51
|
Kawashima S, Kinose D, Arima H, Kondo K, Yamazaki A, Uchida Y, Nakagawa H, Yamaguchi M, Segawa H, Torii S, Okami Y, Kadota A, Yano Y, Andoh A, Miura K, Nakano Y, Ueshima H. Association of gut microbiome with COPD in Japanese male residents: the SESSA study. ERJ Open Res 2024; 10:00788-2023. [PMID: 38410710 PMCID: PMC10895427 DOI: 10.1183/23120541.00788-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024] Open
Abstract
Background Altered gut microbiota may contribute to COPD development or progression. Herein, we investigated the association of gut microorganisms with COPD, taking into account the impact of smoking status. Methods This cross-sectional observational study was a part of the Shiga Epidemiological Study of Subclinical Atherosclerosis, a population-based cohort study of Japanese men aged 46-76 years, conducted from 2010 to 2016. The gut microbiome, determined using 16S rRNA gene sequencing, was compared among 99 never-smokers, 306 non-COPD ever-smokers and 76 patients with COPD while adjusting for age, body mass index, ethanol consumption and treatment for type 2 diabetes mellitus. Results The abundance of phylum Firmicutes was comparable between patients with COPD and non-COPD ever-smokers but tended to be higher in never-smokers. Similarly, the α- and β-diversity analysis showed similarity between patients with COPD and non-COPD ever-smokers, which tended to differ from never-smokers. Discriminant analysis identified the genus [Prevotella] to be more prevalent in patients with COPD than in never-smokers or non-COPD ever-smokers. Post hoc analysis confirmed similarity of gut microbiome between COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) I and non-COPD ever-smokers, which was different from GOLD II. Conclusion Smoking may alter the overall gut microbial composition, but gut microbial composition itself may not play a role in the development of COPD. Rather, specific gut bacteria, such as [Prevotella], could be a risk factor for the development of COPD; this may be a potential therapeutic target.
Collapse
Affiliation(s)
- Satoru Kawashima
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hisatomi Arima
- Department of Preventive Medicine and Public Health, Fukuoka University, Fukuoka, Japan
| | - Keiko Kondo
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Akio Yamazaki
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyoshi Segawa
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Sayuki Torii
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yukiko Okami
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Aya Kadota
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yuichiro Yano
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hirotsugu Ueshima
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
52
|
Hishiya N, Uno K, Nakano A, Konishi M, Higashi S, Eguchi S, Ariyoshi T, Matsumoto A, Oka K, Takahashi M, Suzuki Y, Horiuchi S, Hirai N, Ogawa Y, Ogawa T, Nakano R, Mikasa K, Kasahara K, Yano H. Association between the gut microbiome and organic acid profiles in a Japanese population with HIV infection. J Infect Chemother 2024; 30:58-66. [PMID: 37708940 DOI: 10.1016/j.jiac.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION An increased incidence of metabolic syndrome has been observed in human immunodeficiency virus (HIV)-infected individuals. In contrast, gut dysbiosis is involved in various pathogeneses, including vascular endothelial disorders. Organic acids, including short-chain fatty acids (SCFAs), are essential for maintaining gut homeostasis. Therefore, this study aimed to explore the gut microbiome profile and organic acids in a Japanese population infected with HIV. METHODS Forty-nine patients with HIV infection on combination antiretroviral therapy (cART) were enrolled and divided into the high and low CD4 groups based on a CD4 cutoff of 350 cells/μL. Stool samples were analyzed by 16S ribosomal RNA next-generation sequencing and high-performance liquid chromatography. The association between the gut microbiome, including bacterial taxa and organic acids, was statistically analyzed. RESULTS The fecal microbial community composition was significantly different between HIV patients with CD4 counts above and below 350 cells/μL. The relative abundance of Roseburia, Prevotella, Prevotella_9, and [Clostridium]_methylpentosum_group were significantly enriched in the high CD4 group. Fecal succinic acid tended to be more abundant in the low CD4 group, and acetic, propionic, and butyric acids tended to be more abundant in the high CD4 group. Roseburia was positively correlated with butyric acid levels. Prevotella_9 and Prevotella were negatively correlated with succinic acid levels and positively correlated with acetic and propionic acid levels. CONCLUSIONS This study showed intestinal dysbiosis bordering on a CD4 count of 350 in patients with HIV infection undergoing cART. These findings might help in understanding intestinal damage and systemic inflammation in HIV infection.
Collapse
Affiliation(s)
- Naokuni Hishiya
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Department of Infectious Diseases, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara-Shi, Nara, 630-8305, Japan
| | - Kenji Uno
- Department of Infectious Diseases, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo-Cho, Yoshino-Gun, Nara, 638-8551, Japan
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Mitsuru Konishi
- Center for Health Control, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Center for Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Seiya Higashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Shuhei Eguchi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Tadashi Ariyoshi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Asami Matsumoto
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Motomichi Takahashi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., 2-22-9 Toro-Cho, Kita-Ku, Saitama-Shi, Saitama, 331-0804, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Saori Horiuchi
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Nobuyasu Hirai
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Department of Gastroenterology, Seichokai Fuchu Hospital, 1-10-17 Hiko-Cho, Izumi, Osaka, 594-0076, Japan
| | - Yoshihiko Ogawa
- Department of Infectious Diseases, Sakai City Medical Center, 1-1-1 Ebaraji-Cho, Nishi-Ku, Sakai, Osaka, 593-8304, Japan
| | - Taku Ogawa
- Department of Microbiology and Infection Control, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Keiichi Mikasa
- Center for Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan; Department of Internal Medicine, Nara Koseikai Hospital, 769-3 Shigi-cho, Yamatokoriyama, Nara, 639-1039, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
53
|
Cortazar-Chinarro M, Richter-Boix A, Rödin-Mörch P, Halvarsson P, Logue JB, Laurila A, Höglund J. Association between the skin microbiome and MHC class II diversity in an amphibian. Mol Ecol 2024; 33:e17198. [PMID: 37933583 DOI: 10.1111/mec.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.
Collapse
Affiliation(s)
- M Cortazar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth Ocean and Atmospheric Sciences, Faculty of Science 2020-2207, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richter-Boix
- Department of Political and Social Science, Pompeu Fabra University, Barcelona, Spain
| | - P Rödin-Mörch
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - P Halvarsson
- Parasitology/Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J B Logue
- Aquatic Ecology/Department of Biology, Lund University, Lund, Sweden
- SLU University Library, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - J Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
54
|
Li S, Su B, Wu H, He Q, Zhang T. Integrated analysis of gut and oral microbiome in men who have sex with men with HIV Infection. Microbiol Spectr 2023; 11:e0106423. [PMID: 37850756 PMCID: PMC10714972 DOI: 10.1128/spectrum.01064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Our longitudinal integrated study has shown the marked alterations in the gut and oral microbiome resulting from acute and chronic HIV infection and from antiretroviral therapy. Importantly, the relationship between oral and gut microbiomes in people living with acute and chronic HIV infection and "healthy" controls has also been explored. These findings might contribute to a better understanding of the interactions between the oral and gut microbiomes and its potential role in HIV disease progression.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
55
|
Quinn G, Ali RO, Zhang GY, Hill K, Townsend E, Umarova R, Chakraborty M, Ahmad MF, Gewirtz M, Haddad J, Rosenzweig S, Rampertaap S, Schoenfeld M, Yang S, Koh C, Levy E, Kleiner DE, Etzion O, Heller T. Non-selective dampening of the host immune response after hepatitis C clearance and its association with circulating chemokine and endotoxin levels. Liver Int 2023; 43:2701-2712. [PMID: 37752797 DOI: 10.1111/liv.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND & AIMS Direct-acting antiviral (DAA) therapy has revolutionized treatment for the hepatitis C virus (HCV). While DAA therapy is common, little is known about the intrahepatic immunological changes after sustained virologic response (SVR). We aim to describe transcriptional alterations of the gut microbiome and the liver after SVR. METHODS Twenty-two HCV patients were evaluated before and 9 months after 12 weeks of sofosbuvir/velpatasvir treatment. All achieved SVR. A liver biopsy, portal blood (direct portal vein cannulation), peripheral blood and stool samples were obtained. RNA-seq and immunofluorescent staining were performed on liver biopsies. RNA-seq and 16S rRNA metagenomics were performed on stool. RESULTS Differential expression within liver transcription showed 514 downregulated genes (FDR q < .05; foldchange > 2) enriched in inflammatory pathways; of note, GO:0060337, type 1 IFN signalling (p = 8e-23) and GO:0042742, defence response to bacterium (p = 8e-3). Interestingly, microbial products increased in the portal blood and liver after SVR. Due to the increase in microbial products, the gut microbiome was investigated. There was no dysbiosis by Shannon diversity index or Bacteroides/Firmicutes ratio. There was a differential increase in genes responsible for bacterial lipopolysaccharide production after SVR. CONCLUSIONS The decrease in the antiviral interferon pathway expression was expected after SVR; however, there was an unanticipated decrease in the transcription of genes involved in recognition and response to bacteria, which was associated with increased levels of microbial products. Finally, the alterations in the function of the gut microbiome are a promising avenue for further investigation of the gut-liver axis, especially in the context of the significant immunological changes noted after SVR.
