51
|
Life-Course Associations between Blood Pressure-Related Polygenic Risk Scores and Hypertension in the Bogalusa Heart Study. Genes (Basel) 2022; 13:genes13081473. [PMID: 36011384 PMCID: PMC9408577 DOI: 10.3390/genes13081473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic information may help to identify individuals at increased risk for hypertension in early life, prior to the manifestation of elevated blood pressure (BP) values. We examined 369 Black and 832 White Bogalusa Heart Study (BHS) participants recruited in childhood and followed for approximately 37 years. The multi-ancestry genome-wide polygenic risk scores (PRSs) for systolic BP (SBP), diastolic BP (DBP), and hypertension were tested for an association with incident hypertension and stage 2 hypertension using Cox proportional hazards models. Race-stratified analyses were adjusted for baseline age, age2, sex, body mass index, genetic principal components, and BP. In Black participants, each standard deviation increase in SBP and DBP PRS conferred a 38% (p = 0.009) and 22% (p = 0.02) increased risk of hypertension and a 74% (p < 0.001) and 50% (p < 0.001) increased risk of stage 2 hypertension, respectively, while no association was observed with the hypertension PRSs. In Whites, each standard deviation increase in SBP, DBP, and hypertension PRS conferred a 24% (p < 0.05), 29% (p = 0.01), and 25% (p < 0.001) increased risk of hypertension, and a 27% (p = 0.08), 29% (0.01), and 42% (p < 0.001) increased risk of stage 2 hypertension, respectively. The addition of BP PRSs to the covariable-only models generally improved the C-statistics (p < 0.05). Multi-ancestry BP PRSs demonstrate the utility of genomic information in the early life prediction of hypertension.
Collapse
|
52
|
Chew NW, Chong B, Ng CH, Kong G, Chin YH, Xiao W, Lee M, Dan YY, Muthiah MD, Foo R. The genetic interactions between non-alcoholic fatty liver disease and cardiovascular diseases. Front Genet 2022; 13:971484. [PMID: 36035124 PMCID: PMC9399730 DOI: 10.3389/fgene.2022.971484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing debate on whether non-alcoholic fatty liver disease (NAFLD) is an active contributor or an innocent bystander in the development of cardiovascular disease (CVD) has sparked interests in understanding the common mediators between the two biologically distinct entities. This comprehensive review identifies and curates genetic studies of NAFLD overlapping with CVD, and describes the colinear as well as opposing correlations between genetic associations for the two diseases. Here, CVD described in relation to NAFLD are coronary artery disease, cardiomyopathy and atrial fibrillation. Unique findings of this review included certain NAFLD susceptibility genes that possessed cardioprotective properties. Moreover, the complex interactions of genetic and environmental risk factors shed light on the disparity in genetic influence on NAFLD and its incident CVD. This serves to unravel NAFLD-mediated pathways in order to reduce CVD events, and helps identify targeted treatment strategies, develop polygenic risk scores to improve risk prediction and personalise disease prevention.
Collapse
Affiliation(s)
- Nicholas W.S. Chew
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Gwyneth Kong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Wang Xiao
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D. Muthiah
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| |
Collapse
|
53
|
Kelly TN, Sun X, He KY, Brown MR, Taliun SAG, Hellwege JN, Irvin MR, Mi X, Brody JA, Franceschini N, Guo X, Hwang SJ, de Vries PS, Gao Y, Moscati A, Nadkarni GN, Yanek LR, Elfassy T, Smith JA, Chung RH, Beitelshees AL, Patki A, Aslibekyan S, Blobner BM, Peralta JM, Assimes TL, Palmas WR, Liu C, Bress AP, Huang Z, Becker LC, Hwa CM, O'Connell JR, Carlson JC, Warren HR, Das S, Giri A, Martin LW, Craig Johnson W, Fox ER, Bottinger EP, Razavi AC, Vaidya D, Chuang LM, Chang YPC, Naseri T, Jain D, Kang HM, Hung AM, Srinivasasainagendra V, Snively BM, Gu D, Montasser ME, Reupena MS, Heavner BD, LeFaive J, Hixson JE, Rice KM, Wang FF, Nielsen JB, Huang J, Khan AT, Zhou W, Nierenberg JL, Laurie CC, Armstrong ND, Shi M, Pan Y, Stilp AM, Emery L, Wong Q, Hawley NL, Minster RL, Curran JE, Munroe PB, Weeks DE, North KE, Tracy RP, Kenny EE, Shimbo D, Chakravarti A, Rich SS, Reiner AP, Blangero J, Redline S, Mitchell BD, Rao DC, Ida Chen YD, Kardia SLR, Kaplan RC, Mathias RA, He J, Psaty BM, Fornage M, Loos RJF, Correa A, Boerwinkle E, Rotter JI, Kooperberg C, Edwards TL, et alKelly TN, Sun X, He KY, Brown MR, Taliun SAG, Hellwege JN, Irvin MR, Mi X, Brody JA, Franceschini N, Guo X, Hwang SJ, de Vries PS, Gao Y, Moscati A, Nadkarni GN, Yanek LR, Elfassy T, Smith JA, Chung RH, Beitelshees AL, Patki A, Aslibekyan S, Blobner BM, Peralta JM, Assimes TL, Palmas WR, Liu C, Bress AP, Huang Z, Becker LC, Hwa CM, O'Connell JR, Carlson JC, Warren HR, Das S, Giri A, Martin LW, Craig Johnson W, Fox ER, Bottinger EP, Razavi AC, Vaidya D, Chuang LM, Chang YPC, Naseri T, Jain D, Kang HM, Hung AM, Srinivasasainagendra V, Snively BM, Gu D, Montasser ME, Reupena MS, Heavner BD, LeFaive J, Hixson JE, Rice KM, Wang FF, Nielsen JB, Huang J, Khan AT, Zhou W, Nierenberg JL, Laurie CC, Armstrong ND, Shi M, Pan Y, Stilp AM, Emery L, Wong Q, Hawley NL, Minster RL, Curran JE, Munroe PB, Weeks DE, North KE, Tracy RP, Kenny EE, Shimbo D, Chakravarti A, Rich SS, Reiner AP, Blangero J, Redline S, Mitchell BD, Rao DC, Ida Chen YD, Kardia SLR, Kaplan RC, Mathias RA, He J, Psaty BM, Fornage M, Loos RJF, Correa A, Boerwinkle E, Rotter JI, Kooperberg C, Edwards TL, Abecasis GR, Zhu X, Levy D, Arnett DK, Morrison AC. Insights From a Large-Scale Whole-Genome Sequencing Study of Systolic Blood Pressure, Diastolic Blood Pressure, and Hypertension. Hypertension 2022; 79:1656-1667. [PMID: 35652341 PMCID: PMC9593435 DOI: 10.1161/hypertensionaha.122.19324] [Show More Authors] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The availability of whole-genome sequencing data in large studies has enabled the assessment of coding and noncoding variants across the allele frequency spectrum for their associations with blood pressure. METHODS We conducted a multiancestry whole-genome sequencing analysis of blood pressure among 51 456 Trans-Omics for Precision Medicine and Centers for Common Disease Genomics program participants (stage-1). Stage-2 analyses leveraged array data from UK Biobank (N=383 145), Million Veteran Program (N=318 891), and Reasons for Geographic and Racial Differences in Stroke (N=10 643) participants, along with whole-exome sequencing data from UK Biobank (N=199 631) participants. RESULTS Two blood pressure signals achieved genome-wide significance in meta-analyses of stage-1 and stage-2 single variant findings (P<5×10-8). Among them, a rare intergenic variant at novel locus, LOC100506274, was associated with lower systolic blood pressure in stage-1 (beta [SE]=-32.6 [6.0]; P=4.99×10-8) but not stage-2 analysis (P=0.11). Furthermore, a novel common variant at the known INSR locus was suggestively associated with diastolic blood pressure in stage-1 (beta [SE]=-0.36 [0.07]; P=4.18×10-7) and attained genome-wide significance in stage-2 (beta [SE]=-0.29 [0.03]; P=7.28×10-23). Nineteen additional signals suggestively associated with blood pressure in meta-analysis of single and aggregate rare variant findings (P<1×10-6 and P<1×10-4, respectively). DISCUSSION We report one promising but unconfirmed rare variant for blood pressure and, more importantly, contribute insights for future blood pressure sequencing studies. Our findings suggest promise of aggregate analyses to complement single variant analysis strategies and the need for larger, diverse samples, and family studies to enable robust rare variant identification.
Collapse
Affiliation(s)
- Tanika N Kelly
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
- Translational Sciences Institute (T.N.K., J.H.), Tulane University, New Orleans, LA
| | - Xiao Sun
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Karen Y He
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH (K.Y.H., X.Z.)
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Sarah A Gagliano Taliun
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine (J.N.H.), Vanderbilt University Medical Center, Nashville, TN
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
| | - Marguerite R Irvin
- Department of Epidemiology (M.R.I., S.A., N.D.A.), University of Alabama at Birmingham' AL
| | - Xuenan Mi
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.E.N.), University of Washington, Seattle' WA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill (N.F.)
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Shih-Jen Hwang
- National Heart, Lung and Blood Institute, Population Sciences Branch, National Institutes of Health, Framingham, MA (S.-J.H.)
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Yan Gao
- Department of Physiology and Biophysics (Y.G., E.E.K., R.J.F.L.), University of Mississippi Medical Center, Jackson' MS
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N.N.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N.N.), The Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine (G.N.N.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine (L.R.Y., D.V.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tali Elfassy
- Division of Epidemiology, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami' FL (T.E.)
| | - Jennifer A Smith
- Department of Epidemiology (J.A.S., S.L.R.K.), University of Michigan, Ann Arbor' MI
| | - Ren-Hua Chung
- Institute of Population Sciences, National Health Research Institutes, Taiwan (R.-H.C.)
| | - Amber L Beitelshees
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | - Amit Patki
- Department of Biostatistics (A.P., V.S.), University of Alabama at Birmingham' AL
| | - Stella Aslibekyan
- Department of Epidemiology (M.R.I., S.A., N.D.A.), University of Alabama at Birmingham' AL
| | - Brandon M Blobner
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services (B.M.P.), University of Washington, Seattle' WA
- Department of Human Genetics (B.M.B., R.L.M., D.E.W.), University of Pittsburgh, PA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville' TX (J.M.P., J.E.C., J.B.)
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford' CA (T.L.A.)
- Division of Cardiology Medicine, Palo Alto VA HealthCare System, Palo Alto' CA (T.L.A.)
| | - Walter R Palmas
- Division of General Medicine, Department of Medicine, Columbia University, New York, NY (W.R.P.)
| | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston' MA (C.L.)
| | - Adam P Bress
- Division of Health System Innovation and Research, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City' UT (A.P.B.)
| | - Zhijie Huang
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine (L.C.B.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chii-Min Hwa
- Taichung Veterans General Hospital, Taichung, Taiwan (C.-M.H.)
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | - Jenna C Carlson
- Department of Biostatistics, Graduate School of Public Health (J.C.C.), University of Pittsburgh, PA
| | - Helen R Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
| | - Sayantan Das
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Ayush Giri
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN (A.G.)
| | - Lisa W Martin
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC (L.W.M.)
| | - W Craig Johnson
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Ervin R Fox
- Division of Cardiology, Department of Medicine (E.R.F.), University of Mississippi Medical Center, Jackson' MS
| | - Erwin P Bottinger
- Hasso Plattner Institute for Digital Health at Mount Sinai (E.P.B.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander C Razavi
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Dhananjay Vaidya
- Division of General Internal Medicine, Department of Medicine (L.R.Y., D.V.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei' Taiwan (L.-M.C.)
| | - Yen-Pei C Chang
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia' Samoa (T.N.)
| | - Deepti Jain
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Hyun Min Kang
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Department of Medicine (A.M.H.), Vanderbilt University Medical Center, Nashville, TN
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
| | | | - Beverly M Snively
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC (B.M.S.)
| | - Dongfeng Gu
- Department of Epidemiology and Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G., J.H.)
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | | | - Benjamin D Heavner
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Jonathon LeFaive
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - James E Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Kenneth M Rice
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Fei Fei Wang
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Jonas B Nielsen
- Department of Internal Medicine: Cardiology (J.B.N.), University of Michigan, Ann Arbor' MI
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark (J.B.N.)
| | - Jianfeng Huang
- Translational Sciences Institute (T.N.K., J.H.), Tulane University, New Orleans, LA
- Department of Epidemiology and Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G., J.H.)
| | - Alyna T Khan
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics (W.Z.), University of Michigan, Ann Arbor' MI
| | - Jovia L Nierenberg
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Cathy C Laurie
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Nicole D Armstrong
- Department of Epidemiology (M.R.I., S.A., N.D.A.), University of Alabama at Birmingham' AL
| | - Mengyao Shi
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Yang Pan
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Adrienne M Stilp
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Leslie Emery
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Quenna Wong
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Nicola L Hawley
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT (N.L.H.)
| | - Ryan L Minster
- Department of Human Genetics (B.M.B., R.L.M., D.E.W.), University of Pittsburgh, PA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville' TX (J.M.P., J.E.C., J.B.)
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
| | - Daniel E Weeks
- Department of Human Genetics (B.M.B., R.L.M., D.E.W.), University of Pittsburgh, PA
- Department of Biostatistics (D.E.W.), University of Pittsburgh, PA
| | - Kari E North
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.E.N.), University of Washington, Seattle' WA
| | - Russell P Tracy
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington' VT (R.P.T.)
| | - Eimear E Kenny
- Department of Physiology and Biophysics (Y.G., E.E.K., R.J.F.L.), University of Mississippi Medical Center, Jackson' MS
- Department of Genetics and Genomics (E.E.K.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daichi Shimbo
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (D.S.)
| | - Aravinda Chakravarti
- Department of Medicine (A.C.), University of Mississippi Medical Center, Jackson' MS
| | - Stephen S Rich
- Center for Public Health, University of Virginia, Charlottesville' VA (S.S.R.)
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (A.P.R., C.K.)
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville' TX (J.M.P., J.E.C., J.B.)
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA (S.R.)
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore' MD (B.D.M.)
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R.)
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Sharon L R Kardia
- Department of Epidemiology (J.A.S., S.L.R.K.), University of Michigan, Ann Arbor' MI
| | - Robert C Kaplan
- Division of Social Medicine, Albert Einstein College of Medicine, Bronx, NY (R.C.K.)
| | - Rasika A Mathias
- Division of Allergy & Clinical Immunology, Department of Medicine (R.A.M.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jiang He
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Bruce M Psaty
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
- Kaiser Permanente Washington Health Research Institute, Seattle' WA (B.M.P.)
