51
|
Ravaioli F, Bacalini MG, Giuliani C, Pellegrini C, D’Silva C, De Fanti S, Pirazzini C, Giorgi G, Del Re B. Evaluation of DNA Methylation Profiles of LINE-1, Alu and Ribosomal DNA Repeats in Human Cell Lines Exposed to Radiofrequency Radiation. Int J Mol Sci 2023; 24:9380. [PMID: 37298336 PMCID: PMC10253908 DOI: 10.3390/ijms24119380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A large body of evidence indicates that environmental agents can induce alterations in DNA methylation (DNAm) profiles. Radiofrequency electromagnetic fields (RF-EMFs) are radiations emitted by everyday devices, which have been classified as "possibly carcinogenic"; however, their biological effects are unclear. As aberrant DNAm of genomic repetitive elements (REs) may promote genomic instability, here, we sought to determine whether exposure to RF-EMFs could affect DNAm of different classes of REs, such as long interspersed nuclear elements-1 (LINE-1), Alu short interspersed nuclear elements and ribosomal repeats. To this purpose, we analysed DNAm profiles of cervical cancer and neuroblastoma cell lines (HeLa, BE(2)C and SH-SY5Y) exposed to 900 MHz GSM-modulated RF-EMF through an Illumina-based targeted deep bisulfite sequencing approach. Our findings showed that radiofrequency exposure did not affect the DNAm of Alu elements in any of the cell lines analysed. Conversely, it influenced DNAm of LINE-1 and ribosomal repeats in terms of both average profiles and organisation of methylated and unmethylated CpG sites, in different ways in each of the three cell lines studied.
Collapse
Affiliation(s)
- Francesco Ravaioli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy;
| | - Camilla Pellegrini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Chiara D’Silva
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Sara De Fanti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Gianfranco Giorgi
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Brunella Del Re
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
52
|
Sasaki K, Sangrithi M. Developmental origins of mammalian spermatogonial stem cells: New perspectives on epigenetic regulation and sex chromosome function. Mol Cell Endocrinol 2023:111949. [PMID: 37201564 DOI: 10.1016/j.mce.2023.111949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Male and female germ cells undergo genome-wide reprogramming during their development, and execute sex-specific programs to complete meiosis and successfully generate healthy gametes. While sexually dimorphic germ cell development is fundamental, similarities and differences exist in the basic processes governing normal gametogenesis. At the simplest level, male gamete generation in mammals is centred on the activity of spermatogonial stem cells (SSCs), and an equivalent cell state is not present in females. Maintaining this unique SSC epigenetic state, while keeping to germ cell-intrinsic developmental programs, poses challenges for the correct completion of spermatogenesis. In this review, we highlight the origins of spermatogonia, comparing and contrasting them with female germline development to emphasize specific developmental processes that are required for their function as germline stem cells. We identify gaps in our current knowledge about human SSCs and further discuss the impact of the unique regulation of the sex chromosomes during spermatogenesis, and the roles of X-linked genes in SSCs.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, United States.
| | - Mahesh Sangrithi
- King's College London, Centre for Gene Therapy and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
53
|
Guan Y, Gao H, Leu NA, Vourekas A, Alexiou P, Maragkakis M, Kang Z, Mourelatos Z, Liang G, Wang PJ. The MOV10 RNA helicase is a dosage-dependent host restriction factor for LINE1 retrotransposition in mice. PLoS Genet 2023; 19:e1010566. [PMID: 37126510 PMCID: PMC10174503 DOI: 10.1371/journal.pgen.1010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/11/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
Transposable elements constitute nearly half of the mammalian genome and play important roles in genome evolution. While a multitude of both transcriptional and post-transcriptional mechanisms exist to silence transposable elements, control of transposition in vivo remains poorly understood. MOV10, an RNA helicase, is an inhibitor of mobilization of retrotransposons and retroviruses in cell culture assays. Here we report that MOV10 restricts LINE1 retrotransposition in mice. Although MOV10 is broadly expressed, its loss causes only incomplete penetrance of embryonic lethality, and the surviving MOV10-deficient mice are healthy and fertile. Biochemically, MOV10 forms a complex with UPF1, a key component of the nonsense-mediated mRNA decay pathway, and primarily binds to the 3' UTR of somatically expressed transcripts in testis. Consequently, loss of MOV10 results in an altered transcriptome in testis. Analyses using a LINE1 reporter transgene reveal that loss of MOV10 leads to increased LINE1 retrotransposition in somatic and reproductive tissues from both embryos and adult mice. Moreover, the degree of LINE1 retrotransposition inhibition is dependent on the Mov10 gene dosage. Furthermore, MOV10 deficiency reduces reproductive fitness over successive generations. Our findings demonstrate that MOV10 attenuates LINE1 retrotransposition in a dosage-dependent manner in mice.
Collapse
Affiliation(s)
- Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenlong Kang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
54
|
Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun 2023; 14:2142. [PMID: 37059740 PMCID: PMC10104880 DOI: 10.1038/s41467-023-37820-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
55
|
Parker HV, Schaner Tooley CE. Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13. J Biol Chem 2023; 299:104588. [PMID: 36889590 PMCID: PMC10166787 DOI: 10.1016/j.jbc.2023.104588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
N-terminal protein methylation (Nα-methylation) is a posttranslational modification that influences numerous biological processes by regulating protein stability, protein-DNA interactions, and protein-protein interactions. Although significant progress has been made in understanding the biological roles of Nα-methylation, we still do not completely understand how the modifying methyltransferases are regulated. A common mode of methyltransferase regulation is through complex formation with close family members, and we have previously shown that the Nα-trimethylase METTL11A (NRMT1/NTMT1) is activated through binding of its close homolog METTL11B (NRMT2/NTMT2). Other recent reports indicate that METTL11A co-fractionates with a third METTL family member METTL13, which methylates both the N-terminus and lysine 55 (K55) of eukaryotic elongation factor 1 alpha. Here, using co-immunoprecipitations, mass spectrometry, and in vitro methylation assays, we confirm a regulatory interaction between METTL11A and METTL13 and show that while METTL11B is an activator of METTL11A, METTL13 inhibits METTL11A activity. This is the first example of a methyltransferase being opposingly regulated by different family members. Similarly, we find that METTL11A promotes the K55 methylation activity of METTL13 but inhibits its Nα-methylation activity. We also find that catalytic activity is not needed for these regulatory effects, demonstrating new, noncatalytic functions for METTL11A and METTL13. Finally, we show METTL11A, METTL11B, and METTL13 can complex together, and when all three are present, the regulatory effects of METTL13 take precedence over those of METTL11B. These findings provide a better understanding of Nα-methylation regulation and suggest a model where these methyltransferases can serve in both catalytic and noncatalytic roles.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
56
|
Batdorj E, AlOgayil N, Zhuang QKW, Galvez JH, Bauermeister K, Nagata K, Kimura T, Ward MA, Taketo T, Bourque G, Naumova AK. Genetic variation in the Y chromosome and sex-biased DNA methylation in somatic cells in the mouse. Mamm Genome 2023; 34:44-55. [PMID: 36454369 PMCID: PMC9947081 DOI: 10.1007/s00335-022-09970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Several lines of evidence suggest that the presence of the Y chromosome influences DNA methylation of autosomal loci. To better understand the impact of the Y chromosome on autosomal DNA methylation patterns and its contribution to sex bias in methylation, we identified Y chromosome dependent differentially methylated regions (yDMRs) using whole-genome bisulfite sequencing methylation data from livers of mice with different combinations of sex-chromosome complement and gonadal sex. Nearly 90% of the autosomal yDMRs mapped to transposable elements (TEs) and most of them had lower methylation in XY compared to XX or XO mice. Follow-up analyses of four reporter autosomal yDMRs showed that Y-dependent methylation levels were consistent across most somatic tissues but varied in strains with different origins of the Y chromosome, suggesting that genetic variation in the Y chromosome influenced methylation levels of autosomal regions. Mice lacking the q-arm of the Y chromosome (B6.NPYq-2) as well as mice with a loss-of-function mutation in Kdm5d showed no differences in methylation levels compared to wild type mice. In conclusion, the Y-linked modifier of TE methylation is likely to reside on the short arm of Y chromosome and further studies are required to identify this gene.