Collapse
Affiliation(s)
- Gabriella Quinn
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rabab O Ali
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace Y Zhang
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kareen Hill
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Townsend
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Moumita Chakraborty
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maleeha F Ahmad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Meital Gewirtz
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James Haddad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan Schoenfeld
- NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shanna Yang
- NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ohad Etzion
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
56
|
Hajra D, Nair AV, Chakravortty D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res 2023; 277:127488. [PMID: 37716125 DOI: 10.1016/j.micres.2023.127488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Invasive-Non-Typhoidal Salmonella (iNTS) are the major cause of health concern in the low-income, under-developed nations in Africa and Asia that lack proper sanitation facilities. Around 5% of the NTS cases give rise to invasive, extraintestinal diseases leading to focal infections like osteomyelitis, meningitis, osteoarthritis, endocarditis and neonatal sepsis. iNTS serovars like S. Typhimurium, S. Enteritidis, S. Dublin, S. Choleraesuis show a greater propensity to become invasive than others which hints at the genetic basis of their emergence. The major risk factors attributing to the invasive diseases include immune-compromised individuals having co-infection with malaria or HIV, or suffering from malnutrition. The rampant use of antibiotics leading to the emergence of multi-drug resistant strains poses a great challenge in disease management. An extensive understanding of the iNTS pathogenesis and its epidemiology will open up avenues for the development of new vaccination and therapeutic strategies to restrict the spread of this neglected disease.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
57
|
Sereti I, Verburgh ML, Gifford J, Lo A, Boyd A, Verheij E, Verhoeven A, Wit FWNM, Schim van der Loeff MF, Giera M, Kootstra NA, Reiss P, Vujkovic-Cvijin I. Impaired gut microbiota-mediated short-chain fatty acid production precedes morbidity and mortality in people with HIV. Cell Rep 2023; 42:113336. [PMID: 37918403 PMCID: PMC10872975 DOI: 10.1016/j.celrep.2023.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Antiretroviral therapy (ART) has dramatically lengthened lifespan among people with HIV (PWH), but this population experiences heightened rates of inflammation-related comorbidities. HIV-associated inflammation is linked with an altered microbiome; whether such alterations precede inflammation-related comorbidities or occur as their consequence remains unknown. We find that ART-treated PWH exhibit depletion of gut-resident bacteria that produce short-chain fatty acids (SCFAs)-crucial microbial metabolites with anti-inflammatory properties. Prior reports establish that fecal SCFA concentrations are not depleted in PWH. We find that gut-microbiota-mediated SCFA production capacity is better reflected in serum than in feces and that PWH exhibit reduced serum SCFA, which associates with inflammatory markers. Leveraging stool and serum samples collected prior to comorbidity onset, we find that HIV-specific microbiome alterations precede morbidity and mortality in ART-treated PWH. Among these microbiome alterations, reduced microbiome-mediated conversion of lactate to propionate precedes mortality in PWH. Thus, gut microbial fiber/lactate conversion to SCFAs may modulate HIV-associated comorbidity risk.
Collapse
Affiliation(s)
- Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID/NIH, Rockville, MD, USA; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Myrthe L Verburgh
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Jacob Gifford
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice Lo
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anders Boyd
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Eveline Verheij
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Aswin Verhoeven
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Ferdinand W N M Wit
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands
| | - Maarten F Schim van der Loeff
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Experimental Immunology, Amsterdam, the Netherlands
| | - Peter Reiss
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands; Amsterdam University Medical Centers, University of Amsterdam, Department of Global Health, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
58
|
Li K, Deng J, Zhang C, Lai G, Xie B, Zhong X. Gut microbiome dysbiosis in men who have sex with men increases HIV infection risk through immunity homeostasis alteration. Front Cell Infect Microbiol 2023; 13:1260068. [PMID: 38035339 PMCID: PMC10687210 DOI: 10.3389/fcimb.2023.1260068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Objectives Recent studies pointed out that gut microbiome dysbiosis in HIV infection was possibly confounded in men who have sex with men (MSM), but there is a lack of evidence. It also remained unclear how MSM-associated gut microbiome dysbiosis affected human health. This study aimed to compare the differences in gut microbiome changes between HIV and MSM and reveal the potential impacts of MSM-associated gut microbiome dysbiosis on the immune system. Methods We searched available studies based on the PubMed database, and all gut microbiome changes associated with HIV infection and MSM were extracted from the enrolled studies. The gutMgene database was used to identify the target genes and metabolites of the gut microbiome. Bioinformatic technology and single-cell RNA sequencing data analysis were utilized to explore the impacts of these gut microbiome changes on human immunity. Results The results showed significant overlaps between the gut microbiome associated with HIV and that of MSM. Moreover, bioinformatic analysis revealed that gut microbiome dysbiosis in MSM had an impact on several pathways related to immunity, including the IL-17 signaling pathway and Th17 cell differentiation. Additionally, target genes of MSM-associated gut microbiome were found to be highly expressed in monocytes and lymphocytes, suggesting their potential regulatory role in immune cells. Furthermore, we found that MSM-associated gut microbiome could produce acetate and butyrate which were reported to increase the level of inflammatory factors. Conclusion In conclusion, this study highlighted that MSM-associated gut microbiome dysbiosis might increase the risk of HIV acquisition by activating the immune system. Further studies are expected to elucidate the mechanism by which gut microbiome dysbiosis in MSM modulates HIV susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Biao Xie
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaoni Zhong
- College of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
59
|
Zhang Y, Lin CL, Weber KM, Xing J, Peters BA, Sollecito CC, Grassi E, Wiek F, Xue X, Seaberg EC, Gustafson D, Anastos K, Sharma A, Burgess HJ, Burk RD, Qi Q, French AL. Association of Gut Microbiota With Objective Sleep Measures in Women With and Without Human Immunodeficiency Virus Infection: The IDOze Study. J Infect Dis 2023; 228:1456-1466. [PMID: 37650624 PMCID: PMC10640774 DOI: 10.1093/infdis/jiad371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Poor sleep health is an underrecognized health challenge, especially for people with human immunodeficiency virus (HIV). Gut microbiota related to sleep are underinvestigated. METHODS The IDOze microbiota substudy included 190 women (114 with HIV and 76 without HIV). Wrist actigraphy measured total sleep duration, sleep efficiency, number of wake bouts, wake after sleep onset, fragmentation index, and sleep timing. 16S rRNA gene sequencing identified gut microbial genera. Analysis of compositions of microbiomes with bias correction was used to investigate cross-sectional associations between gut microbiota and sleep. Abundances of sleep-related gut microbial genera were compared between women with and without HIV. RESULTS Enrichment of 7 short-chain fatty acid-producing genera (eg, Butyricimonas, Roseburia, and Blautia) was associated with lower fragmentation index. Enrichment of 9 genera (eg, Dorea) was associated with lower sleep efficiency and/or more wake after sleep onset. Enrichment of proinflammatory Acidaminococcus was associated with late sleep midpoint and offset time. These associations were largely consistent regardless of HIV status. The abundance of Butyricimonas was lower among women with HIV compared to those without HIV. CONCLUSIONS Seventeen genera were identified to be associated with sleep continuity or timing. Butyricimonas, a potentially beneficial genus associated with sleep continuity, was less abundant among women with HIV.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Chin Lun Lin
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Kathleen M Weber
- Hektoen Institute of Medicine/Cook County Health, Chicago, Illinois
| | - Jiaqian Xing
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | | | - Evan Grassi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Fanua Wiek
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Eric C Seaberg
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
- Department of Obstetrics, Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Audrey L French
- Department of Medicine, Stroger Hospital of Cook County Health, Chicago, Illinois
| |
Collapse
|
60
|
Blanco-Míguez A, Gálvez EJC, Pasolli E, De Filippis F, Amend L, Huang KD, Manghi P, Lesker TR, Riedel T, Cova L, Punčochář M, Thomas AM, Valles-Colomer M, Schober I, Hitch TCA, Clavel T, Berry SE, Davies R, Wolf J, Spector TD, Overmann J, Tett A, Ercolini D, Segata N, Strowig T. Extension of the Segatella copri complex to 13 species with distinct large extrachromosomal elements and associations with host conditions. Cell Host Microbe 2023; 31:1804-1819.e9. [PMID: 37883976 PMCID: PMC10635906 DOI: 10.1016/j.chom.2023.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.
Collapse
Affiliation(s)
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Linda Cova
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | | | | | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Technical University of Braunschweig, Braunschweig, Germany
| | - Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien, Austria
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
61
|
Xia C, Zhang X, Harypursat V, Ouyang J, Chen Y. The role of pyroptosis in incomplete immune reconstitution among people living with HIV:Potential therapeutic targets. Pharmacol Res 2023; 197:106969. [PMID: 37866704 DOI: 10.1016/j.phrs.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Globally, HIV infection causes significant morbidity and mortality, and is a major public health problem. Despite the fact that widespread use of antiretroviral therapy (ART) has substantially altered the natural history of HIV infection from originally being a universally lethal disease to now being a chronic medical condition for those taking appropriate treatment, approximately 10-40% of people living with HIV (PLWH) who take effective ART and maintain long-term viral suppression fail to achieve normalization of CD4 + T-cell counts. This phenomenon is referred to as incomplete immune reconstitution or immunological non-response. Although the precise mechanisms underlying this outcome have not been elucidated, recent evidence indicates that excessive pyroptosis may play a crucial role in the development of incomplete immune reconstitution. Pyroptosis is characterized by the formation of pores in the cell membrane, cell rupture, and secretion of intracellular contents and pro-inflammatory cytokines, including IL-1β and IL-18. This excessive inflammation-induced programmed cell death leads to a massive loss of CD4 + T-cells, and inflammatory consequences that may promote and sustain incomplete immune reconstitution. Herein, we review the possible pathways activated in HIV infection by inflammasomes that act as switches of pyroptosis, and the role of pyroptosis in HIV, as well as the relevance of CD4 + T-cells in incomplete immune reconstitution. We also highlight the possible mechanisms of pyroptosis involved in incomplete immune reconstitution, thus paving the way for the development of potential targets for the treatment of incomplete immune reconstitution.
Collapse
Affiliation(s)
- Chao Xia
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Department of Pharmacy, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
62
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea IV, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct Intestinal Microbial Signatures Linked to Accelerated Biological Aging in People with HIV. RESEARCH SQUARE 2023:rs.3.rs-3492242. [PMID: 37961645 PMCID: PMC10635386 DOI: 10.21203/rs.3.rs-3492242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.