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine (M.F.), The University of Texas Health Science Center at Houston' Houston' TX
- Human Genetics Center (M.F.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Ruth J F Loos
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
- The Mindich Child Health and Development Institute (R.J.F.L.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Correa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY (A.C.)
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX (E.B.)
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (A.P.R., C.K.)
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine (T.L.E.), Vanderbilt University Medical Center, Nashville, TN
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
| | - Gonçalo R Abecasis
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH (K.Y.H., X.Z.)
| | - Daniel Levy
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY (D.K.A.)
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| |
Collapse
|
54
|
Fujii R, Hishida A, Nakatochi M, Tsuboi Y, Suzuki K, Kondo T, Ikezaki H, Hara M, Okada R, Tamura T, Shimoshikiryo I, Suzuki S, Koyama T, Kuriki K, Takashima N, Arisawa K, Momozawa Y, Kubo M, Takeuchi K, Wakai K, Matsuo K, Tanaka K, Miura K, Kita Y, Takezaki T, Nagase H, Mikami H, Uehara R, Narimatsu H. Associations of Genome-Wide Polygenic Risk Score and Risk Factors With Hypertension in a Japanese Population. Circ Genom Precis Med 2022; 15:e003612. [DOI: 10.1161/circgen.121.003612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Although many polygenic risk scores (PRS) for cardiovascular traits have been developed in European populations, it is an urgent task to construct a PRS and to evaluate its ability in non-European populations. We developed a genome-wide PRS for blood pressure in a Japanese population and examined the associations between this PRS and hypertension prevalence.
Methods:
We performed a cross-sectional study in 11 252 Japanese individuals who participated in the J-MICC (Japan Multi-Institutional Collaborative Cohort) study. Using publicly available GWAS summary statistics from Biobank Japan, we developed the PRS in the target data (n=7876). With >30 000 single nucleotide polymorphisms, we evaluated PRS performance in the test data (n=3376). Hypertension was defined as systolic blood pressure of 130 mm Hg or more, or diastolic blood pressure of 85 mm Hg or more, or taking an antihypertensive drug.
Results:
Compared with the middle PRS quintile, the prevalence of hypertension at the top PRS quintile was higher independently from traditional risk factors (odds ratio, 1.73 [95% CI, 1.32–2.27]). The difference of mean systolic blood pressure and diastolic blood pressure between the middle and the top PRS quintile was 4.55 (95% CI, 2.26–6.85) and 2.32 (95% CI, 0.86–3.78) mm Hg, respectively. Subgroups reflecting combinations of Japanese PRS and modifiable lifestyles and factors (smoking, alcohol intake, sedentary time, and obesity) were associated with the prevalence of hypertension. A European-derived PRS was not associated with hypertension in our participants.
Conclusions:
A PRS for blood pressure was significantly associated with hypertension and BP traits in a general Japanese population. Our findings also highlighted the importance of a combination of PRS and risk factors for identifying high-risk subgroups.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan (R.F., Y.T., K.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of interactive Medical & Healthcare Systems, Department of Integrated Health Sciences (R.F., T. Kondo), Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Biomedicine, Eurac Research (affiliated to the University of Lübeck), Bolzano/Bozen, Italy (R.F.)
| | - Asahi Hishida
- Department of Preventive Medicine (A.H., R.O., T.T., K.T., K.W.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences (M.N.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan (R.F., Y.T., K.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan (R.F., Y.T., K.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Kondo
- Division of interactive Medical & Healthcare Systems, Department of Integrated Health Sciences (R.F., T. Kondo), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Ikezaki
- Department of Comprehensive General Internal Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (H.I.)
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan (M.H.)
| | - Rieko Okada
- Department of Preventive Medicine (A.H., R.O., T.T., K.T., K.W.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Tamura
- Department of Preventive Medicine (A.H., R.O., T.T., K.T., K.W.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ippei Shimoshikiryo
- Department of International Island & Community Medicine, Kagoshima University Graduate School of Medical & Dental Sciences, Kagoshima, Japan (I.S.)
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan (S.S.)
| | - Teruhide Koyama
- Department of Epidemiology for Community Health & Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan (T. Koyama)
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food & Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka (K.K.)
| | - Naoyuki Takashima
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan (N.T.)
- Department of Public Health, Kindai University Faculty of Medicine, Osaka, Japan (N.T.)
| | - Kokichi Arisawa
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Scinces, Tokushima, Japan (K.A.)
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan (Y.M., M.K.)
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan (Y.M., M.K.)
| | - Kenji Takeuchi
- Department of Preventive Medicine (A.H., R.O., T.T., K.T., K.W.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine (A.H., R.O., T.T., K.T., K.W.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Rooney M, Hughes CF, Strain JJ, Clements M, McNulty H, Ward M. Impact of the MTHFR C677T polymorphism on blood pressure and related central hemodynamic parameters in healthy adults. J Hum Nutr Diet 2022; 35:689-700. [PMID: 35821207 PMCID: PMC9541256 DOI: 10.1111/jhn.13061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The C677T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR) is associated with an increased risk of hypertension and cardiovascular disease. Riboflavin, the MTHFR cofactor, is an important modulator of blood pressure (BP) in adults homozygous for this polymorphism (TT genotype). The effect of this genetic variant on BP and related central hemodynamic parameters in healthy adults has not been previously investigated and was examined in this study. METHODOLOGY Brachial BP, central BP and pulse wave velocity (PWV; SphygmoCor® XCEL) were measured in adults 18-65 years pre-screened for MTHFR genotype. Riboflavin status was assessed using the erythrocyte glutathione reductase activation coefficient (EGRac) assay. RESULTS 242 adults with the MTHFR 677TT genotype and age-matched non-TT (CC/CT) genotype controls were identified from a total cohort of 2,546 adults pre-screened for MTHFR genotype. The TT genotype was found to be an independent determinant of hypertension (P=0.010), along with low riboflavin status (P=0.002). Brachial systolic and diastolic BP were higher in TT v non-TT adults by 5.5±1.2 mmHg and 2.4±0.9 mmHg, respectively (both P<0.001). A stronger phenotype was observed in females, with an almost 10 mmHg difference in mean systolic BP in TT v non-TT genotype groups: 134.9 (95% CI 132.1-137.6) vs 125.2 (95% CI 122.3-128.0) mmHg; P<0.001. In addition, PWV was faster in women with the TT genotype (P=0.043). CONCLUSION This study provides the first evidence that brachial and central BP are significantly higher in adults with the variant MTHFR 677TT genotype, and that the BP phenotype is more pronounced in females. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Martina Rooney
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Rd, Coleraine, BT52 1SA, Northern, Ireland
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Rd, Coleraine, BT52 1SA, Northern, Ireland
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Rd, Coleraine, BT52 1SA, Northern, Ireland
| | - Michelle Clements
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Rd, Coleraine, BT52 1SA, Northern, Ireland
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Rd, Coleraine, BT52 1SA, Northern, Ireland
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Rd, Coleraine, BT52 1SA, Northern, Ireland
| |
Collapse
|
56
|
Hsieh MH, Nfor ON, Ho CC, Hsu SY, Lee CT, Jan CF, Hsieh PC, Liaw YP. Association Between MTHFR rs17367504 Polymorphism and Major Depressive Disorder in Taiwan: Evidence for Effect Modification by Exercise Habits. Front Psychiatry 2022; 13:821448. [PMID: 35800018 PMCID: PMC9253418 DOI: 10.3389/fpsyt.2022.821448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/AIM Recent studies reported that folate supplementation has beneficial effects on major depression. The Methylenetetrahydrofolate reductase (MTHFR) enzyme is crucial in folate metabolism. This population-based study examined the association between MTHFR rs17367504 polymorphism and major depressive disorder based on exercise habits. METHODS Taiwan Biobank (TWB) provided demographic and genotype data between 2008 and 2015. The biobank participants were Taiwanese aged 30 to 70. Data on major depressive disorder (MDD) were obtained from the National Health Insurance Research Database (NHIRD). RESULTS A total of 636 individuals were identified with MDD, whereas 17,298 individuals were considered controls. The associations of MTHFR rs17367504 and exercise with MDD risk were estimated using logistic regression models. The distribution of MTHFR rs17367504 genotype frequencies differed significantly between the MDD and control groups. We found that, compared with the AA genotype, the GG genotype was associated with a significantly increased risk of MDD [adjusted odds ratio (aOR), 1.76; 95% confidence interval (CI), 1.05-2.94; p = 0.033]. We found an interaction (p = 0.04) between rs17367504 and exercise, a well-known protective factor for MDD. A substantial increase in the risk of MDD was found among those with GG genotypes who did not exercise (aOR, 2.93; 95% CI, 1.66-5.17; p < 0.001). CONCLUSIONS Our findings indicate that MDD is related to MTHFR rs17367504 and exercise, though the mechanisms remain to be determined.
Collapse
Affiliation(s)
- Ming-Hong Hsieh
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei, Taiwan
- Research and Development Center for Physical Education, Health, and Information Technology, Fu Jen Catholic University, New Taipei, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chun-Te Lee
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Cheng-Feng Jan
- Office of Physical Education, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Pao-Chun Hsieh
- Department of Obstetrics and Gynecology, Chung-Kang Branch, Cheng Ching General Hospital, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Medical Imaging and Big Data Center, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
57
|
Zhang X, Lucas AM, Veturi Y, Drivas TG, Bone WP, Verma A, Chung WK, Crosslin D, Denny JC, Hebbring S, Jarvik GP, Kullo I, Larson EB, Rasmussen-Torvik LJ, Schaid DJ, Smoller JW, Stanaway IB, Wei WQ, Weng C, Ritchie MD. Large-scale genomic analyses reveal insights into pleiotropy across circulatory system diseases and nervous system disorders. Nat Commun 2022; 13:3428. [PMID: 35701404 PMCID: PMC9198016 DOI: 10.1038/s41467-022-30678-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Clinical and epidemiological studies have shown that circulatory system diseases and nervous system disorders often co-occur in patients. However, genetic susceptibility factors shared between these disease categories remain largely unknown. Here, we characterized pleiotropy across 107 circulatory system and 40 nervous system traits using an ensemble of methods in the eMERGE Network and UK Biobank. Using a formal test of pleiotropy, five genomic loci demonstrated statistically significant evidence of pleiotropy. We observed region-specific patterns of direction of genetic effects for the two disease categories, suggesting potential antagonistic and synergistic pleiotropy. Our findings provide insights into the relationship between circulatory system diseases and nervous system disorders which can provide context for future prevention and treatment strategies.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anastasia M Lucas
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yogasudha Veturi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore G Drivas
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William P Bone
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anurag Verma
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, NY, 10032, USA
| | - David Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, 98109, USA
| | - Joshua C Denny
- Department of Medicine, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, 37230, USA
| | - Scott Hebbring
- Center for Human Genetics, Marshfield Clinic, Marshfield, WI, 54449, USA
| | - Gail P Jarvik
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, 98109, USA
| | - Iftikhar Kullo
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ian B Stanaway
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, 98109, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, 37230, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York, NY, 10032, USA
| | - Marylyn D Ritchie
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
58
|
A Review of Vascular Traits and Assessment Techniques, and Their Heritability. Artery Res 2022. [DOI: 10.1007/s44200-022-00016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractVarious tools are available to assess atherosclerosis, arterial stiffening, and endothelial function. They offer utility in the assessment of hypertensive phenotypes, in cardiovascular risk prediction, and as surrogate endpoints in clinical trials. We explore the relative influence of participant genetics, with reference to large-scale genomic studies, population-based cohorts, and candidate gene studies. We find heritability estimates highest for carotid intima-media thickness (CIMT 35–65%), followed by pulse wave velocity as a measure of arterial stiffness (26–43%), and flow mediated dilatation as a surrogate for endothelial function (14–39%); data were lacking for peripheral artery tonometry. We furthermore examine genes and polymorphisms relevant to each technique. We conclude that CIMT and pulse wave velocity dominate the existing evidence base, with fewer published genomic linkages for measures of endothelial function. We finally make recommendations regarding planning and reporting of data relating to vascular assessment techniques, particularly when genomic data are also available, to facilitate integration of these tools into cardiovascular disease research.