Collapse
Affiliation(s)
- Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
| | - Kei Nagata
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, HonoluluHonolulu, HIHI, 96822, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montréal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada
- Canadian Centre for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
57
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
58
|
Luqman-Fatah A, Watanabe Y, Uno K, Ishikawa F, Moran JV, Miyoshi T. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat Commun 2023; 14:203. [PMID: 36639706 PMCID: PMC9839780 DOI: 10.1038/s41467-022-35757-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuko Uno
- Division of Basic Research, Louis Pasteur Center for Medical Research, Kyoto, 606-8225, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
59
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
60
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
61
|
Stenz L, Beyens M, Gill ME, Paoloni-Giacobino A, De Geyter C. Altered DNA methylation in estrogen-responsive repetitive sequences of spermatozoa of infertile men with shortened anogenital distance. Clin Epigenetics 2022; 14:185. [PMID: 36572941 PMCID: PMC9793642 DOI: 10.1186/s13148-022-01409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND It has been suggested that antenatal exposure to environmental endocrine disruptors is responsible for adverse trends in male reproductive health, including male infertility, impaired semen quality, cryptorchidism and testicular cancer, a condition known as testicular dysgenesis syndrome. Anogenital distance (AGD) is an anthropomorphic measure of antenatal exposure to endocrine disruptors, with higher exposure levels leading to shortened AGD. We hypothesized that exposure to endocrine disruptors could lead to changes in DNA methylation during early embryonic development, which could then persist in the sperm of infertile men with shortened AGD. RESULTS Using fluorescence activated cell sorting based on staining with either YO-PRO-1 (YOPRO) or chromomycin-3 (CMA3), we isolated four sperm fractions from eleven infertile men with short AGD and ten healthy semen donors. We examined DNA methylation in these sorted spermatozoa using reduced representation bisulfite sequencing. We found that fractions of spermatozoa from infertile men stained with CMA3 or YOPRO were more likely to contain transposable elements harboring an estrogen receptor response element (ERE). Abnormal sperm (as judged by high CMA3 or YOPRO staining) from infertile men shows substantial hypomethylation in estrogenic Alu sequences. Conversely, normal sperm fractions (as judged by low CMA3 or YO-PRO-1 staining) of either healthy donors or infertile patients were more likely to contain hypermethylated Alu sequences with ERE. CONCLUSIONS Shortened AGD, as related to previous exposure to endocrine disruptors, and male infertility are accompanied by increased presence of hormonal response elements in the differentially methylated regulatory sequences of the genome of sperm fractions characterized by chromatin decondensation and apoptosis.
Collapse
Affiliation(s)
- Ludwig Stenz
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, 1211 Geneva, Switzerland ,Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse, 64, 4055 Basel, Switzerland
| | - Matthias Beyens
- BISC Global, Bioinformatics and Statistics Consulting, Gaston Crommenlaan, 8, 9050 Ghent, Belgium
| | - Mark E. Gill
- grid.6612.30000 0004 1937 0642Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse, 134, 4031 Basel, Switzerland
| | - Ariane Paoloni-Giacobino
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, 1211 Geneva, Switzerland ,Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse, 64, 4055 Basel, Switzerland
| | - Christian De Geyter
- Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse, 64, 4055 Basel, Switzerland ,grid.6612.30000 0004 1937 0642Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse, 134, 4031 Basel, Switzerland
| |
Collapse
|
62
|
The remodeling of Z-DNA in the mammalian germ line. Biochem Soc Trans 2022; 50:1875-1884. [PMID: 36454621 PMCID: PMC9788570 DOI: 10.1042/bst20221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
We recently discovered a novel biological process, the scheduled remodeling of Z-DNA structures in the developing fetal mouse male germ cells [Nat. Cell Biol. 24, 1141-1153]. This process affects purine/pyrimidine dinucleotide repeat (PPR) rich sequences, which can form stable left-handed Z-DNA structures. The protein that carries out this function is identified as ZBTB43, member of a large family of ZBTB proteins. Z-DNA remodeling by ZBTB43 not only coincides with global remodeling of DNA methylation and chromatin events in the male germ line, but it also is a prerequisite for de novo DNA methylation. When ZBTB43 changes DNA structure from the left-handed zigzag shaped Z-DNA to the regular smooth right-handed B-DNA, it also generates a suitable substrate for the de novo DNA methyltransferase, DNMT3A. By instructing de novo DNA methylation at PPRs in prospermatogonia, ZBTB43 safeguards epigenomic integrity of the male gamete. PPRs are fragile sequences, sites of large deletions and rearrangements in mammalian cells, and this fragility is thought to be due to Z-DNA structure formation rather than the sequence itself. This idea is now supported by the in vivo finding that DNA double strand breaks accumulate in mutant prospermatogonia which lack ZBTB43-dependent Z-DNA remodeling. If unrepaired, double stranded DNA breaks can lead to germ line mutations. Therefore, by preventing such breaks ZBTB43 is critical for guarding genome stability between generations. Here, we discuss the significance and implications of these findings in more detail.
