51
|
Scoca V, Di Nunzio F. The HIV-1 Capsid: From Structural Component to Key Factor for Host Nuclear Invasion. Viruses 2021; 13:273. [PMID: 33578999 PMCID: PMC7916756 DOI: 10.3390/v13020273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of HIV-1, the viral capsid has been recognized to have an important role as a structural protein that holds the viral genome, together with viral proteins essential for viral life cycle, such as the reverse transcriptase (RT) and the integrase (IN). The reverse transcription process takes place between the cytoplasm and the nucleus of the host cell, thus the Reverse Transcription Complexes (RTCs)/Pre-integration Complexes (PICs) are hosted in intact or partial cores. Early biochemical assays failed to identify the viral CA associated to the RTC/PIC, possibly due to the stringent detergent conditions used to fractionate the cells or to isolate the viral complexes. More recently, it has been observed that some host partners of capsid, such as Nup153 and CPSF6, can only bind multimeric CA proteins organized in hexamers. Those host factors are mainly located in the nuclear compartment, suggesting the entrance of the viral CA as multimeric structure inside the nucleus. Recent data show CA complexes within the nucleus having a different morphology from the cytoplasmic ones, clearly highlighting the remodeling of the viral cores during nuclear translocation. Thus, the multimeric CA complexes lead the viral genome into the host nuclear compartment, piloting the intranuclear journey of HIV-1 in order to successfully replicate. The aim of this review is to discuss and analyze the main discoveries to date that uncover the viral capsid as a key player in the reverse transcription and PIC maturation until the viral DNA integration into the host genome.
Collapse
Affiliation(s)
- Viviana Scoca
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology Pasteur Institute, 75015 Paris, France;
- BioSPC Doctoral School, Universitè de Paris, 75015 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology Pasteur Institute, 75015 Paris, France;
| |
Collapse
|
52
|
Wilbourne M, Zhang P. Visualizing HIV-1 Capsid and Its Interactions with Antivirals and Host Factors. Viruses 2021; 13:246. [PMID: 33557422 PMCID: PMC7914784 DOI: 10.3390/v13020246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/03/2023] Open
Abstract
Understanding of the construction and function of the HIV capsid has advanced considerably in the last decade. This is due in large part to the development of more sophisticated structural techniques, particularly cryo-electron microscopy (cryoEM) and cryo-electron tomography (cryoET). The capsid is known to be a pleomorphic fullerene cone comprised of capsid protein monomers arranged into 200-250 hexamers and 12 pentamers. The latter of these induce high curvature necessary to close the cone at both ends. CryoEM/cryoET, NMR, and X-ray crystallography have collectively described these interactions to atomic or near-atomic resolutions. Further, these techniques have helped to clarify the role the HIV capsid plays in several parts of the viral life cycle, from reverse transcription to nuclear entry and integration into the host chromosome. This includes visualizing the capsid bound to host factors. Multiple proteins have been shown to interact with the capsid. Cyclophilin A, nucleoporins, and CPSF6 promote viral infectivity, while MxB and Trim5α diminish the viral infectivity. Finally, structural insights into the intra- and intermolecular interactions that govern capsid function have enabled development of small molecules, peptides, and truncated proteins to disrupt or stabilize the capsid to inhibit HIV replication. The most promising of these, GS6207, is now in clinical trial.
Collapse
Affiliation(s)
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
53
|
Structure, Function, and Interactions of the HIV-1 Capsid Protein. Life (Basel) 2021; 11:life11020100. [PMID: 33572761 PMCID: PMC7910843 DOI: 10.3390/life11020100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.
Collapse
|
54
|
Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms 2020; 8:microorganisms8121965. [PMID: 33322320 PMCID: PMC7764263 DOI: 10.3390/microorganisms8121965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
The evolutionary conflict between retroviruses and their vertebrate hosts over millions of years has led to the emergence of cellular innate immune proteins termed restriction factors as well as their viral antagonists. Evidence accumulated in the last two decades has substantially increased our understanding of the elaborate mechanisms utilized by these restriction factors to inhibit retroviral replication, mechanisms that either directly block viral proteins or interfere with the cellular pathways hijacked by the viruses. Analyses of these complex interactions describe patterns of accelerated evolution for these restriction factors as well as the acquisition and evolution of their virus-encoded antagonists. Evidence is also mounting that many restriction factors identified for their inhibition of specific retroviruses have broader antiviral activity against additional retroviruses as well as against other viruses, and that exposure to these multiple virus challenges has shaped their adaptive evolution. In this review, we provide an overview of the restriction factors that interfere with different steps of the retroviral life cycle, describing their mechanisms of action, adaptive evolution, viral targets and the viral antagonists that evolved to counter these factors.
Collapse
|
55
|
Ramdas P, Sahu AK, Mishra T, Bhardwaj V, Chande A. From Entry to Egress: Strategic Exploitation of the Cellular Processes by HIV-1. Front Microbiol 2020; 11:559792. [PMID: 33343516 PMCID: PMC7746852 DOI: 10.3389/fmicb.2020.559792] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts intracellular trafficking pathways. This exquisitely coordinated process requires precise manipulation of the host microenvironment, most often within defined subcellular compartments. The virus capitalizes on the host by modulating cell-surface proteins and cleverly exploiting nuclear import pathways for post entry events, among other key processes. Successful virus–cell interactions are indeed crucial in determining the extent of infection. By evolving defenses against host restriction factors, while simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a fascinating montage of an ongoing host–virus arms race. Herein, we provide an overview of how HIV-1 exploits native functions of the host cell and discuss recent findings that fundamentally change our understanding of the post-entry replication events.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
56
|
Correlated cryogenic fluorescence microscopy and electron cryo-tomography shows that exogenous TRIM5α can form hexagonal lattices or autophagy aggregates in vivo. Proc Natl Acad Sci U S A 2020; 117:29702-29711. [PMID: 33154161 PMCID: PMC7703684 DOI: 10.1073/pnas.1920323117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the most notable features of TRIM5 proteins is their ability to restrict retroviral infections by binding viral capsids. TRIM5α forms highly dynamic puncta of various sizes, and, when purified, hexagonal nets on the surface of HIV virions, but the molecular ultrastructure of the cellular bodies and the relationship of the in vitro nets to HIV restriction has remained unclear. To define the cellular ultrastructure underlying the punctate and dynamic nature of YFP-rhTRIM5α bodies, we applied cryogenic correlated light and electron microscopy combined with electron cryo-tomography to TRIM5α bodies and observed YFP-rhTRIM5α-localization to organelles found along the aggrephagy branch of the autophagy pathway. Consistent with previous work, we also found that TRIM5α forms hexagonal nets inside cells. Members of the tripartite motif (TRIM) protein family have been shown to assemble into structures in both the nucleus and cytoplasm. One TRIM protein family member, TRIM5α, has been shown to form cytoplasmic bodies involved in restricting retroviruses such as HIV-1. Here we applied cryogenic correlated light and electron microscopy, combined with electron cryo-tomography, to intact mammalian cells expressing YFP-rhTRIM5α and found the presence of hexagonal nets whose arm lengths were similar to those of the hexagonal nets formed by purified TRIM5α in vitro. We also observed YFP-rhTRIM5α within a diversity of structures with characteristics expected for organelles involved in different stages of macroautophagy, including disorganized protein aggregations (sequestosomes), sequestosomes flanked by flat double-membraned vesicles (sequestosome:phagophore complexes), sequestosomes within double-membraned vesicles (autophagosomes), and sequestosomes within multivesicular autophagic vacuoles (amphisomes or autolysosomes). Vaults were also seen in these structures, consistent with their role in autophagy. Our data 1) support recent reports that TRIM5α can form both well-organized signaling complexes and nonsignaling aggregates, 2) offer images of the macroautophagy pathway in a near-native state, and 3) reveal that vaults arrive early in macroautophagy.
Collapse
|
57
|
Sperber HS, Togarrati PP, Raymond KA, Bouzidi MS, Gilfanova R, Gutierrez AG, Muench MO, Pillai SK. μ-Lat: A mouse model to evaluate human immunodeficiency virus eradication strategies. FASEB J 2020; 34:14615-14630. [PMID: 32901981 PMCID: PMC8787083 DOI: 10.1096/fj.202001612rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
A critical barrier to the development of a human immunodeficiency virus (HIV) cure is the lack of a scalable animal model that enables robust evaluation of eradication approaches prior to testing in humans. We established a humanized mouse model of latent HIV infection by transplanting "J-Lat" cells, Jurkat cells harboring a latent HIV provirus encoding an enhanced green fluorescent protein (GFP) reporter, into irradiated adult NOD.Cg-Prkdcscid Il2rgtm1Wjl /SzJ (NSG) mice. J-Lat cells exhibited successful engraftment in several tissues including spleen, bone barrow, peripheral blood, and lung, in line with the diverse natural tissue tropism of HIV. Administration of tumor necrosis factor (TNF)-α, an established HIV latency reversal agent, significantly induced GFP expression in engrafted cells across tissues, reflecting viral reactivation. These data suggest that our murine latency ("μ-Lat") model enables efficient determination of how effectively viral eradication agents, including latency reversal agents, penetrate, and function in diverse anatomical sites harboring HIV in vivo.