Collapse
|
59
|
Ilatovskaya DV, Levchenko V, Winsor K, Blass GR, Spires DR, Sarsenova E, Polina I, Zietara A, Paterson M, Kriegel AJ, Staruschenko A. Effects of elevation of ANP and its deficiency on cardiorenal function. JCI Insight 2022; 7:148682. [PMID: 35380994 PMCID: PMC9090260 DOI: 10.1172/jci.insight.148682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial natriuretic peptide (ANP), encoded by Nppa, is a vasodilatory hormone that promotes salt excretion. Genome-wide association studies identified Nppa as a causative factor of blood pressure development, and in humans, ANP levels were suggested as an indicator of salt sensitivity. This study aimed to provide insights into the effects of ANP on cardiorenal function in salt-sensitive hypertension. To address this question, hypertension was induced in SSNPPA-/- (knockout of Nppa in the Dahl Salt-Sensitive (SS) rat background) or SSWT (wild type Dahl SS) rats by a high salt diet challenge (HS, 4% NaCl for 21 days). Chronic infusion of ANP in SSWT rats attenuated the increase in blood pressure and cardiorenal damage. Overall, SSNPPA-/- strain demonstrated higher blood pressure and intensified cardiac fibrosis (with no changes in ejection fraction) compared to SSWT rats. Furthermore, SSNPPA-/- rats exhibited kidney hypertrophy and higher glomerular injury scores, reduced diuresis, and lower sodium and chloride excretion than SSWT when fed a HS diet. Additionally, the activity of epithelial Na+ channel (ENaC) was found to be increased in the collecting ducts of the SSNPPA-/- rats. Taken together, these data show promise for the therapeutic benefits of ANP and ANP-increasing drugs for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Kristen Winsor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Gregory R Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Denisha R Spires
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Elizaveta Sarsenova
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Iuliia Polina
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Mark Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | | |
Collapse
|
60
|
Fang S, Wu J, Reho JJ, Lu KT, Brozoski DT, Kumar G, Werthman AM, Silva SD, Muskus Veitia PC, Wackman KK, Mathison AJ, Teng BQ, Lin CW, Quelle FW, Sigmund CD. RhoBTB1 reverses established arterial stiffness in angiotensin-II hypertension by promoting actin depolymerization. JCI Insight 2022; 7:158043. [PMID: 35358093 PMCID: PMC9090250 DOI: 10.1172/jci.insight.158043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Arterial stiffness predicts cardiovascular disease and all-cause mortality, but its treatment remains challenging. Mice treated with angiotensin II (Ang II) develop hypertension, arterial stiffness, vascular dysfunction, and a downregulation of Rho-related BTB domain–containing protein 1 (RhoBTB1) in the vasculature. RhoBTB1 is associated with blood pressure regulation, but its function is poorly understood. We tested the hypothesis that restoring RhoBTB1 can attenuate arterial stiffness, hypertension, and vascular dysfunction in Ang II–treated mice. Genetic complementation of RhoBTB1 in the vasculature was achieved using mice expressing a tamoxifen-inducible, smooth muscle–specific RhoBTB1 transgene. RhoBTB1 restoration efficiently and rapidly alleviated arterial stiffness but not hypertension or vascular dysfunction. Mechanistic studies revealed that RhoBTB1 had no substantial effect on several classical arterial stiffness contributors, such as collagen deposition, elastin content, and vascular smooth muscle remodeling. Instead, Ang II increased actin polymerization in the aorta, which was reversed by RhoBTB1. Changes in the levels of 2 regulators of actin polymerization, cofilin and vasodilator-stimulated phosphoprotein, in response to RhoBTB1 were consistent with an actin depolymerization mechanism. Our study reveals an important function of RhoBTB1, demonstrates its vital role in antagonizing established arterial stiffness, and further supports a functional and mechanistic separation among hypertension, vascular dysfunction, and arterial stiffness.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Jing Wu
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - John J Reho
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Ko-Ting Lu
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Daniel T Brozoski
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Gaurav Kumar
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Alec M Werthman
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Sebastiao Donato Silva
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Patricia C Muskus Veitia
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Kelsey K Wackman
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| | - Angela J Mathison
- Department of Surgery and the Genomic Sciences and Precision Medicine Cente, Medical College of Wisconsin, Milwawkee, United States of America
| | - Bi Qing Teng
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, United States of America
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, United States of America
| | - Frederick W Quelle
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, United States of America
| | - Curt D Sigmund
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States of America
| |
Collapse
|
61
|
Punzalan FER, Cutiongco – de la Paz EMC, Nevado JJB, Magno JDA, Ona DID, Aman AYCL, Tiongson MDA, Llanes EJB, Reganit PFM, Tiongco RHP, Santos LEG, Aherrera JAM, Abrahan LL, Agustin CF, Bejarin AJP, Sy RG. The rs1458038 variant near FGF5 is associated with poor response to calcium channel blockers among Filipinos. Medicine (Baltimore) 2022; 101:e28703. [PMID: 35119014 PMCID: PMC8812666 DOI: 10.1097/md.0000000000028703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/08/2022] [Indexed: 01/04/2023] Open
Abstract
Genetic variation is known to affect response to calcium channel blockers (CCBs) among different populations. This study aimed to determine the genetic variations associated with poor response to this class of antihypertensive drugs among Filipinos.One hundred eighty one hypertensive participants on CCBs therapy were included in an unmatched case-control study. Genomic deoxyribonucleic acid were extracted and genotyped for selected genetic variants. Regression analysis was used to determine the association of genetic and clinical variables with poor response to medication.The variant rs1458038 near fibroblast growth factor 5 gene showed significant association with poor blood pressure-lowering response based on additive effect (CT genotype: adjusted OR 3.41, P = .001; TT genotype: adjusted OR 6.72, P < .001).These findings suggest that blood pressure response to calcium channels blockers among Filipinos with hypertension is associated with gene variant rs1458038 near fibroblast growth factor 5 gene. Further studies are recommended to validate such relationship of the variant to the CCB response.
Collapse
Affiliation(s)
- Felix Eduardo R. Punzalan
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Eva Maria C. Cutiongco – de la Paz
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Manila
| | - Jose Jr. B. Nevado
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
| | - Jose Donato A. Magno
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Deborah Ignacia D. Ona
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Aimee Yvonne Criselle L. Aman
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Manila
| | - Marc Denver A. Tiongson
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Elmer Jasper B. Llanes
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Paul Ferdinand M. Reganit
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Richard Henry P. Tiongco
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Lourdes Ella G. Santos
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Jaime Alfonso M. Aherrera
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Lauro L. Abrahan
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Charlene F. Agustin
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Adrian John P. Bejarin
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Manila
| | - Rody G. Sy
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| |
Collapse
|
62
|
Dzhoyashvili NA, Iyer SR, Chen HH, Burnett JC. MANP (M-Atrial Natriuretic Peptide) Reduces Blood Pressure and Furosemide-Induced Increase in Aldosterone in Hypertension. Hypertension 2022; 79:750-760. [PMID: 35045724 PMCID: PMC8916975 DOI: 10.1161/hypertensionaha.121.18837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND MANP (M-atrial natriuretic peptide) is a best-in-class activator of the pGC-A (particulate guanylyl cyclase A) receptor. Furosemide increases the effectiveness of antihypertensive agents, but activates renin-angiotensin-aldosterone system. We aimed to investigate for the first time cardiorenal and neurohumoral actions of MANP in a genetic model of hypertension in spontaneously hypertensive rats. We also assessed how MANP would potentiate the blood pressure (BP)-lowering actions of furosemide while reducing the production of aldosterone. METHODS Spontaneously hypertensive rats (n=60) were randomized in vehicle, MANP, furosemide, or MANP+furosemide groups. Furosemide (1, 5, 10 mg/kg) was given as a single bolus which in MANP+furosemide groups was followed by a 60-minute infusion of MANP. RESULTS BP was reduced in MANP300 (300 pmol/[kg·min]) and MANP600 (600 pmol/[kg·min]) groups (P<0.05) and was accompanied by significant increase in plasma cGMP. Furosemide alone reduced BP but less compared with MANP with no change in plasma cGMP. MANP+furosemide resulted in the greatest BP reduction and significant increase in plasma cGMP in Fs5+MANP300, Fs10+MANP300, and Fs10+MANP600. Plasma aldosterone increased in furosemide groups, which was significantly attenuated in MANP+furosemide groups. Natriuresis and diuresis increased in all treated groups (P<0.05) with no significant differences between furosemide and furosemide+MANP. In vitro, MANP increased cGMP level in human vascular cells. CONCLUSIONS We provide novel evidence that MANP potentiates the BP-lowering actions of furosemide, suppresses the activation of renin-angiotensin-aldosterone system, and preserves renal function. These data are highly relevant to clinical needs in the treatment of hypertension and heart failure.
Collapse
Affiliation(s)
- Nina A Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.).,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN. (J.C.B.)
| |
Collapse
|
63
|
A deep learning model for early risk prediction of heart failure with preserved ejection fraction by DNA methylation profiles combined with clinical features. Clin Epigenetics 2022; 14:11. [PMID: 35045866 PMCID: PMC8772140 DOI: 10.1186/s13148-022-01232-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Heart failure with preserved ejection fraction (HFpEF), affected collectively by genetic and environmental factors, is the common subtype of chronic heart failure. Although the available risk assessment methods for HFpEF have achieved some progress, they were based on clinical or genetic features alone. Here, we have developed a deep learning framework, HFmeRisk, using both 5 clinical features and 25 DNA methylation loci to predict the early risk of HFpEF in the Framingham Heart Study Cohort.
Results
The framework incorporates Least Absolute Shrinkage and Selection Operator and Extreme Gradient Boosting-based feature selection, as well as a Factorization-Machine based neural network-based recommender system. Model discrimination and calibration were assessed using the AUC and Hosmer–Lemeshow test. HFmeRisk, including 25 CpGs and 5 clinical features, have achieved the AUC of 0.90 (95% confidence interval 0.88–0.92) and Hosmer–Lemeshow statistic was 6.17 (P = 0.632), which outperformed models with clinical characteristics or DNA methylation levels alone, published chronic heart failure risk prediction models and other benchmark machine learning models. Out of them, the DNA methylation levels of two CpGs were significantly correlated with the paired transcriptome levels (R < −0.3, P < 0.05). Besides, DNA methylation locus in HFmeRisk were associated with intercellular signaling and interaction, amino acid metabolism, transport and activation and the clinical variables were all related with the mechanism of occurrence of HFpEF. Together, these findings give new evidence into the HFmeRisk model.
Conclusion
Our study proposes an early risk assessment framework for HFpEF integrating both clinical and epigenetic features, providing a promising path for clinical decision making.
Collapse
|
64
|
A multi-omics study of circulating phospholipid markers of blood pressure. Sci Rep 2022; 12:574. [PMID: 35022422 PMCID: PMC8755711 DOI: 10.1038/s41598-021-04446-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.
Collapse
|
65
|
Mrug M, Bloom MS, Seto C, Malhotra M, Tabriziani H, Gauthier P, Sidlow V, McKanna T, Billings PR. Genetic Testing for Chronic Kidney Diseases: Clinical Utility and Barriers Perceived by Nephrologists. Kidney Med 2021; 3:1050-1056. [PMID: 34939014 PMCID: PMC8664736 DOI: 10.1016/j.xkme.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rationale & Objective The identification of pathogenic variants in genes associated with chronic kidney disease can provide patients and nephrologists with actionable information to guide diagnoses and therapeutic plans. However, many nephrologists do not use genetic testing despite costs decreasing over time and more widespread availability. Study Design We conducted a survey to uncover the perceptions of general adult nephrologists about the utility of and barriers to genetic testing in clinical practice. Setting & Participants The online survey was administered to board-certified nephrologists (n = 10,054) in the United States. Analytical Approach We analyzed demographic characteristics of the survey respondents and their responses in the context of their use of genetic testing in routine clinical practice. Results A total of 149 nephrologists completed the survey, with 72% (107 of 149) reporting genetic test use in their practice. On average, tests were ordered for 3.8% of their patient population. Thirty-five percent of responses from nephrologists without a history of genetic test use ranked perceived barriers as "extremely significant" compared with 23% of responses from those who had previously used genetic tests. However, both users and nonusers of genetic tests indicated high cost (users: 46%, 49 of 107; nonusers 69%, 29 of 42) and poor availability or lack of ease (users: 33%, 35 of 107; nonusers: 57%; 24 of 42) of genetic testing as the most significant perceived barriers to implementation. Limitations The survey used in this study was not previously validated; additionally, because of the relatively small number of responses, there might have been a selection bias among the responders. Conclusions Although most nephrologists reported using genetic tests in clinical practice, high costs and poor availability or the lack of ease of use were perceived as the most important barriers to routine adoption. These observations indicate that educational programs that cover a range of topics, from genetics of chronic kidney disease to selection of the test, may help mitigate these barriers and enhance the use of genetic testing in nephrology practice.
Collapse
Affiliation(s)
- Michal Mrug
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. J Diabetes Metab Disord 2021; 20:1793-1805. [PMID: 34900826 DOI: 10.1007/s40200-021-00840-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Purpose Personalized medicine (PM) is the concept of managing patients based on their characteristics, including genotypes. In the field of cardiology, advantages of PM could be found in the diagnosis and treatment of several conditions such as arrhythmias and cardiomyopathies; moreover, it may be beneficial to prevent adverse drug reactions (ADR) and select the best medication. Genetic background can help us in selecting effective treatments, appropriate dose requirements, and preventive strategies in individuals with particular genotypes. Method In this review, we provide examples of personalized medicine based on human genetics for the most used pharmaceutics in cardiology, including warfarin, clopidogrel, and statins. We also review cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. Conclusion Genetic factors are as important as environmental factors and they should be tested and evaluated more in the future by improving in genetic testing tools. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00840-0.
Collapse
Affiliation(s)
- Ali Sheikhy
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Fallahzadeh
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masih Tajdini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Meng H, Huang S, Yang Y, He X, Fei L, Xing Y. Association Between MTHFR Polymorphisms and the Risk of Essential Hypertension: An Updated Meta-analysis. Front Genet 2021; 12:698590. [PMID: 34899823 PMCID: PMC8662810 DOI: 10.3389/fgene.2021.698590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Since the 1990s, there have been a lot of research on single-nucleotide polymorphism (SNP) and different diseases, including many studies on 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphism and essential hypertension (EH). Nevertheless, their conclusions were controversial. So far, six previous meta-analyses discussed the internal relationship between the MTHFR polymorphism and EH, respectively. However, they did not evaluate the credibility of the positive associations. To build on previous meta-analyses, we updated the literature by including previously included papers as well as nine new articles, improved the inclusion criteria by also considering the quality of the papers, and applied new statistical techniques to assess the observed associations. OBJECTIVES This study aims to explore the degree of risk correlation between two MTHFR polymorphisms and EH. METHODS PubMed, EMBASE, the Cochrane Library, CNKI, and Wan Fang electronic databases were searched to identify relevant studies. We evaluated the relation between the MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms and EH by calculating the odds ratios (OR) as well as 95% confidence intervals (CI). Here we used subgroup analysis, sensitivity analysis, cumulative meta-analysis, assessment of publication bias, meta-regression meta, False-positive report probability (FPRP), Bayesian false discovery probability (BFDP), and Venice criterion. RESULTS Overall, harboring the variant of MTHFR C677T was associated with an increased risk of EH in the overall populations, East Asians, Southeast Asians, South Asians, Caucasians/Europeans, and Africans. After the sensitivity analysis, positive results were found only in the overall population (TT vs. CC: OR = 1.14, 95% CI: 1.00-1.30, P h = 0.032, I 2 = 39.8%; TT + TC vs. CC: OR = 1.15, 95% CI: 1.01-1.29, P h = 0.040, I 2 = 38.1%; T vs. C: OR = 1.14, 95% CI: 1.04-1.25, P h = 0.005, I 2 = 50.2%) and Asian population (TC vs. CC: OR = 1.14, 95% CI: 1.01-1.28, P h = 0.265, I 2 = 16.8%; TT + TC vs. CC: OR = 1.17, 95% CI: 1.04-1.30, P h = 0.105, I 2 = 32.9%; T vs. C: OR = 1.10, 95% CI: 1.02-1.19, P h = 0.018, I 2 = 48.6%). However, after further statistical assessment by FPRP, BFDP, and Venice criteria, the positive associations reported here could be deemed to be false-positives and present only weak evidence for a causal relationship. In addition, when we performed pooled analysis and sensitivity analysis on MTHFR A1298C; all the results were negative. CONCLUSION The positive relationships between MTHFR C677T and A1298C polymorphisms with the susceptibility to present with hypertension were not robust enough to withstand statistical interrogation by FPRP, BFDP, and Venice criteria. Therefore, these SNPs are probably not important in EH etiology.