Collapse
|
63
|
Barberet J, Ducreux B, Bruno C, Guilleman M, Simonot R, Lieury N, Guilloteau A, Bourc’his D, Fauque P. Comparison of oocyte vitrification using a semi-automated or a manual closed system in human siblings: survival and transcriptomic analyses. J Ovarian Res 2022; 15:128. [PMID: 36464714 PMCID: PMC9720994 DOI: 10.1186/s13048-022-01064-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Indications of oocyte vitrification increased substantially over the last decades for clinical and ethical reasons. A semi-automated vitrification system was recently developed making each act of vitrification reproducible. In this study, we evaluated the efficiency of the semi-automated technique of oocyte vitrification by survival rate, morphometric assessment and resistance to empty micro-injection gesture as compared with a manual method. Additionally, we intended to evaluate transcriptomic consequences of both techniques using single-cell RNA-seq technology. RESULTS Post-warming survival rate, oocyte surfaces and resistance to empty micro-injection were comparable between semi-automated and manual vitrification groups. Both oocyte vitrification techniques showed limited differences in the resulting transcriptomic profile of sibling oocytes since only 5 differentially expressed genes were identified. Additionally, there was no difference in median transcript integrity number or percentage of mitochondrial DNA between the two groups. However, a total of 108 genes were differentially expressed between fresh and vitrified oocytes (FDR < 0.05) and showed over-represented of genes related to important cellular process. CONCLUSIONS Our results provide reassurance about the influence of semi-automation as compared with the manual vitrification method. Concerning oocyte vitrification itself, no tight common transcriptomic signature associated has been observed across studies. TRIAL REGISTRATION NCT03570073.
Collapse
Affiliation(s)
- Julie Barberet
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Bastien Ducreux
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France
| | - Céline Bruno
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Magali Guilleman
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Raymond Simonot
- grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Nicolas Lieury
- grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Adrien Guilloteau
- grid.31151.37USMR, Dijon Bourgogne University Hospital, F-21000 Dijon, France
| | - Déborah Bourc’his
- Institut Curie, PSL University, CNRS, INSERM, 26 rue d’Ulm, F-75248 Paris, France
| | - Patricia Fauque
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France ,grid.31151.37Laboratoire de Biologie de la Reproduction, CHU Dijon, BP 77908, 14, rue Gaffarel, 21079 Dijon Cedex, France
| |
Collapse
|
64
|
Gerdes P, Lim SM, Ewing AD, Larcombe MR, Chan D, Sanchez-Luque FJ, Walker L, Carleton AL, James C, Knaupp AS, Carreira PE, Nefzger CM, Lister R, Richardson SR, Polo JM, Faulkner GJ. Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nat Commun 2022; 13:7470. [PMID: 36463236 PMCID: PMC9719517 DOI: 10.1038/s41467-022-35180-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.
Collapse
Affiliation(s)
- Patricia Gerdes
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sue Mei Lim
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Adam D. Ewing
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michael R. Larcombe
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Dorothy Chan
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Francisco J. Sanchez-Luque
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.418805.00000 0004 0500 8423GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS, Granada, 18016 Spain
| | - Lucinda Walker
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Alexander L. Carleton
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Cini James
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Anja S. Knaupp
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Patricia E. Carreira
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Christian M. Nefzger
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Ryan Lister
- grid.1012.20000 0004 1936 7910Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009 Australia ,grid.431595.f0000 0004 0469 0045Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Sandra R. Richardson
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1010.00000 0004 1936 7304Adelaide Centre for Epigenetics and The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Geoffrey J. Faulkner
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
65
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
66
|
Sae-Lee C, Barrow TM, Colicino E, Choi SH, Rabanal-Ruiz Y, Green D, Korolchuk VI, Mathers JC, Byun HM. Genomic targets and selective inhibition of DNA methyltransferase isoforms. Clin Epigenetics 2022; 14:103. [PMID: 35987848 PMCID: PMC9392947 DOI: 10.1186/s13148-022-01325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation in the human genome is established and maintained by DNA methyltransferases (DNMTs). DNMT isoforms show differential expression by cell lineage and during development, but much remains to be elucidated about their shared and unique genomic targets. Results We examined changes in the epigenome following overexpression of 13 DNMT isoforms in HEK293T cells. We observed increased methylation (Δβ > 0.2) at 43,405 CpG sites, with expression of DNMT3A2, DNMTΔ3B4 and DNMTΔ3B2 associated with the greatest impact. De novo methylation occurred primarily within open sea regions and at loci with intermediate methylation levels (β: 0.2–0.6). 53% of differentially methylated loci showed specificity towards a single DNMT subfamily, primarily DNMTΔ3B and DNMT3A and 39% towards a single isoform. These loci were significantly enriched for pathways related to neuronal development (DNMTΔ3B4), calcium homeostasis (DNMTΔ3B3) and ion transport (DNMT3L). Repetitive elements did not display differential sensitivity to overexpressed DNMTs, but hypermethylation of Alu elements was associated with their evolutionary age following overexpression of DNMT3A2, DNMT3B1, DNMT3B2 and DNMT3L. Differential methylation (Δβ > 0.1) was observed at 121 of the 353 loci associated with the Horvath ‘epigenetic clock’ model of ageing, with 51 showing isoform specificity, and was associated with reduction of epigenetic age by 5–15 years following overexpression of seven isoforms. Finally, we demonstrate the potential for dietary constituents to modify epigenetic marks through isoform-specific inhibition of methylation activity. Conclusions Our results provide insight into regions of the genome methylated uniquely by specific DNMT isoforms and demonstrate the potential for dietary intervention to modify the epigenome. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01325-4.
