51
|
Cai P, Zhang W, Jiang S, Xiong Y, Qiao H, Yuan H, Gao Z, Zhou Y, Jin S, Fu H. Role of Mn-LIPA in Sex Hormone Regulation and Gonadal Development in the Oriental River Prawn, Macrobrachium nipponense. Int J Mol Sci 2024; 25:1399. [PMID: 38338678 PMCID: PMC10855233 DOI: 10.3390/ijms25031399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigates the role of lysosomal acid lipase (LIPA) in sex hormone regulation and gonadal development in Macrobrachium nipponense. The full-length Mn-LIPA cDNA was cloned, and its expression patterns were analyzed using quantitative real-time PCR (qPCR) in various tissues and developmental stages. Higher expression levels were observed in the hepatopancreas, cerebral ganglion, and testes, indicating the potential involvement of Mn-LIPA in sex differentiation and gonadal development. In situ hybridization experiments revealed strong Mn-LIPA signaling in the spermatheca and hepatopancreas, suggesting their potential role in steroid synthesis (such as cholesterol, fatty acids, cholesteryl ester, and triglycerides) and sperm maturation. Increased expression levels of male-specific genes, such as insulin-like androgenic gland hormone (IAG), sperm gelatinase (SG), and mab-3-related transcription factor (Dmrt11E), were observed after dsMn-LIPA (double-stranded LIPA) injection, and significant inhibition of sperm development and maturation was observed histologically. Additionally, the relationship between Mn-LIPA and sex-related genes (IAG, SG, and Dmrt11E) and hormones (17β-estradiol and 17α-methyltestosterone) was explored by administering sex hormones to male prawns, indicating that Mn-LIPA does not directly control the production of sex hormones but rather utilizes the property of hydrolyzing triglycerides and cholesterol to provide energy while influencing the synthesis and secretion of self-sex hormones. These findings provide valuable insights into the function of Mn-LIPA in M. nipponense and its potential implications for understanding sex differentiation and gonadal development in crustaceans. It provides an important theoretical basis for the realization of a monosex culture of M. nipponense.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Yongkang Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (H.Q.)
| |
Collapse
|
52
|
Li J, Huang E, Wu Y, Zhu C, Li W, Ai L, Xie Q, Tian Z, Zhong W, Sun G, Zhang L, Tan W. Population structure, dispersion patterns and genetic diversity of two major invasive and commensal zoonotic disease hosts ( Rattus norvegicus and Rattus tanezumi) from the southeastern coast of China. Front Genet 2024; 14:1174584. [PMID: 38259625 PMCID: PMC10800861 DOI: 10.3389/fgene.2023.1174584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background: The invasive brownrat (Rattus norvegicus) and the Oriental rats (Rattus tanezumi) are common commensal murid that are important hosts for rodent-borne diseases in southeast Asia. Understanding their population structure and genetic diversity is essential to uncover their invasion biology and distribution dynamics that are essential for controlling rodent-borne diseases. Methods: TA total of 103 R. norvegicus and 85 R. tanezumi were collected from 13 to 9 coastal areas of six provincial monitoring sentinel sites, respectivelyto assess patterns in their microsatellite loci and their mitochondrial coxl gene region. Results: Eleven sampled populations of R. norvegicus were divided into two major clusters by region. The observed heterozygosity values of all regional populations were smaller than expected genetic diversity heterozygosity values and deviated from Hardy-Weinberg equilibrium Nine sample populations of R. tanezumi were divided into three clusters; two that included sample from Hainan and Fujian provinces, and one that included samples from the other provinces and cities. The genetic diversity of R. tanezumi was highest in samples from Jiangsu and Guangdong provinces. Conclusion: The data in this paper confirm the two invasive rodent species from the southeastern coastal region of China may have relied on maritime transport to spread from the southern region of China to the Yangtze River basin. R. tanezumi may then hanve migrated unidirectionally, along the southeastern provinces of China towards the north, while R. norvegicus spread in a complex and multidirectional manner in Hainan, Fujian, Zhejiang and Jiangsu Provinces of the country.
Collapse
Affiliation(s)
- Jiaqiao Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, China
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Enjiong Huang
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
| | - Yifan Wu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Wenhao Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Lele Ai
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Qinghua Xie
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Tian
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Weiwen Zhong
- Center for Disease Control and Prevention, Longquan, Zhejiang, China
| | - Gang Sun
- School of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Lingling Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| |
Collapse
|
53
|
Summers KM. Genetic models of fibrillinopathies. Genetics 2024; 226:iyad189. [PMID: 37972149 PMCID: PMC11021029 DOI: 10.1093/genetics/iyad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
The fibrillinopathies represent a group of diseases in which the 10-12 nm extracellular microfibrils are disrupted by genetic variants in one of the genes encoding fibrillin molecules, large glycoproteins of the extracellular matrix. The best-known fibrillinopathy is Marfan syndrome, an autosomal dominant condition affecting the cardiovascular, ocular, skeletal, and other systems, with a prevalence of around 1 in 3,000 across all ethnic groups. It is caused by variants of the FBN1 gene, encoding fibrillin-1, which interacts with elastin to provide strength and elasticity to connective tissues. A number of mouse models have been created in an attempt to replicate the human phenotype, although all have limitations. There are also natural bovine models and engineered models in pig and rabbit. Variants in FBN2 encoding fibrillin-2 cause congenital contractural arachnodactyly and mouse models for this condition have also been produced. In most animals, including birds, reptiles, and amphibians, there is a third fibrillin, fibrillin-3 (FBN3 gene) for which the creation of models has been difficult as the gene is degenerate and nonfunctional in mice and rats. Other eukaryotes such as the nematode C. elegans and zebrafish D. rerio have a gene with some homology to fibrillins and models have been used to discover more about the function of this family of proteins. This review looks at the phenotype, inheritance, and relevance of the various animal models for the different fibrillinopathies.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
54
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
55
|
Prasanna AM, Sen P. Recent Developments of Hybrid Fluorescence Techniques: Advances in Amyloid Detection Methods. Curr Protein Pept Sci 2024; 25:667-681. [PMID: 38715332 DOI: 10.2174/0113892037291597240429094515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 09/21/2024]
Abstract
Amyloid fibrils are formed from various pathological proteins. Monitoring their aggregation process is necessary for early detection and treatment. Among the available detection techniques, fluorescence is simple, intuitive, and convenient due to its sensitive and selective mode of detection. It has certain disadvantages like poor photothermal stability and detection state limitation. Research has focused on minimising the limitation by developing hybrid fluorescence techniques. This review focuses on the two ways fluorescence (intrinsic and extrinsic) has been used to monitor amyloid fibrils. In intrinsic/label free fluorescence: i) The fluorescence emission through aromatic amino acid residues like phenylalanine (F), tyrosine (Y) and tryptophan (W) is present in amyloidogenic peptides/protein sequence. And ii) The structural changes from alpha helix to cross-β-sheet structures during amyloid formation contribute to the fluorescence emission. The second method focuses on the use of extrinsic fluorophores to monitor amyloid fibrils i) organic dyes/small molecules, ii) fluorescent tagged proteins, iii) nanoparticles, iv) metal complexes and v) conjugated polymers. All these fluorophores have their own limitations. Developing them into hybrid fluorescence techniques and converting it into biosensors can contribute to early detection of disease.
Collapse
Affiliation(s)
- A Miraclin Prasanna
- Centre for Bio Separation Technology (CBST), School of Biosciences and Technology, VIT, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), School of Biosciences and Technology, VIT, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
56
|
Kobayashi E, Hakamata Y, Enosawa S, Shang KM, Komatsu H. Firefly Rats: Illuminating the Scientific Community in Transplantation Research. Cell Transplant 2024; 33:9636897231224174. [PMID: 38235662 PMCID: PMC10798091 DOI: 10.1177/09636897231224174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.
Collapse
Affiliation(s)
- Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Division of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoji Hakamata
- Division of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shin Enosawa
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kuang-Ming Shang
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
57
|
Hartmann T, Middendorf M, Bernt M. Genome Rearrangement Analysis : Cut and Join Genome Rearrangements and Gene Cluster Preserving Approaches. Methods Mol Biol 2024; 2802:215-245. [PMID: 38819562 DOI: 10.1007/978-1-0716-3838-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome rearrangements are mutations that change the gene content of a genome or the arrangement of the genes on a genome. Several years of research on genome rearrangements have established different algorithmic approaches for solving some fundamental problems in comparative genomics based on gene order information. This review summarizes the literature on genome rearrangement analysis along two lines of research. The first line considers rearrangement models that are particularly well suited for a theoretical analysis. These models use rearrangement operations that cut chromosomes into fragments and then join the fragments into new chromosomes. The second line works with rearrangement models that reflect several biologically motivated constraints, e.g., the constraint that gene clusters have to be preserved. In this chapter, the border between algorithmically "easy" and "hard" rearrangement problems is sketched and a brief review is given on the available software tools for genome rearrangement analysis.
Collapse
Affiliation(s)
- Tom Hartmann
- Swarm Intelligence and Complex Systems Group, Institute of Computer Science, University Leipzig, Leipzig, Germany
| | - Martin Middendorf
- Swarm Intelligence and Complex Systems Group, Institute of Computer Science, University Leipzig, Leipzig, Germany.
| | | |
Collapse
|
58
|
Lee Y, Morrow EM. Quantitative Measurement of Tau Aggregation in Genetically Modified Rats with Neurodegeneration. Methods Mol Biol 2024; 2761:291-299. [PMID: 38427245 DOI: 10.1007/978-1-0716-3662-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Animal models of neurodegenerative diseases have helped us to better understand the pathogenesis of neurodegenerative diseases. However, recent failure to translate pre-clinical model studies to the clinic urges us to develop more rigorous and faithful animal models in neurodegenerative diseases. As genetic manipulation of rats becomes much more accessible due to availability of CRISPR-Cas9 and other genomic editing toolboxes, rats have been emerging as a new model system for neurodegenerative diseases. Even though mouse models have been dominant over the last decades, rats may provide advantages over mice. Rats are more genetically and physiologically closer to humans than to mice. Also, certain rat models can represent deposition of tau, which is one of the key pathological features of Alzheimer's diseases and tauopathies. However, there is an unmet need for standardized, rigorous testing in rat models. We adopted two commonly used biochemical and immunofluorescence methods from mice and human postmortem brains to measure tau aggregation. Due to the intrinsic differences between mice and rats, e.g., size of rat brains, certain equipment is required for rat models to study tau pathologies. Along with specific tools, here we describe the detailed methods for rat models of neurodegenerative diseases.