Collapse
|
63
|
Pan Z, Wu N, Jin C. Intestinal Microbiota Dysbiosis Promotes Mucosal Barrier Damage and Immune Injury in HIV-Infected Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3080969. [PMID: 37927531 PMCID: PMC10625490 DOI: 10.1155/2023/3080969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
The intestinal microbiota is an "invisible organ" in the human body, with diverse components and complex interactions. Homeostasis of the intestinal microbiota plays a pivotal role in maintaining the normal physiological process and regulating immune homeostasis. By reviewing more than one hundred related studies concerning HIV infection and intestinal microbiota from 2011 to 2023, we found that human immunodeficiency virus (HIV) infection can induce intestinal microbiota dysbiosis, which not only worsens clinical symptoms but also promotes the occurrence of post-sequelae symptoms and comorbidities. In the early stage of HIV infection, the intestinal mucosal barrier is damaged and a persistent inflammatory response is induced. Mucosal barrier damage and immune injury play a pivotal role in promoting the post-sequelae symptoms caused by HIV infection. This review summarizes the relationship between dysbiosis of the intestinal microbiota and mucosal barrier damage during HIV infection and discusses the potential mechanisms of intestinal barrier damage induced by intestinal microbiota dysbiosis and inflammation. Exploring these molecular mechanisms might provide new ideas to improve the efficacy of HIV treatment and reduce the incidence of post-sequelae symptoms.
Collapse
Affiliation(s)
- Zhaoyi Pan
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhong Jin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
64
|
Enriquez AB, Ten Caten F, Ghneim K, Sekaly RP, Sharma AA. Regulation of Immune Homeostasis, Inflammation, and HIV Persistence by the Microbiome, Short-Chain Fatty Acids, and Bile Acids. Annu Rev Virol 2023; 10:397-422. [PMID: 37774124 DOI: 10.1146/annurev-virology-040323-082822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Despite antiretroviral therapy (ART), people living with human immunodeficiency virus (HIV) (PLWH) continue to experience chronic inflammation and immune dysfunction, which drives the persistence of latent HIV and prevalence of clinical comorbidities. Elucidating the mechanisms that lead to suboptimal immunity is necessary for developing therapeutics that improve the quality of life of PLWH. Although previous studies have found associations between gut dysbiosis and immune dysfunction, the cellular/molecular cascades implicated in the manifestation of aberrant immune responses downstream of microbial perturbations in PLWH are incompletely understood. Recent literature has highlighted that two abundant metabolite families, short-chain fatty acids (SCFAs) and bile acids (BAs), play a crucial role in shaping immunity. These metabolites can be produced and/or modified by bacterial species that make up the gut microbiota and may serve as the causal link between changes to the gut microbiome, chronic inflammation, and immune dysfunction in PLWH. In this review, we discuss our current understanding of the role of the microbiome on HIV acquisition and latent HIV persistence despite ART. Further, we describe cellular/molecular cascades downstream of SCFAs and BAs that drive innate or adaptive immune responses responsible for promoting latent HIV persistence in PLWH. This knowledge can be used to advance HIV cure efforts.
Collapse
Affiliation(s)
- Ana Beatriz Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Khader Ghneim
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Ashish Arunkumar Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
65
|
Lazzaro A, Colorado ASB, Neff CP, Nusbacher N, Boyd K, Fiorillo S, Martin C, Siebert J, Campbell T, Borok M, Palmer B, Lozupone C. Antiretroviral treatment is less effective at reducing gut microbiome-associated inflammation and T cell activation in people living with HIV in rural versus urban Zimbabwe. RESEARCH SQUARE 2023:rs.3.rs-3300723. [PMID: 37693491 PMCID: PMC10491326 DOI: 10.21203/rs.3.rs-3300723/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The widespread availability of antiretroviral therapy (ART) for people living with HIV (PLWH) has dramatically reduced mortality and improved life expectancy. However, even with suppression of HIV-1 replication, chronic immune activation and elevated inflammation persist. Chronic immune activation has been linked to a pro-inflammatory gut microbiome composition, exacerbated by compromised intestinal barrier integrity that occurs after HIV infection. Individuals living in urban versus rural areas of sub-Saharan Africa have differences in environmental factors such as water source or diet that may impact gut microbiome composition, yet immune phenotype and gut microbiome composition response to ART in PLWH living in rural versus urban areas of sub-Saharan Africa have not been compared. Here, we measured immune phenotypes and fecal microbiome composition in PLWH and healthy participants recruited from the urban Mabvuku polyclinic in the city of Harare, Zimbabwe and the Mutoko District hospital located in a district 146 km from Harare that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of treatment with efavirenz/lamivudine/tenofovir disoproxil fumarate (EFV/3TC/TDF) and the prophylactic antibiotic cotrimoxazole or were ART experienced at both timepoints. Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed in individuals who had suppressed HIV-1 with treatment, these changes were significant only when considering individuals in the urban and not the rural area. Gut microbiome composition showed more marked differences from healthy controls in the ART experienced compared to ART naïve cohort, and consistent longitudinal changes were also observed in ART naïve PLWH after 24 weeks of treatment, including a reduction in alpha diversity and altered composition. However, gut microbiome composition showed a more pronounced relationship with chronic immune activation and exhaustion phenotypes in the ART naïve compared to ART experienced PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection.
Collapse
|
66
|
Sánchez-Conde M, Alba C, Castro I, Dronda F, Ramírez M, Arroyo R, Moreno S, Rodríguez JM, Brañas F. Comparison of the Fecal Bacteriome of HIV-Positive and HIV-Negative Older Adults. Biomedicines 2023; 11:2305. [PMID: 37626801 PMCID: PMC10452058 DOI: 10.3390/biomedicines11082305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
HIV infection is considered a scenario of accelerated aging. Previous studies have suggested a link between aging, frailty, and gut dysbiosis, but there is a knowledge gap regarding the HIV population. Our objective was to compare the fecal bacteriome of older people with HIV (PWH) and non-HIV controls, and to assess potential links between gut dysbiosis and frailty. A total of 36 fecal samples (24 from PWH and 12 from non-HIV controls) were submitted to a metataxonomic analysis targeting the V3-V4 hypervariable region of the 16S rRNA gene. High-quality reads were assembled and classified into operational taxonomic units. Alpha diversity, assessed using the Shannon index, was higher in the control group than in the HIV group (p < 0.05). The relative abundance of the genus Blautia was higher in the HIV group (p < 0.001). The presence of Blautia was also higher in PWH with depression (p = 0.004), whereas the opposite was observed for the genus Bifidobacterium (p = 0.004). Our study shows shifts in the composition of the PWH bacteriome when compared to that of healthy controls. To our knowledge, this is the first study suggesting a potential link between depression and gut dysbiosis in the HIV population.
Collapse
Affiliation(s)
- Matilde Sánchez-Conde
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
- CIBER de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Fernando Dronda
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
| | - Margarita Ramírez
- Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Santiago Moreno
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Fátima Brañas
- Geriatric Department, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| |
Collapse
|
67
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
68
|
Rodriguez MT, McLaurin KA, Shtutman M, Kubinak JL, Mactutus CF, Booze RM. Therapeutically targeting the consequences of HIV-1-associated gastrointestinal dysbiosis: Implications for neurocognitive and affective alterations. Pharmacol Biochem Behav 2023; 229:173592. [PMID: 37390973 PMCID: PMC10494709 DOI: 10.1016/j.pbb.2023.173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.
Collapse
Affiliation(s)
- Mason T Rodriguez
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, 715 Sumter Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Jason L Kubinak
- Pathology, Microbiology & Immunology, School of Medicine Columbia, 6311 Garners Ferry Road, Building 2, Columbia, SC 29209, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
69
|
Deshetty UM, Ray S, Singh S, Buch S, Periyasamy P. Opioid abuse and SIV infection in non-human primates. J Neurovirol 2023; 29:377-388. [PMID: 37418108 PMCID: PMC10729652 DOI: 10.1007/s13365-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
70
|
Zhang Y, Andreu-Sánchez S, Vadaq N, Wang D, Matzaraki V, van der Heijden WA, Gacesa R, Weersma RK, Zhernakova A, Vandekerckhove L, de Mast Q, Joosten LAB, Netea MG, van der Ven AJAM, Fu J. Gut dysbiosis associates with cytokine production capacity in viral-suppressed people living with HIV. Front Cell Infect Microbiol 2023; 13:1202035. [PMID: 37583444 PMCID: PMC10425223 DOI: 10.3389/fcimb.2023.1202035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Background People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1β (IL-1β), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wouter A. van der Heijden
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - André J. A. M. van der Ven
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
71
|
Pérez-Molina JA, Crespillo-Andújar C, Trigo E, Chamorro S, Arsuaga M, Olavarrieta L, Navia B, Martín O, Monge-Maillo B, Norman FF, Lanza VF, Serrano-Villar S. Chagas disease is related to structural changes of the gut microbiota in adults with chronic infection (TRIPOBIOME Study). PLoS Negl Trop Dis 2023; 17:e0011490. [PMID: 37478160 PMCID: PMC10395948 DOI: 10.1371/journal.pntd.0011490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The implications of the gut microbial communities in the immune response against parasites and gut motility could explain the differences in clinical manifestations and treatment responses found in patients with chronic Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS In this pilot prospective cross-sectional study, we included 80 participants: 29 with indeterminate CD (ICD), 16 with cardiac CD (CCD), 15 with digestive CD (DCD), and 20 controls without CD. Stool was collected at the baseline visit and faecal microbial community structure DNA was analyzed by whole genome sequencing. We also performed a comprehensive dietary analysis. Ninety per cent (72/80) of subjects were of Bolivian origin with a median age of 47 years (IQR 39-54) and 48.3% (29/60) had received benznidazole treatment. There were no substantial differences in dietary habits between patients with CD and controls. We identified that the presence or absence of CD explained 5% of the observed microbiota variability. Subjects with CD exhibited consistent enrichment of Parabacteroides spp, while for Enterococcus hirae, Lactobacillus buchneri and Megamonas spp, the effect was less clear once excluded the outliers values. Sex, type of visceral involvement and previous treatment with benznidazole did not appear to have a confounding effect on gut microbiota structure. We also found that patients with DCD showed consistent Prevotella spp enrichment. CONCLUSIONS We found a detectable effect of Chagas disease on overall microbiota structure with several potential disease biomarkers, which warrants further research in this field. The analysis of bacterial diversity could prove to be a viable target to improve the prognosis of this prevalent and neglected disease.