Collapse
|
67
|
Rabbani M, Zheng X, Manske GL, Vargo A, Shami AN, Li JZ, Hammoud SS. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu Rev Genet 2022; 56:339-368. [PMID: 36070560 PMCID: PMC10722372 DOI: 10.1146/annurev-genet-080320-040045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Gabe L Manske
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Adrienne N Shami
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
68
|
Luo H, Mipam T, Wu S, Xu C, Yi C, Zhao W, Chai Z, Chen X, Wu Z, Wang J, Wang J, Wang H, Zhong J, Cai X. DNA methylome of primary spermatocyte reveals epigenetic dysregulation associated with male sterility of cattleyak. Theriogenology 2022; 191:153-167. [PMID: 35988507 DOI: 10.1016/j.theriogenology.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
DNA cytosine methylation modification in the germline is of particular importance since it is a highly heritable epigenetic mark. Although cytosine methylation has been analyzed at the genome-scale for several mammalian species, our knowledge of DNA methylation patterns and the mechanisms underlying male hybrid sterility is still limited in domestic animals such as cattleyak. Here we for the first time show the genome-wide and single-base resolution landscape of methylcytosines (mC) in the primary spermatocyte (PSC) genome of yak with normal spermatogenesis and the inter-specific hybrid cattleyak with male infertility. A comparative investigation revealed that widespread differences are observed in the composition and patterning of DNA cytosine methylation between the two methylomes. Global CG or non-CG DNA methylation levels, as well as the number of mC sites, are increased in cattleyak compared to yak. Notably, the DNA methylome in cattleyak PSC exhibits promoter hypermethylation of meiosis-specific genes and piRNA pathway genes with respect to yak. Furthermore, major retrotransposonson classes are predominantly hypermethylated in cattleyak while those are fully hypomethylated in yak. KEGG pathway enrichment indicates Rap1 signaling and MAPK pathways may play potential roles in the spermatogenic arrest of cattleyak. Our present study not only provides valuable insights into distinct features of the cattleyak PSC methylome but also paves the way toward elucidating the complex, yet highly coordinated epigenetic modification during male germline development for inter-specific hybrid animals.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
69
|
Zhang Q, Pan J, Cong Y, Mao J. Transcriptional Regulation of Endogenous Retroviruses and Their Misregulation in Human Diseases. Int J Mol Sci 2022; 23:ijms231710112. [PMID: 36077510 PMCID: PMC9456331 DOI: 10.3390/ijms231710112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Endogenous retroviruses (ERVs), deriving from exogenous retroviral infections of germ line cells occurred millions of years ago, represent ~8% of human genome. Most ERVs are highly inactivated because of the accumulation of mutations, insertions, deletions, and/or truncations. However, it is becoming increasingly apparent that ERVs influence host biology through genetic and epigenetic mechanisms under particular physiological and pathological conditions, which provide both beneficial and deleterious effects for the host. For instance, certain ERVs expression is essential for human embryonic development. Whereas abnormal activation of ERVs was found to be involved in numbers of human diseases, such as cancer and neurodegenerative diseases. Therefore, understanding the mechanisms of regulation of ERVs would provide insights into the role of ERVs in health and diseases. Here, we provide an overview of mechanisms of transcriptional regulation of ERVs and their dysregulation in human diseases.
Collapse
|
70
|
Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C. Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 2022; 114:110450. [PMID: 35995261 DOI: 10.1016/j.ygeno.2022.110450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
DNA methylation is one of the key epigenetic regulatory mechanisms in development and spermatogenesis. However, the dynamic regulatory mechanisms of genome-wide DNA methylation during testicular development remain largely unknown. Herein, we generated a single-base resolution DNA methylome and transcriptome atlas of precocious porcine testicular tissues across three developmental stages (1, 75, and 150 days old). The results showed that the dynamic methylation patterns were directly related to the expression of the DNMT3A gene. Conjoint analysis revealed a negative regulatory pattern between promoter methylation and the positive regulation of 3'-untranslated region (3'UTR) methylation. Mechanistically, the decrease in promoter methylation affected the upregulation of meiosis-related genes, such as HORMAD1, SPO11, and SYCE1. Demethylation in the 3'UTR induced the downregulation of the INHBA gene and knockdown of INHBA inhibited cell proliferation by reducing the synthesis of activin A. These findings contribute to exploring the regulatory mechanisms of DNA methylation in testicular development.
Collapse
Affiliation(s)
- Yang Anqi
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yan Saina
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Chen Chujie
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yin Yanfei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Tang Xiangwei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ma Jiajia
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiang Jiaojiao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ran Maoliang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| | - Chen Bin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|
71
|
Xia Z, Dai X, Fan W, Liu C, Zhang M, Bian P, Zhou Y, Li L, Zhu B, Liu S, Li Z, Wang X, Yu M, Xiang Z, Jiang Y, Zhao A. Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1119-1137. [PMID: 36055564 DOI: 10.1016/j.gpb.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Multiple plant lineages have independently evolved sex chromosomes and variable karyotypes to maintain their sessile lifestyles through constant biological innovation. Morus notabilis, a dioecious mulberry species, has the fewest chromosomes among Morus spp., but the genetic basis of sex determination and karyotype evolution in this species has not been identified. In this study, three high-quality genome assemblies were generated for Morus spp. [including dioecious M. notabilis (male and female) and Morus yunnanensis (female)] with genome sizes of 301-329 Mb and were grouped into six pseudochromosomes. Using a combination of genomic approaches, we found that the putative ancestral karyotype of Morus species was close to 14 protochromosomes, and that several chromosome fusion events resulted in descending dysploidy (2n = 2x = 12). We also characterized a ∼ 6.2-Mb sex-determining region on chromosome 3. Four potential male-specific genes, a partially duplicatedDNA helicase gene (named MSDH) and three Ty3_Gypsy long terminal repeat retrotransposons (named MSTG1/2/3), were identified in the Y-linked area and considered to be strong candidate genes for sex determination or differentiation. Population genomic analysis showed that Guangdong accessions in China were genetically similar to Japanese accessions of mulberry. In addition, genomic areas containing selective sweeps that distinguish domesticated mulberry from wild populations in terms of flowering and disease resistance were identified. Our findings provide an important genetic resource for sex identification research and molecular breeding in mulberry.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Meirong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuping Zhou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Baozhong Zhu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuman Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi 661100, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Maode Yu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
72
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022. [PMID: 35725016 PMCID: PMC9340088 DOI: 10.5483/bmbrep.2022.55.7.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of ‘Dissociation (Dc) locus’ by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
73
|
Gao L, Guo Y, Biswal M, Lu J, Yin J, Fang J, Chen X, Shao Z, Huang M, Wang Y, Wang GG, Song J. Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations. Nat Commun 2022; 13:4249. [PMID: 35869095 PMCID: PMC9307851 DOI: 10.1038/s41467-022-31933-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
DNA methyltransferase DNMT3B plays an essential role in establishment of DNA methylation during embryogenesis. Mutations of DNMT3B are associated with human diseases, notably the immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome. How ICF mutations affect DNMT3B activity is not fully understood. Here we report the homo-oligomeric structure of DNMT3B methyltransferase domain, providing insight into DNMT3B-mediated DNA methylation in embryonic stem cells where the functional regulator DNMT3L is dispensable. The interplay between one of the oligomer interfaces (FF interface) and the catalytic loop renders DNMT3B homo-oligomer a conformation and activity distinct from the DNMT3B-DNMT3L heterotetramer, and a greater vulnerability to certain ICF mutations. Biochemical and cellular analyses further reveal that the ICF mutations of FF interface impair the DNA binding and heterochromatin targeting of DNMT3B, leading to reduced DNA methylation in cells. Together, this study provides a mechanistic understanding of DNMT3B-mediated DNA methylation and its dysregulation in disease.