Collapse
Affiliation(s)
- Hao Meng
- Department of Cardiovascular Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Shaoyan Huang
- Department of Endocrinology, Shaogauan First People's Hospital, Shaoguan, China
| | - Yali Yang
- Department of Cardiovascular Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaofeng He
- Department of science and education, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Liping Fei
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yuping Xing
- Neurology Department, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
68
|
Olczak KJ, Taylor-Bateman V, Nicholls HL, Traylor M, Cabrera CP, Munroe PB. Hypertension genetics past, present and future applications. J Intern Med 2021; 290:1130-1152. [PMID: 34166551 DOI: 10.1111/joim.13352] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Essential hypertension is a complex trait where the underlying aetiology is not completely understood. Left untreated it increases the risk of severe health complications including cardiovascular and renal disease. It is almost 15 years since the first genome-wide association study for hypertension, and after a slow start there are now over 1000 blood pressure (BP) loci explaining ∼6% of the single nucleotide polymorphism-based heritability. Success in discovery of hypertension genes has provided new pathological insights and drug discovery opportunities and translated to the development of BP genetic risk scores (GRSs), facilitating population disease risk stratification. Comparing highest and lowest risk groups shows differences of 12.9 mm Hg in systolic-BP with significant differences in risk of hypertension, stroke, cardiovascular disease and myocardial infarction. GRSs are also being trialled in antihypertensive drug responses. Drug targets identified include NPR1, for which an agonist drug is currently in clinical trials. Identification of variants at the PHACTR1 locus provided insights into regulation of EDN1 in the endothelin pathway, which is aiding the development of endothelin receptor EDNRA antagonists. Drug re-purposing opportunities, including SLC5A1 and canagliflozin (a type-2 diabetes drug), are also being identified. In this review, we present key studies from the past, highlight current avenues of research and look to the future focusing on gene discovery, epigenetics, gene-environment interactions, GRSs and drug discovery. We evaluate limitations affecting BP genetics, including ancestry bias and discuss streamlining of drug target discovery and applications for treating and preventing hypertension, which will contribute to tailored precision medicine for patients.
Collapse
Affiliation(s)
- Kaya J Olczak
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Victoria Taylor-Bateman
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hannah L Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
69
|
Pietzner M, Wheeler E, Carrasco-Zanini J, Kerrison ND, Oerton E, Koprulu M, Luan J, Hingorani AD, Williams SA, Wareham NJ, Langenberg C. Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat Commun 2021; 12:6822. [PMID: 34819519 PMCID: PMC8613205 DOI: 10.1038/s41467-021-27164-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/03/2021] [Indexed: 01/09/2023] Open
Abstract
Affinity-based proteomics has enabled scalable quantification of thousands of protein targets in blood enhancing biomarker discovery, understanding of disease mechanisms, and genetic evaluation of drug targets in humans through protein quantitative trait loci (pQTLs). Here, we integrate two partly complementary techniques-the aptamer-based SomaScan® v4 assay and the antibody-based Olink assays-to systematically assess phenotypic consequences of hundreds of pQTLs discovered for 871 protein targets across both platforms. We create a genetically anchored cross-platform proteome-phenome network comprising 547 protein-phenotype connections, 36.3% of which were only seen with one of the two platforms suggesting that both techniques capture distinct aspects of protein biology. We further highlight discordance of genetically predicted effect directions between assays, such as for PILRA and Alzheimer's disease. Our results showcase the synergistic nature of these technologies to better understand and identify disease mechanisms and provide a benchmark for future cross-platform discoveries.
Collapse
Affiliation(s)
- Maik Pietzner
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK ,grid.6363.00000 0001 2218 4662Computational Medicine, Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Eleanor Wheeler
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Julia Carrasco-Zanini
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nicola D. Kerrison
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Erin Oerton
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Mine Koprulu
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jian’an Luan
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Aroon D. Hingorani
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT UK ,grid.83440.3b0000000121901201UCL BHF Research Accelerator Centre, London, UK ,grid.507332.0Health Data Research UK, London, UK
| | | | - Nicholas J. Wareham
- grid.5335.00000000121885934MRC Epidemiology Unit, University of Cambridge, Cambridge, UK ,grid.507332.0Health Data Research UK, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK. .,Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Health Data Research UK, London, UK.
| |
Collapse
|
70
|
Kaur H, Crawford DC, Liang J, Benchek P, COGENT BP Consortium, Zhu X, Kallianpur AR, Bush WS. Replication of European hypertension associations in a case-control study of 9,534 African Americans. PLoS One 2021; 16:e0259962. [PMID: 34793544 PMCID: PMC8601554 DOI: 10.1371/journal.pone.0259962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Hypertension is more prevalent in African Americans (AA) than other ethnic groups. Genome-wide association studies (GWAS) have identified loci associated with hypertension and other cardio-metabolic traits like type 2 diabetes, coronary artery disease, and body mass index (BMI), however the AA population is underrepresented in these studies. In this study, we examined a large AA cohort for the generalizability of 14 Metabochip array SNPs with previously reported European hypertension associations. METHODS To evaluate associations, we analyzed genotype data of 14 SNPs for their associations with a diagnosis of hypertension, systolic blood pressure (SBP), and diastolic blood pressure (DBP) in a case-control study of an AA population (N = 9,534). We also performed an age-stratified analysis (>30, 30≥59 and ≥60 years) following the hypertension definition described by the 8th Joint National Committee (JNC). Associations were adjusted for BMI, age, age2, sex, clinical confounders, and genetic ancestry using multivariable regression models to estimate odds ratios (ORs) and beta-coefficients. Analyses stratified by sex were also conducted. Meta-analyses (including both BioVU and COGENT-BP cohorts) were performed using a random-effects model. RESULTS We found rs880315 to be associated with systolic hypertension (SBP≥140 mmHg) in the entire cohort (OR = 1.14, p = 0.003) and within women only (OR = 1.16, p = 0.012). Variant rs17080093 associated with lower SBP and DBP (β = -2.99, p = 0.0352 and - β = 1.69, p = 0.0184) among younger individuals, particularly in younger women (β = -3.92, p = 0.0025 and β = -1.87, p = 0.0241 for SBP and DBP respectively). SNP rs1530440 associated with higher SBP and DBP measurements (younger individuals β = 4.1, p = 0.039 and β = 2.5, p = 0.043 for SBP and DBP; (younger women β = 4.5, p = 0.025 and β = 2.9, p = 0.028 for SBP and DBP), and hypertension risk in older women (OR = 1.4, p = 0.050). rs16948048 increases hypertension risk in younger individuals (OR = 1.31, p = 0.011). Among mid-age women rs880315 associated with higher risk of hypertension (OR = 1.20, p = 0.027). rs1361831 associated with DBP (β = -1.96, p = 0.02) among individuals older than 60 years. rs3096277 increases hypertension risk among older individuals (OR = 1.26 p = 0.0015), however, this variant also reduces SBP among younger women (β = -2.63, p = 0.0102). CONCLUSION These findings suggest that European-descent and AA populations share genetic loci that contribute to blood pressure traits and hypertension. However, the OR and beta-coefficient estimates differ, and some are age-dependent. Additional genetic studies of hypertension in AA are warranted to identify new loci associated with hypertension and blood pressure traits in this population.
Collapse
Affiliation(s)
- Harpreet Kaur
- Genomic Medicine Institute, Cleveland Clinic/Lerner Research Institute, Cleveland, OH, United States of America
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Dana C. Crawford
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | | | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Asha R. Kallianpur
- Genomic Medicine Institute, Cleveland Clinic/Lerner Research Institute, Cleveland, OH, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States of America
| | - William S. Bush
- Genomic Medicine Institute, Cleveland Clinic/Lerner Research Institute, Cleveland, OH, United States of America
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
71
|
A Genome-Wide Association Study of a Korean Population Identifies Genetic Susceptibility to Hypertension Based on Sex-Specific Differences. Genes (Basel) 2021; 12:genes12111804. [PMID: 34828409 PMCID: PMC8622776 DOI: 10.3390/genes12111804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies have expanded our understanding of the genetic variation of hypertension. Hypertension and blood pressure are influenced by sex-specific differences; therefore, genetic variants may have sex-specific effects on phenotype. To identify the genetic factors influencing the sex-specific differences concerning hypertension, we conducted a heterogeneity analysis of a genome-wide association study (GWAS) on 13,926 samples from a Korean population. Using the Illumina exome chip data of the population, we performed GWASs of the male and female population independently and applied a statistical test that identified heterogeneous effects of the variants between the two groups. To gain information about the biological implication of the genetic heterogeneity, we used gene set enrichment analysis with GWAS catalog and pathway gene sets. The heterogeneity analysis revealed that the rs11066015 of ACAD10 was a significant locus that had sex-specific genetic effects on the development of hypertension. The rs2074356 of HECTD4 also showed significant genetic heterogeneity in systolic blood pressure. The enrichment analysis showed significant results that are consistent with the pathophysiology of hypertension. These results indicate a sex-specific genetic susceptibility to hypertension that should be considered in future genetic studies of hypertension.
Collapse
|
72
|
Wei BL, Yin RX, Liu CX, Deng GX, Guan YZ, Zheng PF. CYP17A1-ATP2B1 SNPs and Gene-Gene and Gene-Environment Interactions on Essential Hypertension. Front Cardiovasc Med 2021; 8:720884. [PMID: 34722659 PMCID: PMC8552967 DOI: 10.3389/fcvm.2021.720884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The association between the CYP17A1 and ATP2B1 SNPs and essential hypertension (referred to as hypertension) is far from being consistent. In addition to the heterogeneity of hypertension resulting in inconsistent results, gene–gene and gene–environment interactions may play a major role in the pathogenesis of hypertension rather than a single gene or environmental factor. Methods: A case–control study consisting of 1,652 individuals (hypertension, 816; control, 836) was conducted in Maonan ethnic minority of China. Genotyping of the four SNPs was performed by the next-generation sequencing technology. Results: The frequencies of minor alleles and genotypes of four SNPs were different between the two groups (p < 0.001). According to genetic dominance model analysis, three (rs1004467, rs11191548, and rs17249754) SNPs and two haplotypes (CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-rs17249754A) were negatively correlated, whereas rs1401982 SNP and the other two haplotypes (CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G) were positively associated with hypertension risk (p ≤ 0.002 for all). Two best significant two-locus models were screened out by GMDR software involving SNP–environment (rs11191548 and BMI ≥ 24 kg/m2) and haplotype–environment (CYP17A1 rs1004467G-rs11191548C and BMI ≥ 24 kg/m2) interactions (p ≤ 0.01). The subjects carrying some genotypes increased the hypertension risk. Conclusions: Our outcomes implied that the rs1004467, rs11191548, and rs17249754 SNPs and CYP17A1 rs1004467G-rs11191548C and ATP2B1 rs1401982G-rs17249754A haplotypes have protective effects, whereas the rs1401982 SNP and CYP17A1 rs1004467A-rs11191548T and ATP2B1 rs1401982A-rs17249754G haplotypes showed adverse effect on the prevalence of hypertension. Several SNP–environment interactions were also detected.
Collapse
Affiliation(s)
- Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
73
|
Wang H, Noordam R, Cade BE, Schwander K, Winkler TW, Lee J, Sung YJ, Bentley AR, Manning AK, Aschard H, Kilpeläinen TO, Ilkov M, Brown MR, Horimoto AR, Richard M, Bartz TM, Vojinovic D, Lim E, Nierenberg JL, Liu Y, Chitrala K, Rankinen T, Musani SK, Franceschini N, Rauramaa R, Alver M, Zee PC, Harris SE, van der Most PJ, Nolte IM, Munroe PB, Palmer ND, Kühnel B, Weiss S, Wen W, Hall KA, Lyytikäinen LP, O'Connell J, Eiriksdottir G, Launer LJ, de Vries PS, Arking DE, Chen H, Boerwinkle E, Krieger JE, Schreiner PJ, Sidney S, Shikany JM, Rice K, Chen YDI, Gharib SA, Bis JC, Luik AI, Ikram MA, Uitterlinden AG, Amin N, Xu H, Levy D, He J, Lohman KK, Zonderman AB, Rice TK, Sims M, Wilson G, Sofer T, Rich SS, Palmas W, Yao J, Guo X, Rotter JI, Biermasz NR, Mook-Kanamori DO, Martin LW, Barac A, Wallace RB, Gottlieb DJ, Komulainen P, Heikkinen S, Mägi R, Milani L, Metspalu A, Starr JM, Milaneschi Y, Waken RJ, Gao C, Waldenberger M, Peters A, Strauch K, Meitinger T, Roenneberg T, Völker U, Dörr M, Shu XO, Mukherjee S, Hillman DR, Kähönen M, Wagenknecht LE, Gieger C, Grabe HJ, Zheng W, et alWang H, Noordam R, Cade BE, Schwander K, Winkler TW, Lee J, Sung YJ, Bentley AR, Manning AK, Aschard H, Kilpeläinen TO, Ilkov M, Brown MR, Horimoto AR, Richard M, Bartz TM, Vojinovic D, Lim E, Nierenberg JL, Liu Y, Chitrala K, Rankinen T, Musani SK, Franceschini N, Rauramaa R, Alver M, Zee PC, Harris SE, van der Most PJ, Nolte IM, Munroe PB, Palmer ND, Kühnel B, Weiss S, Wen W, Hall KA, Lyytikäinen LP, O'Connell J, Eiriksdottir G, Launer LJ, de Vries PS, Arking DE, Chen H, Boerwinkle E, Krieger JE, Schreiner PJ, Sidney S, Shikany JM, Rice K, Chen YDI, Gharib SA, Bis JC, Luik AI, Ikram MA, Uitterlinden AG, Amin N, Xu H, Levy D, He J, Lohman KK, Zonderman AB, Rice TK, Sims M, Wilson G, Sofer T, Rich SS, Palmas W, Yao J, Guo X, Rotter JI, Biermasz NR, Mook-Kanamori DO, Martin LW, Barac A, Wallace RB, Gottlieb DJ, Komulainen P, Heikkinen S, Mägi R, Milani L, Metspalu A, Starr JM, Milaneschi Y, Waken RJ, Gao C, Waldenberger M, Peters A, Strauch K, Meitinger T, Roenneberg T, Völker U, Dörr M, Shu XO, Mukherjee S, Hillman DR, Kähönen M, Wagenknecht LE, Gieger C, Grabe HJ, Zheng W, Palmer LJ, Lehtimäki T, Gudnason V, Morrison AC, Pereira AC, Fornage M, Psaty BM, van Duijn CM, Liu CT, Kelly TN, Evans MK, Bouchard C, Fox ER, Kooperberg C, Zhu X, Lakka TA, Esko T, North KE, Deary IJ, Snieder H, Penninx BWJH, Gauderman WJ, Rao DC, Redline S, van Heemst D. Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure. Mol Psychiatry 2021; 26:6293-6304. [PMID: 33859359 PMCID: PMC8517040 DOI: 10.1038/s41380-021-01087-0] [Show More Authors] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
Collapse
Affiliation(s)
- Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa K Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andrea R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Melissa Richard
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jovia L Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute Duke University School of Medicine, Durham, NC, USA
| | - Kumaraswamynaidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Maris Alver
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, London, UK
| | | | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelly A Hall
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Levy
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Kurt K Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute Duke University School of Medicine, Durham, NC, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gregory Wilson
- JHS Graduate Training and Education Center, Jackson State University, Jackson, MS, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Walter Palmas
- Division of General Medicine, Department of Medicine, Columbia University, New York, NY, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nienke R Biermasz
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, Washington, DC, USA
| | - Robert B Wallace
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, HJ, The Netherlands
| | - R J Waken
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Till Roenneberg
- Institute and Polyclinic for Occupational-, Social- and Environmental Medicine, LMU Munich, Munich, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, SA, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David R Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hans J Grabe
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lyle J Palmer
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ervin R Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ian J Deary
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, HJ, The Netherlands
| | - W James Gauderman
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
74
|
Jin Q, Shi G. Meta-Analysis of Joint Test of SNP and SNP-Environment Interaction with Heterogeneity. Hum Hered 2021; 86:1-9. [PMID: 34700323 DOI: 10.1159/000519098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Many complex diseases are caused by single nucleotide polymorphisms (SNPs), environmental factors, and the interaction between SNPs and environment. Joint tests of the SNP and SNP-environment interaction effects (JMA) and meta-regression (MR) are commonly used to evaluate these SNP-environment interactions. However, these two methods do not consider genetic heterogeneity. We previously presented a random-effect MR, which provided higher power than the MR in datasets with high heterogeneity. However, this method requires group-level data, which sometimes are not available. Given this, we designed this study to evaluate the introduction of the random effects of SNP and SNP-environment interaction into the JMA, and then extended this to the random effect model. Likelihood ratio statistic is applied to test the JMA and the new method we proposed in this paper. We evaluated the null distributions of these tests, and the powers for this method. This method was verified by simulation and was shown to provide similar powers to the random effect meta-regression method (RMR). However, this method only requires study-level data which relaxed the condition of the RMR. Our study suggests that this method is more suitable for finding the association between SNP and diseases in the absence of group-level data.