Collapse
Affiliation(s)
- José A Pérez-Molina
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Crespillo-Andújar
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Trigo
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Imported Diseases and International Health Referral Unit. High Level Isolation Unit. La Paz- Carlos III University Hospital, Madrid, Spain
| | - Sandra Chamorro
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Arsuaga
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Imported Diseases and International Health Referral Unit. High Level Isolation Unit. La Paz- Carlos III University Hospital, Madrid, Spain
| | - Leticia Olavarrieta
- Translational Genomics Unit. Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Beatriz Navia
- Department of Nutrition and Food Science, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Research Group VALORNUT-UCM (920030), Universidad Complutense de Madrid, Madrid, Spain
| | - Oihane Martín
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Begoña Monge-Maillo
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesca F Norman
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Val F Lanza
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Bioinformatics Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sergio Serrano-Villar
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
72
|
Lacunza E, Fink V, Salas ME, Canzoneri R, Naipauer J, Williams S, Coso O, Sued O, Cahn P, Mesri EA, Abba MC. Oral and anal microbiome from HIV-exposed individuals: role of host-associated factors in taxa composition and metabolic pathways. NPJ Biofilms Microbiomes 2023; 9:48. [PMID: 37438354 DOI: 10.1038/s41522-023-00413-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Evidence indicates that the microbiome plays a significant role in HIV immunopathogenesis and associated complications. This study aimed to characterize the oral and anal microbiome of Men who have Sex with Men (MSM) and Transgender Women (TGW), with and without HIV. One hundred and thirty oral and anal DNA-derived samples were obtained from 78 participants and subjected to shotgun metagenomics sequencing for further microbiome analysis. Significant differences in the microbiome composition were found among subjects associated with HIV infection, gender, sex behavior, CD4+ T-cell counts, antiretroviral therapy (ART), and the presence of HPV-associated precancerous anal lesions. Results confirm the occurrence of oncogenic viromes in this high HIV-risk population. The oral microbiome in HIV-associated cases exhibited an enrichment of bacteria associated with periodontal disease pathogenesis. Conversely, anal bacteria showed a significant decrease in HIV-infected subjects (Coprococcus comes, Finegoldia magna, Blautia obeum, Catenibacterium mitsuokai). TGW showed enrichment in species related to sexual transmission, which concurs that most recruited TGW are or have been sex workers. Prevotella bivia and Fusobacterium gonidiaformans were positively associated with anal precancerous lesions among HIV-infected subjects. The enrichment of Holdemanella biformis and C. comes was associated with detectable viral load and ART-untreated patients. Metabolic pathways were distinctly affected by predominant factors linked to sexual behavior or HIV pathogenesis. Gene family analysis identified bacterial gene signatures as potential prognostic and predictive biomarkers for HIV/AIDS-associated malignancies. Conclusions: Identified microbial features at accessible sites are potential biomarkers for predicting precancerous anal lesions and therapeutic targets for HIV immunopathogenesis.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Valeria Fink
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - María E Salas
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julián Naipauer
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sion Williams
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Coso
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Sued
- Pan American Health Organization, Washington, USA
| | - Pedro Cahn
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Enrique A Mesri
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
73
|
Duarte MJ, Tien PC, Somsouk M, Price JC. The human microbiome and gut-liver axis in people living with HIV. Curr HIV/AIDS Rep 2023; 20:170-180. [PMID: 37129834 PMCID: PMC10232565 DOI: 10.1007/s11904-023-00657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE OF REVIEW Chronic liver disease is a major cause of morbidity and mortality amongst people living with HIV (PLWH). Emerging data suggests that gut microbial translocation may play a role in driving and modulating liver disease, a bi-directional relationship termed the gut-liver axis. While it is recognized that PLWH have a high degree of dysbiosis and gut microbial translocation, little is known about the gut-liver axis in PLWH. RECENT FINDINGS Recent studies have shown that microbial translocation can directly lead to hepatic inflammation, and have linked gut microbial signatures, dysbiosis, and translocation to liver disease in PLWH. Additionally, multiple trials have explored interventions targeting the microbiome in PLWH. Emerging research supports the interaction between the gut microbiome and liver disease in PLWH. This offers new opportunities to expand our understanding of the pathophysiology of liver disease in this population, as well as to explore possible clinical interventions.
Collapse
Affiliation(s)
- Maria J Duarte
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Phyllis C Tien
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Ma Somsouk
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jennifer C Price
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
74
|
Shen Y, Dong Y, Jiao J, Wang P, Chen M, Li J. BBIBP-CorV Vaccination against the SARS-CoV-2 Virus Affects the Gut Microbiome. Vaccines (Basel) 2023; 11:942. [PMID: 37243047 PMCID: PMC10223200 DOI: 10.3390/vaccines11050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Several observational studies have confirmed that the severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) might substantially affect the gastrointestinal (GI) system by replicating in human small intestine enterocytes. Yet, so far, no study has reported the effects of inactivated SARS-CoV-2 virus vaccines on gut microbiota alterations. In this study, we examined the effects of the BBIBP-CorV vaccine (ChiCTR2000032459, sponsored by the Beijing Institute of Biological Products/Sinopharm), on gut microbiota. Fecal samples were collected from individuals whoreceived two doses of intramuscular injection of BBIBP-CorV and matched unvaccinated controls. DNA extracted from fecal samples was subjected to 16S ribosomal RNA sequencing analysis. The composition and biological functions of the microbiota between vaccinated and unvaccinated individuals were compared. Compared with unvaccinated controls, vaccinated subjects exhibited significantly reduced bacterial diversity, elevated firmicutes/bacteroidetes (F/B) ratios, a tendency towards Faecalibacterium-predominant enterotypes, and altered gut microbial compositions and functional potentials. Specifically, the intestinal microbiota in vaccine recipients was enriched with Faecalibacterium and Mollicutes and with a lower abundance of Prevotella, Enterococcus, Leuconostocaceae, and Weissella. Microbial function prediction by phylogenetic investigation of communities using reconstruction of unobserved states (PICRUSt) analysis further indicated that Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in carbohydrate metabolism and transcription were positively associated with vaccine inoculation, whereas capacities in neurodegenerative diseases, cardiovascular diseases, and cancers were negatively affected by vaccines. Vaccine inoculation was particularly associated with gut microbiota alterations, as was demonstrated by the improved composition and functional capacities of gut microbiota.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mulei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
75
|
Satish S, Abu Y, Gomez D, Kumar Dutta R, Roy S. HIV, opioid use, and alterations to the gut microbiome: elucidating independent and synergistic effects. Front Immunol 2023; 14:1156862. [PMID: 37168868 PMCID: PMC10164749 DOI: 10.3389/fimmu.2023.1156862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
Background The microbiome is essential to immune development, defense against pathogens, and modulation of inflammation. Microbial dysbiosis has been reported in various diseases including human immunodeficiency virus (HIV) and opioid use disorder (OUD). Notably, people living with HIV (PLWH) have been reported to both have higher rates of OUD and use opioids at higher rates than the general public. Thus, studying gut microbial alterations in people living with HIV and with OUD could elucidate mechanisms pertaining to how these conditions both shape and are shaped by the microbiome. However, to date few studies have investigated how HIV and OUD in combination impact the microbiome. Aim of review Here, we review previous studies outlining interactions between HIV, opioid use, and microbial dysbiosis and describe attempts to treat this dysbiosis with fecal microbial transplantation, probiotics, and dietary changes. Key scientific concepts of review While the limited number of studies prevent overgeneralizations; accumulating data suggest that HIV and opioid use together induce distinct alterations in the gut microbiome. Among the three existing preclinical studies of HIV and opioid use, two studies reported a decrease in Lachnospiraceae and Ruminococcaceae, and one study reported a decrease in Muribaculaceae in the combined HIV and opioid group relative to HIV-alone, opioid-alone, or control groups. These bacteria are known to modulate immune function, decrease colonic inflammation, and maintain gut epithelial barrier integrity in healthy individuals. Accordingly, modulation of the gut microbiome to restore gut homeostasis may be attempted to improve both conditions. While mixed results exist regarding treating dysbiosis with microbial restoration in PLWH or in those with opioid dependency, larger well-defined studies that can improve microbial engraftment in hosts hold much promise and should still be explored.
Collapse
Affiliation(s)
- Sanjana Satish
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yaa Abu
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Gomez
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajib Kumar Dutta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
76
|
Li L, Zhao X, He JJ. HIV Tat Expression and Cocaine Exposure Lead to Sex- and Age-Specific Changes of the Microbiota Composition in the Gut. Microorganisms 2023; 11:799. [PMID: 36985373 PMCID: PMC10054272 DOI: 10.3390/microorganisms11030799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The balance of microbial communities in the gut is extremely important for normal physiological function. Disruption of the balance is often associated with various disorders and diseases. Both HIV infection and cocaine use are known to change the gut microbiota and the epithelial barrier integrity, which contribute to inflammation and immune activation. Our recent study shows that Tat expression and cocaine exposure result in changes of genome-wide DNA methylation and gene expression and lead to worsen the learning and memory impairments. In the current study, we extended the study to determine effects of Tat and cocaine on the gut microbiota composition. We found that both Tat expression and cocaine exposure increased Alteromonadaceae in 6-month-old female/male mice. In addition, we found that Tat, cocaine, or both increased Alteromonadaceae, Bacteroidaceae, Cyanobiaceae, Erysipelotrichaceae, and Muribaculaceae but decreased Clostridiales_vadinBB60_group, Desulfovibrionaceae, Helicobacteraceae, Lachnospiraceae, and Ruminococcaceae in 12-month-old female mice. Lastly, we analyzed changes of metabolic pathways and found that Tat decreased energy metabolism and nucleotide metabolism, and increased lipid metabolism and metabolism of other amino acids while cocaine increased lipid metabolism in 12-month-old female mice. These results demonstrated that Tat expression and cocaine exposure resulted in significant changes of the gut microbiota in an age- and sex-dependent manner and provide additional evidence to support the bidirectional gut-brain axis hypothesis.