Collapse
Affiliation(s)
- Hannah S. Sperber
- Vitalant Research Institute, San Francisco, California, United States of America
- Free University of Berlin, Institute of Biochemistry, Berlin, Germany
- University of California, San Francisco, California, United States of America
| | | | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Mohamed S. Bouzidi
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Renata Gilfanova
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Alan G. Gutierrez
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| |
Collapse
|
58
|
Saha B, Chisholm D, Kell AM, Mandell MA. A non-canonical role for the autophagy machinery in anti-retroviral signaling mediated by TRIM5α. PLoS Pathog 2020; 16:e1009017. [PMID: 33052966 PMCID: PMC7588057 DOI: 10.1371/journal.ppat.1009017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
TRIM5α is a key cross-species barrier to retroviral infection, with certain TRIM5 alleles conferring increased risk of HIV-1 infection in humans. TRIM5α is best known as a species-specific restriction factor that directly inhibits the viral life cycle. Additionally, it is also a pattern-recognition receptor (PRR) that activates inflammatory signaling. How TRIM5α carries out its multi-faceted actions in antiviral defense remains incompletely understood. Here, we show that proteins required for autophagy, a cellular self-digestion pathway, play an important role in TRIM5α’s function as a PRR. Genetic depletion of proteins involved in all stages of the autophagy pathway prevented TRIM5α-driven expression of NF-κB and AP1 responsive genes. One of these genes is the preeminent antiviral cytokine interferon β (IFN-β), whose TRIM5-dependent expression was lost in cells lacking the autophagy proteins ATG7, BECN1, and ULK1. Moreover, we found that the ability of TRIM5α to stimulate IFN-β expression in response to recognition of a TRIM5α-restricted HIV-1 capsid mutant (P90A) was abrogated in cells lacking autophagy factors. Stimulation of human macrophage-like cells with the P90A virus protected them against subsequent infection with an otherwise resistant wild type HIV-1 in a manner requiring TRIM5α, BECN1, and ULK1. Mechanistically, TRIM5α was attenuated in its ability to activate the kinase TAK1 in autophagy deficient cells, and both BECN1 and ATG7 contributed to the assembly of TRIM5α-TAK1 complexes. These data demonstrate a non-canonical role for the autophagy machinery in assembling antiviral signaling complexes and in establishing a TRIM5α-dependent antiviral state. TRIM5α is an antiretroviral protein that employs multiple mechanisms to protect cells against infection. Previous studies have linked TRIM5α to autophagy, a cytoplasmic quality control pathway with numerous roles in immunity, raising the possibility that TRIM5α engages autophagy in antiviral defense. This concept has been controversial, since TRIM5α’s best-known role as a directly acting antiretroviral effector is autophagy independent. However, retroviral restriction is only one aspect of TRIM5α function. We demonstrate that autophagy is crucial to another TRIM5α action: its role as a pattern-recognition receptor. We show that autophagy machinery is required for TRIM5α to transduce antiviral signaling and to establish an antiviral state. Our data indicate that autophagy provides TRIM5α with a platform upon which to activate antiviral responses.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Devon Chisholm
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
59
|
Hu Y, Xia H, Li M, Xu C, Ye X, Su R, Zhang M, Nash O, Sonstegard TS, Yang L, Liu GE, Zhou Y. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics 2020; 21:682. [PMID: 33004001 PMCID: PMC7528262 DOI: 10.1186/s12864-020-07097-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bos taurus and Bos indicus are two main sub-species of cattle. However, the differential copy number variations (CNVs) between them are not yet well studied. RESULTS Based on the new high-quality cattle reference genome ARS-UCD1.2, we identified 13,234 non-redundant CNV regions (CNVRs) from 73 animals of 10 cattle breeds (4 Bos taurus and 6 Bos indicus), by integrating three detection strategies. While 6990 CNVRs (52.82%) were shared by Bos taurus and Bos indicus, large CNV differences were discovered between them and these differences could be used to successfully separate animals into two subspecies. We found that 2212 and 538 genes uniquely overlapped with either indicine-specific CNVRs and or taurine-specific CNVRs, respectively. Based on FST, we detected 16 candidate lineage-differential CNV segments (top 0.1%) under selection, which overlapped with eight genes (CTNNA1, ENSBTAG00000004415, PKN2, BMPER, PDE1C, DNAJC18, MUSK, and PLCXD3). Moreover, we obtained 1.74 Mbp indicine-specific sequences, which could only be mapped on the Bos indicus reference genome UOA_Brahman_1. We found these sequences and their associated genes were related to heat resistance, lipid and ATP metabolic process, and muscle development under selection. We further analyzed and validated the top significant lineage-differential CNV. This CNV overlapped genes related to muscle cell differentiation, which might be generated from a retropseudogene of CTH but was deleted along Bos indicus lineage. CONCLUSIONS This study presents a genome wide CNV comparison between Bos taurus and Bos indicus. It supplied essential genome diversity information for understanding of adaptation and phenotype differences between the Bos taurus and Bos indicus populations.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowei Ye
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruixue Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mai Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | | | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA.
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
60
|
Abstract
The COVID-19 pandemic suggests that bat innate immune systems are insufficiently characterized relative to the medical importance of these animals. Retroviruses, e.g., HIV-1, can be severe pathogens when they cross species barriers, and bat restrictions corresponding to retroviruses are comparatively unstudied. Here, we compared the abilities of retroviruses from three genera (Lentivirus, Gammaretrovirus, and Spumavirus) to infect cells of the large fruit-eating bat P. alecto and other mammals. We identified a major, specific postentry restriction to primate lentiviruses. HIV-1 and SIVmac are potently blocked at early life cycle steps, but nonprimate lentiviruses and foamy retroviruses are entirely unrestricted. Despite acting postentry and in a CypA-dependent manner with features reminiscent of antiretroviral factors from other mammals, this restriction was not saturable with virus-like particles and was independent of P. alecto TRIM5, TRIM21, TRIM22, TRIM34, and MX2. These results identify a novel restriction and highlight cyclophilin-capsid interactions as ancient species-specific determinants of retroviral infection. Bats are primary reservoirs for multiple lethal human viruses, such as Ebola, Nipah, Hendra, rabies, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and, most recently, SARS-CoV-2. The innate immune systems of these immensely abundant, anciently diverged mammals remain insufficiently characterized. While bat genomes contain many endogenous retroviral elements indicative of past exogenous infections, little is known about restrictions to extant retroviruses. Here, we describe a major postentry restriction in cells of the yinpterochiropteran bat Pteropus alecto. Primate lentiviruses (HIV-1, SIVmac) were potently blocked at early life cycle steps, with up to 1,000-fold decreases in infectivity. The block was specific, because nonprimate lentiviruses such as equine infectious anemia virus and feline immunodeficiency virus were unimpaired, as were foamy retroviruses. Interspecies heterokaryons demonstrated a dominant block consistent with restriction of incoming viruses. Several features suggested potential TRIM5 (tripartite motif 5) or myxovirus resistance protein 2 (MX2) protein restriction, including postentry action, cyclosporine sensitivity, and reversal by capsid cyclophilin A (CypA) binding loop mutations. Viral nuclear import was significantly reduced, and this deficit was substantially rescued by cyclosporine treatment. However, saturation with HIV-1 virus-like particles did not relieve the restriction at all. P. alecto TRIM5 was inactive against HIV-1 although it blocked the gammaretrovirus N-tropic murine leukemia virus. Despite major divergence in a critical N-terminal motif required for human MX2 activity, P. alecto MX2 had anti-HIV activity. However, this did not quantitatively account for the restriction and was independent of and synergistic with an additional CypA-dependent restriction. These results reveal a novel, specific restriction to primate lentiviruses in the Pteropodidae and advance understanding of bat innate immunity.
Collapse
|
61
|
Proulx J, Borgmann K, Park IW. Post-translational modifications inducing proteasomal degradation to counter HIV-1 infection. Virus Res 2020; 289:198142. [PMID: 32882242 DOI: 10.1016/j.virusres.2020.198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) are integral to regulating a wide variety of cellular processes in eukaryotic cells, such as regulation of protein stability, alteration of celluar location, protein activity modulation, and regulation of protein interactions. HIV-1, like other eukaryotic viruses, and its infected host exploit the proteasomal degradation system for their respective proliferation and survival, using various PTMs, including but not limited to ubiquitination, SUMOylation, NEDDylation, interferon-stimulated gene (ISG)ylation. Essentially all viral proteins within the virions -- and in the HIV-1-infected cells -- interact with their cellular counterparts for this degradation, utilizing ubiquitin (Ub), and the Ub-like (Ubl) modifiers less frequently, to eliminate the involved proteins throughout the virus life cycle, from the entry step to release of the assembled virus particles. Such interplay is pivotal for, on the one hand, the cell to restrict proliferation of the infecting virus, and on the other, for molecular counteraction by the virus to overcome this cellular protein-imposed restriction. Recent reports indicate that not only viral/cellular proteins but also viral/viral protein interactions play vital roles in regulating viral protein stability. We hence give an overview of the molecular processes of PTMs involved in proteasomal degradation of the viral and cellular proteins, and the viral/viral and viral/cellular protein interplay in restriction and competition for HIV-1 vs. host cell survival. Insights in this realm could open new avenues for developing therapeutics against HIV-1 via targeting specific steps of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - In-Woo Park
- Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
62
|
Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice. Genes (Basel) 2020; 11:E1046. [PMID: 32899740 PMCID: PMC7565063 DOI: 10.3390/genes11091046] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism allowing to provide new genetic material and thus opportunities to acquire new gene functions for an organism, with major implications such as speciation events. Various processes are known to allow a gene to be duplicated and different models explain how duplicated genes can be maintained in genomes. Due to their particular importance, the identification of duplicated genes is essential when studying genome evolution but it can still be a challenge due to the various fates duplicated genes can encounter. In this review, we first describe the evolutionary processes allowing the formation of duplicated genes but also describe the various bioinformatic approaches that can be used to identify them in genome sequences. Indeed, these bioinformatic approaches differ according to the underlying duplication mechanism. Hence, understanding the specificity of the duplicated genes of interest is a great asset for tool selection and should be taken into account when exploring a biological question.