Collapse
Affiliation(s)
- Qinqin Jin
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China.,Applied Science College, Taiyuan University of Science and Technology, Taiyuan, China
| | - Gang Shi
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
| |
Collapse
|
75
|
Takahashi Y, Yamazaki K, Kamatani Y, Kubo M, Matsuda K, Asai S. A genome-wide association study identifies a novel candidate locus at the DLGAP1 gene with susceptibility to resistant hypertension in the Japanese population. Sci Rep 2021; 11:19497. [PMID: 34593835 PMCID: PMC8484335 DOI: 10.1038/s41598-021-98144-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous genetic variants associated with hypertension and blood pressure are known, but there is a paucity of evidence from genetic studies of resistant hypertension, especially in Asian populations. To identify novel genetic loci associated with resistant hypertension in the Japanese population, we conducted a genome-wide association study with 2705 resistant hypertension cases and 21,296 mild hypertension controls, all from BioBank Japan. We identified one novel susceptibility candidate locus, rs1442386 on chromosome 18p11.3 (DLGAP1), achieving genome-wide significance (odds ratio (95% CI) = 0.85 (0.81–0.90), P = 3.75 × 10−8) and 18 loci showing suggestive association, including rs62525059 of 8q24.3 (CYP11B2) and rs3774427 of 3p21.1 (CACNA1D). We further detected biological processes associated with resistant hypertension, including chemical synaptic transmission, regulation of transmembrane transport, neuron development and neurological system processes, highlighting the importance of the nervous system. This study provides insights into the etiology of resistant hypertension in the Japanese population.
Collapse
Affiliation(s)
- Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Keiko Yamazaki
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan.,Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Asai
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan. .,Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kami Machi, Itabashi-ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
76
|
Abstract
Chronic cardiovascular diseases are associated with inflammatory responses within the blood vessels and end organs. The origin of this inflammation has not been certain, and neither is its relationship to disease clear. There is a need to determine whether this association is causal or coincidental to the processes leading to cardiovascular disease. These processes are themselves complex: many cardiovascular diseases arise in conjunction with the presence of sustained elevation of blood pressure. Inflammatory processes have been linked to hypertension, and causality has been suggested. Evidence of causality poses the difficult challenge of linking the integrated and multifaceted biology of blood pressure regulation with vascular function and complex elements of immune system function. These include both, innate and adaptive immunity, as well as interactions between the host immune system and the omnipresent microorganisms that are encountered in the environment and that colonize and exist in commensal relationship with the host. Progress has been made in this task and has drawn on experimental approaches in animals, much of which have focused on hypertension occurring with prolonged infusion of angiotensin II. These laboratory studies are complemented by studies that seek to inform disease mechanism by examining the genomic basis of heritable disease susceptibility in human populations. In this realm too, evidence has emerged that implicates genetic variation affecting immunity in disease pathogenesis. In this article, we survey the genetic and genomic evidence linking high blood pressure and its end-organ injuries to immune system function and examine evidence that genomic factors can influence disease risk. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
- Isha S Dhande
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
77
|
Althwab SA, Ahmed AA, Rasheed Z, Alkhowailed M, Hershan A, Alsagaby S, Alblihed MA, Alaqeel A, Alrehaili J, Alhumaydhi FA, Alkhamiss A, Abdulmonem WA. ATP2B1 genotypes rs2070759 and rs2681472 polymorphisms and risk of hypertension in Saudi population. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:1075-1089. [PMID: 34486947 DOI: 10.1080/15257770.2021.1973034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study examined an association of ATP2B1 gene polymorphism and hypertension in the Saudi population. The 246 hypertensive cases and 300 healthy human controls were genotyped. The results showed that genotypes rs.207075 (CA + AA) [p = 0.05; OR: 95% CI, 1.5:(1.0 to 2.4) and p = 0.001, OR: 95% CI, 2.4: (1.5 to 4.0) and rs2681472 (CT + TT) [p = 0.05; OR: 95% CI, 1.5 (1.0 to 2.4) and p = 0.006 OR: 95% CI, 2.0 (1.2 to 3.1) respectively] associated with the risk of hypertension. Cases carrying the recessive models: [(CA + AA)/(CT + TT)] and [(AA)/(TT)] genotypes confer a strong susceptibility risk of hypertension [p = 0.002; OR: (95%CI) 1.8 (1.2 to 2.6) and p = 0.001; OR: (95%CI) 2.6 (1.5 to 4.7) respectively]. However, cases with body-mass-index (BMI)<25, carrying homozygous mutant genotypes [AA, rs2070759, p = 0.007; OR: (95%CI) 2.75(1.37 to 5.5) and (TT, rs2681472, p = 0.05; OR: (95%CI) 1.96 (1.03 to 3.72)] as well as A allele of rs2070759 [p = 0.006; OR: (95%CI) 1.62 (1.16 to 2.25)] and T allele of rs2681472, p = 0.04, 1.43(1.03 to 1.98)] showed a significant association with high risk of hypertension. In short, a significant association between ATP2B1 gene polymorphism and risk of hypertension was noticed. In addition, individuals carrying recessive genotypes have greater risk in developing hypertension than those carrying dominant genotypes. Moreover, cases with high-risk BMI associated with ATP2B1 variants may play a critical role in developing hypertension.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1973034 .
Collapse
Affiliation(s)
- Sami A Althwab
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed A Ahmed
- Biotechnology Unit, Center of Medical Research, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mohammad Alkhowailed
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Almonther Hershan
- Department of Medical Microbiology and Parasitology, College of Medicine, The University of Jeddah, Jeddah, Saudi Arabia
| | - Suliman Alsagaby
- Department of Medical Laboratories, Central Biosciences Research Laboratories, College of Science in Al Zulfi, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Mohamd A Alblihed
- Department of Medical Microbiology, School of Medicine, Taif University, Taif, Saudi Arabia
| | - Aqeel Alaqeel
- Department of Pediatrics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Jihad Alrehaili
- Pathology Department, Imam Mohammad Ibn Saud University, Riyadh, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
78
|
Abstract
Clonal haematopoiesis (CH) is a common, age-related expansion of blood cells with somatic mutations that is associated with an increased risk of haematological malignancies, cardiovascular disease and all-cause mortality. CH may be caused by point mutations in genes associated with myeloid neoplasms, chromosomal copy number changes and loss of heterozygosity events. How inherited and environmental factors shape the incidence of CH is incompletely understood. Even though the several varieties of CH may have distinct phenotypic consequences, recent research points to an underlying genetic architecture that is highly overlapping. Moreover, there are numerous commonalities between the inherited variation associated with CH and that which has been linked to age-associated biomarkers and diseases. In this Review, we synthesize what is currently known about how inherited variation shapes the risk of CH and how this genetic architecture intersects with the biology of diseases that occur with ageing.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
79
|
Rahman F, Muthaiah N, Kumaramanickavel G. Current concepts and molecular mechanisms in pharmacogenetics of essential hypertension. Indian J Pharmacol 2021; 53:301-309. [PMID: 34414909 PMCID: PMC8411967 DOI: 10.4103/ijp.ijp_593_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hypertension is a leading age-related disease in our society and if left untreated, leads to fatal cardiovascular complications. The prevalence of hypertension has increased and becomes a significant global health economic burden, particularly in lower-income societies. Many loci associated with blood pressure and hypertension have been reported by genome-wide association studies that provided potential targets for pharmacotherapy. Pharmacogenetic research had shown interindividual variations in drug efficacy, safety, and tolerability. This could be due to genetic polymorphisms in the pharmacokinetics (genes involved in a transporter, plasma protein binding, and metabolism) or pharmacodynamic pathway (receptors, ion channels, enzymes). Pharmacogenetics promises great hope toward targeted therapy, but challenges remain in implementing pharmacogenetic aided antihypertensive therapy in clinical practice. Using various databases, we analyzed the underlying mechanisms between the candidate gene polymorphisms and antihypertensive drug interactions and the challenges of implementing precision medicine. We review the emergence of pharmacogenetics and its relevance to clinical pharmacological practice.
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Pharmacology, Sree Balaji Medical College and Hospital, Bharat University, Chennai, Tamil Nadu, India
| | - Nagasundaram Muthaiah
- Department of Pharmacology, Sree Balaji Medical College and Hospital, Bharat University, Chennai, Tamil Nadu, India
| | - Govindasamy Kumaramanickavel
- Genomic Research Centre, Sree Balaji Medical College and Hospital, Bharat University, Chennai, Tamil Nadu, India
| |
Collapse
|
80
|
Bagheri M, Wang C, Shi M, Manouchehri A, Murray KT, Murphy MB, Shaffer CM, Singh K, Davis LK, Jarvik GP, Stanaway IB, Hebbring S, Reilly MP, Gerszten RE, Wang TJ, Mosley JD, Ferguson JF. The genetic architecture of plasma kynurenine includes cardiometabolic disease mechanisms associated with the SH2B3 gene. Sci Rep 2021; 11:15652. [PMID: 34341450 PMCID: PMC8329184 DOI: 10.1038/s41598-021-95154-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023] Open
Abstract
Inflammation increases the risk of cardiometabolic disease. Delineating specific inflammatory pathways and biomarkers of their activity could identify the mechanistic underpinnings of the increased risk. Plasma levels of kynurenine, a metabolite involved in inflammation, associates with cardiometabolic disease risk. We used genetic approaches to identify inflammatory mechanisms associated with kynurenine variability and their relationship to cardiometabolic disease. We identified single-nucleotide polymorphisms (SNPs) previously associated with plasma kynurenine, including a missense-variant (rs3184504) in the inflammatory gene SH2B3/LNK. We examined the association between rs3184504 and plasma kynurenine in independent human samples, and measured kynurenine levels in SH2B3-knock-out mice and during human LPS-evoked endotoxemia. We conducted phenome scanning to identify clinical phenotypes associated with each kynurenine-related SNP and with a kynurenine polygenic score using the UK-Biobank (n = 456,422), BioVU (n = 62,303), and Electronic Medical Records and Genetics (n = 32,324) databases. The SH2B3 missense variant associated with plasma kynurenine levels and SH2B3-/- mice had significant tissue-specific differences in kynurenine levels.LPS, an acute inflammatory stimulus, increased plasma kynurenine in humans. Mendelian randomization showed increased waist-circumference, a marker of central obesity, associated with increased kynurenine, and increased kynurenine associated with C-reactive protein (CRP). We found 30 diagnoses associated (FDR q < 0.05) with the SH2B3 variant, but not with SNPs mapping to genes known to regulate tryptophan-kynurenine metabolism. Plasma kynurenine may be a biomarker of acute and chronic inflammation involving the SH2B3 pathways. Its regulation lies upstream of CRP, suggesting that kynurenine may be a biomarker of one inflammatory mechanism contributing to increased cardiometabolic disease risk.
Collapse
Affiliation(s)
- Minoo Bagheri
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 354B, Nashville, TN, 37232, USA
| | - Chuan Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 354B, Nashville, TN, 37232, USA
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ali Manouchehri
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 354B, Nashville, TN, 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine T Murray
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 354B, Nashville, TN, 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew B Murphy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian M Shaffer
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ian B Stanaway
- Division of Nephrology, School of Medicine, Harborview Medical Center Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Muredach P Reilly
- Irving Institute for Clinical and Translational Research and Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas J Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Jonathan D Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 354B, Nashville, TN, 37232, USA.
| |
Collapse
|
81
|
Cheng CF, Hsieh AR, Liang WM, Chen CC, Chen CH, Wu JY, Lin TH, Liao CC, Huang SM, Huang YC, Ban B, Lin YJ, Tsai FJ. Genome-Wide and Candidate Gene Association Analyses Identify a 14-SNP Combination for Hypertension in Patients With Type 2 Diabetes. Am J Hypertens 2021; 34:651-661. [PMID: 33276381 DOI: 10.1093/ajh/hpaa203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND High blood pressure is common and comorbid with type 2 diabetes (T2D). Almost 50% of patients with T2D have high blood pressure. Patients with both conditions of hypertension (HTN) and T2D are at risk for cardiovascular diseases and mortality. The study aim was to investigate genetic risk factors for HTN in T2D patients. METHODS This study included 999 T2D (cohort 1) patients for the first genome scan stage and 922 T2D (cohort 2) patients for the replication stage. Here, we investigated the genetic susceptibility and cumulative weighted genetic risk score for HTN in T2D patients of Han Chinese descent in Taiwan. RESULTS Thirty novel genetic single nucleotide polymorphisms (SNPs) were associated with HTN in T2D after adjusting for age and body mass index (P value <1 × 10-4). Eight blood pressure-related and/or HTN-related genetic SNPs were associated with HTN in T2D after adjusting for age and body mass index (P value <0.05). Linkage disequilibrium and cumulative weighted genetic risk score analyses showed that 14 of the 38 SNPs were associated with risk of HTN in a dose-dependent manner in T2D (Cochran-Armitage trend test: P value <0.0001). The 14-SNP cumulative weighted genetic risk score was also associated with increased regression tendency of systolic blood pressure in T2D (SBP = 122.05 + 0.8 × weighted genetic risk score; P value = 0.0001). CONCLUSIONS A cumulative weighted genetic risk score composed of 14 SNPs is important for HTN, increased tendency of systolic blood pressure, and may contribute to HTN risk in T2D in Taiwan.