Collapse
Affiliation(s)
- Lu Li
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Xiaojie Zhao
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Johnny J. He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
77
|
Ray S, Sil S, Kannan M, Periyasamy P, Buch S. Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11092. [PMID: 38389809 PMCID: PMC10880759 DOI: 10.3389/adar.2023.11092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2024]
Abstract
Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.
Collapse
Affiliation(s)
- Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
78
|
Flynn JK, Ortiz AM, Herbert R, Brenchley JM. Host Genetics and Environment Shape the Composition of the Gastrointestinal Microbiome in Nonhuman Primates. Microbiol Spectr 2023; 11:e0213922. [PMID: 36475838 PMCID: PMC9927375 DOI: 10.1128/spectrum.02139-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
The bacterial component of the gastrointestinal tract microbiome is comprised of hundreds of species, the majority of which live in symbiosis with the host. The bacterial microbiome is influenced by host diet and disease history, and host genetics may additionally play a role. To understand the degree to which host genetics shapes the gastrointestinal tract microbiome, we studied fecal microbiomes in 4 species of nonhuman primates (NHPs) held in separate facilities but fed the same base diet. These animals include Chlorocebus pygerythrus, Chlorocebus sabaeus, Macaca mulatta, and Macaca nemestrina. We also followed gastrointestinal tract microbiome composition in 20 Macaca mulatta (rhesus macaques [RMs]) as they transitioned from an outdoor to indoor environment and compared 6 Chlorocebus pygerythrus monkeys that made the outdoor to indoor transition to their 9 captive-born offspring. We found that genetics can influence microbiome composition, with animals of different genera (Chlorocebus versus Macaca) having significantly different gastrointestinal (GI) microbiomes despite controlled diets. Animals within the same genera have more similar microbiomes, although still significantly different, and animals within the same species have even more similar compositions that are not significantly different. Significant differences were also not observed between wild-born and captive-born Chlorocebus pygerythrus, while there were significant changes in RMs as they transitioned into captivity. Together, these results suggest that the effects of captivity have a larger impact on the microbiome than other factors we examined within a single NHP species, although host genetics does significantly influence microbiome composition between NHP genera and species. IMPORTANCE Our data point to the degree to which host genetics can influence GI microbiome composition and suggest, within primate species, that individual host genetics is unlikely to significantly alter the microbiome. These data are important for the development of therapeutics aimed at altering the microbiome within populations of genetically disparate members of primate species.
Collapse
Affiliation(s)
- Jacob K. Flynn
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Richard Herbert
- Comparative Medicine Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
79
|
Meng J, Tao J, Abu Y, Sussman DA, Girotra M, Franceschi D, Roy S. HIV-Positive Patients on Antiretroviral Therapy Have an Altered Mucosal Intestinal but Not Oral Microbiome. Microbiol Spectr 2023; 11:e0247222. [PMID: 36511710 PMCID: PMC9927552 DOI: 10.1128/spectrum.02472-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
This study characterized compositional and functional shifts in the intestinal and oral microbiome in HIV-positive patients on antiretroviral therapy compared to HIV-negative individuals. Seventy-nine specimens were collected from 5 HIV-positive and 12 control subjects from five locations (colon brush, colon wash, terminal ileum [TI] brush, TI wash, and saliva) during colonoscopy and at patient visits. Microbiome composition was characterized using 16S rRNA sequencing, and microbiome function was predicted using bioinformatics tools (PICRUSt and BugBase). Our analysis indicated that the β-diversity of all intestinal samples (colon brush, colon wash, TI brush, and TI wash) from patients with HIV was significantly different from patients without HIV. Specifically, bacteria from genera Prevotella, Fusobacterium, and Megasphaera were more abundant in samples from HIV-positive patients. On the other hand, bacteria from genera Ruminococcus, Blautia, and Clostridium were more abundant in samples from HIV-negative patients. Additionally, HIV-positive patients had higher abundances of biofilm-forming and pathogenic bacteria. Furthermore, pathways related to translation and nucleotide metabolism were elevated in HIV-positive patients, whereas pathways related to lipid and carbohydrate metabolism were positively correlated with samples from HIV-negative patients. Our analyses further showed variations in microbiome composition in HIV-positive and negative patients by sampling site. Samples from colon wash, colon brush, and TI wash were significant between groups, while samples from TI brush and saliva were not significant. Taken together, here, we report altered intestinal microbiome composition and predicted function in patients with HIV compared to uninfected patients, though we found no changes in the oral microbiome. IMPORTANCE Over 37 million people worldwide are living with HIV. Although the availability of antiretroviral therapy has significantly reduced the number of AIDS-related deaths, individuals living with HIV are at increased risk for opportunistic infections. We now know that HIV interacts with the trillions of bacteria, fungi, and viruses in the human body termed the microbiome. Only a limited number of previous studies have compared variations in the oral and gastrointestinal microbiome with HIV infection. Here, we detail how the oral and gastrointestinal microbiome changes with HIV infection, having used 5 different sampling sites to gain a more comprehensive view of these changes by location. Our results show site-specific changes in the intestinal microbiome associated with HIV infection. Additionally, we show that while there were significant changes in the intestinal microbiome, there were no significant changes in the oral microbiome.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Junyi Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Yaa Abu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Daniel Andrew Sussman
- Department of Gastroenterology, University of Miami Medical Group, Miami, Florida, USA
| | - Mohit Girotra
- Department of Gastroenterology, University of Miami Medical Group, Miami, Florida, USA
| | - Dido Franceschi
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Sabita Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| |
Collapse
|
80
|
Le-Trilling VTK, Ebel JF, Baier F, Wohlgemuth K, Pfeifer KR, Mookhoek A, Krebs P, Determann M, Katschinski B, Adamczyk A, Lange E, Klopfleisch R, Lange CM, Sokolova V, Trilling M, Westendorf AM. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells. Eur J Immunol 2023; 53:e2249940. [PMID: 36250419 DOI: 10.1002/eji.202249940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 02/04/2023]
Abstract
Primary and recurrent cytomegalovirus (CMV) infections frequently cause CMV colitis in immunocompromised as well as inflammatory bowel disease (IBD) patients. Additionally, colitis occasionally occurs upon primary CMV infection in patients who are apparently immunocompetent. In both cases, the underlying pathophysiologic mechanisms are largely elusive - in part due to the lack of adequate access to specimens. We employed the mouse cytomegalovirus (MCMV) model to assess the association between CMV and colitis. During acute primary MCMV infection of immunocompetent mice, the gut microbial composition was affected as manifested by an altered ratio of the Firmicutes to Bacteroidetes phyla. Interestingly, these microbial changes coincided with high-titer MCMV replication in the colon, crypt hyperplasia, increased colonic pro-inflammatory cytokine levels, and a transient increase in the expression of the antimicrobial protein Regenerating islet-derived protein 3 gamma (Reg3γ). Further analyses revealed that murine and human intestinal epithelial cell lines, as well as primary intestinal crypt cells and organoids represent direct targets of CMV infection causing increased cell death. Accordingly, in vivo MCMV infection disrupted the intestinal epithelial barrier and increased apoptosis of intestinal epithelial cells. In summary, our data show that CMV transiently induces colitis in immunocompetent hosts by altering the intestinal homeostasis.
Collapse
Affiliation(s)
| | - Jana-Fabienne Ebel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Franziska Baier
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Wohlgemuth
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kai Robin Pfeifer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aart Mookhoek
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Madita Determann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erik Lange
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Christian M Lange
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktoriya Sokolova
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
81
|
The Gut Microbiome, Microbial Metabolites, and Cardiovascular Disease in People Living with HIV. Curr HIV/AIDS Rep 2023; 20:86-99. [PMID: 36708497 DOI: 10.1007/s11904-023-00648-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To synthesize recent evidence relating the gut microbiome and microbial metabolites to cardiovascular disease (CVD) in people living with HIV (PLWH). RECENT FINDINGS A few cross-sectional studies have reported on the gut microbiome and cardiovascular outcomes in the context of HIV, with no consistent patterns emerging. The largest such study found that gut Fusobacterium was associated with carotid artery plaque. More studies have evaluated microbial metabolite trimethylamine N-oxide with CVD risk in PLWH, but results were inconsistent, with recent prospective analyses showing null effects. Studies of other microbial metabolites are scarce. Microbial translocation biomarkers (e.g., lipopolysaccharide binding protein) have been related to incident CVD in PLWH. Microbial translocation may increase CVD risk in PLWH, but there is insufficient and/or inconsistent evidence regarding specific microbial species and microbial metabolites associated with cardiovascular outcomes in PLWH. Further research is needed in large prospective studies integrating the gut microbiome, microbial translocation, and microbial metabolites with cardiovascular outcomes in PLWH.