Collapse
Affiliation(s)
- YouJin Lee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
- Center for Translational Neuroscience, Carney Institute for Brain Science, and Brown Institute for Translational Science (BITS), Brown University, Providence, RI, USA.
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
- Center for Translational Neuroscience, Carney Institute for Brain Science, and Brown Institute for Translational Science (BITS), Brown University, Providence, RI, USA.
| |
Collapse
|
59
|
Zhao YJ, Zhou C, Wei YY, Zhang SY, Mishra JS, Li HH, Lei W, Wang K, Kumar S, Zheng J. An Endogenous Aryl Hydrocarbon Receptor Ligand Induces Preeclampsia-like Phenotypes: Transcriptome, Phosphoproteome, and Cell Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572271. [PMID: 38187714 PMCID: PMC10769228 DOI: 10.1101/2023.12.20.572271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Preeclampsia (PE) is one hypertensive disorder and a leading cause of maternal and fetal mortality and morbidity during human pregnancy. Aryl hydrocarbon receptor (AhR) is a transcription factor, which regulates vascular functions. Exogenous and endogenous AhR ligands can induce hypertension in animals. However, if dysregulation of endogenous AhR ligands contributes to the pathophysiology of PE remains elusive. Methods We measured AhR activities in human maternal and umbilical vein sera. We also applied physiological, cellular, and molecular approaches to dissect the role of endogenous AhR ligands in vascular functions during pregnancy using pregnant rats and primary human umbilical vein endothelial cells (HUVECs) as models. Results PE elevated AhR activities in human umbilical vein sera. Exposure of pregnant rats to an endogenous AhR ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) increased blood pressure and proteinuria, while decreased uteroplacental blood flow and reduced fetal and placental weights, all of which are hallmarks of PE. ITE dampened vascular growth and fetal sex-specifically altered immune cell infiltration in rat placentas. ITE also decreased cell proliferation and cell monolayer integrity in HUVECs in vitro . RNA sequencing analysis revealed that ITE dysregulated transcriptome in rat placentas and HUVECs in a fetal sex-specific manner. Bottom-up phosphoproteomics showed that ITE disrupted phosphoproteome in HUVECs. These ITE-dysregulated genes and phosphoproteins were enriched in biological functions and pathways which are highly relevant to diseases of heart, liver, and kidney, vascular functions, inflammation responses, cell death, and kinase inhibition. Conclusions Dysregulation of endogenous AhR ligands during pregnancy may lead to the development of PE with underlying impaired vascular functions, fetal sex-specific immune cell infiltration and transcriptome, and phosphoproteome. Thus, this study has provided a novel mechanism for the development of PE and potentially other forms of hypertensive pregnancies. These AhR ligand-activated genes and phosphoproteins might represent promising therapeutic and fetal sex-specific targets for PE-impaired vascular functions.
Collapse
|
60
|
Park KC, Crump NT, Louwman N, Krywawych S, Cheong YJ, Vendrell I, Gill EK, Gunadasa-Rohling M, Ford KL, Hauton D, Fournier M, Pires E, Watson L, Roseman G, Holder J, Koschinski A, Carnicer R, Curtis MK, Zaccolo M, Hulikova A, Fischer R, Kramer HB, McCullagh JSO, Trefely S, Milne TA, Swietach P. Disrupted propionate metabolism evokes transcriptional changes in the heart by increasing histone acetylation and propionylation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1221-1245. [PMID: 38500966 PMCID: PMC7615744 DOI: 10.1038/s44161-023-00365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/15/2023] [Indexed: 03/20/2024]
Abstract
Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with β-alanine buildup. Raising β-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Nicholas T. Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Present Address: Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Niamh Louwman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Yuen Jian Cheong
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Iolanda Vendrell
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Eleanor K. Gill
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | | | - Kerrie L. Ford
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | - Lydia Watson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Gerald Roseman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M. Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Holger B. Kramer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Sophie Trefely
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
61
|
Seki S, Kawabe T, Yamazaki W, Matsumura K, Oikawa T, Obata T, Higashiya M, Yano M, Eto T. Cryopreservation of rat embryos at all developmental stages by small-volume vitrification procedure and rapid warming in cryotubes. Sci Rep 2023; 13:20903. [PMID: 38017006 PMCID: PMC10684866 DOI: 10.1038/s41598-023-47394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Intracellular ice formation during cryopreservation is lethal to the cell, including during warming. Here, we examined the effect of sample volume and warming rate on the cryopreservation success of 1-cell rat embryos based on successful development into blastocysts in vitro and to term in vivo following embryo transfer. Embryos were equilibrated in 5% propylene glycol solution for 10 min, held for 40 s at 0 °C in cryopreservation solution (5%PG + PEPeS), and cooled by immersion in liquid nitrogen. When 1-cell embryos were cryopreserved in a volume of 30-100 μL at a cooling rate of 5830-7160 °C/min and warmed at 35,480-49,400 °C/min by adding 1 mL of 0.3 M sucrose solution at 50 °C, 17.3-28.8% developed into blastocysts, compared with 57.0% of untreated embryos. However, when 1-cell embryos were cryopreserved in a smaller volume of 15 μl at 7950 °C/min and warmed at 68,850 °C/min, 58.8 ± 10.6% developed into blastocysts and 50.0 ± 7.4% developed to term, comparable to that of non-treated embryos (57.0 ± 5.4% and 51.4 ± 3.1%, respectively). Cryopreserved embryos at other developmental stages also showed high in vitro culture potential similar to that of the control. Using a conventional cryotube and a small-volume vitrification procedure with rapid warming, we achieved high levels of subsequent rat embryonic development at all developmental stages.
Collapse
Affiliation(s)
- Shinsuke Seki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.
| | - Toshiaki Kawabe
- ARK Resource Co., Ltd., 456 Osozu, Misato-machi, Shimomashiki-gun, Kumamoto, 861-4401, Japan
| | - Wataru Yamazaki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, 923-1292, Japan
| | - Takanori Oikawa
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Takahiro Obata
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Misako Higashiya
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Megumi Yano
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Tomoo Eto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| |
Collapse
|
62
|
Zhang L, Huang J, Dai L, Zhu G, Yang XL, He Z, Li YH, Yang H, Zhang CQ, Shen KF, Liang P. Expression profiles of α-synuclein in cortical lesions of patients with FCD IIb and TSC, and FCD rats. Front Neurol 2023; 14:1255097. [PMID: 38020594 PMCID: PMC10662349 DOI: 10.3389/fneur.2023.1255097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Focal cortical dysplasia (FCD) IIb and tuberous sclerosis complex (TSC) are common causes of drug-resistant epilepsy in children. However, the etiologies related to the development of FCD IIb and TSC are not fully understood. α-synuclein (α-syn) is a member of synucleins family that plays crucial roles in modulating synaptic transmission in central nervous system. Here, we explored the expression profiles and potential pathogenic functions of α-syn in cortical lesions of epileptic patients with FCD IIb and TSC. METHODS Surgical specimens from epileptic patients with FCD IIb and TSC, as well as FCD rats generated by in utero X-ray-radiation were adopted in this study and studied with immunohistochemistry, immunofluorescence, western blotting, and co-immunoprecipitation etc. molecular biological techniques. RESULT Our results showed that α-syn expression was reduced in FCD IIb and TSC lesions. Specifically, α-syn protein was intensely expressed in dysplastic neurons (DNs) and balloon cells (BCs) in FCD IIb lesions, whereas was barely detected in DNs and giant cells (GCs) of TSC lesions. Additionally, p-α-syn, the aggregated form of α-syn, was detected in DNs, BCs, GCs, and glia-like cells of FCD IIb and TSC lesions. We previous showed that the function of N-methyl-D-aspartate receptor (NMDAR) was enhanced in FCD rats generated by X-ray-radiation. Here, we found the interaction between α-syn and NMDAR subunits NMDAR2A, NMDAR2B were augmented in cortical lesions of FCD patients and FCD rats. CONCLUSION These results suggested a potential role of α-syn in the pathogenesis of FCD IIb and TSC by interfering with NMDAR.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jun Huang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Dai
- Chongqing Institute for Brain and Intelligence, Guang Yang Bay Laboratory, Chongqing, China
| | - Gang Zhu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao-Lin Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zeng He
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yu-Hong Li
- Department of Cell Biology, Basic Medical College, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
- Chongqing Institute for Brain and Intelligence, Guang Yang Bay Laboratory, Chongqing, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
63
|
Shah T, Hou Y, Jiang J, Shah Z, Wang Y, Li Q, Xu X, Wang Y, Wang B, Xia X. Comparative analysis of the intestinal microbiome in Rattus norvegicus from different geographies. Front Microbiol 2023; 14:1283453. [PMID: 38029126 PMCID: PMC10655115 DOI: 10.3389/fmicb.2023.1283453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Rat species Rattus norvegicus, also known as the brown street rat, is the most abundant mammal after humans in urban areas, where they co-exist with humans and domestic animals. The reservoir role of R. norvegicus of zoonotic pathogens in cities among rodent-borne diseases that could endanger the lives of humans and other mammals. Therefore, understanding the normal microbiome of R. norvegicus is crucial for understanding and preventing zoonotic pathogen transmission to humans and animals. We investigated the intestinal microbiome of free-living R. norvegicus collected from the Ruili, Nujiang, and Lianhe regions of Yunnan, China, using 16S rRNA gene sequence analysis. Proteobacteria, followed by Firmicutes, and Bacteroidetes were abundant in the intestines of R. norvegicus; however, bacterial compositions varied significantly between samples from different locations. Following a similar trend, Gammaproteobacteria, Bacilli, and Clostridia were among the top bacterial classes in most intestinal samples. The situation differed slightly for the Lianhe and Nujiang samples, although Phyla Bacteroidota and Spirochaetota were most prevalent. The Alpha diversity, Chao1, and Simpson indexes revealed microbial richness among the R. norvegicus samples. A slight variation was observed among the samples collected from Ruili, Nujiang, and Lianhe. At species levels, several opportunistic and zoonotic bacterial pathogens, including Lactococcus garvieae, Uruburuella suis, Bartonella australis, Clostridium perfringens, Streptococcus azizii, Vibrio vulnificus, etc., were revealed in the R. norvegicus intestines, implying the need for a regular survey to monitor and control rodent populations. In conclusion, we explored diverse microbial communities in R. norvegicus intestines captured from different regions. Further, we identified several opportunistic and potential bacterial pathogens, which still need to be tested for their underlying pathogenesis. The findings of our current study should be considered a warning to the health authorities to implement rat control and surveillance strategies globally.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinyong Jiang