Collapse
Affiliation(s)
- Tanguy Lallemand
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Martin Leduc
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Claudine Landès
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université d’Evry Val d’Essonne, Université Paris-Saclay, UMR CNRS 8071, ENSIIE, USC INRAE, 23 bvd de France, CEDEX, 91037 Evry Paris, France;
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
63
|
Schmitt K, Curlin J, Remling-Mulder L, Moriarty R, Goff K, O'Connor S, Stenglein M, Marx P, Akkina R. Cross-Species Transmission and Evolution of SIV Chimpanzee Progenitor Viruses Toward HIV-1 in Humanized Mice. Front Microbiol 2020; 11:1889. [PMID: 32849468 PMCID: PMC7432304 DOI: 10.3389/fmicb.2020.01889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The genetic evolution of HIV-1 from its progenitor virus SIV following cross-species transmission is not well understood. Here we simulated the SIVcpz initial transmission to humans using humanized mice and followed the viral evolution during serial passages lasting more than a year. All three SIVcpz progenitor viruses used, namely LB715 and MB897 (group M) as well as EK505 (group N) readily infected hu-mice resulting in chronic viremia. Viral loads increased progressively to higher set-points and the CD4+ T cell decline became more pronounced by the end of the second serial passage indicating viral adaptation and increased pathogenicity. Viral genomes sequenced at different time points revealed many non-synonymous variants not previously reported that occurred throughout the viral genome, including the gag, pol, env, and nef genes. These results shed light on the potential changes that the SIVcpz genome had undergone during the initial stages of human infection and subsequent spread.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - James Curlin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ryan Moriarty
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Kelly Goff
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Shelby O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Preston Marx
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States.,Department of Tropical Medicine, School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
64
|
Ni T, Gerard S, Zhao G, Dent K, Ning J, Zhou J, Shi J, Anderson-Daniels J, Li W, Jang S, Engelman AN, Aiken C, Zhang P. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Nat Struct Mol Biol 2020; 27:855-862. [PMID: 32747784 DOI: 10.1038/s41594-020-0467-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Samuel Gerard
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle Dent
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Zhou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wen Li
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sooin Jang
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan N Engelman
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK. .,Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
65
|
Chiramel AI, Meyerson NR, McNally KL, Broeckel RM, Montoya VR, Méndez-Solís O, Robertson SJ, Sturdevant GL, Lubick KJ, Nair V, Youseff BH, Ireland RM, Bosio CM, Kim K, Luban J, Hirsch VM, Taylor RT, Bouamr F, Sawyer SL, Best SM. TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Rep 2020; 27:3269-3283.e6. [PMID: 31189110 PMCID: PMC8666140 DOI: 10.1016/j.celrep.2019.05.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. The antiviral activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. Here, Chiramel et al. demonstrate that TRIM5α restricts replication of specific flaviviruses by binding and degrading the viral protease.
Collapse
Affiliation(s)
- Abhilash I Chiramel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kristin L McNally
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Rebecca M Broeckel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Vanessa R Montoya
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Omayra Méndez-Solís
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Gail L Sturdevant
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Kirk J Lubick
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Vinod Nair
- Research Technology Branch, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Brian H Youseff
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
| | - Robin M Ireland
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA.
| |
Collapse
|
66
|
Wang L, Casey MC, Vernekar SKV, Sahani RL, Kankanala J, Kirby KA, Du H, Hachiya A, Zhang H, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Novel HIV-1 capsid-targeting small molecules of the PF74 binding site. Eur J Med Chem 2020; 204:112626. [PMID: 32814250 DOI: 10.1016/j.ejmech.2020.112626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
The PF74 binding site in HIV-1 capsid protein (CA) is a compelling antiviral drug target. Although PF74 confers mechanistically distinct antiviral phenotypes by competing against host factors for CA binding, it suffers from prohibitively low metabolic stability. Therefore, there has been increasing interest in designing novel sub-chemotypes of PF74 with similar binding mode and improved metabolic stability. We report herein our efforts to explore the inter-domain interacting indole moiety for designing novel CA-targeting small molecules. Our design includes simple substitution on the indole ring, and more importantly, novel sub-chemotypes with the indole moiety replaced with a few less electron-rich rings. All 56 novel analogs were synthesized and evaluated for antiviral activity, cytotoxicity, and impact on CA hexamer stability. Selected analogs were tested for metabolic stability in liver microsomes. Molecular modeling was performed to verify compound binding to the PF74 site. In the end, 5-hydroxyindole analogs (8,9 and 12) showed improved potency (up to 20-fold) over PF74. Of the novel sub-chemotypes, α- and β-naphthyl analogs (33 and 27) exhibited sub micromolar antiviral potencies comparable to that of PF74. Interestingly, although only moderately inhibiting HIV-1 (single-digit micromolar EC50s), analogs of the 2-indolone sub-chemotype consistently lowered the melting point (Tm) of CA hexamers, some with improved metabolic stability over PF74.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Sanjeev Kumar V Vernekar
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rajkumar Lalji Sahani
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Atsuko Hachiya
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, 460-0001, Japan
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
67
|
Yang L, Emerman M, Malik HS, McLaughlin RN. Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. eLife 2020; 9:e58436. [PMID: 32479260 PMCID: PMC7263822 DOI: 10.7554/elife.58436] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Host-virus arms races are inherently asymmetric; viruses evolve much more rapidly than host genomes. Thus, there is high interest in discovering mechanisms by which host genomes keep pace with rapidly evolving viruses. One family of restriction factors, the APOBEC3 (A3) cytidine deaminases, has undergone positive selection and expansion via segmental gene duplication and recombination. Here, we show that new copies of A3 genes have also been created in primates by reverse transcriptase-encoding elements like LINE-1 or endogenous retroviruses via a process termed retrocopying. First, we discovered that all simian primate genomes retain the remnants of an ancient A3 retrocopy: A3I. Furthermore, we found that some New World monkeys encode up to ten additional APOBEC3G (A3G) retrocopies. Some of these A3G retrocopies are transcribed in a variety of tissues and able to restrict retroviruses. Our findings suggest that host genomes co-opt retroelement activity in the germline to create new host restriction factors as another means to keep pace with the rapid evolution of viruses. (163).
Collapse
Affiliation(s)
- Lei Yang
- Pacific Northwest Research InstituteSeattleUnited States
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Richard N McLaughlin
- Pacific Northwest Research InstituteSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
68
|
Thippeshappa R, Kimata JT, Kaushal D. Toward a Macaque Model of HIV-1 Infection: Roadblocks, Progress, and Future Strategies. Front Microbiol 2020; 11:882. [PMID: 32477302 PMCID: PMC7237640 DOI: 10.3389/fmicb.2020.00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The human-specific tropism of Human Immunodeficiency Virus Type 1 (HIV-1) has complicated the development of a macaque model of HIV-1 infection/AIDS that is suitable for preclinical evaluation of vaccines and novel treatment strategies. Several innate retroviral restriction factors, such as APOBEC3 family of proteins, TRIM5α, BST2, and SAMHD1, that prevent HIV-1 replication have been identified in macaque cells. Accessory proteins expressed by Simian Immunodeficiency virus (SIV) such as viral infectivity factor (Vif), viral protein X (Vpx), viral protein R (Vpr), and negative factor (Nef) have been shown to play key roles in overcoming these restriction factors in macaque cells. Thus, substituting HIV-1 accessory genes with those from SIV may enable HIV-1 replication in macaques. We and others have constructed macaque-tropic HIV-1 derivatives [also called simian-tropic HIV-1 (stHIV-1) or Human-Simian Immunodeficiency Virus (HSIV)] carrying SIV vif to overcome APOBEC3 family proteins. Additional modifications to HIV-1 gag in some of the macaque-tropic HIV-1 have also been done to overcome TRIM5α restriction in rhesus and cynomolgus macaques. Although these viruses replicate persistently in macaque species, they do not result in CD4 depletion. Thus, these studies suggest that additional blocks to HIV-1 replication exist in macaques that prevent high-level viral replication. Furthermore, serial animal-to-animal passaging of macaque-tropic HIV-1 in vivo has not resulted in pathogenic variants that cause AIDS in immunocompetent macaques. In this review, we discuss recent developments made toward developing macaque model of HIV-1 infection.