Collapse
Affiliation(s)
- Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, 92521, CA, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, 27599, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California, Riverside, 92521, CA, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, 92521, CA, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, 92521, CA, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, 92521, CA, USA
| | - Xinyi Chen
- Department of Biochemistry, University of California, Riverside, 92521, CA, USA
| | - Zengyu Shao
- Department of Biochemistry, University of California, Riverside, 92521, CA, USA
| | - Mengjiang Huang
- Department of Biochemistry, University of California, Riverside, 92521, CA, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, 92521, CA, USA
- Department of Chemistry, University of California, Riverside, 92521, CA, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, 27599, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, 27599, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, 27599, NC, USA.
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California, Riverside, 92521, CA, USA.
- Department of Biochemistry, University of California, Riverside, 92521, CA, USA.
| |
Collapse
|
74
|
Bhat A, Ghatage T, Bhan S, Lahane GP, Dhar A, Kumar R, Pandita RK, Bhat KM, Ramos KS, Pandita TK. Role of Transposable Elements in Genome Stability: Implications for Health and Disease. Int J Mol Sci 2022; 23:7802. [PMID: 35887150 PMCID: PMC9319628 DOI: 10.3390/ijms23147802] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
Most living organisms have in their genome a sizable proportion of DNA sequences capable of mobilization; these sequences are commonly referred to as transposons, transposable elements (TEs), or jumping genes. Although long thought to have no biological significance, advances in DNA sequencing and analytical technologies have enabled precise characterization of TEs and confirmed their ubiquitous presence across all forms of life. These findings have ignited intense debates over their biological significance. The available evidence now supports the notion that TEs exert major influence over many biological aspects of organismal life. Transposable elements contribute significantly to the evolution of the genome by giving rise to genetic variations in both active and passive modes. Due to their intrinsic nature of mobility within the genome, TEs primarily cause gene disruption and large-scale genomic alterations including inversions, deletions, and duplications. Besides genomic instability, growing evidence also points to many physiologically important functions of TEs, such as gene regulation through cis-acting control elements and modulation of the transcriptome through epigenetic control. In this review, we discuss the latest evidence demonstrating the impact of TEs on genome stability and the underling mechanisms, including those developed to mitigate the deleterious impact of TEs on genomic stability and human health. We have also highlighted the potential therapeutic application of TEs.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, India;
| | - Trupti Ghatage
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, India;
| | - Ganesh P. Lahane
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Arti Dhar
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra 182320, India;
| | - Raj K. Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA;
| | - Tej K. Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
75
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022; 55:305-315. [PMID: 35725016 PMCID: PMC9340088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 02/21/2025] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host. [BMB Reports 2022; 55(7): 305-315].
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
76
|
Jahangir M, Li L, Zhou JS, Lang B, Wang XP. L1 Retrotransposons: A Potential Endogenous Regulator for Schizophrenia. Front Genet 2022; 13:878508. [PMID: 35832186 PMCID: PMC9271560 DOI: 10.3389/fgene.2022.878508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The long interspersed nuclear elements 1 (LINE-1/L1s) are the only active autonomous retrotransposons found in humans which can integrate anywhere in the human genome. They can expand the genome and thus bring good or bad effects to the host cells which really depends on their integration site and associated polymorphism. LINE-1 retrotransposition has been found participating in various neurological disorders such as autism spectrum disorder, Alzheimer’s disease, major depression disorder, post-traumatic stress disorder and schizophrenia. Despite the recent progress, the roles and pathological mechanism of LINE-1 retrotransposition in schizophrenia and its heritable risks, particularly, contribution to “missing heritability” are yet to be determined. Therefore, this review focuses on the potentially etiological roles of L1s in the development of schizophrenia, possible therapeutic choices and unaddressed questions in order to shed lights on the future research.
Collapse
Affiliation(s)
| | | | | | - Bing Lang
- *Correspondence: Bing Lang, ; Xiao-Ping Wang,
| | | |
Collapse
|
77
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
78
|
Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, Gao C, Duo S, Han C. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. SCIENCE ADVANCES 2022; 8:eabn1606. [PMID: 35613276 PMCID: PMC9132480 DOI: 10.1126/sciadv.abn1606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/08/2022] [Indexed: 05/07/2023]
Abstract
The chromatin state, which undergoes global changes during spermatogenesis, is critical to meiotic initiation and progression. However, the key regulators involved and the underlying molecular mechanisms remain to be uncovered. Here, we report that mouse BEND2 is specifically expressed in spermatogenic cells around meiotic initiation and that it plays an essential role in meiotic progression. Bend2 gene knockout in male mice arrested meiosis at the transition from zygonema to pachynema, disrupted synapsis and DNA double-strand break repair, and induced nonhomologous chromosomal pairing. BEND2 interacted with chromatin-associated proteins that are components of certain transcription-repressor complexes. BEND2-binding sites were identified in diverse chromatin states and enriched in simple sequence repeats. BEND2 inhibited the expression of genes involved in meiotic initiation and regulated chromatin accessibility and the modification of H3K4me3. Therefore, our study identified BEND2 as a previously unknown key regulator of meiosis, gene expression, and chromatin state during mouse spermatogenesis.