- Yunnan International Joint Laboratory of Vector Biology and Control & Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research of Yunnan Institute of Parasitic Diseases, Yunnan, China
| | - Zahir Shah
- College of Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Yuhan Wang
- Research Institute of Forest Protection, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiang Xu
- Yunnan International Joint Laboratory of Vector Biology and Control & Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research of Yunnan Institute of Parasitic Diseases, Yunnan, China
| | - Yixuan Wang
- Research Institute of Forest Protection, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
64
|
Yuan X, Yan F, Gao L, Ma Q, Wang J. Hypericin as a potential drug for treating Alzheimer's disease and type 2 diabetes with a view to drug repositioning. CNS Neurosci Ther 2023; 29:3307-3321. [PMID: 37183545 PMCID: PMC10580347 DOI: 10.1111/cns.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
AIMS Alzheimer's disease (AD) and type 2 diabetes (T2D) are two of the most common diseases in elderly population and they have a high rate of comorbidity. Study has revealed that T2D is a major risk factor of AD, and thus exploring therapeutic approaches that can target both diseases has drawn much interest in recent years. In this study, we tried to explore drugs that could be potentially used to prevent or treat both AD and T2D via a drug repositioning approach. METHODS We first searched the known drugs that may be effective to T2D treatment based on the network distance between the T2D-associated genes and drugs deposited in the DrugBank database. Then, via molecular docking, we further screened these drugs by examining their interaction with islet amyloid polypeptide (IAPP) and Aβ42 peptide, the key components involved in the pathogenesis of T2D or AD. Finally, the binding between the selected drug candidates and the target proteins was verified by molecular dynamics (MD) simulation; and the potential function of the drug candidates and the corresponding targets were analyzed. RESULTS From multiple resources, 734 T2D-associated genes were collected, and a list of 1109 drug candidates for T2D was obtained. We found that hypericin had the lowest binding energy and the most stable interaction with either IAPP or Aβ42 peptide. In addition, we also found that the target genes regulated by hypericin were differentially expressed in the tissues related to the two diseases. CONCLUSION Our results show that hypericin may be able to bind with IAPP and Aβ42 stably and prevent their accumulation, and thus could be a promising drug candidate for treating the comorbidity of AD and T2D.
Collapse
Affiliation(s)
- Xin Yuan
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Fei Yan
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Li‐Hui Gao
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Qian‐Hui Ma
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Ju Wang
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| |
Collapse
|
65
|
Udagawa H, Funahashi N, Nishimura W, Uebanso T, Kawaguchi M, Asahi R, Nakajima S, Nammo T, Hiramoto M, Yasuda K. Glucocorticoid receptor-NECAB1 axis can negatively regulate insulin secretion in pancreatic β-cells. Sci Rep 2023; 13:17958. [PMID: 37863964 PMCID: PMC10589354 DOI: 10.1038/s41598-023-44324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The mechanisms of impaired glucose-induced insulin secretion from the pancreatic β-cells in obesity have not yet been completely elucidated. Here, we aimed to assess the effects of adipocyte-derived factors on the functioning of pancreatic β-cells. We prepared a conditioned medium using 3T3-L1 cell culture supernatant collected at day eight (D8CM) and then exposed the rat pancreatic β-cell line, INS-1D. We found that D8CM suppressed insulin secretion in INS-1D cells due to reduced intracellular calcium levels. This was mediated by the induction of a negative regulator of insulin secretion-NECAB1. LC-MS/MS analysis results revealed that D8CM possessed steroid hormones (cortisol, corticosterone, and cortisone). INS-1D cell exposure to cortisol or corticosterone increased Necab1 mRNA expression and significantly reduced insulin secretion. The increased expression of Necab1 and reduced insulin secretion effects from exposure to these hormones were completely abolished by inhibition of the glucocorticoid receptor (GR). NECAB1 expression was also increased in the pancreatic islets of db/db mice. We demonstrated that the upregulation of NECAB1 was dependent on GR activation, and that binding of the GR to the upstream regions of Necab1 was essential for this effect. NECAB1 may play a novel role in the adipoinsular axis and could be potentially involved in the pathophysiology of obesity-related diabetes mellitus.
Collapse
Affiliation(s)
- Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Nobuaki Funahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, 286-8686, Japan
- Division of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
66
|
Thomas GWC, Hughes JJ, Kumon T, Berv JS, Nordgren CE, Lampson M, Levine M, Searle JB, Good JM. The genomic landscape, causes, and consequences of extensive phylogenomic discordance in Old World mice and rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555178. [PMID: 37693498 PMCID: PMC10491188 DOI: 10.1101/2023.08.28.555178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
A species tree is a central concept in evolutionary biology whereby a single branching phylogeny reflects relationships among species. However, the phylogenies of different genomic regions often differ from the species tree. Although tree discordance is often widespread in phylogenomic studies, we still lack a clear understanding of how variation in phylogenetic patterns is shaped by genome biology or the extent to which discordance may compromise comparative studies. We characterized patterns of phylogenomic discordance across the murine rodents (Old World mice and rats) - a large and ecologically diverse group that gave rise to the mouse and rat model systems. Combining new linked-read genome assemblies for seven murine species with eleven published rodent genomes, we first used ultra-conserved elements (UCEs) to infer a robust species tree. We then used whole genomes to examine finer-scale patterns of discordance and found that phylogenies built from proximate chromosomal regions had similar phylogenies. However, there was no relationship between tree similarity and local recombination rates in house mice, suggesting that genetic linkage influences phylogenetic patterns over deeper timescales. This signal may be independent of contemporary recombination landscapes. We also detected a strong influence of linked selection whereby purifying selection at UCEs led to less discordance, while genes experiencing positive selection showed more discordant and variable phylogenetic signals. Finally, we show that assuming a single species tree can result in high error rates when testing for positive selection under different models. Collectively, our results highlight the complex relationship between phylogenetic inference and genome biology and underscore how failure to account for this complexity can mislead comparative genomic studies.
Collapse
Affiliation(s)
- Gregg W. C. Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT, 59801
- Informatics Group, Harvard University, Cambridge, MA, 02138
| | - Jonathan J. Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, 92521
| | - Tomohiro Kumon
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Jacob S. Berv
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109
| | - C. Erik Nordgren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Mia Levine
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59801
| |
Collapse
|
67
|
TERZİ Ü, ATEŞ İ. THE POSSIBLE RELATIONSHIPS BETWEEN SOME GENE POLYMORPHISMS AND SJOGREN’S SYNDROME. ANKARA UNIVERSITESI ECZACILIK FAKULTESI DERGISI 2023; 47:7-7. [DOI: 10.33483/jfpau.1328811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Objective: Sjögren’s syndrome is a complex and widespread autoimmune disease whose pathogenesis is not fully elucidated and environmental and genetic factors affect the development of the disease. In order to reveal the effect of genetic contribution, studies have been conducted on the genes previously shown to play a role in other autoimmune diseases such as systemic lupus erythromatosus. In addition, two GWAS studies were conducted to investigate the role of more genes in the disease by screening the entire genome and the relationship of previously unknown genes with SS was shown.
Result and Discussion: Studies are being conducted with spontaneous and genetically modified animal models in order to better reveal the relationship between SS and genes and to reinforce the data obtained from humans. In this study, the relationship between the genes previously studied in other autoimmune diseases and the genes associated with SS in GWAS studies and the possible pathways that may contribute to the pathogenesis of the disease through related genes were investigated.
Collapse
Affiliation(s)
- Ülkü TERZİ
- ANKARA ÜNİVERSİTESİ, ECZACILIK FAKÜLTESİ, ECZACILIK MESLEK BİLİMLERİ BÖLÜMÜ, FARMASOTİK TOKSİKOLOJİ ANABİLİM DALI
| | - İlker ATEŞ
- ANKARA ÜNİVERSİTESİ, ECZACILIK FAKÜLTESİ, ECZACILIK MESLEK BİLİMLERİ BÖLÜMÜ, FARMASOTİK TOKSİKOLOJİ ANABİLİM DALI
| |
Collapse
|
68
|
Neamtu A, Serban DN, Barritt GJ, Isac DL, Vasiliu T, Laaksonen A, Serban IL. Molecular dynamics simulations reveal the hidden EF-hand of EF-SAM as a possible key thermal sensor for STIM1 activation by temperature. J Biol Chem 2023; 299:104970. [PMID: 37380078 PMCID: PMC10400917 DOI: 10.1016/j.jbc.2023.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.