Collapse
|
82
|
Moreno E, Ron R, Serrano-Villar S. The microbiota as a modulator of mucosal inflammation and HIV/HPV pathogenesis: From association to causation. Front Immunol 2023; 14:1072655. [PMID: 36756132 PMCID: PMC9900135 DOI: 10.3389/fimmu.2023.1072655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Although the microbiota has largely been associated with the pathogenesis of viral infections, most studies using omics techniques are correlational and hypothesis-generating. The mechanisms affecting the immune responses to viral infections are still being fully understood. Here we focus on the two most important sexually transmitted persistent viruses, HPV and HIV. Sophisticated omics techniques are boosting our ability to understand microbiota-pathogen-host interactions from a functional perspective by surveying the host and bacterial protein and metabolite production using systems biology approaches. However, while these strategies have allowed describing interaction networks to identify potential novel microbiota-associated biomarkers or therapeutic targets to prevent or treat infectious diseases, the analyses are typically based on highly dimensional datasets -thousands of features in small cohorts of patients-. As a result, we are far from getting to their clinical use. Here we provide a broad overview of how the microbiota influences the immune responses to HIV and HPV disease. Furthermore, we highlight experimental approaches to understand better the microbiota-host-virus interactions that might increase our potential to identify biomarkers and therapeutic agents with clinical applications.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
83
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
84
|
Chandiwana P, Munjoma PT, Mazhandu AJ, Li J, Baertschi I, Wyss J, Jordi SBU, Mazengera LR, Yilmaz B, Misselwitz B, Duri K. Antenatal gut microbiome profiles and effect on pregnancy outcome in HIV infected and HIV uninfected women in a resource limited setting. BMC Microbiol 2023; 23:4. [PMID: 36604616 PMCID: PMC9817306 DOI: 10.1186/s12866-022-02747-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) severely damages the epithelial cells of the gut lining leading to an inflamed leaky gut, translocation of microbial products, and dysbiosis resulting in systemic immune activation. Also, microbiota composition and maternal gut function can be altered in pregnancy through changes in the immune system and intestinal physiology. The aim of this study was to investigate the gut microbiota in HIV-infected and HIV-uninfected pregnant women and to compare and identify the association between gut microbial composition and adverse birth outcomes. RESULTS A total of 94 pregnant women (35 HIV-infected and 59 HIV-uninfected controls) were recruited in Harare from 4 polyclinics serving populations with relatively poor socioeconomic status. Women were of a median age of 28 years (interquartile range, IQR: 22.3-32.0) and 55% of women were 35 weeks gestational age at enrolment (median 35.0 weeks, IQR: 32.5-37.2). Microbiota profiling in these participants showed that species richness was significantly lower in the HIV-infected pregnant women compared to their HIV-uninfected peers and significant differences in β-diversity using Bray-Curtis dissimilarity were observed. In contrast, there was no significant difference in α-diversity between immune-compromised (CD4+ < 350 cells/µL) and immune-competent HIV-infected women (CD4+ ≥ 350 cells/µL) even after stratification by viral load suppression. HIV infection was significantly associated with a reduced abundance of Clostridium, Turicibacter, Ruminococcus, Parabacteroides, Bacteroides, Bifidobacterium, Treponema, Oscillospira, and Faecalibacterium and a higher abundance of Actinomyces, and Succinivibrio. Low infant birth weight (< 2500 g) was significantly associated with high abundances of the phylum Spirochaetes, the families Spirochaeteceae, Veillonellaceae, and the genus Treponema. CONCLUSION The results reported here show that the species richness and taxonomy composition of the gut microbiota is altered in HIV-infected pregnant women, possibly reflecting intestinal dysbiosis. Some of these taxa were also associated with low infant birth weight.
Collapse
Affiliation(s)
- Panashe Chandiwana
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Arthur John Mazhandu
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Jiaqi Li
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Isabel Baertschi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jacqueline Wyss
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Sebastian Bruno Ulrich Jordi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lovemore Ronald Mazengera
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Misselwitz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Kerina Duri
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| |
Collapse
|
85
|
Cai S, Lin J, Li Z, Liu S, Feng Z, Zhang Y, Zhang Y, Huang J, Chen Q. Alterations in intestinal microbiota and metabolites in individuals with Down syndrome and their correlation with inflammation and behavior disorders in mice. Front Microbiol 2023; 14:1016872. [PMID: 36910172 PMCID: PMC9998045 DOI: 10.3389/fmicb.2023.1016872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
The intestinal microbiota and fecal metabolome have been shown to play a vital role in human health, and can be affected by genetic and environmental factors. We found that individuals with Down syndrome (DS) had abnormal serum cytokine levels indicative of a pro-inflammatory environment. We investigated whether these individuals also had alterations in the intestinal microbiome. High-throughput sequencing of bacterial 16S rRNA gene in fecal samples from 17 individuals with DS and 23 non-DS volunteers revealed a significantly higher abundance of Prevotella, Escherichia/Shigella, Catenibacterium, and Allisonella in individuals with DS, which was positively associated with the levels of pro-inflammatory cytokines. GC-TOF-MS-based fecal metabolomics identified 35 biomarkers (21 up-regulated metabolites and 14 down-regulated metabolites) that were altered in the microbiome of individuals with DS. Metabolic pathway enrichment analyses of these biomarkers showed a characteristic pattern in DS that included changes in valine, leucine, and isoleucine biosynthesis and degradation; synthesis and degradation of ketone bodies; glyoxylate and dicarboxylate metabolism; tyrosine metabolism; lysine degradation; and the citrate cycle. Treatment of mice with fecal bacteria from individuals with DS or Prevotella copri significantly altered behaviors often seen in individuals with DS, such as depression-associated behavior and impairment of motor function. These studies suggest that changes in intestinal microbiota and the fecal metabolome are correlated with chronic inflammation and behavior disorders associated with DS.
Collapse
Affiliation(s)
- Shaoli Cai
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Jinxin Lin
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Songnian Liu
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhihua Feng
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yangfan Zhang
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yanding Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianzhong Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Qi Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian, China.,College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
86
|
Shaffer M, Thurimella K, Sterrett JD, Lozupone CA. SCNIC: Sparse correlation network investigation for compositional data. Mol Ecol Resour 2023; 23:312-325. [PMID: 36001047 PMCID: PMC9744196 DOI: 10.1111/1755-0998.13704] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Microbiome studies are often limited by a lack of statistical power due to small sample sizes and a large number of features. This problem is exacerbated in correlative studies of multi-omic datasets. Statistical power can be increased by finding and summarizing modules of correlated observations, which is one dimensionality reduction method. Additionally, modules provide biological insight as correlated groups of microbes can have relationships among themselves. To address these challenges, we developed SCNIC: Sparse Cooccurrence Network Investigation for compositional data. SCNIC is open-source software that can generate correlation networks and detect and summarize modules of highly correlated features. Modules can be formed using either the Louvain Modularity Maximization (LMM) algorithm or a Shared Minimum Distance algorithm (SMD) that we newly describe here and relate to LMM using simulated data. We applied SCNIC to two published datasets and we achieved increased statistical power and identified microbes that not only differed across groups, but also correlated strongly with each other, suggesting shared environmental drivers or cooperative relationships among them. SCNIC provides an easy way to generate correlation networks, identify modules of correlated features and summarize them for downstream statistical analysis. Although SCNIC was designed considering properties of microbiome data, such as compositionality and sparsity, it can be applied to a variety of data types including metabolomics data and used to integrate multiple data types. SCNIC allows for the identification of functional microbial relationships at scale while increasing statistical power through feature reduction.
Collapse
Affiliation(s)
- Michael Shaffer
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kumar Thurimella
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - John D. Sterrett
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Catherine A. Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
87
|
Impact of HIV infection and integrase strand transfer inhibitors-based treatment on the gut virome. Sci Rep 2022; 12:21658. [PMID: 36522388 PMCID: PMC9755154 DOI: 10.1038/s41598-022-25979-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses are the most abundant components of the human gut microbiome with a significant impact on health and disease. The effects of human immunodeficiency virus (HIV) infection on gut virome has been scarcely analysed. Several studies suggested that integrase strand transfers inhibitors (INSTIs) are associated with a healthier gut. Thus, the objective of this work was to evaluate the effects of HIV infection and INSTIs on gut virome composition. 26 non-HIV-infected volunteers, 15 naive HIV-infected patients and 15 INSTIs-treated HIV-infected patients were recruited and their gut virome composition was analysed using shotgun sequencing. Bacteriophages were the most abundant and diverse viruses present in gut. HIV infection was accompanied by a decrease in phage richness which was reverted after INSTIs-based treatment. β-diversity of phages revealed that samples from HIV-infected patients clustered separately from those belonging to the control group. Differential abundant analysis showed an increase in phages belonging to Caudoviricetes class in the naive group and a decrease of Malgrandaviricetes class phages in the INSTIs-treated group compared to the control group. Besides, it was observed that INSTIs-based treatment was not able to reverse the increase of lysogenic phages associated with HIV infection or to modify the decrease observed on the relative abundance of Proteobacteria-infecting phages. Our study describes for the first time the impact of HIV and INSTIs on gut virome and demonstrates that INSTIs-based treatments are able to partially restore gut dysbiosis at the viral level, which opens several opportunities for new studies focused on microbiota-based therapies.