Collapse
Affiliation(s)
- Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
69
|
Wang L, Casey MC, Vernekar SKV, Do HT, Sahani RL, Kirby KA, Du H, Hachiya A, Zhang H, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Chemical profiling of HIV-1 capsid-targeting antiviral PF74. Eur J Med Chem 2020; 200:112427. [PMID: 32438252 DOI: 10.1016/j.ejmech.2020.112427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
Abstract
The capsid protein (CA) of HIV-1 plays essential roles in multiple steps of the viral replication cycle by assembling into functional capsid core, controlling the kinetics of uncoating and nuclear entry, and interacting with various host factors. Targeting CA represents an attractive yet underexplored antiviral approach. Of all known CA-targeting small molecule chemotypes, the peptidomimetic PF74 is particularly interesting because it binds to the same pocket used by a few important host factors, resulting in highly desirable antiviral phenotypes. However, further development of PF74 entails understanding its pharmacophore and mitigating its poor metabolic stability. We report herein the design, synthesis, and evaluation of a large number of PF74 analogs aiming to provide a comprehensive chemical profiling of PF74 and advance the understanding on its detailed binding mechanism and pharmacophore. The analogs, containing structural variations mainly in the aniline domain and/or the indole domain, were assayed for their effect on stability of CA hexamers, antiviral activity, and cytotoxicity. Selected analogs were also tested for metabolic stability in liver microsomes, alone or in the presence of a CYP3A inhibitor. Collectively, our studies identified important pharmacophore elements and revealed additional binding features of PF74, which could aid in future design of improved ligands to better probe the molecular basis of CA-host factor interactions, design strategies to disrupt them, and ultimately identify viable CA-targeting antiviral leads.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Sanjeev Kumar V Vernekar
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ha T Do
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rajkumar Lalji Sahani
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Atsuko Hachiya
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, 460-0001, Japan
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
70
|
Doughty TW, Domenzain I, Millan-Oropeza A, Montini N, de Groot PA, Pereira R, Nielsen J, Henry C, Daran JMG, Siewers V, Morrissey JP. Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts. Nat Commun 2020; 11:2144. [PMID: 32358542 PMCID: PMC7195364 DOI: 10.1038/s41467-020-16073-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
The Saccharomycotina subphylum (budding yeasts) spans 400 million years of evolution and includes species that thrive in diverse environments. To study niche-adaptation, we identify changes in gene expression in three divergent yeasts grown in the presence of various stressors. Duplicated and non-conserved genes are significantly more likely to respond to stress than genes that are conserved as single-copy orthologs. Next, we develop a sorting method that considers evolutionary origin and duplication timing to assign an evolutionary age to each gene. Subsequent analysis reveals that genes that emerged in recent evolutionary time are enriched amongst stress-responsive genes for each species. This gene expression pattern suggests that budding yeasts share a stress adaptation mechanism, whereby selective pressure leads to functionalization of young genes to improve growth in adverse conditions. Further characterization of young genes from species that thrive in harsh environments can inform the design of more robust strains for biotechnology. Fermentation parameters of industrial processes are often not the ideal growth conditions for industrial microbes. Here, the authors reveal that young genes are more responsive to environmental stress than ancient genes using a new gene age assignment method and provide targeted genes for metabolic engineering.
Collapse
Affiliation(s)
- Tyler W Doughty
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Aaron Millan-Oropeza
- Plateforme d'Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Noemi Montini
- School of Microbiology, Environmental Research Institute and APC Microbiome Ireland, University College Cork, Cork, T12YN60, Ireland
| | - Philip A de Groot
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Rui Pereira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Céline Henry
- Plateforme d'Analyse Protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute and APC Microbiome Ireland, University College Cork, Cork, T12YN60, Ireland.
| |
Collapse
|
71
|
Toward Structurally Novel and Metabolically Stable HIV-1 Capsid-Targeting Small Molecules. Viruses 2020; 12:v12040452. [PMID: 32316297 PMCID: PMC7232165 DOI: 10.3390/v12040452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
HIV-1 capsid protein (CA) plays an important role in many steps of viral replication and represents an appealing antiviral target. Several CA-targeting small molecules of various chemotypes have been studied, but the peptidomimetic PF74 has drawn particular interest due to its potent antiviral activity, well-characterized binding mode, and unique mechanism of action. Importantly, PF74 competes against important host factors for binding, conferring highly desirable antiviral phenotypes. However, further development of PF74 is hindered by its prohibitively poor metabolic stability, which necessitates the search for structurally novel and metabolically stable chemotypes. We have conducted a pharmacophore-based shape similarity search for compounds mimicking PF74. We report herein the analog synthesis and structure-activity relationship (SAR) of two hits from the search, and a third hit designed via molecular hybridization. All analogs were characterized for their effect on CA hexamer stability, antiviral activity, and cytotoxicity. These assays identified three active compounds that moderately stabilize CA hexamer and inhibit HIV-1. The most potent analog (10) inhibited HIV-1 comparably to PF74 but demonstrated drastically improved metabolic stability in liver microsomes (31 min vs. 0.7 min t1/2). Collectively, the current studies identified a structurally novel and metabolically stable PF74-like chemotype for targeting HIV-1 CA.
Collapse
|
72
|
Dick A, Cocklin S. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules 2020; 25:molecules25071687. [PMID: 32272714 PMCID: PMC7181048 DOI: 10.3390/molecules25071687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Collapse
|
73
|
Shielding the HIV-1 capsid. Nat Microbiol 2020; 5:12-13. [PMID: 31857731 DOI: 10.1038/s41564-019-0638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
TRIM5α self-assembly and compartmentalization of the HIV-1 viral capsid. Nat Commun 2020; 11:1307. [PMID: 32161265 PMCID: PMC7066149 DOI: 10.1038/s41467-020-15106-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
The tripartite-motif protein, TRIM5α, is an innate immune sensor that potently restricts retrovirus infection by binding to human immunodeficiency virus capsids. Higher-ordered oligomerization of this protein forms hexagonally patterned structures that wrap around the viral capsid, despite an anomalously low affinity for the capsid protein (CA). Several studies suggest TRIM5α oligomerizes into a lattice with a symmetry and spacing that matches the underlying capsid, to compensate for the weak affinity, yet little is known about how these lattices form. Using a combination of computational simulations and electron cryo-tomography imaging, we reveal the dynamical mechanisms by which these lattices self-assemble. Constrained diffusion allows the lattice to reorganize, whereas defects form on highly curved capsid surfaces to alleviate strain and lattice symmetry mismatches. Statistical analysis localizes the TRIM5α binding interface at or near the CypA binding loop of CA. These simulations elucidate the molecular-scale mechanisms of viral capsid cellular compartmentalization by TRIM5α. Tripartite-motif containing (TRIM) proteins modulate cellular responses to viral infection. Here the authors use molecular dynamics simulations to demonstrate that TRIM5α uses a two-dimensional lattice hopping mechanism to aggregate on the HIV capsid surface and initiate lattice growth.
Collapse
|
75
|
Ingram Z, Taylor M, Okland G, Martin R, Hulme AE. Characterization of HIV-1 uncoating in human microglial cell lines. Virol J 2020; 17:31. [PMID: 32143686 PMCID: PMC7060623 DOI: 10.1186/s12985-020-01301-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background After viral fusion with the cell membrane, the conical capsid of HIV-1 disassembles by a process called uncoating. Previously we have utilized the CsA washout assay, in which TRIM-CypA mediated restriction of viral replication is used to detect the state of the viral capsid, to study the kinetics of HIV-1 uncoating in owl monkey kidney (OMK) and HeLa cells. Here we have extended this analysis to the human microglial cell lines CHME3 and C20 to characterize uncoating in a cell type that is a natural target of HIV infection. Methods The CsA washout was used to characterize uncoating of wildtype and capsid mutant viruses in CHME3 and C20 cells. Viral fusion assays and nevirapine addition assays were performed to relate the kinetics of viral fusion and reverse transcription to uncoating. Results We found that uncoating initiated within the first hour after viral fusion and was facilitated by reverse transcription in CHME3 and C20 cells. The capsid mutation A92E did not significantly alter uncoating kinetics. Viruses with capsid mutations N74D and E45A decreased the rate of uncoating in CHME3 cells, but did not alter reverse transcription. Interestingly, the second site suppressor capsid mutation R132T was able to rescue the uncoating kinetics of the E45A mutation, despite having a hyperstable capsid. Conclusions These results are most similar to previously observed characteristics of uncoating in HeLa cells and support the model in which uncoating is initiated by early steps of reverse transcription in the cytoplasm. A comparison of the uncoating kinetics of CA mutant viruses in OMK and CHME3 cells reveals the importance of cellular factors in the process of uncoating. The E45A/R132T mutant virus specifically suggests that disrupted interactions with cellular factors, rather than capsid stability, is responsible for the delayed uncoating kinetics seen in E45A mutant virus. Future studies aimed at identifying these factors will be important for understanding the process of uncoating and the development of interventions to disrupt this process.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Melanie Taylor
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Glister Okland
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Richard Martin
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Amy E Hulme
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA.
| |
Collapse
|
76
|
Summers BJ, Digianantonio KM, Smaga SS, Huang PT, Zhou K, Gerber EE, Wang W, Xiong Y. Modular HIV-1 Capsid Assemblies Reveal Diverse Host-Capsid Recognition Mechanisms. Cell Host Microbe 2019; 26:203-216.e6. [PMID: 31415753 DOI: 10.1016/j.chom.2019.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/21/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The HIV-1 capsid is an ordered protein shell that houses the viral genome during early infection. Its expansive surface consists of an ordered and interfacing array of capsid protein hexamers and pentamers that are recognized by numerous cellular proteins. Many of these proteins recognize specific, assembled capsid interfaces not present in unassembled capsid subunits. We used protein-engineering tools to capture diverse capsid assembly intermediates. We built a repertoire of capsid assemblies (ranging from two to 42 capsid protein molecules) that recreate the various surfaces in infectious capsids. These assemblies reveal unique capsid-targeting mechanisms for each of the anti-HIV factors, TRIMCyp, MxB, and TRIM5α, linked to inhibition of virus uncoating and nuclear entry, as well as the HIV-1 cofactor FEZ1 that facilitates virus intracellular trafficking. This capsid assembly repertoire enables elucidation of capsid recognition modes by known capsid-interacting factors, identification of new capsid-interacting factors, and potentially, development of capsid-targeting therapeutics.