Collapse
Affiliation(s)
- Andrei Neamtu
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Dragomir N Serban
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Greg J Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Dragos Lucian Isac
- Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Tudor Vasiliu
- Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden; Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | | |
Collapse
|
69
|
Shegarfi H. Recognition of Listeria monocytogenes infection by natural killer cells: Towards a complete picture by experimental studies in rats. Innate Immun 2023; 29:110-121. [PMID: 37285590 PMCID: PMC10468624 DOI: 10.1177/17534259231178223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
The study of cellular immune responses in animal disease models demands detailed knowledge of development, function, and regulation of immune cells, including natural killer (NK) cells. Listeria monocytogenes (LM) bacterium has been explored in a large area of research fields, including the host pathogen interaction. Although the importance role of NK cells in controlling the first phase of LM burden has been investigated, the interaction between NK cells and infected cells in details are far from being comprehended. From in vivo and in vitro experiments, we can drive several important pieces of knowledge that hopefully contribute to illuminating the intercommunication between LM-infected cells and NK cells. Experimental studies performed in rats revealed that certain NK cell ligands are influenced in LM-infected cells. These ligands include both classical- and non-classical MHC class I molecules and C-type lectin related (Clr) molecules that are ligands for Ly49- and NKR-P1 receptors respectively. Interaction between these receptors:ligands during LM infection, demonstrated stimulation of rat NK cells. Hence, these studies provided additional knowledge to the mechanisms NK cells utilise to recognise and respond to LM infection outlined in the current review.
Collapse
|
70
|
Luzuriaga-Neira AR, Ritchie AM, Payne BL, Carrillo-Parramon O, Liberles DA, Alvarez-Ponce D. Highly Abundant Proteins Are Highly Thermostable. Genome Biol Evol 2023; 15:evad112. [PMID: 37399326 DOI: 10.1093/gbe/evad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins' melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human-mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.
Collapse
Affiliation(s)
| | - Andrew M Ritchie
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
71
|
Liu Y, Ge D, Zhou J, Chu Y, Zheng X, Ke L, Li P, Lu Y, Zou X, Xia L, Liu Y, Huang C, Shen C, Chu Y. HS-SPME-GC-MS Untargeted Analysis of Normal Rat Organs Ex Vivo: Differential VOC Discrimination and Fingerprint VOC Identification. Anal Chem 2023. [PMID: 37392185 DOI: 10.1021/acs.analchem.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The investigation of volatile organic compounds (VOCs) in human metabolites has been a topic of interest as it holds the potential for the development of non-invasive technologies to screen for organ lesions in vivo. However, it remains unclear whether VOCs differ among healthy organs. Consequently, a study was conducted to analyze VOCs in ex vivo organ tissues obtained from 16 Wistar rats, comprising 12 different organs. The VOCs released from each organ tissue were detected by the headspace-solid phase microextraction-gas chromatography-mass spectrometry technique. In the untargeted analysis of 147 chromatographic peaks, the differential volatiles of rat organs were explored based on the Mann-Whitney U test and fold change (FC > 2.0) compared with other organs. It was found that there were differential VOCs in seven organs. A discussion on the possible metabolic pathways and related biomarkers of organ differential VOCs was conducted. Based on the orthogonal partial least squares discriminant analysis and receiver operating characteristic curve, we found that differential VOCs in the liver, cecum, spleen, and kidney can be used as the unique identification of the corresponding organ. In this study, differential VOCs of organs in rats were systematically reported for the first time. Profiles of VOCs produced by healthy organs can serve as a reference or baseline that may indicate the presence of disease or abnormalities in the organ's function. Differential VOCs can be used as the fingerprint of organs, and future integration with metabolic research may contribute to the development of healthcare.
Collapse
Affiliation(s)
- Yue Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Dianlong Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jijuan Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yajing Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiangxue Zheng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Li Ke
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Pan Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yawei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
72
|
Gable SM, Mendez JM, Bushroe NA, Wilson A, Byars MI, Tollis M. The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order. Genes (Basel) 2023; 14:1387. [PMID: 37510292 PMCID: PMC10379679 DOI: 10.3390/genes14071387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research. We then focus on disagreements in squamate phylogenetic inference, how methods of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role transposable elements play in vertebrate evolution, methods of transposable element annotation and analysis, and further demonstrate that through the understanding of the diversity, abundance, and activity of transposable elements in squamate genomes, squamates can be an ideal model for the evolution of genome size and structure in vertebrates. We discuss how squamate genomes can contribute to other areas of biological research such as venom systems, studies of phenotypic evolution, and sex determination. Because they represent more than 30% of the living species of amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e., mammals and birds) that aim to sequence most of the extant families in a clade.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael I Byars
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
73
|
Ricci M, Peona V, Boattini A, Taccioli C. Comparative analysis of bats and rodents' genomes suggests a relation between non-LTR retrotransposons, cancer incidence, and ageing. Sci Rep 2023; 13:9039. [PMID: 37270634 DOI: 10.1038/s41598-023-36006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The presence in nature of species showing drastic differences in lifespan and cancer incidence has recently increased the interest of the scientific community. In particular, the adaptations and the genomic features underlying the evolution of cancer-resistant and long-lived organisms have recently focused on transposable elements (TEs). In this study, we compared the content and dynamics of TE activity in the genomes of four rodent and six bat species exhibiting different lifespans and cancer susceptibility. Mouse, rat, and guinea pig genomes (short-lived and cancer-prone organisms) were compared with that of naked mole rat (Heterocephalus glaber) which is a cancer-resistant organism and the rodent with the longest lifespan. The long-lived bats of the genera Myotis, Rhinolophus, Pteropus and Rousettus were instead compared with Molossus molossus, which is one of the organisms with the shortest lifespan among the order Chiroptera. Despite previous hypotheses stating a substantial tolerance of TEs in bats, we found that long-lived bats and the naked mole rat share a marked decrease of non-LTR retrotransposons (LINEs and SINEs) accumulation in recent evolutionary times.
Collapse
Affiliation(s)
| | - Valentina Peona
- Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, Sweden.
| | - Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, Padua, Italy
| |
Collapse
|
74
|
Session AM, Rokhsar DS. Transposon signatures of allopolyploid genome evolution. Nat Commun 2023; 14:3180. [PMID: 37263993 DOI: 10.1038/s41467-023-38560-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Hybridization brings together chromosome sets from two or more distinct progenitor species. Genome duplication associated with hybridization, or allopolyploidy, allows these chromosome sets to persist as distinct subgenomes during subsequent meioses. Here, we present a general method for identifying the subgenomes of a polyploid based on shared ancestry as revealed by the genomic distribution of repetitive elements that were active in the progenitors. This subgenome-enriched transposable element signal is intrinsic to the polyploid, allowing broader applicability than other approaches that depend on the availability of sequenced diploid relatives. We develop the statistical basis of the method, demonstrate its applicability in the well-studied cases of tobacco, cotton, and Brassica napus, and apply it to several cases: allotetraploid cyprinids, allohexaploid false flax, and allooctoploid strawberry. These analyses provide insight into the origins of these polyploids, revise the subgenome identities of strawberry, and provide perspective on subgenome dominance in higher polyploids.
Collapse
Affiliation(s)
- Adam M Session
- Department of Molecular and Cell, University of California, Berkeley, CA, 94720, USA.
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA.
| | - Daniel S Rokhsar
- Department of Molecular and Cell, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Molecular Genetics Unit, Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
75
|
Li Z, Wang Q, Lv N, Xu G, Yang X, Zhu B. Genome-wide identification of endogenous retrovirus elements and their active transcription in mink genome. MLIFE 2023; 2:201-208. [PMID: 38817617 PMCID: PMC10989824 DOI: 10.1002/mlf2.12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Mammalian endogenous retroviruses (ERVs) are ancient retroviruses that have been integrated into genomes. ERVs were believed to be inactive until the discovery of ERV transcription in the mouse genome. However, the transcription level and function of ERV elements in mammalian genomes are not well understood. In this study, we performed the first genome-wide scanning of ERV loci in the American mink (Neogale vison) genome (NeoERV) followed by transcriptomic analysis to detect actively transcribed NeoERV elements. A total of 365,791 NeoERV loci were identified, and161,205 (44%) of these loci were found to be actively transcribed based on transcriptomic data from three types of tissues (amygdala, trachea and lung). More than one third of the actively transcribed NeoERV loci were tissue-specific. Furthermore, some of the active loci were associated with host gene transcription, and the level of NeoERV transcription was positively correlated with that of host genes, specifically when active loci were located in overlapped gene regions. An in-depth analysis of the envelope protein coding env gene showed that, in general, its transcription level was higher than that of NeoERVs, which is believed to be associated with host immunity.
Collapse
Affiliation(s)
- Zheng Li
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Wang
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- Jiangxi Science and Technology Normal UniversityNanchangChina
| | - Na Lv
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Guojin Xu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Xuemei Yang
- Beijing Pediatric Research InstituteBeijingChina
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- Department of Pathogenic Biology, School of Basic Medical SciencesSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
76
|
Sathiaseelan R, Ahn B, Stout M, Logan S, Wanagat J, Nguyen H, Hord N, Vandiver A, Selvarani R, Ranjit R, Yarbrough H, Masingale A, Miller B, Wolf R, Austad S, Richardson A. A Genetically Heterogeneous Rat Model with Divergent Mitochondrial Genomes. J Gerontol A Biol Sci Med Sci 2023; 78:771-779. [PMID: 36762848 PMCID: PMC10172978 DOI: 10.1093/gerona/glad056] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
We generated a genetically heterogenous rat model by a 4-way cross strategy using 4 inbred strains (Brown Norway [BN], Fischer 344 [F344], Lewis [LEW], and Wistar Kyoto [KY]) to provide investigators with a highly genetically diverse rat model from commercially available inbred rats. We made reciprocal crosses between males and females from the 2 F1 hybrids to generate genetically heterogeneous rats with mitochondrial genomes from either the BN (OKC-HETB, a.k.a "B" genotype) or WKY (OKC-HETW a.k.a "W" genotype) parental strains. These two mitochondrial genomes differ at 94 nucleotides, more akin to human mitochondrial genome diversity than that available in classical laboratory mouse strains. Body weights of the B and W genotypes were similar. However, mitochondrial genotype antagonistically affected grip strength and treadmill endurance in females only. In addition, mitochondrial genotype significantly affected multiple responses to a high-fat diet (HFD) and treatment with 17α-estradiol. Contrary to findings in mice in which males only are affected by 17α-estradiol supplementation, female rats fed a HFD beneficially responded to 17α-estradiol treatment as evidenced by declines in body mass, adiposity, and liver mass. Male rats, by contrast, differed in a mitochondrial genotype-specific manner, with only B males responding to 17α-estradiol treatment. Mitochondrial genotype and sex differences were also observed in features of brain-specific antioxidant response to a HFD and 17α-estradiol as shown by hippocampal levels of Sod2 acetylation, JNK, and FoxO3a. These results emphasize the importance of mitochondrial genotype in assessing responses to putative interventions in aging processes.