Collapse
Affiliation(s)
- Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hengyu Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxu Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Duo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
79
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
80
|
Costes V, Chaulot-Talmon A, Sellem E, Perrier JP, Aubert-Frambourg A, Jouneau L, Pontlevoy C, Hozé C, Fritz S, Boussaha M, Le Danvic C, Sanchez MP, Boichard D, Schibler L, Jammes H, Jaffrézic F, Kiefer H. Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Clin Epigenetics 2022; 14:54. [PMID: 35477426 PMCID: PMC9047354 DOI: 10.1186/s13148-022-01275-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Conflicting results regarding alterations to sperm DNA methylation in cases of spermatogenesis defects, male infertility and poor developmental outcomes have been reported in humans. Bulls used for artificial insemination represent a relevant model in this field, as the broad dissemination of bull semen considerably alleviates confounding factors and enables the precise assessment of male fertility. This study was therefore designed to assess the potential for sperm DNA methylation to predict bull fertility. RESULTS A unique collection of 100 sperm samples was constituted by pooling 2-5 ejaculates per bull from 100 Montbéliarde bulls of comparable ages, assessed as fertile (n = 57) or subfertile (n = 43) based on non-return rates 56 days after insemination. The DNA methylation profiles of these samples were obtained using reduced representation bisulfite sequencing. After excluding putative sequence polymorphisms, 490 fertility-related differentially methylated cytosines (DMCs) were identified, most of which were hypermethylated in subfertile bulls. Interestingly, 46 genes targeted by DMCs are involved in embryonic and fetal development, sperm function and maturation, or have been related to fertility in genome-wide association studies; five of these were further analyzed by pyrosequencing. In order to evaluate the prognostic value of fertility-related DMCs, the sperm samples were split between training (n = 67) and testing (n = 33) sets. Using a Random Forest approach, a predictive model was built from the methylation values obtained on the training set. The predictive accuracy of this model was 72% on the testing set and 72% on individual ejaculates collected from an independent cohort of 20 bulls. CONCLUSION This study, conducted on the largest set of bull sperm samples so far examined in epigenetic analyses, demonstrated that the sperm methylome is a valuable source of male fertility biomarkers. The next challenge is to combine these results with other data on the same sperm samples in order to improve the quality of the model and better understand the interplay between DNA methylation and other molecular features in the regulation of fertility. This research may have potential applications in human medicine, where infertility affects the interaction between a male and a female, thus making it difficult to isolate the male factor.
Collapse
Affiliation(s)
- Valentin Costes
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Aurélie Chaulot-Talmon
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Eli Sellem
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Jean-Philippe Perrier
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Aubert-Frambourg
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Charline Pontlevoy
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Chris Hozé
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Marie-Pierre Sanchez
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Didier Boichard
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Hélène Jammes
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Florence Jaffrézic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Hélène Kiefer
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France. .,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
81
|
Abstract
Human endogenous retroviruses (HERVs) occupy approximately 8% of the human genome. HERVs, transcribed in early embryos, are epigenetically silenced in somatic cells, except under pathological conditions. HERV-K is thought to protect embryos from exogenous viral infection. However, uncontrolled HERV-K expression in somatic cells has been implicated in several diseases. Here, we show that SOX2, which plays a key role in maintaining the pluripotency of stem cells, is critical for HERV-K LTR5Hs. HERV-K undergoes retrotransposition within producer cells in the absence of Env expression. Furthermore, we identified new HERV-K integration sites in long-term culture of induced pluripotent stem cells that express SOX2. These results suggest that the strict dependence of HERV-K on SOX2 has allowed HERV-K to protect early embryos during evolution while limiting the potentially harmful effects of HERV-K retrotransposition on host genome integrity in these early embryos. IMPORTANCE Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome; however, the physiological role of HERV-K remains unknown. This study found that HERV-K LTR5Hs and LTR5B were transactivated by SOX2, which is essential for maintaining and reestablishing pluripotency. HERV-K can undergo retrotransposition within producer cells without env expression, and new integration sites may affect cell proliferation. In induced pluripotent stem cells (iPSCs), genomic impairment due to HERV-K retrotransposition has been identified, but it is a rare event. Considering the retention of SOX2-responsive elements in the HERV-K long terminal repeat (LTR) for over 20 million years, we conclude that HERV-K may play important physiological roles in SOX2-expressing cells.
Collapse
|
82
|
DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet 2022; 54:469-480. [DOI: 10.1038/s41588-022-01040-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023]
|
83
|
Taylor D, Lowe R, Philippe C, Cheng KCL, Grant OA, Zabet NR, Cristofari G, Branco MR. Locus-specific chromatin profiling of evolutionarily young transposable elements. Nucleic Acids Res 2022; 50:e33. [PMID: 34908129 PMCID: PMC8989514 DOI: 10.1093/nar/gkab1232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 01/13/2023] Open
Abstract
Despite a vast expansion in the availability of epigenomic data, our knowledge of the chromatin landscape at interspersed repeats remains highly limited by difficulties in mapping short-read sequencing data to these regions. In particular, little is known about the locus-specific regulation of evolutionarily young transposable elements (TEs), which have been implicated in genome stability, gene regulation and innate immunity in a variety of developmental and disease contexts. Here we propose an approach for generating locus-specific protein-DNA binding profiles at interspersed repeats, which leverages information on the spatial proximity between repetitive and non-repetitive genomic regions. We demonstrate that the combination of HiChIP and a newly developed mapping tool (PAtChER) yields accurate protein enrichment profiles at individual repetitive loci. Using this approach, we reveal previously unappreciated variation in the epigenetic profiles of young TE loci in mouse and human cells. Insights gained using our method will be invaluable for dissecting the molecular determinants of TE regulation and their impact on the genome.
Collapse
Affiliation(s)
- Darren Taylor
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Robert Lowe
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | | | - Kevin C L Cheng
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Olivia A Grant
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Nicolae Radu Zabet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | | | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| |
Collapse
|
84
|
Kyriakopoulos C, Nordström K, Kramer PL, Gottfreund JY, Salhab A, Arand J, Müller F, von Meyenn F, Ficz G, Reik W, Wolf V, Walter J, Giehr P. A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. CELL REPORTS METHODS 2022; 2:100187. [PMID: 35475220 PMCID: PMC9017147 DOI: 10.1016/j.crmeth.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 10/25/2022]
Abstract
A precise understanding of DNA methylation dynamics is of great importance for a variety of biological processes including cellular reprogramming and differentiation. To date, complex integration of multiple and distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic efficiency profiling) a versatile approach to infer dynamic efficiencies of DNA modifying enzymes. GwEEP relies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quantitative enzyme efficiencies with reported confidence around the estimates. GwEEP predicts de novo and maintenance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design also allows capturing further oxidation processes given available data. We show that GwEEP predicts accurately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the hypothesized mutual interference between Dnmts and Tets.