Collapse
|
88
|
Yadav A, Pandey R. Viral infectious diseases severity: co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity. Front Immunol 2022; 13:1056036. [PMID: 36532032 PMCID: PMC9755851 DOI: 10.3389/fimmu.2022.1056036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Humans have been challenged by infectious diseases for all of their recorded history, and are continually being affected even today. Next-generation sequencing (NGS) has enabled identification of, i) culture independent microbes, ii) emerging disease-causing pathogens, and iii) understanding of the genome architecture. This, in turn, has highlighted that pathogen/s are not a monolith, and thereby allowing for the differentiation of the wide-ranging disease symptoms, albeit infected by a primary pathogen. The conventional 'one disease - one pathogen' paradigm has been positively revisited by considering limited yet important evidence of the co-presence of multiple transcriptionally active microbes (TAMs), potential pathogens, in various infectious diseases, including the COVID-19 pandemic. The ubiquitous microbiota presence inside humans gives reason to hypothesize that the microbiome, especially TAMs, contributes to disease etiology. Herein, we discuss current evidence and inferences on the co-infecting microbes particularly in the diseases caused by the RNA viruses - Influenza, Dengue, and the SARS-CoV-2. We have highlighted that the specific alterations in the microbial taxonomic abundances (dysbiosis) is functionally connected to the exposure of primary infecting pathogen/s. The microbial presence is intertwined with the differential host immune response modulating differential disease trajectories. The microbiota-host interactions have been shown to modulate the host immune responses to Influenza and SARS-CoV-2 infection, wherein the active commensal microbes are involved in the generation of virus-specific CD4 and CD8 T-cells following the influenza virus infection. Furthermore, COVID-19 dysbiosis causes an increase in inflammatory cytokines such as IL-6, TNF-α, and IL-1β, which might be one of the important predisposing factors for severe infection. Through this article, we aim to provide a comprehensive view of functional microbiomes that can have a significant regulatory impact on predicting disease severity (mild, moderate and severe), as well as clinical outcome (survival and mortality). This can offer fresh perspectives on the novel microbial biomarkers for stratifying patients for severe disease symptoms, disease prevention and augmenting treatment regimens.
Collapse
Affiliation(s)
- Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
89
|
Li S, Yang X, Moog C, Wu H, Su B, Zhang T. Neglected mycobiome in HIV infection: Alterations, common fungal diseases and antifungal immunity. Front Immunol 2022; 13:1015775. [PMID: 36439143 PMCID: PMC9684632 DOI: 10.3389/fimmu.2022.1015775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 09/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection might have effects on both the human bacteriome and mycobiome. Although many studies have focused on alteration of the bacteriome in HIV infection, only a handful of studies have also characterized the composition of the mycobiome in HIV-infected individuals. Studies have shown that compromised immunity in HIV infection might contribute to the development of opportunistic fungal infections. Despite effective antiretroviral therapy (ART), opportunistic fungal infections continue to be a major cause of HIV-related mortality. Human immune responses are known to play a critical role in controlling fungal infections. However, the effect of HIV infection on innate and adaptive antifungal immunity remains unclear. Here, we review recent advances in understanding of the fungal microbiota composition and common fungal diseases in the setting of HIV. Moreover, we discuss innate and adaptive antifungal immunity in HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
90
|
Le‐Trilling VTK, Ebel J, Baier F, Wohlgemuth K, Pfeifer KR, Mookhoek A, Krebs P, Determann M, Katschinski B, Adamczyk A, Lange E, Klopfleisch R, Lange CM, Sokolova V, Trilling M, Westendorf AM. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells. Eur J Immunol 2022. [DOI: 10.1002/eji.202249940 10.1002/eji.202249940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Jana‐Fabienne Ebel
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Franziska Baier
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Kerstin Wohlgemuth
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Kai Robin Pfeifer
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Aart Mookhoek
- Institute of Pathology University of Bern Bern Switzerland
| | - Philippe Krebs
- Institute of Pathology University of Bern Bern Switzerland
| | - Madita Determann
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Benjamin Katschinski
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Erik Lange
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology Free University of Berlin Berlin Germany
| | - Christian M. Lange
- Department of Gastroenterology and Hepatology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Viktoriya Sokolova
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| | - Mirko Trilling
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| |
Collapse
|
91
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
92
|
Johnson SD, Knight LA, Kumar N, Olwenyi OA, Thurman M, Mehra S, Mohan M, Byrareddy SN. Early treatment with anti-α 4β 7 antibody facilitates increased gut macrophage maturity in SIV-infected rhesus macaques. Front Immunol 2022; 13:1001727. [PMID: 36389795 PMCID: PMC9664000 DOI: 10.3389/fimmu.2022.1001727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to experience gastrointestinal dysfunction. Infusions of anti-α4β7 monoclonal antibodies (mAbs) have been proposed to increase virologic control during simian immunodeficiency virus (SIV) infection in macaques with mixed results. Recent evidences suggested that therapeutic efficacy of vedolizumab (a humanized anti-α4β7 mAb), during inflammatory bowel diseases depends on microbiome composition, myeloid cell differentiation, and macrophage phenotype. We tested this hypothesis in SIV-infected, anti-α4β7 mAb-treated macaques and provide flow cytometric and microscopic evidence that anti-α4β7 administered to SIV-infected macaques increases the maturity of macrophage phenotypes typically lost in the small intestines during SIV disease progression. Further, this increase in mature macrophage phenotype was associated with tissue viral loads. These phenotypes were also associated with dysbiosis markers in the gut previously identified as predictors of HIV replication and immune activation in PLWH. These findings provide a novel model of anti-α4β7 efficacy offering new avenues for targeting pathogenic mucosal immune response during HIV/SIV infection.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lindsey A. Knight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Omalla A. Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
93
|
Lipopolysaccharide enhances HSV-1 replication and inflammatory factor release in the ARPE-19 cells. Heliyon 2022; 8:e11787. [DOI: 10.1016/j.heliyon.2022.e11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
|
94
|
Hernandez J, Tamargo JA, Sales Martinez S, Martin HR, Campa A, Sékaly RP, Bordi R, Sherman KE, Rouster SD, Meeds HL, Khalsa JH, Mandler RN, Lai S, Baum MK. Cocaine use associated gut permeability and microbial translocation in people living with HIV in the Miami Adult Study on HIV (MASH) cohort. PLoS One 2022; 17:e0275675. [PMID: 36215260 PMCID: PMC9550062 DOI: 10.1371/journal.pone.0275675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Determine if cocaine use impacts gut permeability, promotes microbial translocation and immune activation in people living with HIV (PLWH) using effective antiretroviral therapy (ART). METHODS Cross-sectional analysis of 100 PLWH (ART ≥6 months, HIV-RNA <200 copies/mL) from the Miami Adult Studies on HIV (MASH) cohort. Cocaine use was assessed by self-report, urine screen, and blood benzoylecgonine (BE). Blood samples were collected to assess gut permeability (intestinal fatty acid-binding protein, I-FABP), microbial translocation (lipopolysaccharide, LPS), immune activation (sCD14, sCD27, and sCD163) and markers of inflammation (hs-CRP, TNF-α and IL-6). Multiple linear regression models were used to analyze the relationships of cocaine use. RESULTS A total of 37 cocaine users and 63 cocaine non-users were evaluated. Cocaine users had higher levels of I-FABP (7.92±0.35 vs. 7.69±0.56 pg/mL, P = 0.029) and LPS (0.76±0.24 vs. 0.54±0.27 EU/mL, P<0.001) than cocaine non-users. Cocaine use was also associated with the levels of LPS (P<0.001), I-FABP (P = 0.033), and sCD163 (P = 0.010) after adjusting for covariates. Cocaine users had 5.15 times higher odds to exhibit higher LPS levels than non-users (OR: 5.15 95% CI: 1.89-13.9; P<0.001). Blood levels of BE were directly correlated with LPS (rho = 0.276, P = 0.028), sCD14 (rho = 0.274, P = 0.031), and sCD163 (rho = 0.250, P = 0.049). CONCLUSIONS Cocaine use was associated with markers of gut permeability, microbial translocation, and immune activation in virally suppressed PLWH. Mitigation of cocaine use may prevent further gastrointestinal damage and immune activation in PLWH.
Collapse
Affiliation(s)
- Jacqueline Hernandez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Javier A. Tamargo
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Sabrina Sales Martinez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Haley R. Martin
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Adriana Campa
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rebeka Bordi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kenneth E. Sherman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Susan D. Rouster
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Heidi L. Meeds
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jag H. Khalsa
- Department of Microbiology, Immunology and Tropical Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Raul N. Mandler
- National Institute on Drug Abuse, Rockville, Maryland, United States of America
| | - Shenghan Lai
- Department of Epidemiology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marianna K. Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
95
|
Carrico AW, Cherenack EM, Rubin LH, McIntosh R, Ghanooni D, Chavez JV, Klatt NR, Paul RH. Through the Looking-Glass: Psychoneuroimmunology and the Microbiome-Gut-Brain Axis in the Modern Antiretroviral Therapy Era. Psychosom Med 2022; 84:984-994. [PMID: 36044613 PMCID: PMC9553251 DOI: 10.1097/psy.0000000000001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Depression, substance use disorders, and other neuropsychiatric comorbidities are common in people with HIV (PWH), but the underlying mechanisms are not sufficiently understood. HIV-induced damage to the gastrointestinal tract potentiates residual immune dysregulation in PWH receiving effective antiretroviral therapy. However, few studies among PWH have examined the relevance of microbiome-gut-brain axis: bidirectional crosstalk between the gastrointestinal tract, immune system, and central nervous system. METHODS A narrative review was conducted to integrate findings from 159 articles relevant to psychoneuroimmunology (PNI) and microbiome-gut-brain axis research in PWH. RESULTS Early PNI studies demonstrated that neuroendocrine signaling via the hypothalamic-pituitary-adrenal axis and autonomic nervous system could partially account for the associations of psychological factors with clinical HIV progression. This review highlights the need for PNI studies examining the mechanistic relevance of the gut microbiota for residual immune dysregulation, tryptophan catabolism, and oxytocin release as key biological determinants of neuropsychiatric comorbidities in PWH (i.e., body-to-mind pathways). It also underscores the continued relevance of neuroendocrine signaling via the hypothalamic-pituitary-adrenal axis, autonomic nervous system, and oxytocin release in modifying microbiome-gut-brain axis functioning (i.e., mind-to-body pathways). CONCLUSIONS Advancing our understanding of PNI and microbiome-gut-brain axis pathways relevant to depression, substance use disorders, and other neuropsychiatric comorbidities in PWH can guide the development of novel biobehavioral interventions to optimize health outcomes. Recommendations are provided for biobehavioral and neurobehavioral research investigating bidirectional PNI and microbiome-gut-brain axis pathways among PWH in the modern antiretroviral therapy era.