Collapse
Affiliation(s)
- Brady J Summers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | - Sarah S Smaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Pei-Tzu Huang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kaifeng Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Eva E Gerber
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Wei Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
77
|
Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat Rev Genet 2019; 21:191-201. [DOI: 10.1038/s41576-019-0196-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
|
78
|
Delviks-Frankenberry KA, Ackerman D, Timberlake ND, Hamscher M, Nikolaitchik OA, Hu WS, Torbett BE, Pathak VK. Development of Lentiviral Vectors for HIV-1 Gene Therapy with Vif-Resistant APOBEC3G. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:1023-1038. [PMID: 31778955 PMCID: PMC6889484 DOI: 10.1016/j.omtn.2019.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Strategies to control HIV-1 replication without antiviral therapy are needed to achieve a functional cure. To exploit the innate antiviral function of restriction factor cytidine deaminase APOBEC3G (A3G), we developed self-activating lentiviral vectors that efficiently deliver HIV-1 Vif-resistant mutant A3G-D128K to target cells. To circumvent APOBEC3 expression in virus-producing cells, which diminishes virus infectivity, a vector containing two overlapping fragments of A3G-D128K was designed that maintained the gene in an inactive form in the virus-producer cells. However, during transduction of target cells, retroviral recombination between the direct repeats reconstituted an active A3G-D128K in 89%-98% of transduced cells. Lentiviral vectors that expressed A3G-D128K transduced CD34+ hematopoietic stem and progenitor cells with a high efficiency (>30%). A3G-D128K expression in T cell lines CEM, CEMSS, and PM1 potently inhibited spreading infection of several HIV-1 subtypes by C-to-U deamination leading to lethal G-to-A hypermutation and inhibition of reverse transcription. SIVmac239 and HIV-2 were not inhibited, since their Vifs degraded A3G-D128K. A3G-D128K expression in CEM cells potently suppressed HIV-1 replication for >3.5 months without detectable resistant virus, suggesting a high genetic barrier for the emergence of A3G-D128K resistance. Because of this, A3G-D128K expression in HIV-1 target cells is a potential anti-HIV gene therapy approach that could be combined with other therapies for the treatment and functional cure of HIV-1 infection.
Collapse
Affiliation(s)
- Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Daniel Ackerman
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Maria Hamscher
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
79
|
Paço A, Freitas R, Vieira-da-Silva A. Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene. Genes (Basel) 2019; 10:E1014. [PMID: 31817529 PMCID: PMC6947457 DOI: 10.3390/genes10121014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a "DNA remodeling mechanism". The alternative classification of the repetitive DNA sequences here proposed will provide a novel theoretical framework that recognizes the importance of DNA remodeling for the evolution and plasticity of eukaryotic genomes.
Collapse
Affiliation(s)
- Ana Paço
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| | - Renata Freitas
- IBMC-Institute for Molecular and Cell Biology, University of Porto, R. Campo Alegre 823, 4150–180 Porto, Portugal;
- I3S-Institute for Innovation and Health Research, University of Porto, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Vieira-da-Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| |
Collapse
|
80
|
Multiple Pathways To Avoid Beta Interferon Sensitivity of HIV-1 by Mutations in Capsid. J Virol 2019; 93:JVI.00986-19. [PMID: 31511380 PMCID: PMC6854511 DOI: 10.1128/jvi.00986-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
HIV-1 infection causes robust innate immune activation in virus-infected patients. This immune activation is characterized by elevated levels of type I interferons (IFNs), which can block HIV-1 replication. Recent studies suggest that the viral capsid protein (CA) is a determinant for the sensitivity of HIV-1 to IFN-mediated restriction. Specifically, it was reported that the loss of CA interactions with CPSF6 or CypA leads to higher IFN sensitivity. However, the molecular mechanism of CA adaptation to IFN sensitivity is largely unknown. Here, we experimentally evolved an IFN-β-hypersensitive CA mutant which showed decreased binding to CPSF6 and CypA in IFN-β-treated cells. The CA mutations that emerged from this adaptation indeed conferred IFN-β resistance. Our genetic assays suggest a limited contribution of known host factors to IFN-β resistance. Strikingly, one of these mutations accelerated the kinetics of reverse transcription and uncoating. Our findings suggest that HIV-1 selected multiple, known host factor-independent pathways to avoid IFN-β-mediated restriction. Type I interferons (IFNs), including alpha IFN (IFN-α) and IFN-β, potently suppress HIV-1 replication by upregulating IFN-stimulated genes (ISGs). The viral capsid protein (CA) partly determines the sensitivity of HIV-1 to IFNs. However, it remains to be determined whether CA-related functions, including utilization of known host factors, reverse transcription, and uncoating, affect the sensitivity of HIV-1 to IFN-mediated restriction. Recently, we identified an HIV-1 CA variant that is unusually sensitive to IFNs. This variant, called the RGDA/Q112D virus, contains multiple mutations in CA: H87R, A88G, P90D, P93A, and Q112D. To investigate how an IFN-hypersensitive virus can evolve to overcome IFN-β-mediated blocks targeting the viral capsid, we adapted the RGDA/Q112D virus in IFN-β-treated cells. We successfully isolated IFN-β-resistant viruses which contained either a single Q4R substitution or the double amino acid change G94D/G116R. These two IFN-β resistance mutations variably changed the sensitivity of CA binding to human myxovirus resistance B (MxB), cleavage and polyadenylation specificity factor 6 (CPSF6), and cyclophilin A (CypA), indicating that the observed loss of sensitivity was not due to interactions with these known host CA-interacting factors. In contrast, the two mutations apparently functioned through distinct mechanisms. The Q4R mutation dramatically accelerated the kinetics of reverse transcription and initiation of uncoating of the RGDA/Q112D virus in the presence or absence of IFN-β, whereas the G94D/G116R mutations affected reverse transcription only in the presence of IFN-β, most consistent with a mechanism of the disruption of binding to an unknown IFN-β-regulated host factor. These results suggest that HIV-1 can exploit multiple, known host factor-independent pathways to avoid IFN-β-mediated restriction by altering capsid sequences and subsequent biological properties. IMPORTANCE HIV-1 infection causes robust innate immune activation in virus-infected patients. This immune activation is characterized by elevated levels of type I interferons (IFNs), which can block HIV-1 replication. Recent studies suggest that the viral capsid protein (CA) is a determinant for the sensitivity of HIV-1 to IFN-mediated restriction. Specifically, it was reported that the loss of CA interactions with CPSF6 or CypA leads to higher IFN sensitivity. However, the molecular mechanism of CA adaptation to IFN sensitivity is largely unknown. Here, we experimentally evolved an IFN-β-hypersensitive CA mutant which showed decreased binding to CPSF6 and CypA in IFN-β-treated cells. The CA mutations that emerged from this adaptation indeed conferred IFN-β resistance. Our genetic assays suggest a limited contribution of known host factors to IFN-β resistance. Strikingly, one of these mutations accelerated the kinetics of reverse transcription and uncoating. Our findings suggest that HIV-1 selected multiple, known host factor-independent pathways to avoid IFN-β-mediated restriction.
Collapse
|
81
|
Dambaya B, Nkenfou CN, Mekue L, Této G, Ngoufack N, Ambada G, Flobert N, Colizzi V, Alexis N. TRIM5α 136Q, CCR5 Promoter 59029G And CCR264I Alleles Impact The Progression Of HIV In Children And Adolescents. Appl Clin Genet 2019; 12:203-211. [PMID: 31807050 PMCID: PMC6844200 DOI: 10.2147/tacg.s205335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/27/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Children show various degrees of vulnerability regarding HIV infection and disease progression. This disparity presents challenges for the follow-up of infected children. Here we investigated reasons behind this variability focusing on some host-related HIV genes. METHODS We screened 570 Cameroonian children and adolescents, aged 1 to 19 years old. Among them, 137 were followed over 4 years, from 2010 to 2015. Upon signing a proxy consent, children and adolescents were classified according to their age, CD4 count, viral load and clinical symptoms as long-term non-progressors (LTNP), slow progressors (SP) and rapid progressors (RP). Their blood was collected every 6 months and used for biological and host genetic polymorphism analyses. Five genes were genotyped: Trim5α (R136Q), CCR5 promoter 59029G, CCR2-64I, SDF 3'A and CCR5-Δ32. Exposed non-infected (HEU) and unexposed HIV negative children (HNEU) were recruited as control groups. RESULTS Among the 5 genes studied, the protective allele of Trim5α (R136Q) was present in all LTNP and in 72.34% and 2.56% of SP and RP, respectively (p<0.0001). The CCR5 promoter 59029G/G was also more present in LTNP and SP than in RP (p=0.02; p=0.04). The protective CCR2-64I homozygous genotype was almost absent in all groups, only the heterozygous genotype was present with a significant difference between RP vs SP (p=0.0001), and SP vs LTNP (p=0.0002). The CCR2-∆32 was completely absent either as homozygous or heterozygous genotype. It was a monomorphic allele. SDF 3'A was almost present as homozygous wild-type genotype in our study population and was associated neither to disease acquisition nor to disease progression. CONCLUSION Among the 5 genes described in the study, Trim 5α (R136Q), CCR5 promoter 59029G and CCR2V64I alleles were associated to the progression of HIV infection in children and adolescents.