Collapse
Affiliation(s)
- Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Bumsoo Ahn
- Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
| | - Sreemathi Logan
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jonathan Wanagat
- Divisions of Geriatrics and Dermatology, Department of Medicine, University of California Los Angeles and Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Norman G Hord
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Amy R Vandiver
- Divisions of Geriatrics and Dermatology, Department of Medicine, University of California Los Angeles and Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ramasamy Selvarani
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rojina Ranjit
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hannah Yarbrough
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Anthony Masingale
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
| | - Roman F Wolf
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
77
|
Vedi M, Smith JR, Thomas Hayman G, Tutaj M, Brodie KC, De Pons JL, Demos WM, Gibson AC, Kaldunski ML, Lamers L, Laulederkind SJF, Thota J, Thorat K, Tutaj MA, Wang SJ, Zacher S, Dwinell MR, Kwitek AE. 2022 updates to the Rat Genome Database: a Findable, Accessible, Interoperable, and Reusable (FAIR) resource. Genetics 2023; 224:iyad042. [PMID: 36930729 PMCID: PMC10474928 DOI: 10.1093/genetics/iyad042] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The Rat Genome Database (RGD, https://rgd.mcw.edu) has evolved from simply a resource for rat genetic markers, maps, and genes, by adding multiple genomic data types and extensive disease and phenotype annotations and developing tools to effectively mine, analyze, and visualize the available data, to empower investigators in their hypothesis-driven research. Leveraging its robust and flexible infrastructure, RGD has added data for human and eight other model organisms (mouse, 13-lined ground squirrel, chinchilla, naked mole-rat, dog, pig, African green monkey/vervet, and bonobo) besides rat to enhance its translational aspect. This article presents an overview of the database with the most recent additions to RGD's genome, variant, and quantitative phenotype data. We also briefly introduce Virtual Comparative Map (VCMap), an updated tool that explores synteny between species as an improvement to RGD's suite of tools, followed by a discussion regarding the refinements to the existing PhenoMiner tool that assists researchers in finding and comparing quantitative data across rat strains. Collectively, RGD focuses on providing a continuously improving, consistent, and high-quality data resource for researchers while advancing data reproducibility and fulfilling Findable, Accessible, Interoperable, and Reusable (FAIR) data principles.
Collapse
Affiliation(s)
- Mahima Vedi
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer R Smith
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - G Thomas Hayman
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monika Tutaj
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kent C Brodie
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey L De Pons
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy M Demos
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Adam C Gibson
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L Kaldunski
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Logan Lamers
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stanley J F Laulederkind
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jyothi Thota
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ketaki Thorat
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marek A Tutaj
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shur-Jen Wang
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stacy Zacher
- Finance and Administration, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Melinda R Dwinell
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anne E Kwitek
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
78
|
Urban LA, Li J, Gundogdu G, Trinh A, Shao H, Nguyen T, Mauney JR, Downing TL. DNA Methylation Dynamics During Esophageal Epithelial Regeneration Following Repair with Acellular Silk Fibroin Grafts in Rat. Adv Biol (Weinh) 2023; 7:e2200160. [PMID: 36658732 PMCID: PMC10401397 DOI: 10.1002/adbi.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Indexed: 01/21/2023]
Abstract
Esophageal pathologies such as atresia and benign strictures often require surgical reconstruction with autologous tissues to restore organ continuity. Complications such as donor site morbidity and limited tissue availability have spurred the development of acellular grafts for esophageal tissue replacement. Acellular biomaterials for esophageal repair rely on the activation of intrinsic regenerative mechanisms to mediate de novo tissue formation at implantation sites. Previous research has identified signaling cascades involved in neoepithelial formation in a rat model of onlay esophagoplasty with acellular silk fibroin grafts, including phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) signaling. However, it is currently unknown how these mechanisms are governed by DNA methylation (DNAme) during esophageal wound healing processes. Reduced-representation bisulfite sequencing is performed to characterize temporal DNAme dynamics in host and regenerated tissues up to 1 week postimplantation. Overall, global hypermethylation is observed at postreconstruction timepoints and an inverse correlation between promoter DNAme and the expression levels of differentially expressed proteins during regeneration. Site-specific hypomethylation targets genes associated with immune activation, while hypermethylation occurs within gene bodies encoding PI3K-Akt signaling components during the tissue remodeling period. The data provide insight into the epigenetic mechanisms during esophageal regeneration following surgical repair with acellular grafts.
Collapse
Affiliation(s)
- Lauren A. Urban
- Department of Microbiology & Molecular Genetics, University of California Irvine; Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
| | - Jiachun Li
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Orange, CA, 92868, USA
| | - Annie Trinh
- Department of Microbiology & Molecular Genetics, University of California Irvine; Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, California 92697, USA
| | - Hanjuan Shao
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
| | - Travis Nguyen
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Joshua R. Mauney
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Urology, University of California, Irvine, Orange, CA, 92868, USA
| | - Timothy L. Downing
- Department of Microbiology & Molecular Genetics, University of California Irvine; Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, California 92697, USA
| |
Collapse
|
79
|
Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M, Sullivan KAM, Moreno-Santillán DD, Crookshanks C, Roberts J, Garcia C, Johnson MG, Densmore LD, Stevens RD, Zoonomia Consortium, Rosen J, Storer JM, Hubley R, Smit AFA, Dávalos LM, Karlsson EK, Lindblad-Toh K, Ray DA. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 2023; 380:eabn1430. [PMID: 37104570 PMCID: PMC11103246 DOI: 10.1126/science.abn1430] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/28/2022] [Indexed: 04/29/2023]
Abstract
We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.
Collapse
Affiliation(s)
- Austin B. Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenny Korstian
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenna R. Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michaela Halsey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | | | | | - Jacquelyn Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Carlos Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Richard D. Stevens
- Department of Natural Resources Management and Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, USA
| | | | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Liliana M. Dávalos
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | - Elinor K. Karlsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
80
|
Li X, Guan Z, Wang F, Wang Y, Asare E, Shi S, Lin Z, Ji T, Gao B, Song C. Evolution of piggyBac Transposons in Apoidea. INSECTS 2023; 14:402. [PMID: 37103217 PMCID: PMC10140906 DOI: 10.3390/insects14040402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
In this study, we investigated the presence of piggyBac (PB) transposons in 44 bee genomes from the Apoidea order, which is a superfamily within the Hymenoptera, which includes a large number of bee species crucial for pollination. We annotated the PB transposons in these 44 bee genomes and examined their evolution profiles, including structural characteristics, distribution, diversity, activity, and abundance. The mined PB transposons were divided into three clades, with uneven distribution in each genus of PB transposons in Apoidea. The complete PB transposons we discovered are around 2.23-3.52 kb in length and encode transposases of approximately 580 aa, with terminal inverted repeats (TIRs) of about 14 bp and 4 bp (TTAA) target-site duplications. Long TIRs (200 bp, 201 bp, and 493 bp) were also detected in some species of bees. The DDD domains of the three transposon types were more conserved, while the other protein domains were less conserved. Generally, most PB transposons showed low abundance in the genomes of Apoidea. Divergent evolution dynamics of PB were observed in the genomes of Apoidea. PB transposons in some identified species were relatively young, whiles others were older and with some either active or inactive. In addition, multiple invasions of PB were also detected in some genomes of Apoidea. Our findings highlight the contribution of PB transposons to genomic variation in these species and suggest their potential as candidates for future gene transfer tools.
Collapse
|
81
|
Alawadi AA, Benedito VA, Skinner RC, Warren DC, Showman C, Tou JC. RNA-sequencing revealed apple pomace ameliorates expression of genes in the hypothalamus associated with neurodegeneration in female rats fed a Western diet during adolescence to adulthood. Nutr Neurosci 2023; 26:332-344. [PMID: 35296223 DOI: 10.1080/1028415x.2022.2050008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Apple pomace, a waste byproduct of apple processing, is rich in nutrients (e.g. polyphenols and soluble fiber) with the potential to be neuroprotective. The aim of this study was to employ RNA-sequencing (RNASeq) technology to investigate diet-gene interactions in the hypothalamus of rats after feeding a Western diet calorically substituted with apple pomace. METHODS Adolescent (age 21-29 days) female Sprague-Dawley rats were randomly assigned (n = 8 rats/group) to consume either a purified standard diet, Western (WE) diet, or Western diet calorically substituted with 10% apple pomace (WE/AP) for 8 weeks. RNA-seq was performed (n = 5 rats/group) to determine global differentially expressed genes in the hypothalamus. RESULTS RNA-seq results comparing rats fed WE to WE/AP revealed 15 differentially expressed genes in the hypothalamus. Caloric substitution of WE diet with 10% apple pomace downregulated (q < 0.06) five genes implicated in brain aging and neurodegenerative disorders: synuclein alpha, phospholipase D family member 5, NADH dehydrogenase Fe-S protein 6, choline O-acetyltransferase, and frizzled class receptor 6. DISCUSSION Altered gene expression of these five genes suggests that apple pomace ameliorated synthesis of the neurotransmitter, acetylcholine, in rats fed a WE diet. Apple pomace, a rich source of antioxidant polyphenols and soluble fiber, has been shown to reverse nonalcoholic fatty liver disease (NAFLD). Diet-induced NAFLD decreases hepatic de novo synthesis of choline, a precursor to acetylcholine. Based on preclinical evidence, apple pomace has the potential to be a sustainable functional food for maintaining brain function and for reducing the risk of neurodegeneration.