Collapse
Affiliation(s)
- Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ching-Chu Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Bo Ban
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, Shandong, China
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
82
|
Luca CT, Crisan S, Cozma D, Negru A, Lazar MA, Vacarescu C, Trofenciuc M, Rachieru C, Craciun LM, Gaita D, Petrescu L, Mischie A, Iurciuc S. Arterial Hypertension: Individual Therapeutic Approaches-From DNA Sequencing to Gender Differentiation and New Therapeutic Targets. Pharmaceutics 2021; 13:pharmaceutics13060856. [PMID: 34207606 PMCID: PMC8229802 DOI: 10.3390/pharmaceutics13060856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this paper is to provide an accurate overview regarding the current recommended approach for antihypertensive treatment. The importance of DNA sequencing in understanding the complex implication of genetics in hypertension could represent an important step in understanding antihypertensive treatment as well as in developing new medical strategies. Despite a pool of data from studies regarding cardiovascular risk factors emphasizing a worse prognosis for female patients rather than male patients, there are also results indicating that women are more likely to be predisposed to the use of antihypertensive medication and less likely to develop uncontrolled hypertension. Moreover, lower systolic blood pressure values are associated with increased cardiovascular risk in women compared to men. The prevalence, awareness and, most importantly, treatment of hypertension is variable in male and female patients, since the mechanisms responsible for this pathology may be different and closely related to gender factors such as the renin–angiotensin system, sympathetic nervous activity, endothelin-1, sex hormones, aldosterone, and the immune system. Thus, gender-related antihypertensive treatment individualization may be a valuable tool in improving female patients’ prognosis.
Collapse
Affiliation(s)
- Constantin-Tudor Luca
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Crisan
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (S.C.); (M.T.)
| | - Dragos Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alina Negru
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mihai-Andrei Lazar
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Vacarescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mihai Trofenciuc
- Department of Cardiology, “Vasile Goldis” Western University of Arad, Bulevardul Revoluției 94, 310025 Arad, Romania
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (S.C.); (M.T.)
| | - Ciprian Rachieru
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Internal Medicine Department, County Emergency Hospital, 5 Gheorghe Dima Street, 300079 Timisoara, Romania
- Advanced Research Center in Cardiovascular Pathology and Hemostaseology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura Maria Craciun
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
| | - Dan Gaita
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Petrescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alexandru Mischie
- Invasive Cardiology Unit, Centre Hospitalier de Montluçon, 03100 Montluçon, France;
| | - Stela Iurciuc
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.-T.L.); (D.C.); (A.N.); (M.-A.L.); (C.V.); (C.R.); (L.M.C.); (D.G.); (L.P.); (S.I.)
- Angiogenesis Research Center, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
83
|
de las Fuentes L, Sung YJ, Noordam R, Winkler T, Feitosa MF, Schwander K, Bentley AR, Brown MR, Guo X, Manning A, Chasman DI, Aschard H, Bartz TM, Bielak LF, Campbell A, Cheng CY, Dorajoo R, Hartwig FP, Horimoto ARVR, Li C, Li-Gao R, Liu Y, Marten J, Musani SK, Ntalla I, Rankinen T, Richard M, Sim X, Smith AV, Tajuddin SM, Tayo BO, Vojinovic D, Warren HR, Xuan D, Alver M, Boissel M, Chai JF, Chen X, Christensen K, Divers J, Evangelou E, Gao C, Girotto G, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Rueedi R, Shu XO, Snieder H, Sofer T, Takeuchi F, Verweij N, Ware EB, Weiss S, Yanek LR, Amin N, Arking DE, Arnett DK, Bergmann S, Boerwinkle E, Brody JA, Broeckel U, Brumat M, Burke G, Cabrera CP, Canouil M, Chee ML, Chen YDI, Cocca M, Connell J, de Silva HJ, de Vries PS, Eiriksdottir G, Faul JD, Fisher V, Forrester T, Fox EF, Friedlander Y, Gao H, Gigante B, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt S, Ikram MA, Irvin MR, Kähönen M, Kavousi M, et alde las Fuentes L, Sung YJ, Noordam R, Winkler T, Feitosa MF, Schwander K, Bentley AR, Brown MR, Guo X, Manning A, Chasman DI, Aschard H, Bartz TM, Bielak LF, Campbell A, Cheng CY, Dorajoo R, Hartwig FP, Horimoto ARVR, Li C, Li-Gao R, Liu Y, Marten J, Musani SK, Ntalla I, Rankinen T, Richard M, Sim X, Smith AV, Tajuddin SM, Tayo BO, Vojinovic D, Warren HR, Xuan D, Alver M, Boissel M, Chai JF, Chen X, Christensen K, Divers J, Evangelou E, Gao C, Girotto G, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Rueedi R, Shu XO, Snieder H, Sofer T, Takeuchi F, Verweij N, Ware EB, Weiss S, Yanek LR, Amin N, Arking DE, Arnett DK, Bergmann S, Boerwinkle E, Brody JA, Broeckel U, Brumat M, Burke G, Cabrera CP, Canouil M, Chee ML, Chen YDI, Cocca M, Connell J, de Silva HJ, de Vries PS, Eiriksdottir G, Faul JD, Fisher V, Forrester T, Fox EF, Friedlander Y, Gao H, Gigante B, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt S, Ikram MA, Irvin MR, Kähönen M, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Kraja AT, Krieger JE, Langefeld CD, Li Y, Liang J, Liewald DCM, Liu CT, Liu J, Lohman KK, Mägi R, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mook-Kanamori DO, Nalls MA, Nelson CP, Norris JM, O'Connell J, Ogunniyi A, Padmanabhan S, Palmer ND, Pedersen NL, Perls T, Peters A, Petersmann A, Peyser PA, Polasek O, Porteous DJ, Raffel LJ, Rice TK, Rotter JI, Rudan I, Rueda-Ochoa OL, Sabanayagam C, Salako BL, Schreiner PJ, Shikany JM, Sidney SS, Sims M, Sitlani CM, Smith JA, Starr JM, Strauch K, Swertz MA, Teumer A, Tham YC, Uitterlinden AG, Vaidya D, van der Ende MY, Waldenberger M, Wang L, Wang YX, Wei WB, Weir DR, Wen W, Yao J, Yu B, Yu C, Yuan JM, Zhao W, Zonderman AB, Becker DM, Bowden DW, Deary IJ, Dörr M, Esko T, Freedman BI, Froguel P, Gasparini P, Gieger C, Jonas JB, Kammerer CM, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, Marques-Vidal P, Penninx BWJH, Samani NJ, van der Harst P, Wagenknecht LE, Wu T, Zheng W, Zhu X, Bouchard C, Cooper RS, Correa A, Evans MK, Gudnason V, Hayward C, Horta BL, Kelly TN, Kritchevsky SB, Levy D, Palmas WR, Pereira AC, Province MM, Psaty BM, Ridker PM, Rotimi CN, Tai ES, van Dam RM, van Duijn CM, Wong TY, Rice K, Gauderman WJ, Morrison AC, North KE, Kardia SLR, Caulfield MJ, Elliott P, Munroe PB, Franks PW, Rao DC, Fornage M. Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci. Mol Psychiatry 2021; 26:2111-2125. [PMID: 32372009 PMCID: PMC7641978 DOI: 10.1038/s41380-020-0719-3] [Show More Authors] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, 63110, USA.
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Thomas Winkler
- Department of Genetic Epidemiology, University of Regensburg, 93051, Regensburg, Germany
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Alisa Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, 75724, France
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, 96020-220, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - A R V R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, 30602, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 70808, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Icelandic Heart Association, Kopavogur, 201, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Deng Xuan
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, Southern Denmark University, Odense, 5000, Denmark
| | - Jasmin Divers
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Giorgia Girotto
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - Sarah E Harris
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Chi Hsu
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Mathematics and Statistics, University of Minnesota, Duluth, MN, 55812, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Ilja M Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, 9700RB, The Netherlands
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Skåne, 205 02, Sweden
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Muhammad Riaz
- College of Medicine, Biological Sciences and Psychology, Health Sciences, The Infant Mortality and Morbidity Studies (TIMMS), Leicester, LE1 7RH, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, 9700RB, The Netherlands
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 9713GZ, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, 40536, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Marco Brumat
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
| | - Gregory Burke
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Miao Li Chee
- Statistics Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Massimiliano Cocca
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Virginia Fisher
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, JMAAW15, Jamaica
| | - Ervin F Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, 91120, Israel
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Bruna Gigante
- Cardiovascular Unit, Bioclinicum, Department of Medicine, Karolinska Hospital, Stockholm, 17164, Sweden
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, 18288, Sweden
| | | | - Chi Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dongfeng Gu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiang He
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70211, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70211, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119228, Singapore
| | - Steven Hunt
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84108, USA
- Weill Cornell Medicine in Qatar, Doha, Qatar
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marguerite R Irvin
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - J E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Carl D Langefeld
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David C M Liewald
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Kurt K Lohman
- Public Health Sciences, Biostatistics and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Colin A McKenzie
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, JMAAW15, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, 80333, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 BT, The Netherlands
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| | - Mike A Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20895, USA
- Data Tecnica International, Glen Echo, MD, 20812, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Jill M Norris
- Department of Epidemiology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adesola Ogunniyi
- Department of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | | | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Thomas Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 85764, Neuherberg, Germany
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
- University Hospital Split, Split, Croatia
- Psychiatric Hospital "Sveti Ivan", Zagreb, Croatia
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Leslie J Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, 92868, USA
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | | | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | | | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 25249, USA
| | - Stephen S Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, EH8 9AZ, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universitat Munchen, 80539, Munich, Germany
| | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700RB, The Netherlands
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Yih Chung Tham
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dhananjay Vaidya
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - M Yldau van der Ende
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 85764, Neuherberg, Germany
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, , University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, 17475, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, 02142, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-, Salem, NC, 27157, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
- Department of Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
| | - Paolo Gasparini
- Medical Genetics, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34100, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34100, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764, Neuherberg, Germany
| | - Jost Bruno Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, 68167, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Capital Medical University, 100730, Beijing, China
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, 70211, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70211, Finland
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33014, Finland
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 BT, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Ultrecht, The Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bernardo L Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, 96020-220, Brazil
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Stephen B Kritchevsky
- Sticht Center for Health Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Daniel Levy
- NHLBI Framingham Heart Study, Framingham, MA, 01702, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Walter R Palmas
- Division of General Medicine, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - A C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, 5403000, Brazil
| | - Michael M Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Paul M Ridker
- Harvard Medical School, Boston, MA, 02115, USA
- Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tien Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Ecy Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kari E North
- Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC, 27514, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, London, EC1M 6BQ, UK
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Skåne, 205 02, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Västerbotten, 901 85, Sweden
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 70808, USA
| |
Collapse
|
84
|
Razavi MA, Bazzano LA, Nierenberg J, Huang Z, Fernandez C, Razavi AC, Whelton SP, He J, Kelly TN. Advances in Genomics Research of Blood Pressure Responses to Dietary Sodium and Potassium Intakes. Hypertension 2021; 78:4-15. [PMID: 33993724 DOI: 10.1161/hypertensionaha.121.16509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than half of US adults have hypertension by 40 years of age and a subsequent increase in atherosclerotic cardiovascular disease risk. Dietary sodium and potassium are intricately linked to the pathophysiology of hypertension. However, blood pressure responses to dietary sodium and potassium, phenomena known as salt and potassium sensitivity of blood pressure, respectively, are heterogenous and normally distributed in the general population. Like blood pressure, salt and potassium sensitivity are complex phenotypes, and previous research has shown that up to 75% of individuals experience a blood pressure change in response to such dietary minerals. Previous research has also implicated both high salt sensitivity and low salt sensitivity (or salt resistance) of blood pressure to an increased risk of hypertension and potentially atherosclerotic cardiovascular disease risk. Given the clinical challenges required to accurately measure the sodium and potassium response phenotypes, genomic characterization of these traits has become of interest for hypertension prevention initiatives on both the individual and population levels. Here, we review advances in human genomics research of blood pressure responses to dietary sodium and potassium by focusing on 3 main areas, including the phenotypic characterization of salt sensitivity and resistance, clinical challenges in diagnosing such phenotypes, and the genomic mechanisms that may help to explain salt and potassium sensitivity and resistance. Through this process, we hope to further underline the value of leveraging genomics and broader multiomics for characterizing the blood pressure response to sodium and potassium to improve precision in lifestyle approaches for primordial and primary atherosclerotic cardiovascular disease prevention.
Collapse
Affiliation(s)
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Jovia Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine (J.N.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Camilo Fernandez
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Alexander C Razavi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Seamus P Whelton
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (S.P.W.)
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (C.F., A.C.R., J.H.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (L.A.B., Z.H., C.F., A.C.R., J.H., T.N.K.)
| |
Collapse
|
85
|
Parcha V, Patel N, Gutierrez OM, Li P, Gamble KL, Musunuru K, Margulies KB, Cappola TP, Wang TJ, Arora G, Arora P. Chronobiology of Natriuretic Peptides and Blood Pressure in Lean and Obese Individuals. J Am Coll Cardiol 2021; 77:2291-2303. [PMID: 33958126 DOI: 10.1016/j.jacc.2021.03.291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diurnal variation of natriuretic peptide (NP) levels and its relationship with 24-h blood pressure (BP) rhythm has not been established. Obese individuals have a relative NP deficiency and disturbed BP rhythmicity. OBJECTIVES This clinical trial evaluated the diurnal rhythmicity of NPs (B-type natriuretic peptide [BNP], mid-regional pro-atrial natriuretic peptide [MR-proANP], N-terminal pro-B-type natriuretic peptide [NT-proBNP]) and the relationship of NP rhythm with 24-h BP rhythm in healthy lean and obese individuals. METHODS On the background of a standardized diet, healthy, normotensive, lean (body mass index 18.5 to 25 kg/m2) and obese (body mass index 30 to 45 kg/m2) individuals, age 18 to 40 years, underwent 24-h inpatient protocol involving ambulatory BP monitoring starting 24 h prior to the visit, controlled light intensity, and repeated blood draws for assessment of analytes. Cosinor analysis of normalized NP levels (normalized to 24-h mean value) was conducted to assess the diurnal NP rhythm and its relationship with systolic BP. RESULTS Among 52 participants screened, 40 participants (18 lean, 22 obese; 50% women; 65% Black) completed the study. The median range spread (percentage difference between the minimum and maximum values) over 24 h for MR-proANP, BNP, and NT-proBNP levels was 72.0% (interquartile range [IQR]: 50.9% to 119.6%), 75.5% (IQR: 50.7% to 106.8%), and 135.0% (IQR: 66.3% to 270.4%), respectively. A cosine wave-shaped 24-h oscillation of normalized NP levels (BNP, MR-proANP, and NT-proBNP) was noted both in lean and obese individuals (prhythmicity <0.05 for all). A larger phase difference between MR-proANP BP rhythm (-4.9 h vs. -0.7 h) and BNP BP rhythm (-3.3 h vs. -0.9 h) was seen in obese compared with lean individuals. CONCLUSIONS This human physiological trial elucidates evidence of diurnal NP rhythmicity and the presence of an NP-BP rhythm axis. There exists a misalignment of the NP-BP diurnal rhythm in the obese, which may contribute to the disturbed diurnal BP pattern observed among obese individuals. (The Diurnal Rhythm in Natriuretic Peptide Levels; NCT03834168).