Collapse
Affiliation(s)
- Béatrice Dambaya
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon
| | - Céline Nguefeu Nkenfou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Biological Sciences, Higher Teachers’ Training College, University of Yaounde I, Yaoundé, Cameroon
| | - Linda Mekue
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon
| | - Georges Této
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
| | - Nicole Ngoufack
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon
| | - Georgia Ambada
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Animal Biology, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon
| | - Njiokou Flobert
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
| | - Vittorio Colizzi
- Department of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Ndjolo Alexis
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Ear, Nose and Throat, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaoundé, Cameroon
| |
Collapse
|
82
|
Anderson-Daniels J, Singh PK, Sowd GA, Li W, Engelman AN, Aiken C. Dominant Negative MA-CA Fusion Protein Is Incorporated into HIV-1 Cores and Inhibits Nuclear Entry of Viral Preintegration Complexes. J Virol 2019; 93:e01118-19. [PMID: 31413124 PMCID: PMC6803256 DOI: 10.1128/jvi.01118-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/03/2019] [Indexed: 11/20/2022] Open
Abstract
Particle maturation is a critical step in the HIV-1 replication cycle that requires proteolytic cleavage of the Gag polyprotein into its constitutive proteins: the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 proteins. The accurate and efficient cleavage of Gag is essential for virion infectivity; inhibitors of the viral protease are potent antivirals, and substitutions in Gag that prevent its cleavage result in reduced HIV-1 infectivity. In a previous study, a mutation inhibiting cleavage at the MA-CA junction was observed to potently inhibit virus infection: incorporation of small amounts of uncleaved MA-CA protein into HIV-1 particles inhibited infectivity by ∼95%, and the resulting viral particles exhibited aberrant capsids. Here we report a detailed mechanistic analysis of HIV-1 particles bearing uncleaved MA-CA protein. We show that the particles contain stable cores and can efficiently saturate host restriction by TRIMCyp in target cells. We further show that MA-CA associates with CA in particles without detectably affecting the formation of intermolecular CA interfaces. Incorporation of MA-CA did not markedly affect reverse transcription in infected cells, but nuclear entry was impaired and integration targeting was altered. Additionally, results from mutational analysis of Gag revealed that membrane-binding elements of MA contribute to the antiviral activity of uncleaved MA-CA protein. Our results suggest that small amounts of partially processed Gag subunits coassemble with CA during virion maturation, resulting in impaired capsid functions.IMPORTANCE To become infectious, newly formed HIV-1 particles undergo a process of maturation in which the viral polyproteins are cleaved into smaller components. A previous study demonstrated that inclusion of even small quantities of an uncleavable mutant Gag polyprotein results in a strong reduction in virus infectivity. Here we show that the mechanism of transdominant inhibition by uncleavable Gag involves inhibition of nuclear entry and alteration of viral integration sites. Additionally, the results of mutational analysis suggest that the membrane-binding activity of Gag is a major requirement for the antiviral activity. These results further define the antiviral mechanism of uncleavable Gag, which may be useful for exploiting this effect to develop new antivirals.
Collapse
Affiliation(s)
- Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory A Sowd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
83
|
Kim K, Dauphin A, Komurlu S, McCauley SM, Yurkovetskiy L, Carbone C, Diehl WE, Strambio-De-Castillia C, Campbell EM, Luban J. Cyclophilin A protects HIV-1 from restriction by human TRIM5α. Nat Microbiol 2019; 4:2044-2051. [PMID: 31636416 PMCID: PMC6879858 DOI: 10.1038/s41564-019-0592-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
The HIV-1 capsid (CA) protein lattice encases viral genomic RNA and regulates steps essential to target cell invasion1. Cyclophilin A (CypA) has interacted with the CA of lentiviruses related to HIV-1 for millions of years2–7. Disruption of the CA-CypA interaction decreases HIV-1 infectivity in human cells8–12, but stimulates infectivity in non-human primate cells13–15. Genetic and biochemical data suggest that CypA protects HIV-1 from a CA-specific restriction factor in human cells16–20. Discovery of the CA-specific restriction factor tripartite-containing motif 5α (TRIM5α)21, and of multiple, independently-derived, TRIM5-CypA fusion genes4,5,15,22–26, pointed to human TRIM5α as the CypA-sensitive restriction factor. However, HIV-1 restriction by human TRIM5α in tumor cell lines is minimal21, and inhibition of such activity by CypA has not been detected27. Here, exploiting reverse genetic tools optimized for primary human blood cells, we demonstrate that disruption of the CA-CypA interaction renders HIV-1 susceptible to potent restriction by human TRIM5α, with the block occurring before reverse transcription. Endogenous TRIM5α associated with virion cores as they entered the cytoplasm, but only when the CA-CypA interaction was disrupted. These experiments resolve the long-standing mystery of the role of CypA in HIV-1 replication by demonstrating that this ubiquitous cellular protein shields HIV-1 from previously inapparent restriction by human TRIM5α.
Collapse
Affiliation(s)
- Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sevnur Komurlu
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sean M McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - William E Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Infectious Disease and Immunology Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
84
|
Species-Specific Host-Virus Interactions: Implications for Viral Host Range and Virulence. Trends Microbiol 2019; 28:46-56. [PMID: 31597598 DOI: 10.1016/j.tim.2019.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
A growing number of studies indicate that host species-specific and virus strain-specific interactions of viral molecules with the host innate immune system play a pivotal role in determining virus host range and virulence. Because interacting proteins are likely constrained in their evolution, mutations that are selected to improve virus replication in one species may, by chance, alter the ability of a viral antagonist to inhibit immune responses in hosts the virus has not yet encountered. Based on recent findings of host-species interactions of poxvirus, herpesvirus, and influenza virus proteins, we propose a model for viral fitness and host range which considers the full interactome between a specific host species and a virus, resulting from the combination of all interactions, positive and negative, that influence whether a virus can productively infect a cell and cause disease in different hosts.
Collapse
|
85
|
Sii-Felice K, Castillo Padilla J, Relouzat F, Cheuzeville J, Tantawet S, Maouche L, Le Grand R, Leboulch P, Payen E. Enhanced Transduction of Macaca fascicularis Hematopoietic Cells with Chimeric Lentiviral Vectors. Hum Gene Ther 2019; 30:1306-1323. [DOI: 10.1089/hum.2018.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karine Sii-Felice
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Javier Castillo Padilla
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francis Relouzat
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Joëlle Cheuzeville
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- bluebird bio France, Fontenay aux Roses, France
| | - Siriporn Tantawet
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Leïla Maouche
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, UMR 1184, IDMIT Department, Institute of Biology François Jacob, INSERM, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Ramathibodi Hospital and Mahidol University, Bangkok, Thailand
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston Massachusetts
| | - Emmanuel Payen
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| |
Collapse
|
86
|
The HIV-1 Capsid: More than Just a Delivery Package. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:69-83. [PMID: 31317496 DOI: 10.1007/978-3-030-14741-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Productive HIV infection requires integration of viral genes into the host genome. But how viral DNA gets to the nucleus in the first place remains one of the most controversial yet deceptively simple questions in HIV post-entry biology. This is illustrated in cartoons of viral entry, which often depict the entry process as an 'explosion' of the HIV capsid in the cytosol and independent movement of viral DNA through nuclear pores and into the nucleus. HIV enters the cell cytosol with two encapsidated RNA strands and must undergo reverse transcription (RT) to synthesise DNA. Even here there is no consensus for where, when or how RT happens. HIV must get into the nucleus, which in a non-dividing cell requires transport through the nuclear pore. Finally, the virus must 'uncoat': shed its protein capsid to allow its DNA to be spliced with that of the host. Where the virus uncoats and whether this is a single or multi-step process are similarly hotly debated. Understanding these processes is further complicated by three broad factors. First, that there are inter-relationships between these processes that may ensure HIV undergoes the right step at the right place at the right time. Second, the host has cofactors which the virus is dependent upon and must recruit but also immune factors that can sense and inhibit virus and so must be avoided. Third, HIV post-entry biology is cell-type dependent-meaning that factors which are essential in one cell type can be redundant in another.