Collapse
Affiliation(s)
- Ayad A Alawadi
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - R Chris Skinner
- Food Systems Research Center, College of Agriculture and Life Sciences, University of Vermont Burlington, VT, USA
| | - Derek C Warren
- Division of Natural Sciences and Mathematics, University of Ozarks, Clarksville, AR, USA
| | - Casey Showman
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
82
|
Richard Albert J, Kobayashi T, Inoue A, Monteagudo-Sánchez A, Kumamoto S, Takashima T, Miura A, Oikawa M, Miura F, Takada S, Hirabayashi M, Korthauer K, Kurimoto K, Greenberg MVC, Lorincz M, Kobayashi H. Conservation and divergence of canonical and non-canonical imprinting in murids. Genome Biol 2023; 24:48. [PMID: 36918927 PMCID: PMC10012579 DOI: 10.1186/s13059-023-02869-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Genomic imprinting affects gene expression in a parent-of-origin manner and has a profound impact on complex traits including growth and behavior. While the rat is widely used to model human pathophysiology, few imprinted genes have been identified in this murid. To systematically identify imprinted genes and genomic imprints in the rat, we use low input methods for genome-wide analyses of gene expression and DNA methylation to profile embryonic and extraembryonic tissues at allele-specific resolution. RESULTS We identify 14 and 26 imprinted genes in these tissues, respectively, with 10 of these genes imprinted in both tissues. Comparative analyses with mouse reveal that orthologous imprinted gene expression and associated canonical DNA methylation imprints are conserved in the embryo proper of the Muridae family. However, only 3 paternally expressed imprinted genes are conserved in the extraembryonic tissue of murids, all of which are associated with non-canonical H3K27me3 imprints. The discovery of 8 novel non-canonical imprinted genes unique to the rat is consistent with more rapid evolution of extraembryonic imprinting. Meta-analysis of novel imprinted genes reveals multiple mechanisms by which species-specific imprinted expression may be established, including H3K27me3 deposition in the oocyte, the appearance of ZFP57 binding motifs, and the insertion of endogenous retroviral promoters. CONCLUSIONS In summary, we provide an expanded list of imprinted loci in the rat, reveal the extent of conservation of imprinted gene expression, and identify potential mechanisms responsible for the evolution of species-specific imprinting.
Collapse
Affiliation(s)
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Azusa Inoue
- YCI Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Asuka Miura
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Keegan Korthauer
- Department of Statistics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara, Japan
| | | | - Matthew Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
83
|
GONG W, XU S, SONG Y, ZHOU Y, QIN X. Hepatic metabolomics combined with network pharmacology to reveal the correlation between the anti-depression effect and nourishing blood effect of Angelicae Sinensis Radix. Chin J Nat Med 2023; 21:197-213. [PMID: 37003642 DOI: 10.1016/s1875-5364(23)60421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 04/01/2023]
Abstract
Angelicae Sinensis Radix (AS) is reproted to exert anti-depression effect (ADE) and nourishing blood effect (NBE) in a rat model of depression. The correlation between the two therapeutic effects and its underlying mechanisms deserves further study. The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics, network pharmacology and molecular docking. According to metabolomics analysis, 30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression. Furthermore, principal component analysis and correlation analysis showed that glutathione, sphinganine, and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators, indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS. Then, a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis, where a total of 107 pathways were collected. Moreover, 37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer (UPLC-Triple-TOF/MS) in AS extract that passed the filtering criteria were used for network pharmacology, where 46 targets were associated with the ADE and NBE of AS. Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS. Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins (PIK3CA and PIK3CD) in sphingolipid metabolism. Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism. Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.
Collapse
|
84
|
Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, Hoffman JI, Li Z, St Leger J, Shao C, Stiller J, Gilbert MTP, Schierup MH, Zhang G. Evolution of the germline mutation rate across vertebrates. Nature 2023; 615:285-291. [PMID: 36859541 PMCID: PMC9995274 DOI: 10.1038/s41586-023-05752-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.
Collapse
Affiliation(s)
- Lucie A Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Besenbacher
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Jiao Zheng
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | | | | | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, High Cross, Cambridge, UK
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Judy St Leger
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | | | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Centre for Evolutionary & Organismal Biology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
85
|
Kow ASF, Khoo LW, Tan JW, Abas F, Lee MT, Israf DA, Shaari K, Tham CL. Clinacanthus nutans aqueous leaves extract exerts anti-allergic activity in preclinical anaphylactic models via alternative IgG pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116003. [PMID: 36464074 DOI: 10.1016/j.jep.2022.116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allergy is mediated by the crosslinking of immunoglobulins (Ig) -E or -G to their respective receptors, which degranulates mast cells, macrophages, basophils, or neutrophils, releasing allergy-causing mediators. The removal of these mediators such as histamine, platelet-activating factor (PAF) and interleukins (ILs) released by effector cells will alleviate allergy. Clinacanthus nutans (C. nutans), an herbal plant in Southeast Asia, is used traditionally to treat skin rash, an allergic symptom. Previously, we have reported that C. nutans aqueous leaves extract (CNAE) was able to suppress the release of β-hexosaminidase and histamine but not interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) in the IgE-induced mast cell degranulation model at 5 mg/mL and above. We also found that CNAE could protect rats against ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) through the downregulation and upregulation of certain metabolites using proton nuclear magnetic resonance (1H-NMR) metabolomics approach. AIM OF THE STUDY As allergy could be mediated by both IgE and IgG, we further evaluated the anti-allergy potential of CNAE in both in vitro model of IgG-induced macrophage activation and in vivo anaphylaxis models to further dissect the mechanism of action underlying the anti-allergic properties of CNAE. MATERIAL & METHODS The anti-allergy potential of CNAE was evaluated in in vivo anaphylaxis models of ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) and IgE-challenged passive systemic anaphylaxis (PSA) using Sprague Dawley rats as well as IgG-challenged passive systemic anaphylaxis (IgG-PSA) using C57BL/6 mice. Meanwhile, in vitro model of IgG-induced macrophage activation model was performed using IC-21 macrophages. The release of soluble mediators from both IgE and IgG-mediated pathways were measured using enzyme-linked immunosorbent assay (ELISA). The signaling molecules targeted by CNAE were identified by performing Western blot. RESULTS IgG, platelet-activating factor (PAF) and IL-6 was suppressed by CNAE in OVA-ASA, but not IgE. In addition, CNAE significantly suppressed PAF and IL-6 in IgG-PSA but did not suppress histamine, IL-4 and leukotrienes C4 (LTC4) in IgE-PSA. CNAE also inhibited IL-6 and TNF-α by inhibiting the phosphorylation of ERK1/2 in the IgG-induced macrophage activation model. CONCLUSION Overall, our findings supported that CNAE exerts its anti-allergic properties by suppressing the IgG pathway and its mediators by inhibiting ERK1/2 phosphorylation, thus providing scientific evidence supporting its traditional use in managing allergy.
Collapse
Affiliation(s)
- Audrey Siew Foong Kow
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia; Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Leng Wei Khoo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400, Malaysia.
| | - Ji Wei Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia; School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Malaysia.
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400, Malaysia; Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Malaysia.
| | - Ming-Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia.
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia.
| |
Collapse
|
86
|
Fice HE, Robaire B. Aging affects gene expression in spermatids of Brown Norway rats. Exp Gerontol 2023; 173:112086. [PMID: 36626969 DOI: 10.1016/j.exger.2023.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The effects of aging on the reproductive health of men and the consequences for their offspring are becoming more widely recognized. Correlative epidemiological studies examining paternal age and offspring health suggest there are more frequent occurrences of genetic disorders in the children of older fathers. Given the genetic basis for paternal age-related disorders, we aim to characterize gene expression in developing germ cells. Round spermatids (RS) were collected from young (mean = 5.3 months) and aged (mean = 19.5 months) Brown Norway rats, representative of humans aged 20-30 years and 55+ years, respectively. Gene expression data were obtained by mRNA sequencing (n = 5), and were analysed for differential expression. Sequencing data display 211 upregulated and 9 downregulated transcripts in RS of aged rats, compared to young (log2FC >1, p < 0.05). Transcripts with increased expression are involved in several processes including sperm motility/morphology, sperm-egg binding, capacitation, and epigenetic inheritance. In addition, there are numerous dysregulated transcripts that regulate germ cell epigenetic marks and Sertoli-germ cell binding and communication. These results show an overall increase in RS gene expression with age, with spermatogenic functions being perturbed. Taken together, these findings help identify the genetic origin of the fertility, germ cell niche, and epigenetic effects observed with advanced paternal aging.
Collapse
Affiliation(s)
- Heather E Fice
- McGill University, Department of Pharmacology and Therapeutics, Canada.
| | - Bernard Robaire
- McGill University, Department of Pharmacology and Therapeutics, Canada; McGill University, Department of Obstetrics and Gynaecology, Canada.
| |
Collapse
|
87
|
Muotri AR. Interchromosomal translocation in neural progenitor cells exposed to L1 retrotransposition. Genet Mol Biol 2023; 46:e20220268. [PMID: 36734369 PMCID: PMC9936793 DOI: 10.1590/1678-4685-gmb-2022-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
LINE-1 (L1) elements are a class of transposons, comprising approximately 19% and 21% of the mouse and human genomes, respectively. L1 retrotransposons can reverse transcribe their own RNA sequence into a de novo DNA copy integrated into a new genomic location. This activity, known as retrotransposition, may induce genomic alterations, such as insertions and deletions. Interestingly, L1s can retrotranspose and generate more de novo L1 copies in brains than in other somatic tissues. Here, we describe for the first time interchromosomal translocation triggered by ectopic L1 retrotransposition in neural progenitor cells. Such an observation adds to the studies in neurological and psychiatric diseases that exhibited variation in L1 activity between diseased brains compared with controls, suggesting that L1 activity could be detrimental when de-regulated.