Collapse
Affiliation(s)
- Adam W Carrico
- From the Department of Public Health Sciences (Carrico, Cherenack, Ghanooni, Chavez), University of Miami Miller School of Medicine, Miami, Florida; Departments of Neurology (Rubin) and Psychiatry and Behavioral Sciences (Rubin), Johns Hopkins University School of Medicine; Department of Epidemiology (Rubin), Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of Psychology (McIntosh), University of Miami College of Arts and Sciences, Coral Gables, Florida; Department of Surgery (Klatt), University of Minnesota School of Medicine, Minneapolis, Minnesota; and Department of Psychological Sciences (Paul), University of Missouri St. Louis, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Fulcher JA, Li F, Tobin NH, Zabih S, Elliott J, Clark JL, D'Aquila R, Mustanski B, Kipke MD, Shoptaw S, Gorbach PM, Aldrovandi GM. Gut dysbiosis and inflammatory blood markers precede HIV with limited changes after early seroconversion. EBioMedicine 2022; 84:104286. [PMID: 36179550 PMCID: PMC9520213 DOI: 10.1016/j.ebiom.2022.104286] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alterations in the gut microbiome have been associated with HIV infection, but the relative impact of HIV versus other factors on the gut microbiome has been difficult to determine in cross-sectional studies. METHODS To address this, we examined the gut microbiome, serum metabolome, and cytokines longitudinally within 27 individuals before and during acute HIV using samples collected from several ongoing cohort studies. Matched control participants (n=28) from the same cohort studies without HIV but at similar behavioral risk were used for comparison. FINDINGS We identified few changes in the microbiome during acute HIV infection, but did find alterations in serum metabolites involving secondary bile acid (lithocholate sulfate, glycocholenate sulfate) and amino acid metabolism (3-methyl-2-oxovalerate, serine, cysteine, N-acetylputrescine). Greater microbiome differences, including decreased Bacteroides spp and increased Megasphaera elsdenii, were seen when comparing pre-HIV infection visits to matched at-risk controls. Those who acquired HIV also had elevated inflammatory cytokines (TNF-α, B cell activating factor, IL-8) and bioactive lipids (palmitoyl-sphingosine-phosphoethanolamide and glycerophosphoinositol) prior to HIV acquisition compared to matched controls. INTERPRETATION Longitudinal sampling identified pre-existing microbiome differences in participants with acute HIV compared to matched control participants observed over the same period. These data highlight the importance of increasing understanding of the role of the microbiome in HIV susceptibility. FUNDING This work was supported by NIH/NIAID (K08AI124979; P30AI117943), NIH/NIDA (U01DA036267; U01DA036939; U01DA036926; U24DA044554), and NIH/NIMH (P30MH058107; R34MH105272).
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nicole H Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sara Zabih
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Julie Elliott
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jesse L Clark
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard D'Aquila
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Mustanski
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, Chicago, IL 60611, USA
| | - Michele D Kipke
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90027, USA
| | - Steven Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pamina M Gorbach
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Grace M Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
97
|
Lavinder TR, Fachko DN, Stanton J, Varco-Merth B, Smedley J, Okoye AA, Skalsky RL. Effects of Early Antiretroviral Therapy on the Composition and Diversity of the Fecal Microbiome of SIV-infected Rhesus Macaques ( Macaca mulatta). Comp Med 2022; 72:287-297. [PMID: 36162961 PMCID: PMC9827599 DOI: 10.30802/aalas-cm-22-000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIV-infected people develop reproducible disruptions in their gastrointestinal microbiota. Despite the suppression of HIV viremia via long-term antiretroviral therapy (ART), alterations still occur in gut microbial diversity and the commensal microbiota. Mounting evidence suggests these microbial changes lead to the development of gut dysbiosis-persistent inflammation that damages the gut mucosa-and correlate with various immune defects. In this study, we examined how early ART intervention influences microbial diversity in SIV-infected rhesus macaques. Using 16S rRNA sequencing, we defined the fecal microbiome in macaques given daily ART beginning on either 3 or 7 d after SIV infection (dpi) and characterized changes in composition, α diversity, and β diversity from before infection through 112 dpi. The dominant phyla in the fecal samples before infection were Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria. After SIV infection and ART, the relative abundance of Firmicutes and Bacteroidetes did not change significantly. Significant reductions in α diversity occurred across time when ART was initiated at 3 dpi but not at 7 dpi. Principal coordinate analysis of samples revealed a divergence in β diversity in both treatment groups after SIV infection, with significant differences depending on the timing of ART administration. These results indicate that although administration of ART at 3 or 7 dpi did not substantially alter fecal microbial composition, the timing of early ART measurably altered phylogenetic diversity.
Collapse
Affiliation(s)
- Tiffany R Lavinder
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University,,Corresponding authors. ,
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and
| | - Jeffrey Stanton
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon,Corresponding authors. ,
| |
Collapse
|
98
|
Jones ST, Guo K, Cooper EH, Dillon SM, Wood C, Nguyen DH, Shen G, Barrett BS, Frank DN, Kroehl M, Janoff EN, Kechris K, Wilson CC, Santiago ML. Altered Immunoglobulin Repertoire and Decreased IgA Somatic Hypermutation in the Gut during Chronic HIV-1 Infection. J Virol 2022; 96:e0097622. [PMID: 35938870 PMCID: PMC9472609 DOI: 10.1128/jvi.00976-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Humoral immune perturbations contribute to pathogenic outcomes in persons with HIV-1 infection (PWH). Gut barrier dysfunction in PWH is associated with microbial translocation and alterations in microbial communities (dysbiosis), and IgA, the most abundant immunoglobulin (Ig) isotype in the gut, is involved in gut homeostasis by interacting with the microbiome. We determined the impact of HIV-1 infection on the antibody repertoire in the gastrointestinal tract by comparing Ig gene utilization and somatic hypermutation (SHM) in colon biopsies from PWH (n = 19) versus age and sex-matched controls (n = 13). We correlated these Ig parameters with clinical, immunological, microbiome and virological data. Gene signatures of enhanced B cell activation were accompanied by skewed frequencies of multiple Ig Variable genes in PWH. PWH showed decreased frequencies of SHM in IgA and possibly IgG, with a substantial loss of highly mutated IgA sequences. The decline in IgA SHM in PWH correlated with gut CD4+ T cell loss and inversely correlated with mucosal inflammation and microbial translocation. Diminished gut IgA SHM in PWH was driven by transversion mutations at A or T deoxynucleotides, suggesting a defect not at the AID/APOBEC3 deamination step but at later stages of IgA SHM. These results expand our understanding of humoral immune perturbations in PWH that could have important implications in understanding mucosal immune defects in individuals with chronic HIV-1 infection. IMPORTANCE The gut is a major site of early HIV-1 replication and pathogenesis. Extensive CD4+ T cell depletion in this compartment results in a compromised epithelial barrier that facilitates the translocation of microbes into the underlying lamina propria and systemic circulation, resulting in chronic immune activation. To date, the consequences of microbial translocation on the mucosal humoral immune response (or vice versa) remains poorly integrated into the panoply of mucosal immune defects in PWH. We utilized next-generation sequencing approaches to profile the Ab repertoire and ascertain frequencies of somatic hypermutation in colon biopsies from antiretroviral therapy-naive PWH versus controls. Our findings identify perturbations in the Ab repertoire of PWH that could contribute to development or maintenance of dysbiosis. Moreover, IgA mutations significantly decreased in PWH and this was associated with adverse clinical outcomes. These data may provide insight into the mechanisms underlying impaired Ab-dependent gut homeostasis during chronic HIV-1 infection.
Collapse
Affiliation(s)
- Sean T. Jones
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily H. Cooper
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cheyret Wood
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David H. Nguyen
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Guannan Shen
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miranda Kroehl
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward N. Janoff
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
99
|
Evolution of the Gut Microbiome in HIV-Exposed Uninfected and Unexposed Infants during the First Year of Life. mBio 2022; 13:e0122922. [PMID: 36073815 PMCID: PMC9600264 DOI: 10.1128/mbio.01229-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-exposed uninfected infants (HEU) have abnormal immunologic functions and increased infectious morbidity in the first 6 months of life, which gradually decreases thereafter. The mechanisms underlying HEU immune dysfunctions are unknown. We hypothesized that unique characteristics of the HEU gut microbiota associated with maternal HIV status may underlie the HEU immunologic dysfunctions. We characterized the infant gut, maternal gut, and breast milk microbiomes of mother-infant pairs, including 123 with HEU and 117 with HIV-uninfected infants (HUU), from South Africa. Pan-bacterial 16S rRNA gene sequencing was performed on (i) infant stool at 6, 28, and 62 weeks; (ii) maternal stool at delivery and 62 weeks; and (iii) breast milk at 6 weeks. Infant gut alpha and beta diversities were similar between groups. Microbial composition significantly differed, including 12 genera, 5 families and 1 phylum at 6 weeks; 12 genera and 2 families at 28 weeks; and 2 genera and 2 families at 62 weeks of life. Maternal gut microbiomes significantly differed in beta diversity and microbial composition, and breast milk microbiomes differed in microbial composition only. Infant gut microbiotas extensively overlapped with maternal gut and minimally with breast milk microbiotas. Nevertheless, exclusively breastfed HEU and HUU had less divergent microbiomes than nonexclusively breastfed infants. Feeding pattern and maternal gut microbiome imprint the HEU gut microbiome. Compared to HUU, the HEU gut microbiome prominently differs in early infancy, including increased abundance of taxa previously observed to be present in excess in adults with HIV. The HEU and HUU gut microbiome compositions converge over time, mirroring the kinetics of HEU infectious morbidity risk.
Collapse
|
100
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|