Collapse
|
87
|
Boso G, Shaffer E, Liu Q, Cavanna K, Buckler-White A, Kozak CA. Evolution of the rodent Trim5 cluster is marked by divergent paralogous expansions and independent acquisitions of TrimCyp fusions. Sci Rep 2019; 9:11263. [PMID: 31375773 PMCID: PMC6677749 DOI: 10.1038/s41598-019-47720-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
Evolution of cellular innate immune genes in response to viral threats represents a rich area of study for understanding complex events that shape mammalian genomes. One of these genes, TRIM5, is a retroviral restriction factor that mediates a post-entry block to infection. Previous studies on the genomic cluster that contains TRIM5 identified different patterns of gene amplification and the independent birth of CypA gene fusions in various primate species. However, the evolution of Trim5 in the largest order of mammals, Rodentia, remains poorly characterized. Here, we present an expansive phylogenetic and genomic analysis of the Trim5 cluster in rodents. Our findings reveal substantial evolutionary changes including gene amplifications, rearrangements, loss and fusion. We describe the first independent evolution of TrimCyp fusion genes in rodents. We show that the TrimCyp gene found in some Peromyscus species was acquired about 2 million years ago. When ectopically expressed, the P. maniculatus TRIMCyp shows anti-retroviral activity that is reversed by cyclosporine, but it does not activate Nf-κB or AP-1 promoters, unlike the primate TRIMCyps. These results describe a complex pattern of differential gene amplification in the Trim5 cluster of rodents and identify the first functional TrimCyp fusion gene outside of primates and tree shrews.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kathryn Cavanna
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
88
|
Ganser-Pornillos BK, Pornillos O. Restriction of HIV-1 and other retroviruses by TRIM5. Nat Rev Microbiol 2019; 17:546-556. [PMID: 31312031 DOI: 10.1038/s41579-019-0225-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Mammalian cells express a variety of innate immune proteins - known as restriction factors - which defend against invading retroviruses such as HIV-1. Two members of the tripartite motif protein family - TRIM5α and TRIMCyp - were identified in 2004 as restriction factors that recognize and inactivate the capsid shell that surrounds and protects the incoming retroviral core. Research on these TRIM5 proteins has uncovered a novel mode of non-self recognition that protects against cross-species transmission of retroviruses. Our developing understanding of the mechanism of TRIM5 restriction underscores the concept that core uncoating and reverse transcription of the viral genome are coordinated processes rather than discrete steps of the post-entry pathway of retrovirus replication. In this Review, we provide an overview of the current state of knowledge of the molecular mechanism of TRIM5-mediated restriction, highlight recent advances and discuss implications for the development of capsid-targeted antiviral therapeutics.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
89
|
Chatron N, Cassinari K, Quenez O, Baert-Desurmont S, Bardel C, Buisine MP, Calpena E, Capri Y, Corominas Galbany J, Diguet F, Edery P, Isidor B, Labalme A, Le Caignec C, Lévy J, Lecoquierre F, Lindenbaum P, Pichon O, Rollat-Farnier PA, Simonet T, Saugier-Veber P, Tabet AC, Toutain A, Wilkie AOM, Lesca G, Sanlaville D, Nicolas G, Schluth-Bolard C. Identification of mobile retrocopies during genetic testing: Consequences for routine diagnosis. Hum Mutat 2019; 40:1993-2000. [PMID: 31230393 DOI: 10.1002/humu.23845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.
Collapse
Affiliation(s)
- Nicolas Chatron
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Kevin Cassinari
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Claire Bardel
- Bioinformatics group of the Lyon University Hospital NGS facility, Groupement Hospitalier Est, Lyon, France.,Biostatistics and Bioinformatics Department, HCL, Lyon, France
| | - Marie-Pierre Buisine
- Department of Biochemistry and Molecular Biology, JPA Research Center, Inserm UMR-S 1172, Lille University, Lille University Hospital, Lille, France
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yline Capri
- Genetics Department, Clinical Genetics Unit, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Flavie Diguet
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Patrick Edery
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | | | - Audrey Labalme
- Genetics Department, Hospices Civils de Lyon, Lyon, France
| | - Cedric Le Caignec
- Genetics Department, CHU Nantes, Nantes, France.,INSERM UMR_S915, Institut du thorax, Nantes University, Nantes, France
| | - Jonathan Lévy
- Genetics Department, Cytogenetics Unit, Hôpital Universitaire Robert Debré, Paris, France
| | - François Lecoquierre
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Pierre Lindenbaum
- INSERM, UMR_S1087, Institut du thorax, Nantes, France.,CNRS, UMR 6291, Nantes, France
| | | | - Pierre-Antoine Rollat-Farnier
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,Bioinformatics group of the Lyon University Hospital NGS facility, Groupement Hospitalier Est, Lyon, France
| | - Thomas Simonet
- Cellular Biotechnology Center, Hospices Civils de Lyon, Lyon, France.,Nerve-Muscle Interactions Team, Institut NeuroMyoGène CNRS UMR 5310-INSERM U1217-Université Claude Bernard Lyon 1, Lyon, France
| | - Pascale Saugier-Veber
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne-Claude Tabet
- Genetics Department, Cytogenetics Unit, Hôpital Universitaire Robert Debré, Paris, France.,Neuroscience Department, Human Genetics and Cognitive Function Unit, Institut Pasteur, Paris, France
| | - Annick Toutain
- Genetics Department, Hôpital Bretonneau, CHU, Tours, France.,UMR 1253, iBrain, Tours University, Inserm, Tours, France
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gaetan Lesca
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Damien Sanlaville
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Caroline Schluth-Bolard
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| |
Collapse
|
90
|
Pak AJ, Grime JMA, Yu A, Voth GA. Off-Pathway Assembly: A Broad-Spectrum Mechanism of Action for Drugs That Undermine Controlled HIV-1 Viral Capsid Formation. J Am Chem Soc 2019; 141:10214-10224. [PMID: 31244184 PMCID: PMC6739737 DOI: 10.1021/jacs.9b01413] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 12/21/2022]
Abstract
The early and late stages of human immunodeficiency virus (HIV) replication are orchestrated by the capsid (CA) protein, which self-assembles into a conical protein shell during viral maturation. Small molecule drugs known as capsid inhibitors (CIs) impede the highly regulated activity of CA. Intriguingly, a few CIs, such as PF-3450074 (PF74) and GS-CA1, exhibit effects at multiple stages of the viral lifecycle at effective concentrations in the pM to nM regimes, while the majority of CIs target a single stage of the viral lifecycle and are effective at nM to μM concentrations. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanisms that enable CIs to have such curious broad-spectrum activity. Our quantitatively analyzed findings show that CIs can have a profound impact on the hierarchical self-assembly of CA by perturbing populations of small CA oligomers. The self-assembly process is accelerated by the emergence of alternative assembly pathways that favor the rapid incorporation of CA pentamers, and leads to increased structural pleomorphism in mature capsids. Two relevant phenotypes are observed: (1) eccentric capsid formation that may fail to encase the viral genome and (2) rapid disassembly of the capsid, which express at late and early stages of infection, respectively. Finally, our study emphasizes the importance of adopting a dynamical perspective on inhibitory mechanisms and provides a basis for the design of future therapeutics that are effective at low stoichiometric ratios of drug to protein.
Collapse
Affiliation(s)
- Alexander J. Pak
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - John M. A. Grime
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
91
|
Warren CJ, Meyerson NR, Dirasantha O, Feldman ER, Wilkerson GK, Sawyer SL. Selective use of primate CD4 receptors by HIV-1. PLoS Biol 2019; 17:e3000304. [PMID: 31181085 PMCID: PMC6586362 DOI: 10.1371/journal.pbio.3000304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates. The current animal model for HIV, the macaque, encodes a CD4 receptor that is non-permissive for HIV entry. This paper reveals that six primate species encode CD4 receptors compatible with HIV infection, potentially making them powerful tools for the study of HIV biology. Furthermore, weak CD4 binding is a nearly constant, and apparently selected, property of HIV circulating in the human bloodstream.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Obaiah Dirasantha
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Emily R. Feldman
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Gregory K. Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
92
|
Firrito C, Bertelli C, Vanzo T, Chande A, Pizzato M. SERINC5 as a New Restriction Factor for Human Immunodeficiency Virus and Murine Leukemia Virus. Annu Rev Virol 2019; 5:323-340. [PMID: 30265629 DOI: 10.1146/annurev-virology-092917-043308] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SERINC genes encode for homologous multipass transmembrane proteins with unknown cellular function, despite being highly conserved across eukaryotes. Among the five SERINC genes found in humans, SERINC5 was shown to act as a powerful inhibitor of retroviruses. It is efficiently incorporated into virions and blocks the penetration of the viral core into target cells, by impairing the fusion process with a yet unclear mechanism. SERINC5 was also found to promote human immunodeficiency virus 1 (HIV-1) virion neutralization by antibodies, indicating a pleiotropic activity, which remains mostly unexplored. Counteracting factors have emerged independently in at least three retrovirus lineages, underscoring their fundamental importance during retrovirus evolution. Nef and S2 of primate and equine lentiviruses, and glycoGag of gammaretroviruses, act similarly by targeting SERINC5 to endosomes and excluding it from virions. Here, we discuss the features that distinguish SERINC5 from other known restriction factors, delineating a yet unique class of antiviral inhibitors.