Collapse
Affiliation(s)
| | - Karl Nordström
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Paula Linh Kramer
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Judith Yumiko Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Julia Arand
- Division of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabian Müller
- Department of Integrative Cellular Biology and Bioinformatics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| | - Gabriella Ficz
- Haemato-Oncology, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wolf Reik
- Epigenetics Department, Babraham Institute, Cambridge CB22 3AT, UK
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| |
Collapse
|
85
|
Fukuda K, Makino Y, Kaneko S, Shimura C, Okada Y, Ichiyanagi K, Shinkai Y. Transcriptional states of retroelement-inserted regions and specific KRAB zinc finger protein association are correlated with DNA methylation of retroelements in human male germ cells. eLife 2022; 11:76822. [PMID: 35315771 PMCID: PMC8967385 DOI: 10.7554/elife.76822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
DNA methylation, repressive histone modifications, and PIWI-interacting RNAs are essential for controlling retroelement silencing in mammalian germ lines. Dysregulation of retroelement silencing is associated with male sterility. Although retroelement silencing mechanisms have been extensively studied in mouse germ cells, little progress has been made in humans. Here, we show that the Krüppel-associated box domain zinc finger proteins are associated with DNA methylation of retroelements in human primordial germ cells. Further, we show that the hominoid-specific retroelement SINE-VNTR-Alus (SVA) is subjected to transcription-directed de novo DNA methylation during human spermatogenesis. The degree of de novo DNA methylation in SVAs varies among human individuals, which confers significant inter-individual epigenetic variation in sperm. Collectively, our results highlight potential molecular mechanisms for the regulation of retroelements in human male germ cells.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN, Wako, Japan
| | - Yoshinori Makino
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Kaneko
- Department of Obstetrics and Gynecology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | | | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
86
|
Kaneko-Ishino T, Ishino F. The Evolutionary Advantage in Mammals of the Complementary Monoallelic Expression Mechanism of Genomic Imprinting and Its Emergence From a Defense Against the Insertion Into the Host Genome. Front Genet 2022; 13:832983. [PMID: 35309133 PMCID: PMC8928582 DOI: 10.3389/fgene.2022.832983] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
In viviparous mammals, genomic imprinting regulates parent-of-origin-specific monoallelic expression of paternally and maternally expressed imprinted genes (PEGs and MEGs) in a region-specific manner. It plays an essential role in mammalian development: aberrant imprinting regulation causes a variety of developmental defects, including fetal, neonatal, and postnatal lethality as well as growth abnormalities. Mechanistically, PEGs and MEGs are reciprocally regulated by DNA methylation of germ-line differentially methylated regions (gDMRs), thereby exhibiting eliciting complementary expression from parental genomes. The fact that most gDMR sequences are derived from insertion events provides strong support for the claim that genomic imprinting emerged as a host defense mechanism against the insertion in the genome. Recent studies on the molecular mechanisms concerning how the DNA methylation marks on the gDMRs are established in gametes and maintained in the pre- and postimplantation periods have further revealed the close relationship between genomic imprinting and invading DNA, such as retroviruses and LTR retrotransposons. In the presence of gDMRs, the monoallelic expression of PEGs and MEGs confers an apparent advantage by the functional compensation that takes place between the two parental genomes. Thus, it is likely that genomic imprinting is a consequence of an evolutionary trade-off for improved survival. In addition, novel genes were introduced into the mammalian genome via this same surprising and complex process as imprinted genes, such as the genes acquired from retroviruses as well as those that were duplicated by retropositioning. Importantly, these genes play essential/important roles in the current eutherian developmental system, such as that in the placenta and/or brain. Thus, genomic imprinting has played a critically important role in the evolutionary emergence of mammals, not only by providing a means to escape from the adverse effects of invading DNA with sequences corresponding to the gDMRs, but also by the acquisition of novel functions in development, growth and behavior via the mechanism of complementary monoallelic expression.
Collapse
Affiliation(s)
- Tomoko Kaneko-Ishino
- School of Medicine, Tokai University, Isehara, Japan
- *Correspondence: Tomoko Kaneko-Ishino, ; Fumitoshi Ishino,
| | - Fumitoshi Ishino
- Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Tomoko Kaneko-Ishino, ; Fumitoshi Ishino,
| |
Collapse
|
87
|
Zhou S, Sakashita A, Yuan S, Namekawa SH. Retrotransposons in the Mammalian Male Germline. Sex Dev 2022; 16:404-422. [PMID: 35231923 PMCID: PMC11974347 DOI: 10.1159/000520683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons are a subset of DNA sequences that constitute a large part of the mammalian genome. They can translocate autonomously or non-autonomously, potentially jeopardizing the heritable germline genome. Retrotransposons coevolved with the host genome, and the germline is the prominent battlefield between retrotransposons and the host genome to maximize their mutual fitness. Host genomes have developed various mechanisms to suppress and control retrotransposons, including DNA methylation, histone modifications, and Piwi-interacting RNA (piRNA), for their own benefit. Thus, rapidly evolved retrotransposons often acquire positive functions, including gene regulation within the germline, conferring reproductive fitness in a species over the course of evolution. The male germline serves as an ideal model to examine the regulation and evolution of retrotransposons, resulting in genomic co-evolution with the host genome. In this review, we summarize and discuss the regulatory mechanisms of retrotransposons, stage-by-stage, during male germ cell development, with a particular focus on mice as an extensively studied mammalian model, highlighting suppression mechanisms and emerging functions of retrotransposons in the male germline.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
88
|
Wedd L, Kucharski R, Maleszka R. DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:159-176. [DOI: 10.1007/978-3-031-11454-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
89
|
Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:1-19. [DOI: 10.1007/978-3-031-11454-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
90
|
DNA Methyltransferases and DNA Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:349-361. [DOI: 10.1007/978-3-031-11454-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
91
|
Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:111-136. [PMID: 36350508 PMCID: PMC9815518 DOI: 10.1007/978-3-031-11454-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.
Collapse
|
92
|
Moody SC, Whiley PAF, Western PS, Loveland KL. The Impact of Activin A on Fetal Gonocytes: Chronic Versus Acute Exposure Outcomes. Front Endocrinol (Lausanne) 2022; 13:896747. [PMID: 35721752 PMCID: PMC9205402 DOI: 10.3389/fendo.2022.896747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A, a TGFβ superfamily member, is important for normal testis development through its actions on Sertoli cell development. Our analyses of altered activin A mouse models indicated gonocyte abnormalities, implicating activin A as a key determinant of early germline formation. Whether it acts directly or indirectly on germ cells is not understood. In humans, the fetal testis may be exposed to abnormally elevated activin A levels during preeclampsia, maternal infections, or following ingestion of certain medications. We hypothesized that this may impact fetal testis development and ultimately affect adult fertility. Germ cells from two mouse models of altered activin bioactivity were analysed. RNA-Seq of gonocytes purified from E13.5 and E15.5 Inhba KO mice (activin A subunit knockout) identified 46 and 44 differentially expressed genes (DEGs) respectively, and 45 in the E13.5 Inha KO (inhibin alpha subunit knockout; increased activin A) gonocytes. To discern direct effects of altered activin bioactivity on germline transcripts, isolated E13.5 gonocytes were cultured for 24h with activin A or with the activin/Nodal/TGFβ inhibitor, SB431542. Gonocytes responded directly to altered signalling, with activin A promoting a more differentiated transcript profile (increased differentiation markers Dnmt3l, Nanos2 and Piwil4; decreased early germ cell markers Kit and Tdgf1), while SB431542 had a reciprocal effect (decreased Nanos2 and Piwil4; increased Kit). To delineate direct and indirect effects of activin A exposure on gonocytes, whole testes were cultured 48h with activin A or SB431542 and collected for histological and transcript analyses, or EdU added at the end of culture to measure germ and Sertoli cell proliferation using flow cytometry. Activin increased, and SB431542 decreased, Sertoli cell proliferation. SB431542-exposure resulted in germ cells escaping mitotic arrest. Analysis of FACS-isolated gonocytes following whole testis culture showed SB431542 increased the early germ cell marker Kit, however there was a general reduction in the impact of altered activin A bioavailability in the normal somatic cell environment. This multifaceted approach identifies a capacity for activin A to directly influence fetal germ cell development, highlighting the potential for altered activin A levels in utero to increase the risk of testicular pathologies that arise from impaired germline maturation.