Collapse
Affiliation(s)
- Vibhu Parcha
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA. https://twitter.com/vibhuparcha
| | - Nirav Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Orlando M Gutierrez
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. https://twitter.com/kiranmusunuru
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas P Cappola
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas J Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA. https://twitter.com/thomasjwang1
| | - Garima Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA. https://twitter.com/GarimaAroraMD
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA; Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA.
| |
Collapse
|
86
|
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ Res 2021; 128:908-933. [PMID: 33793336 PMCID: PMC8023750 DOI: 10.1161/circresaha.121.318052] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.
Collapse
Affiliation(s)
- Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Kingery
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| |
Collapse
|
87
|
Ji LD, Xu ZF, Tang NLS, Xu J. Natural Selection of ATP2B1 Underlies Susceptibility to Essential Hypertension. Front Genet 2021; 12:628516. [PMID: 33777100 PMCID: PMC7990779 DOI: 10.3389/fgene.2021.628516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Zhi-Feng Xu
- Department of Cardiology, Ningbo No. 7 Hospital, Ningbo, China
| | - Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,KIZ-CUHK Joint Laboratory of Bio-resources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin Xu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
88
|
Vaura F, Kauko A, Suvila K, Havulinna AS, Mars N, Salomaa V, FinnGen, Cheng S, Niiranen T. Polygenic Risk Scores Predict Hypertension Onset and Cardiovascular Risk. Hypertension 2021; 77:1119-1127. [PMID: 33611940 PMCID: PMC8025831 DOI: 10.1161/hypertensionaha.120.16471] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Felix Vaura
- From the Department of Internal Medicine, University of Turku, Finland (F.V., A.K., K.S., T.N.)
| | - Anni Kauko
- From the Department of Internal Medicine, University of Turku, Finland (F.V., A.K., K.S., T.N.)
| | - Karri Suvila
- From the Department of Internal Medicine, University of Turku, Finland (F.V., A.K., K.S., T.N.).,Division of Medicine, Turku University Hospital, Finland (K.S., T.N.)
| | - Aki S Havulinna
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland (A.S.H., V.S., T.N.).,Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki (A.S.H., N.M.)
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki (A.S.H., N.M.)
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland (A.S.H., V.S., T.N.)
| | | | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (S.C.).,Division of Cardiology, Brigham and Women's Hospital, Boston, MA (S.C.)
| | - Teemu Niiranen
- From the Department of Internal Medicine, University of Turku, Finland (F.V., A.K., K.S., T.N.).,Division of Medicine, Turku University Hospital, Finland (K.S., T.N.).,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland (A.S.H., V.S., T.N.)
| |
Collapse
|
89
|
Inflammation-Related Risk Loci in Genome-Wide Association Studies of Coronary Artery Disease. Cells 2021; 10:cells10020440. [PMID: 33669721 PMCID: PMC7921935 DOI: 10.3390/cells10020440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Although the importance of inflammation in atherosclerosis is now well established, the exact molecular processes linking inflammation to the development and course of the disease are not sufficiently understood. In this context, modern genetics—as applied by genome-wide association studies (GWAS)—can serve as a comprehensive and unbiased tool for the screening of potentially involved pathways. Indeed, a considerable proportion of loci discovered by GWAS is assumed to affect inflammatory processes. Despite many well-replicated association findings, however, translating genomic hits to specific molecular mechanisms remains challenging. This review provides an overview of the currently most relevant inflammation-related GWAS findings in coronary artery disease and explores their potential clinical perspectives.
Collapse
|
90
|
Li Z, Wang W, Tian X, Duan H, Xu C, Zhang D. Bivariate genome-wide association study (GWAS) of body mass index and blood pressure phenotypes in northern Chinese twins. PLoS One 2021; 16:e0246436. [PMID: 33539483 PMCID: PMC7861438 DOI: 10.1371/journal.pone.0246436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, new loci related to body mass index (BMI) or blood pressure (BP) have been identified respectively in genome-wide association studies (GWAS). However, limited studies focused on jointly associated genetic variance between systolic pressure (SBP), diastolic pressure (DBP) and BMI. Therefore, a bivariate twin study was performed to explore the genetic variants associated with BMI-SBP, BMI-DBP and SBP-DBP. A total of 380 twin pairs (137 dizygotic pairs and 243 monozygotic pairs) recruited from Qingdao Twin Registry system were used to access the genetic correlations (0.2108 for BMI-SBP, 0.2345 for BMI-DBP, and 0.6942 for SBP-DBP, respectively) by bivariate Cholesky decomposition model. Bivariate GWAS in 137 dizygotic pairs nominated 27 single identified 27 quantitative trait nucleotides (QTNs) for BMI and SBP, 27 QTNs for BMI and DBP, and 25 QTNs for SBP and DBP with the suggestive P-value threshold of 1×10-5. After imputation, we found eight SNPs, one for both BMI-SBP and SBP-DBP, and eight for SBP-DBP, exceed significant statistic level. Expression quantitative trait loci analysis identified rs4794029 as new significant eQTL in tissues related to BMI and SBP. Also, we found 6 new significant eQTLs (rs4400367, rs10113750, rs11776003, rs3739327, rs55978930, and rs4794029) in tissues were related to SBP and DBP. Gene-based analysis identified nominally associated genes (P < 0.05) with BMI-SBP, BMI-DBP, and SBP-DBP, respectively, such as PHOSPHO1, GNGT2, KEAP1, and S1PR5. In the pathway analysis, we found some pathways associated with BMI-SBP, BMI-DBP and SBP-DBP, such as prion diseases, IL5 pathway, cyclin E associated events during G1/S transition, TGF beta signaling pathway, G βγ signaling through PI3Kγ, prolactin receptor signaling etc. These findings may enrich the results of genetic variants related to BMI and BP traits, and provide some evidences to future study the pathogenesis of hypertension and obesity in the northern Chinese population.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People’s Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People’s Republic of China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People’s Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People’s Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People’s Republic of China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People’s Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| |
Collapse
|
91
|
Park JM, Park DH, Song Y, Kim JO, Choi JE, Kwon YJ, Kim SJ, Lee JW, Hong KW. Understanding the genetic architecture of the metabolically unhealthy normal weight and metabolically healthy obese phenotypes in a Korean population. Sci Rep 2021; 11:2279. [PMID: 33500527 PMCID: PMC7838176 DOI: 10.1038/s41598-021-81940-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
Understanding the mechanisms underlying the metabolically unhealthy normal weight (MUHNW) and metabolically healthy obese (MHO) phenotypes is important for developing strategies to prevent cardiometabolic diseases. Here, we conducted genome-wide association studies (GWASs) to identify the MUHNW and MHO genetic indices. The study dataset comprised genome-wide single-nucleotide polymorphism genotypes and epidemiological data from 49,915 subjects categorised into four phenotypes-metabolically healthy normal weight (MHNW), MUHNW, MHO, and metabolically unhealthy obese (MUHO). We conducted two GWASs using logistic regression analyses and adjustments for confounding variables (model 1: MHNW versus MUHNW and model 2: MHO versus MUHO). GCKR, ABCB11, CDKAL1, LPL, CDKN2B, NT5C2, APOA5, CETP, and APOC1 were associated with metabolically unhealthy phenotypes among normal weight individuals (model 1). LPL, APOA5, and CETP were associated with metabolically unhealthy phenotypes among obese individuals (model 2). The genes common to both models are related to lipid metabolism (LPL, APOA5, and CETP), and those associated with model 1 are related to insulin or glucose metabolism (GCKR, CDKAL1, and CDKN2B). This study reveals the genetic architecture of the MUHNW and MHO phenotypes in a Korean population-based cohort. These findings could help identify individuals at a high metabolic risk in normal weight and obese populations and provide potential novel targets for the management of metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Jae-Min Park
- grid.15444.300000 0004 0470 5454Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju‐ro, Gangnam-gu, Seoul, 06273 Korea ,grid.15444.300000 0004 0470 5454Department of Medicine, Graduate School of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Da-Hyun Park
- Theragen Bio Co., Ltd., 145 Gwanggyo-ro, Suwon-si, Gyeonggi-do 16229 Korea
| | - Youhyun Song
- grid.15444.300000 0004 0470 5454Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju‐ro, Gangnam-gu, Seoul, 06273 Korea
| | - Jung Oh Kim
- Theragen Bio Co., Ltd., 145 Gwanggyo-ro, Suwon-si, Gyeonggi-do 16229 Korea
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., 145 Gwanggyo-ro, Suwon-si, Gyeonggi-do 16229 Korea
| | - Yu-Jin Kwon
- grid.15444.300000 0004 0470 5454Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do 16995 Korea
| | - Seong-Jin Kim
- Theragen Bio Co., Ltd., 145 Gwanggyo-ro, Suwon-si, Gyeonggi-do 16229 Korea
| | - Ji-Won Lee
- grid.15444.300000 0004 0470 5454Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju‐ro, Gangnam-gu, Seoul, 06273 Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., 145 Gwanggyo-ro, Suwon-si, Gyeonggi-do 16229 Korea
| |
Collapse
|
92
|
Laaksonen J, Mishra PP, Seppälä I, Lyytikäinen LP, Raitoharju E, Mononen N, Lepistö M, Almusa H, Ellonen P, Hutri-Kähönen N, Juonala M, Raitakari O, Kähönen M, Salonen JT, Lehtimäki T. Examining the effect of mitochondrial DNA variants on blood pressure in two Finnish cohorts. Sci Rep 2021; 11:611. [PMID: 33436758 PMCID: PMC7804469 DOI: 10.1038/s41598-020-79931-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
High blood pressure (BP) is a major risk factor for many noncommunicable diseases. The effect of mitochondrial DNA single-nucleotide polymorphisms (mtSNPs) on BP is less known than that of nuclear SNPs. We investigated the mitochondrial genetic determinants of systolic, diastolic, and mean arterial BP. MtSNPs were determined from peripheral blood by sequencing or with genome-wide association study SNP arrays in two independent Finnish cohorts, the Young Finns Study and the Finnish Cardiovascular Study, respectively. In total, over 4200 individuals were included. The effects of individual common mtSNPs, with an additional focus on sex-specificity, and aggregates of rare mtSNPs grouped by mitochondrial genes were evaluated by meta-analysis of linear regression and a sequence kernel association test, respectively. We accounted for the predicted pathogenicity of the rare variants within protein-encoding and the tRNA regions. In the meta-analysis of 87 common mtSNPs, we did not observe significant associations with any of the BP traits. Sex-specific and rare-variant analyses did not pinpoint any significant associations either. Our results are in agreement with several previous studies suggesting that mtDNA variation does not have a significant role in the regulation of BP. Future studies might need to reconsider the mechanisms thought to link mtDNA with hypertension.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland.
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Maija Lepistö
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jukka T Salonen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,MAS-Metabolic Analytical Services Oy, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| |
Collapse
|
93
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
94
|
Sawyer Lee R, Dunnmon JA, He A, Tang S, Ré C, Rubin DL. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset. J Biomed Inform 2021; 113:103656. [PMID: 33309994 PMCID: PMC7987253 DOI: 10.1016/j.jbi.2020.103656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To compare machine learning methods for classifying mass lesions on mammography images that use predefined image features computed over lesion segmentations to those that leverage segmentation-free representation learning on a standard, public evaluation dataset. METHODS We apply several classification algorithms to the public Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM), in which each image contains a mass lesion. Segmentation-free representation learning techniques for classifying lesions as benign or malignant include both a Bag-of-Visual-Words (BoVW) method and a Convolutional Neural Network (CNN). We compare classification performance of these techniques to that obtained using two different segmentation-dependent approaches from the literature that rely on specific combinations of end classifiers (e.g. linear discriminant analysis, neural networks) and predefined features computed over the lesion segmentation (e.g. spiculation measure, morphological characteristics, intensity metrics). RESULTS We report area under the receiver operating characteristic curve (AZ) values for malignancy classification on CBIS-DDSM for each technique. We find average AZ values of 0.73 for a segmentation-free BoVW method, 0.86 for a segmentation-free CNN method, 0.75 for a segmentation-dependent linear discriminant analysis of Rubber-Band Straightening Transform features, and 0.58 for a hybrid rule-based neural network classification using a small number of hand-designed features. CONCLUSIONS We find that malignancy classification performance on the CBIS-DDSM dataset using segmentation-free BoVW features is comparable to that of the best segmentation-dependent methods we study, but also observe that a common segmentation-free CNN model substantially and significantly outperforms each of these (p < 0.05). These results reinforce recent findings suggesting that representation learning techniques such as BoVW and CNNs are advantageous for mammogram analysis because they do not require lesion segmentation, the quality and specific characteristics of which can vary substantially across datasets. We further observe that segmentation-dependent methods achieve performance levels on CBIS-DDSM inferior to those achieved on the original evaluation datasets reported in the literature. Each of these findings reinforces the need for standardization of datasets, segmentation techniques, and model implementations in performance assessments of automated classifiers for medical imaging.