Collapse
Affiliation(s)
- Claudia Firrito
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| | - Cinzia Bertelli
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| | - Teresa Vanzo
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| | - Ajit Chande
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, Madhya Pradesh, India;
| | - Massimo Pizzato
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| |
Collapse
|
93
|
Sharma S, Jafari M, Bangar A, William K, Guatelli J, Lewinski MK. The C-Terminal End of HIV-1 Vpu Has a Clade-Specific Determinant That Antagonizes BST-2 and Facilitates Virion Release. J Virol 2019; 93:e02315-18. [PMID: 30867310 PMCID: PMC6532089 DOI: 10.1128/jvi.02315-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
The cellular protein bone marrow stromal antigen-2 (BST-2)/tetherin acts against a variety of enveloped viruses by restricting their release from the plasma membrane. The HIV-1 accessory protein Vpu counteracts BST-2 by downregulating it from the cell surface and displacing it from virion assembly sites. Previous comparisons of Vpus from transmitted/founder viruses and between viruses isolated during acute and chronic infection led to the identification of a tryptophan at position 76 in Vpu (W76) as a key determinant for the displacement of BST-2 from virion assembly sites. Although present in Vpus from clades B, D, and G, W76 is absent from Vpus from clades A, C, and H. Mutagenesis of the C-terminal region of Vpu from two clade C viruses led to the identification of a conserved LL sequence that is functionally analogous to W76 of clade B. Alanine substitution of these leucines partially impaired virion release. This impairment was even greater when the mutations were combined with mutations of the Vpu β-TrCP binding site, resulting in Vpu proteins that induced high surface levels of BST-2 and reduced the efficiency of virion release to less than that of virus lacking vpu Microscopy confirmed that these C-terminal leucines in clade C Vpu, like W76 in clade B, contribute to virion release by supporting the displacement of BST-2 from virion assembly sites. These results suggest that although encoded differently, the ability of Vpu to displace BST-2 from sites of virion assembly on the plasma membrane is evolutionarily conserved among clade B and C HIV-1 isolates.IMPORTANCE Although targeted by a variety of restriction mechanisms, HIV-1 establishes chronic infection in most cases, in part due to the counteraction of these host defenses by viral accessory proteins. Using conserved motifs, the accessory proteins exploit the cellular machinery to degrade or mistraffic host restriction factors, thereby counteracting them. The Vpu protein counteracts the virion-tethering factor BST-2 in part by displacing it from virion assembly sites along the plasma membrane, but a previously identified determinant of that activity is clade specific at the level of protein sequence and not found in the clade C viruses that dominate the pandemic. Here, we show that clade C Vpu provides this activity via a leucine-containing sequence rather than the tryptophan-containing sequence found in clade B Vpu. This difference seems likely to reflect the different evolutionary paths taken by clade B and clade C HIV-1 in human populations.
Collapse
Affiliation(s)
- Shilpi Sharma
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Moein Jafari
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Amandip Bangar
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Karen William
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - John Guatelli
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| | - Mary K Lewinski
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
94
|
Zotova AA, Atemasova AA, Filatov AV, Mazurov DV. HIV Restriction Factors and Their Ambiguous Role during Infection. Mol Biol 2019. [DOI: 10.1134/s0026893319020171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
95
|
Zotova A, Atemasova A, Pichugin A, Filatov A, Mazurov D. Distinct Requirements for HIV-1 Accessory Proteins during Cell Coculture and Cell-Free Infection. Viruses 2019; 11:v11050390. [PMID: 31027334 PMCID: PMC6563509 DOI: 10.3390/v11050390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
The role of accessory proteins during cell-to-cell transmission of HIV-1 has not been explicitly defined. In part, this is related to difficulties in measuring virus replication in cell cocultures with high accuracy, as cells coexist at different stages of infection and separation of effector cells from target cells is complicated. In this study, we used replication-dependent reporter vectors to determine requirements for Vif, Vpu, Vpr, or Nef during one cycle of HIV-1 cell coculture and cell-free infection in lymphoid and nonlymphoid cells. Comparative analysis of HIV-1 replication in two cell systems showed that, irrespective of transmission way, accessory proteins were generally less required for virus replication in 293T/CD4/X4 cells than in Jurkat-to-Raji/CD4 cell cocultures. This is consistent with a well-established fact that lymphoid cells express a broad spectrum of restriction factors, while nonlymphoid cells are rather limited in this regard. Remarkably, Vpu deletion reduced the level of cell-free infection, but enhanced the level of cell coculture infection and increased the fraction of multiply infected cells. Nef deficiency did not influence or moderately reduced HIV-1 infection in nonlymphoid and lymphoid cell cocultures, respectively, but strongly affected cell-free infection. Knockout of BST2-a Vpu antagonizing restriction factor-in Jurkat producer cells abolished the enhanced replication of HIV-1 ΔVpu in cell coculture and prevented the formation of viral clusters on cell surface. Thus, BST2-tethered viral particles mediated cell coculture infection more efficiently and at a higher level of multiplicity than diffusely distributed virions. In conclusion, our results demonstrate that the mode of transmission may determine the degree of accessory protein requirements during HIV-1 infection.
Collapse
Affiliation(s)
- Anastasia Zotova
- Cell and Gene Technology Group, Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia.
| | - Anastasia Atemasova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexey Pichugin
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| | - Alexander Filatov
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| | - Dmitriy Mazurov
- Cell and Gene Technology Group, Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| |
Collapse
|
96
|
Zadeh-Ardabili PM, Rad SK. Anti-pain and anti-inflammation like effects of Neptune krill oil and fish oil against carrageenan induced inflammation in mice models: Current statues and pilot study. ACTA ACUST UNITED AC 2019; 22:e00341. [PMID: 31061816 PMCID: PMC6488718 DOI: 10.1016/j.btre.2019.e00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/31/2019] [Accepted: 04/13/2019] [Indexed: 12/15/2022]
Abstract
Although inflammation is a reactive to injurious stimuli and considered as beneficial process in body, but it causes some discomforts, such as pain. Murine dietary contains appreciable amounts of fatty acids and antioxidants which encourages researchers to focus on their potential therapeutic effects. This study is aimed to examine the analgesic and anti-inflammatory activity of Neptune krill oil (NKO) and fish oil (FO) in rodent model which are two well-known sources of rich content of n-3 polyunsaturated fatty acids (n-3 PUFAs), mostly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). NKO and FO were used at the same dose of 500 mg and also balanced at similar doses of EPA: 12 in NKO vs. 12 in FO wt%, DHA: 7 NKO vs. 8 FO wt%. Application of NKO and FO in acetic acid-induced writhing effect, hot plate, and formalin induced test, indicated the nociceptive activity of the two tested drugs in comparison with normal saline. Also, the anti-inflammatory effect of these supplements was confirmed by carrageenan test. Analysis of cytokines levels in the blood samples of the mice after induction inflammation by carrageenan indicated decreased levels of those proteins compared to that in the normal groups. Both tested drugs, effectively could reduce severe inflammation and pain in rodents in comparison with the references drugs (depends on the tests); however, NKO was found to be more effective.
Collapse
Affiliation(s)
| | - Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
97
|
Jimenez-Guardeño JM, Apolonia L, Betancor G, Malim MH. Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat Microbiol 2019; 4:933-940. [PMID: 30886358 DOI: 10.1038/s41564-019-0402-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Type 1 interferon suppresses viral replication by upregulating the expression of interferon-stimulated genes with diverse antiviral properties1. The replication of human immunodeficiency virus type 1 (HIV-1) is naturally inhibited by interferon, with the steps between viral entry and chromosomal integration of viral DNA being notably susceptible2-5. The interferon-stimulated gene myxovirus resistance 2 has been defined as an effective postentry inhibitor of HIV-1, but is only partially responsible for interferon's suppressive effect6-8. Using small interfering RNA-based library screening in interferon-α-treated cells, we sought to characterize further interferon-stimulated genes that target the pre-integration phases of HIV-1 infection, and identified human tripartite-containing motif 5α (TRIM5α) as a potent anti-HIV-1 restriction factor. Human TRIM5α, in contrast with many nonhuman orthologues, has not generally been ascribed substantial HIV-1 inhibitory function, a finding attributed to ineffective recognition of cytoplasmic viral capsids by TRIM5α2,9,10. Here, we demonstrate that interferon-α-mediated stimulation of the immunoproteasome, a proteasome isoform mainly present in immune cells and distinguished from the constitutive proteasome by virtue of its different catalytic β-subunits, as well as the proteasome activator 28 regulatory complex11-13, and the associated accelerated turnover of TRIM5α underpin the reprogramming of human TRIM5α for effective capsid-dependent inhibition of HIV-1 DNA synthesis and infection. These observations identify a mechanism for regulating human TRIM5α antiviral function in human cells and rationalize how TRIM5α participates in the immune control of HIV-1 infection.
Collapse
Affiliation(s)
- Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Luis Apolonia
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Gilberto Betancor
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
98
|
Falkenhagen A, Joshi S. Genetic Strategies for HIV Treatment and Prevention. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:514-533. [PMID: 30388625 PMCID: PMC6205348 DOI: 10.1016/j.omtn.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
Conventional HIV gene therapy approaches are based on engineering HIV target cells that are non-permissive to viral replication. However, expansion of gene-modified HIV target cells has been limited in patients. Alternative genetic strategies focus on generating gene-modified producer cells that secrete antiviral proteins (AVPs). The secreted AVPs interfere with HIV entry, and, therefore, they extend the protection against infection to unmodified HIV target cells. Since any cell type can potentially secrete AVPs, hematopoietic and non-hematopoietic cell lineages can function as producer cells. Secretion of AVPs from non-hematopoietic cells opens the possibility of using a genetic approach for HIV prevention. Another strategy aims at modifying cytotoxic T cells to selectively target and eliminate infected cells. This review provides an overview of the different genetic approaches for HIV treatment and prevention.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sadhna Joshi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
99
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
100
|
Abstract
Pandemic HIV-1, a human lentivirus, is the result of zoonotic transmission of SIV from chimpanzees (SIVcpz). How SIVcpz established spread in humans after spillover is an outstanding question. Lentiviral cross-species transmissions are exceptionally rare events. Nevertheless, the chimpanzee and the gorilla were part of the transmission chains that resulted in sustained infections that evolved into HIV-1. Although many restriction factors can repress the early stages of lentiviral replication, others target replication during the late phases. In some cases, viruses incorporate host proteins that interfere with subsequent rounds of replication. Though limited and small, HIVs and SIVs, including SIVcpz can use their genome products to modulate and escape some of these barriers and thus establish a chronic infection.
Collapse
Affiliation(s)
- Augustin Penda Twizerimana
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Rachel Scheck
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|