Collapse
Affiliation(s)
- Alysson R. Muotri
- University of California San Diego, Department of Pediatrics, La Jolla, CA, USA.,University of California San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA , USA.,University of California San Diego, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center, La Jolla, CA , USA.
| |
Collapse
|
88
|
Reznik DL, Yang MV, Albelda de la Haza P, Jain A, Spanjaard M, Theiss S, Schaaf CP, Malovannaya A, Strong TV, Veeraragavan S, Samaco RC. Magel2 truncation alters select behavioral and physiological outcomes in a rat model of Schaaf-Yang syndrome. Dis Model Mech 2023; 16:286598. [PMID: 36637363 PMCID: PMC9922728 DOI: 10.1242/dmm.049829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Previous studies in mice have utilized Magel2 gene deletion models to examine the consequences of its absence. We report the generation, molecular validation and phenotypic characterization of a novel rat model with a truncating Magel2 mutation modeling variants associated with Schaaf-Yang syndrome-causing mutations. Within the hypothalamus, a brain region in which human MAGEL2 is paternally expressed, we demonstrated, at the level of transcript and peptide detection, that rat Magel2 exhibits a paternal, parent-of-origin effect. In evaluations of behavioral features across several domains, juvenile Magel2 mutant rats displayed alterations in anxiety-like behavior and sociability measures. Moreover, the analysis of peripheral organ systems detected alterations in body composition, cardiac structure and function, and breathing irregularities in Magel2 mutant rats. Several of these findings are concordant with reported mouse phenotypes, indicating the conservation of MAGEL2 function across rodent species. Our comprehensive analysis revealing impairments across multiple domains demonstrates the tractability of this model system for the study of truncating MAGEL2 mutations.
Collapse
Affiliation(s)
- Derek L Reznik
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX 77030, USA.,Texas Children's Hospital, Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Mingxiao V Yang
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX 77030, USA.,Texas Children's Hospital, Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Pedro Albelda de la Haza
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX 77030, USA.,Texas Children's Hospital, Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Antrix Jain
- Baylor College of Medicine, Mass Spectrometry Proteomics Core, Houston, TX 77030, USA
| | - Melanie Spanjaard
- Heidelberg University, Institute of Human Genetics, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Susanne Theiss
- Heidelberg University, Institute of Human Genetics, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian P Schaaf
- Heidelberg University, Institute of Human Genetics, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Anna Malovannaya
- Baylor College of Medicine, Mass Spectrometry Proteomics Core, Houston, TX 77030, USA.,Baylor College of Medicine, Verna and Marrs McLean Departments of Biochemistry and Molecular Biology, and Molecular and Cellular Biology, Houston, TX 77030, USA.,Baylor College of Medicine, Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
| | - Theresa V Strong
- Foundation for Prader-Willi Research, Walnut, CA 91789, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Surabi Veeraragavan
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX 77030, USA.,Texas Children's Hospital, Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Rodney C Samaco
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX 77030, USA.,Texas Children's Hospital, Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| |
Collapse
|
89
|
Takiishi T, Xiao P, Franchimont M, Gilglioni EH, Arroba EN, Gurzov EN, Bertrand MJM, Cardozo AK. Inhibition of RIPK1 kinase does not affect diabetes development: β-Cells survive RIPK1 activation. Mol Metab 2023; 69:101681. [PMID: 36707047 PMCID: PMC9932129 DOI: 10.1016/j.molmet.2023.101681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing β-cells. Inflammation is detrimental to β-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of β-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO). METHODS The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, β-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis. RESULTS We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and β-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human β-cells. CONCLUSION Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of β-cells to proliferate and self-renewal.
Collapse
Affiliation(s)
- Tatiana Takiishi
- Inflammation and Cell Death Signalling Group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Peng Xiao
- Inflammation and Cell Death Signalling Group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Marie Franchimont
- Inflammation and Cell Death Signalling Group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Eduardo H. Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Erick N. Arroba
- Inflammation and Cell Death Signalling Group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium,Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium,WELBIO, WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| | - Mathieu JM. Bertrand
- UGent Center for inflammation Research, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessandra K. Cardozo
- Inflammation and Cell Death Signalling Group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles (ULB), Brussels, Belgium,Corresponding author. Inflammation and Cell Death Signalling Group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Route de Lennik, 808, CP 697/02, 1070, Brussels, Belgium.
| |
Collapse
|
90
|
Kalbfleisch TS, Hussien AbouEl Ela NA, Li K, Brashear WA, Kochan KJ, Hillhouse AE, Zhu Y, Dhande IS, Kline EJ, Hudson EA, Murphy TD, Thibaud-Nissen F, Smith ML, Doris PA. The Assembled Genome of the Stroke-Prone Spontaneously Hypertensive Rat. Hypertension 2023; 80:138-146. [PMID: 36330812 PMCID: PMC9814308 DOI: 10.1161/hypertensionaha.122.20140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND We report the creation and evaluation of a de novo assembly of the genome of the spontaneously hypertensive rat, the most widely used model of human cardiovascular disease. METHODS The genome is assembled from long read sequencing (PacBio HiFi and continuous long read data [CLR]) and scaffolded with long-range structural information obtained from Bionano optical maps and proximity ligation sequencing proximity analysis of the genome. The genome assembly was polished with Illumina short reads. Completeness of the assembly was investigated using Benchmarking Universal Single Copy Orthologs analysis. The genome assembly was also evaluated with the rat reference gene set, using NCBI automated protocols. We also generated orthogonal single molecule transcript sequence reads (Iso-Seq) from 8 tissues and used them to validate the coding assembly, to annotate the assembly with RNA transcripts representing unique full length transcript isoforms for each gene and to determine whether divergences between RefSeq sequences and the assembly were attributable to assembly errors or polymorphisms. RESULTS The assembly analysis indicates that this assembly is comparable in contiguity and completeness to the current rat reference assembly, while the use of HiFi sequencing yields an assembly that is more correct at the single base level. Synteny analysis was performed to uncover the extent of synteny and the presence and distribution of chromosomal rearrangements between the reference and this assembly. CONCLUSION The resulting genome assembly is reference quality and captures significant structural variation.
Collapse
Affiliation(s)
- Theodore S Kalbfleisch
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY (T.S.K., N.A.H., K.L.)
| | - Nahla A Hussien AbouEl Ela
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY (T.S.K., N.A.H., K.L.)
| | - Kai Li
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY (T.S.K., N.A.H., K.L.)
| | - Wesley A Brashear
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX (W.A.B., K.J.K., A.E.H.)
| | - Kelli J Kochan
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX (W.A.B., K.J.K., A.E.H.)
| | - Andrew E Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX (W.A.B., K.J.K., A.E.H.)
| | - Yaming Zhu
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, TX (Y.Z., I.S.D., P.A.D.)
| | - Isha S Dhande
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, TX (Y.Z., I.S.D., P.A.D.)
| | - Eric J Kline
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY (E.J.K., E.A.H, M.L.S.)
| | - Elizabeth A Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY (E.J.K., E.A.H, M.L.S.)
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD (T.D.M., F.T.-N.)
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD (T.D.M., F.T.-N.)
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY (E.J.K., E.A.H, M.L.S.)
| | - Peter A Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, TX (Y.Z., I.S.D., P.A.D.)
| |
Collapse
|
91
|
Kuramoto T. Positional cloning of rat mutant genes reveals new functions of these genes. Exp Anim 2023; 72:1-8. [PMID: 36058846 PMCID: PMC9978133 DOI: 10.1538/expanim.22-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The laboratory rat (Rattus norvegicus) is a key model organism for biomedical research. Rats can be subjected to strict genetic and environmental controls. The rat's large body size is suitable for both surgical operations and repeated measurements of physiological parameters. These advantages have led to the development of numerous rat models for genetic diseases. Forward genetics is a proven approach for identifying the causative genes of these disease models but requires genome resources including genetic markers and genome sequences. Over the last few decades, rat genome resources have been developed and deposited in bioresource centers, which have enabled us to perform positional cloning in rats. To date, more than 100 disease-related genes have been identified by positional cloning. Since some disease models are more accessible in rats than mice, the identification of causative genes in these models has sometimes led to the discovery of novel functions of genes. As before, various mutant rats are also expected to be discovered and developed as disease models in the future. Thus, the forward genetics continues to be an important approach to find genes involved in disease phenotypes in rats. In this review, I provide an overview the development of rat genome resources and describe examples of positional cloning in rats in which novel gene functions have been identified.
Collapse
Affiliation(s)
- Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
92
|
Banik SSR, Kushnir N, Doranz BJ, Chambers R. Breaking barriers in antibody discovery: harnessing divergent species for accessing difficult and conserved drug targets. MAbs 2023; 15:2273018. [PMID: 38050985 DOI: 10.1080/19420862.2023.2273018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023] Open
Abstract
To exploit highly conserved and difficult drug targets, including multipass membrane proteins, monoclonal antibody discovery efforts increasingly rely on the advantages offered by divergent species such as rabbits, camelids, and chickens. Here, we provide an overview of antibody discovery technologies, analyze gaps in therapeutic antibodies that stem from the historic use of mice, and examine opportunities to exploit previously inaccessible targets through discovery now possible in alternate species. We summarize the clinical development of antibodies raised from divergent species, discussing how these animals enable robust immune responses against highly conserved binding sites and yield antibodies capable of penetrating functional pockets via long HCDR3 regions. We also discuss the value of pan-reactive molecules often produced by these hosts, and how these antibodies can be tested in accessible animal models, offering a faster path to clinical development.