Collapse
Affiliation(s)
- Sarah C. Moody
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Patrick S. Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Kate L. Loveland,
| |
Collapse
|
93
|
Jurkowska RZ, Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:69-110. [DOI: 10.1007/978-3-031-11454-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
94
|
Nicolau M, Picault N, Moissiard G. The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells 2021; 10:cells10112952. [PMID: 34831175 PMCID: PMC8616336 DOI: 10.3390/cells10112952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
95
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
96
|
Zhou Q, Xiong Y, Qu B, Bao A, Zhang Y. DNA Methylation and Recurrent Pregnancy Loss: A Mysterious Compass? Front Immunol 2021; 12:738962. [PMID: 34745108 PMCID: PMC8566749 DOI: 10.3389/fimmu.2021.738962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a common and severe pathological pregnancy, whose pathogenesis is not fully understood. With the development of epigenetics, the study of DNA methylation, provides a new perspective on the pathogenesis and therapy of RPL. The abnormal DNA methylation of imprinted genes, placenta-specific genes, immune-related genes and sperm DNA may, directly or indirectly, affect embryo implantation, growth and development, leading to the occurrence of RPL. In addition, the unique immune tolerogenic microenvironment formed at the maternal-fetal interface has an irreplaceable effect on the maintenance of pregnancy. In view of these, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of DNA methylation have attracted a lot of research interest. This review summarizes the research progress of DNA methylation involved in the occurrence of RPL and the regulation of the maternal-fetal immune microenvironment. The review provides insights into the personalized diagnosis and treatment of RPL.
Collapse
Affiliation(s)
- Qi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhe Xiong
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
97
|
Kameda T, Nakashima H, Takizawa T, Miura F, Ito T, Nakashima K, Imamura T. Neuronal activation modulates enhancer activity of genes for excitatory synaptogenesis through de novo DNA methylation. J Reprod Dev 2021; 67:369-379. [PMID: 34615840 PMCID: PMC8668374 DOI: 10.1262/jrd.2021-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Post-mitotic neurons do exhibit DNA methylation changes, contrary to the longstanding belief that the epigenetic pattern in terminally differentiated cells is essentially unchanged. While
the mechanism and physiological significance of DNA demethylation in neurons have been extensively elucidated, the occurrence of de novo DNA methylation and its impacts have
been much less investigated. In the present study, we showed that neuronal activation induces de novo DNA methylation at enhancer regions, which can repress target genes in
primary cultured hippocampal neurons. The functional significance of this de novo DNA methylation was underpinned by the demonstration that inhibition of DNA
methyltransferase (DNMT) activity decreased neuronal activity-induced excitatory synaptogenesis. Overexpression of WW and C2 domain-containing 1 (Wwc1), a representative
target gene of de novo DNA methylation, could phenocopy this DNMT inhibition-induced decrease in synaptogenesis. We found that both DNMT1 and DNMT3a were required for
neuronal activity-induced de novo DNA methylation of the Wwc1 enhancer. Taken together, we concluded that neuronal activity-induced de novo
DNA methylation that affects gene expression has an impact on neuronal physiology that is comparable to that of DNA demethylation. Since the different requirements of DNMTs for germ cell and
embryonic development are known, our findings also have considerable implications for future studies on epigenomics in the field of reproductive biology.
Collapse
Affiliation(s)
- Tomonori Kameda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma 371-8511, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
98
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
99
|
Liu Y, Wang W, Liang S, Wang L, Zou Y, Wu Z, Zou C, Wu Q, You F. Sexual dimorphism of DNA and histone methylation profiles in the gonads of the olive flounder Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1341-1352. [PMID: 34264445 DOI: 10.1007/s10695-021-00986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
DNA methylation and histone methylation are two types of the most important epigenetic modifications. However, research on their differential expression in gonads of male and female fish is limited. In this study, we examined the characteristics of DNA methylation and tri-methylation of lysine 4 of histone H3 (H3K4me3) modification profiles in the gonads of the wild-type and meio-gynogenetic olive flounders Paralichthys olivaceus. Enzyme-linked immunosorbent assay (ELISA) analysis revealed that the global DNA methylation level was higher in the testis than in the ovary. Real-time quantitative PCR (qPCR) results indicated that maintenance DNA methyltransferase gene dnmt1 and de novo DNA methyltransferase gene dnmt3a are highly expressed in the ovary, while DNA demethyltransferase genes tets are highly expressed in the testis. The inconsistency of DNA methylation and methyltransferase genes in the gonads might associate with the differential distribution in the testis. 5-mC mainly located in the spermatids of the testis was shown with immunohistochemistry (IHC). Furtherly, dnmt3a and tets are mainly located in spermatocytes and oocytes with in situ hybridization (ISH) analysis. As for H3K4me3, total level is higher in the ovary detected with western blot assay. IHC results showed that the signals of H3K4me3 in Sertoli cells of the testis were stronger than those in spermatocytes and spermatids. Methyltransferase gene kmt2b and demethylase genes kdm5a and kdm5c also exhibit much higher expression in the testis with qPCR, and ISH stronger signals of kmt2b and kdm5s were detected in spermatocytes. These results implied that DNA methylation and H3K4me3 are involved in the flounder sex differences and gametogenesis.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaowan Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
100
|
Cai S, Quan S, Yang G, Chen M, Ye Q, Wang G, Yu H, Wang Y, Qiao S, Zeng X. Nutritional Status Impacts Epigenetic Regulation in Early Embryo Development: A Scoping Review. Adv Nutr 2021; 12:1877-1892. [PMID: 33873200 PMCID: PMC8483970 DOI: 10.1093/advances/nmab038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|