possible target for immunotherapy. J Cell Physiol 2018; 234:12080-12086. [DOI: 10.1002/jcp.27884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Faezeh Rezazadeh
- Science and Research Branch of Islamic Azad University Tehran Iran
| | - Nema Mohamadian Roshan
- Department of Pathology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Alireza Javadinia
- Student Research Committee, Department of Radiation Oncology, Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
100
|
Guo W, Zhu L, Yu M, Zhu R, Chen Q, Wang Q. A five-DNA methylation signature act as a novel prognostic biomarker in patients with ovarian serous cystadenocarcinoma. Clin Epigenetics 2018; 10:142. [PMID: 30446011 PMCID: PMC6240326 DOI: 10.1186/s13148-018-0574-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Ovarian cancer is the most fatal tumor of the female reproductive system and the fifth leading cause of cancer death among women in the USA. The prognosis is poor due to the lack of biomarkers for treatment options. Results The methylation array data of 551 patients with ovarian serous cystadenocarcinoma (OSC) in The Cancer Genome Atlas (TCGA) database were assessed in this study to explore the methylation biomarkers associated with prognosis and improve the prognosis of patients. These patients were divided into training (first two thirds) and validation datasets (remaining one third). A five-DNA methylation signature was found to be significantly associated with the overall survival of patients with OSC using the Cox regression analysis in the training dataset. The Kaplan–Meier analysis showed that the five-DNA methylation signature could significantly distinguish the high- and low-risk patients in both training and validation sets. The receiver operating characteristic (ROC) analysis further confirmed that the five-DNA methylation signature exhibited high sensitivity and specificity to predict the prognostic survival of patients. Also, the five-DNA methylation signature was not only applicable in patients of different ages, stages, histologic grade, and size of residual tumor after surgery but also more accurate in predicting OSC prognosis compared with known biomarkers. Conclusions This five-DNA methylation signature demonstrated the potential of being a novel independent prognostic indicator and served as an important tool for guiding the clinical treatment of OSC to improve outcome prediction and management for patients. Hence, the findings of this study might have potential clinical significance. Electronic supplementary material The online version of this article (10.1186/s13148-018-0574-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenna Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Minghao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qihan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|