Collapse
|
93
|
Wang N, Lv L, Huang X, Shi M, Dai Y, Wei Y, Xu B, Fu C, Huang H, Shi H, Liu Y, Hu X, Qin D. Gene editing in monogenic autism spectrum disorder: animal models and gene therapies. Front Mol Neurosci 2022; 15:1043018. [PMID: 36590912 PMCID: PMC9794862 DOI: 10.3389/fnmol.2022.1043018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disease, and its diagnosis is dependent on behavioral manifestation, such as impaired reciprocal social interactions, stereotyped repetitive behaviors, as well as restricted interests. However, ASD etiology has eluded researchers to date. In the past decades, based on strong genetic evidence including mutations in a single gene, gene editing technology has become an essential tool for exploring the pathogenetic mechanisms of ASD via constructing genetically modified animal models which validates the casual relationship between genetic risk factors and the development of ASD, thus contributing to developing ideal candidates for gene therapies. The present review discusses the progress in gene editing techniques and genetic research, animal models established by gene editing, as well as gene therapies in ASD. Future research should focus on improving the validity of animal models, and reliable DNA diagnostics and accurate prediction of the functional effects of the mutation will likely be equally crucial for the safe application of gene therapies.
Collapse
Affiliation(s)
- Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Longbao Lv
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
94
|
Bernstein SL, Guo Y, Mehrabian Z, Miller NR. Neuroprotection and Neuroregeneration Strategies Using the rNAION Model: Theory, Histology, Problems, Results and Analytical Approaches. Int J Mol Sci 2022; 23:ijms232415604. [PMID: 36555246 PMCID: PMC9778957 DOI: 10.3390/ijms232415604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of sudden optic nerve (ON)-related vision loss in humans. Study of this disease has been limited by the lack of available tissue and difficulties in evaluating both treatments and the window of effectiveness after symptom onset. The rodent nonarteritic anterior ischemic optic neuropathy model (rNAION) closely resembles clinical NAION in its pathophysiological changes and physiological responses. The rNAION model enables analysis of the specific responses to sudden ischemic axonopathy and effectiveness of potential treatments. However, there are anatomic and genetic differences between human and rodent ON, and the inducing factors for the disease and the model are different. These variables can result in marked differences in lesion development between the two species, as well as in the possible responses to various treatments. These caveats are discussed in the current article, as well as some of the species-associated differences that may be related to ischemic lesion severity and responses.
Collapse
Affiliation(s)
- Steven L. Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3712
| | - Yan Guo
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
| | - Zara Mehrabian
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
| | - Neil R. Miller
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
95
|
Pardo M, Martin M, Gainetdinov RR, Mash DC, Izenwasser S. Heterozygote Dopamine Transporter Knockout Rats Display Enhanced Cocaine Locomotion in Adolescent Females. Int J Mol Sci 2022; 23:ijms232315414. [PMID: 36499749 PMCID: PMC9736933 DOI: 10.3390/ijms232315414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine's reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. We used the novel DAT transgenic rat model to study the effects of cocaine on locomotor behaviors in adolescent rats, with an emphasis on sex. Female rats showed higher response rates to cocaine at lower acute and chronic doses, highlighting a higher vulnerability and perceived gender effects. In contrast, locomotor responses to an acute high dose of cocaine were more marked and sustained in male DAT heterozygous (HET) adolescents. The results demonstrate the augmented effects of chronic cocaine in HET DAT adolescent female rats. Knockout (KO) DAT led to a level of hyperdopaminergia which caused a marked basal hyperactivity that was unchanged, consistent with a possible ceiling effect. We suggest a role of alpha synuclein (α-syn) and PICK 1 protein expressions to the increased vulnerability in female rats. These proteins showed a lower expression in female HET and KO rats. This study highlights gender differences associated with mutations which affect DAT expression and can increase susceptibility to cocaine abuse in adolescence.
Collapse
Affiliation(s)
- Marta Pardo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-786-230-7181
| | - Michele Martin
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Deborah C Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
96
|
Ichii S, Matsuoka I, Okazaki F, Shimada Y. Zebrafish Models for Skeletal Muscle Senescence: Lessons from Cell Cultures and Rodent Models. Molecules 2022; 27:molecules27238625. [PMID: 36500717 PMCID: PMC9739860 DOI: 10.3390/molecules27238625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Human life expectancy has markedly increased over the past hundred years. Consequently, the percentage of elderly people is increasing. Aging and sarcopenic changes in skeletal muscles not only reduce locomotor activities in elderly people but also increase the chance of trauma, such as bone fractures, and the incidence of other diseases, such as metabolic syndrome, due to reduced physical activity. Exercise therapy is currently the only treatment and prevention approach for skeletal muscle aging. In this review, we aimed to summarize the strategies for modeling skeletal muscle senescence in cell cultures and rodents and provide future perspectives based on zebrafish models. In cell cultures, in addition to myoblast proliferation and myotube differentiation, senescence induction into differentiated myotubes is also promising. In rodents, several models have been reported that reflect the skeletal muscle aging phenotype or parts of it, including the accelerated aging models. Although there are fewer models of skeletal muscle aging in zebrafish than in mice, various models have been reported in recent years with the development of CRISPR/Cas9 technology, and further advancements in the field using zebrafish models are expected in the future.
Collapse
Affiliation(s)
- Shogo Ichii
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Izumi Matsuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan
| | - Fumiyoshi Okazaki
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +81-592-31-5411
| |
Collapse
|
97
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
98
|
Delic V, Karp JH, Guzman M, Arismendi GR, Stalnaker KJ, Burton JA, Murray KE, Stamos JP, Beck KD, Sokratian A, West AB, Citron BA. Repetitive mild TBI causes pTau aggregation in nigra without altering preexisting fibril induced Parkinson's-like pathology burden. Acta Neuropathol Commun 2022; 10:170. [PMID: 36435806 PMCID: PMC9701434 DOI: 10.1186/s40478-022-01475-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
Population studies have shown that traumatic brain injury (TBI) is associated with an increased risk for Parkinson's disease (PD) and among U.S. Veterans with a history of TBI this risk is 56% higher. The most common type of TBI is mild (mTBI) and often occurs repeatedly among athletes, military personnel, and victims of domestic violence. PD is classically characterized by deficits in fine motor movement control resulting from progressive neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) midbrain region. This neurodegeneration is preceded by the predictable spread of characteristic alpha synuclein (αSyn) protein inclusions. Whether repetitive mTBI (r-mTBI) can nucleate PD pathology or accelerate prodromal PD pathology remains unknown. To answer this question, an injury device was constructed to deliver a surgery-free r-mTBI to rats and human-like PD pathology was induced by intracranial injection of recombinant αSyn preformed fibrils. At the 3-month endpoint, the r-mTBI caused encephalomalacia throughout the brain reminiscent of neuroimaging findings in patients with a history of mTBI, accompanied by astrocyte expansion and microglial activation. The pathology associated most closely with PD, which includes dopaminergic neurodegeneration in the SNpc and Lewy body-like αSyn inclusion burden in the surviving neurons, was not produced de novo by r-mTBI nor was the fibril induced preexisting pathology accelerated. r-mTBI did however cause aggregation of phosphorylated Tau (pTau) protein in nigra of rats with and without preexisting PD-like pathology. pTau aggregation was also found to colocalize with PFF induced αSyn pathology without r-mTBI. These findings suggest that r-mTBI induced pTau aggregate deposition in dopaminergic neurons may create an environment conducive to αSyn pathology nucleation and may add to preexisting proteinaceous aggregate burden.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA.
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA.
- Rutgers School of Graduate Studies, Newark, NJ, 07103, USA.
| | - Joshua H Karp
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Rutgers School of Graduate Studies, Newark, NJ, 07103, USA
| | - Maynard Guzman
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Rutgers School of Graduate Studies, Newark, NJ, 07103, USA
| | - Gabriel R Arismendi
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Neurology, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Katherine J Stalnaker
- Neuro Behavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Rutgers School of Graduate Studies, Newark, NJ, 07103, USA
| | - Julia A Burton
- Neuro Behavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
| | - Kathleen E Murray
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Rutgers School of Graduate Studies, Newark, NJ, 07103, USA
| | - Joshua P Stamos
- Neuro Behavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
| | - Kevin D Beck
- Neuro Behavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies, Newark, NJ, 07103, USA
| | - Arpine Sokratian
- Neurobiology Department, Department of Pharmacology and Cancer Biology, Duke Center for Neurodegeneration Research, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke University School of Medicine, Durham, NC, 27710, USA
| | - Andrew B West
- Neurobiology Department, Department of Pharmacology and Cancer Biology, Duke Center for Neurodegeneration Research, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke University School of Medicine, Durham, NC, 27710, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), Bldg. 16, Rm. 16-130, 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies, Newark, NJ, 07103, USA
| |
Collapse
|
99
|
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, Bukhman YV. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes. BMC Biol 2022; 20:245. [DOI: 10.1186/s12915-022-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
Results
We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse.
Conclusions
Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.
Collapse
|
100
|
Bentz EJ, Ophir AG. Chromosome-scale genome assembly of the African giant pouched rat (Cricetomys ansorgei) and evolutionary analysis reveals evidence of olfactory specialization. Genomics 2022; 114:110521. [PMID: 36351561 DOI: 10.1016/j.ygeno.2022.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The Southern giant pouched rat, Cricetomys ansorgei, is a large rodent best known for its ability to detect landmines using its impressive sense of smell. Their powerful chemosensory abilities enable subtle discrimination of chemical social signals, and female pouched rats demonstrate a unique reproductive physiology hypothesized to be mediated by pheromonal mechanisms. Thus, C. ansorgei represents a novel mammalian model for chemosensory physiology, social behavior, and pheromonal control of reproductive physiology. We present the first chromosome-scale genomic sequence of the pouched rat encoding 22,671 protein coding genes, including 1571 olfactory receptors, and provide a glance into the evolutionary history of this species. Functional enrichment analysis reveals genetic expansions specific to the pouched rat are enriched for functions related to olfactory specialization. Overall, this assembly is of reference-quality, and will serve as a useful and informative genomic sequence on which we can confidently base future molecular research involving the pouched rat.
Collapse
Affiliation(s)
- Ehren J Bentz
- Department of Psychology, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|