Collapse
Affiliation(s)
- Rebecca Sawyer Lee
- Stanford University Biomedical Informatics Training Program, United States
| | - Jared A Dunnmon
- Stanford University Department of Computer Science, United States.
| | - Ann He
- Stanford University Department of Computer Science, United States
| | - Siyi Tang
- Stanford University Department of Electrical Engineering, United States
| | - Christopher Ré
- Stanford University Department of Computer Science, United States
| | - Daniel L Rubin
- Stanford University Departments of Radiology and Biomedical Data Science, United States
| |
Collapse
|
95
|
Brandts L, van Poppel FW, van den Brandt PA. Parental lifespan and the likelihood of reaching the age of 90 years in the Netherlands Cohort Study. Geriatr Gerontol Int 2020; 21:215-221. [PMID: 33368897 PMCID: PMC7898670 DOI: 10.1111/ggi.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/12/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022]
Abstract
Aim Growing evidence suggests an association between parental longevity and lifespan of subsequent generations. We aimed to reproduce earlier findings, showing a positive association between parental longevity and offspring's longevity. Additionally, we investigated whether this is mainly driven by the maternal or paternal germline in male and female offspring. Methods For these analyses, data from the oldest birth cohort (1916–17) of the Netherlands Cohort Study was used. Participants filled in a baseline questionnaire in 1986 (at age 68–70 years). Follow up for vital status information until the age of 90 years (2006–07) was >99.9% complete. Multivariable‐adjusted Cox regression analyses with a fixed follow‐up time were based on 2368 men and 2657 women with complete parental survival data and relevant confounders to calculate risk ratios (RR) of reaching longevity. Results In age‐adjusted models, paternal and maternal age at death were significantly positively associated with reaching 90 years in both male and female offspring. In male offspring, paternal age at death (≥90 years vs <80 years) showed the strongest association with survival to 90 years (RR 1.42, 95% CI 1.07–1.89), after confounder correction. In female offspring, maternal age at death (≥90 years vs <80 years) showed the strongest association with survival to 90 years (RR 1.20, 95% CI 1.04–1.40). Discussion After confounder adjustment, stronger and significant associations were observed between paternal lifespan and male offspring longevity, and maternal lifespan and female offspring longevity. Future research should investigate through which pathways a longer lifespan of parents is transmitted to their offspring. Geriatr Gerontol Int 2021; 21: 215–221.
Collapse
Affiliation(s)
- Lloyd Brandts
- GROW - School for Oncology and Developmental Biology, Department of Epidemiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Frans Wa van Poppel
- Netherlands Interdisciplinary Demographic Institute (NIDI)/Royal Netherlands Academy of Arts and Sciences (KNAW), The Hague, the Netherlands
| | - Piet A van den Brandt
- GROW - School for Oncology and Developmental Biology, Department of Epidemiology, Maastricht University Medical Center, Maastricht, the Netherlands.,CAPHRI - School for Public Health and Primary Care, Department of Epidemiology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
96
|
Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, et alSurendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, Cho K, Christensen C, Connell J, Mutsert RD, Dominiczak AF, Dörr M, Eiriksdottir G, Farmaki AE, Gaziano JM, Grarup N, Grove ML, Hallmans G, Hansen T, Have CT, Heiss G, Jørgensen ME, Jousilahti P, Kajantie E, Kamat M, Käräjämäki A, Karpe F, Koistinen HA, Kovesdy CP, Kuulasmaa K, Laatikainen T, Lannfelt L, Lee IT, Lee WJ, Linneberg A, Martin LW, Moitry M, Nadkarni G, Neville MJ, Palmer CNA, Papanicolaou GJ, Pedersen O, Peters J, Poulter N, Rasheed A, Rasmussen KL, Rayner NW, Mägi R, Renström F, Rettig R, Rossouw J, Schreiner PJ, Sever PS, Sigurdsson EL, Skaaby T, Sun YV, Sundstrom J, Thorgeirsson G, Esko T, Trabetti E, Tsao PS, Tuomi T, Turner ST, Tzoulaki I, Vaartjes I, Vergnaud AC, Willer CJ, Wilson PWF, Witte DR, Yonova-Doing E, Zhang H, Aliya N, Almgren P, Amouyel P, Asselbergs FW, Barnes MR, Blakemore AI, Boehnke M, Bots ML, Bottinger EP, Buring JE, Chambers JC, Chen YDI, Chowdhury R, Conen D, Correa A, Davey Smith G, Boer RAD, Deary IJ, Dedoussis G, Deloukas P, Di Angelantonio E, Elliott P, Felix SB, Ferrières J, Ford I, Fornage M, Franks PW, Franks S, Frossard P, Gambaro G, Gaunt TR, Groop L, Gudnason V, Harris TB, Hayward C, Hennig BJ, Herzig KH, Ingelsson E, Tuomilehto J, Järvelin MR, Jukema JW, Kardia SLR, Kee F, Kooner JS, Kooperberg C, Launer LJ, Lind L, Loos RJF, Majumder AAS, Laakso M, McCarthy MI, Melander O, Mohlke KL, Murray AD, Nordestgaard BG, Orho-Melander M, Packard CJ, Padmanabhan S, Palmas W, Polasek O, Porteous DJ, Prentice AM, Province MA, Relton CL, Rice K, Ridker PM, Rolandsson O, Rosendaal FR, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sattar N, Sheu WHH, Smith BH, Soranzo N, Spector TD, Starr JM, Sebert S, Taylor KD, Lakka TA, Timpson NJ, Tobin MD, van der Harst P, van der Meer P, Ramachandran VS, Verweij N, Virtamo J, Völker U, Weir DR, Zeggini E, Charchar FJ, Wareham NJ, Langenberg C, Tomaszewski M, Butterworth AS, Caulfield MJ, Danesh J, Edwards TL, Holm H, Hung AM, Lindgren CM, Liu C, Manning AK, Morris AP, Morrison AC, O'Donnell CJ, Psaty BM, Saleheen D, Stefansson K, Boerwinkle E, Chasman DI, Levy D, Newton-Cheh C, Munroe PB, Howson JMM. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet 2020; 52:1314-1332. [PMID: 33230300 PMCID: PMC7610439 DOI: 10.1038/s41588-020-00713-x] [Show More Authors] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elena V Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Najim Lahrouchi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences Amsterdam, Amsterdam, the Netherlands
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Lingyan Chen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - James H Cartwright
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | | | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Bram P Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Isobel D Stewart
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Paul L Auer
- Joseph J Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vickie S Braithwaite
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Nutrition and Bone Health Group, University of Cambridge, Cambridge, UK
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Fotios Drenos
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Cristiano Fava
- Department of Medicine, University of Verona, Verona, Italy
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Teresa Ferreira
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christopher N Foley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Queen Mary University of London, London, UK
- Division of Psychiatry, University College of London, London, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Aki S Havulinna
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Jennifer E Huffman
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
| | - Jukka Kontto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin G Larson
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaana Lindström
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - David Mosen-Ansorena
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nuno Sepúlveda
- Department of Infection Biology, Faculty of Tropical and Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University of, Singapore, Singapore
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James R Staley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alena Stanáková
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Tennessee Valley Health Systems VA, Nashville, TN, USA
| | - Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robin Young
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing-Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Eralda Asllanaj
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - John Connell
- University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Mihir Kamat
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - AnneMari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| | - Kari Kuulasmaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, , Chung Shan Medical University, Taichung, Taiwan
- College of Science, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Marie Moitry
- Department of Public health, Strasbourg University Hospital, University of Strasbourg, Strasbourg, France
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James Peters
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Katrine L Rasmussen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - N William Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jacques Rossouw
- Division of Cardiovascular Sciences, NHLBI, Bethesda, MD, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Peter S Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Emil L Sigurdsson
- Department of Family Medicine, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Health Care in Iceland, Reykjavik, Iceland
| | - Tea Skaaby
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Johan Sundstrom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Philip S Tsao
- VA Palo Alto Health Care System, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peter W F Wilson
- Atlanta VAMC and Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Naheed Aliya
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Peter Almgren
- Department of Medicine, Lund University, Malmö, Sweden
| | - Philippe Amouyel
- Univ Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- INSERM, U1167, Lille, France
- CHU Lille, U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Non-communicable Disease Research (CNCR), Dhaka, Bangladesh
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Health Data Research UK-London at Imperial College London, London, UK
- UKDRI, Dementia Research Institute at Imperial College London, London, UK
- British Heart Foundation (BHF) Centre of Research Excellence, Imperial College London, London, UK
| | - Stephan B Felix
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jean Ferrières
- Department of Cardiology and Department of Epidemiology, INSERM UMR 1027, Toulouse University Hospital, Toulouse, France
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Oxford Center for Diabetes, Endocrinology & Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Franks
- Institute of Reproductive & Developmental Biology, Imperial College London, London, UK
| | | | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Branwen J Hennig
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- Wellcome Trust, London, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- National Institute of Public Health, Madrid, Spain
| | - Marjo-Riitta Järvelin
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Kajaanintie, Oulu, Finland
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Kee
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Jaspal S Kooner
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, South San Francisco, San Francisco, CA, USA
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- MRC International Nutrition Group at London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, UK
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nicole Soranzo
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sylvain Sebert
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio, Finland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin D Tobin
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Vasan S Ramachandran
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Niek Verweij
- University Medical Center Groningen, Groningen, the Netherlands
| | - Jarmo Virtamo
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Health Innovation and Transformation Center, Federation University Australia, Ballarat, Victoria, Australia
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Hilma Holm
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | - Adriana M Hung
- VA Tennessee Valley Healthcare System, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chunyu Liu
- Boston University School of Public Health, Boston, MA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Danish Saleheen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Levy
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Population Sciences, Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK.
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK.
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK.
| |
Collapse
|
97
|
Teleka S, Hindy G, Drake I, Poveda A, Melander O, Liedberg F, Orho-Melander M, Stocks T. Blood pressure and bladder cancer risk in men by use of survival analysis and in interaction with NAT2 genotype, and by Mendelian randomization analysis. PLoS One 2020; 15:e0241711. [PMID: 33237904 PMCID: PMC7688142 DOI: 10.1371/journal.pone.0241711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
The association between blood pressure (BP) and bladder cancer (BC) risk remains unclear with confounding by smoking being of particular concern. We investigated the association between BP and BC risk among men using conventional survival-analysis, and by Mendelian Randomization (MR) analysis in an attempt to disconnect the association from smoking. We additionally investigated the interaction between BP and N-acetyltransferase-2 (NAT2) rs1495741, an established BC genetic risk variant, in the association. Populations consisting of 188,167 men with 502 incident BC's in the UK-biobank and 27,107 men with 928 incident BC's in two Swedish cohorts were used for the analysis. We found a positive association between systolic BP and BC risk in Cox-regression survival analysis in the Swedish cohorts, (hazard ratio [HR] per standard deviation [SD]: 1.14 [95% confidence interval 1.05-1.22]) and MR analysis (odds ratio per SD: 2-stage least-square regression, 7.70 [1.92-30.9]; inverse-variance weighted estimate, 3.43 [1.12-10.5]), and no associations in the UK-biobank (HR systolic BP: 0.93 [0.85-1.02]; MR OR: 1.24 [0.35-4.40] and 1.37 [0.43-4.37], respectively). BP levels were positively associated with muscle-invasive BC (MIBC) (HRs: systolic BP, 1.32 [1.09-1.59]; diastolic BP, 1.27 [1.04-1.55]), but not with non-muscle invasive BC, which could be analyzed in the Swedish cohorts only. There was no interaction between BP and NAT2 in relation to BC on the additive or multiplicative scale. These results suggest that BP might be related to BC, more particularly MIBC. There was no evidence to support interaction between BP and NAT2 in relation to BC in our study.
Collapse
Affiliation(s)
- Stanley Teleka
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- * E-mail:
| | - George Hindy
- Department of Population Medicine, College of Medicine Qatar University, Doha, Qatar
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Isabel Drake
- Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Alaitz Poveda
- Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Division of Urological Research, Institution of Translational Medicine, Lund University, Malmö, Sweden
- Department of Urology, Skåne University Hospital, Skåne, Sweden
| | | | - Tanja Stocks
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|
98
|
Ward M, Hughes CF, Strain JJ, Reilly R, Cunningham C, Molloy AM, Horigan G, Casey M, McCarroll K, O'Kane M, Gibney MJ, Flynn A, Walton J, McNulty BA, McCann A, Kirwan L, Scott JM, McNulty H. Impact of the common MTHFR 677C→T polymorphism on blood pressure in adulthood and role of riboflavin in modifying the genetic risk of hypertension: evidence from the JINGO project. BMC Med 2020; 18:318. [PMID: 33172445 PMCID: PMC7656675 DOI: 10.1186/s12916-020-01780-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Genome-wide and clinical studies have linked the 677C→T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR) with hypertension, whilst limited evidence shows that intervention with riboflavin (i.e. the MTHFR co-factor) can lower blood pressure (BP) in hypertensive patients with the variant MTHFR 677TT genotype. We investigated the impact of this common polymorphism on BP throughout adulthood and hypothesised that riboflavin status would modulate the genetic risk of hypertension. METHODS Observational data on 6076 adults of 18-102 years were drawn from the Joint Irish Nutrigenomics Organisation project, comprising the Trinity-Ulster Department of Agriculture (TUDA; volunteer sample) and the National Adult Nutrition Survey (NANS; population-based sample) cohorts. Participants were recruited from the Republic of Ireland and Northern Ireland (UK) in 2008-2012 using standardised methods. RESULTS The variant MTHFR 677TT genotype was identified in 12% of adults. From 18 to 70 years, this genotype was associated with an increased risk of hypertension (i.e. systolic BP ≥ 140 and/or a diastolic BP ≥ 90 mmHg): odds ratio (OR) 1.42, 95% confidence interval (CI) 1.07 to 1.90; P = 0.016, after adjustment for antihypertensive drug use and other significant factors, namely, age, male sex, BMI, alcohol and total cholesterol. Low or deficient biomarker status of riboflavin (observed in 30.2% and 30.0% of participants, respectively) exacerbated the genetic risk of hypertension, with a 3-fold increased risk for the TT genotype in combination with deficient riboflavin status (OR 3.00, 95% CI, 1.34-6.68; P = 0.007) relative to the CC genotype combined with normal riboflavin status. Up to 65 years, we observed poorer BP control rates on antihypertensive treatment in participants with the TT genotype (30%) compared to those without this variant, CT (37%) and CC (45%) genotypes (P < 0.027). CONCLUSIONS The MTHFR 677TT genotype is associated with higher BP independently of homocysteine and predisposes adults to an increased risk of hypertension and poorer BP control with antihypertensive treatment, whilst better riboflavin status is associated with a reduced genetic risk. Riboflavin intervention may thus offer a personalised approach to prevent the onset of hypertension in adults with the TT genotype; however, this requires confirmation in a randomised trial in non-hypertensive adults.
Collapse
Affiliation(s)
- Mary Ward
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Catherine F Hughes
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - J J Strain
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Rosie Reilly
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Conal Cunningham
- The Department of Gerontology, St James's Hospital, Dublin, Ireland
| | - Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Geraldine Horigan
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Miriam Casey
- The Department of Gerontology, St James's Hospital, Dublin, Ireland
| | - Kevin McCarroll
- The Department of Gerontology, St James's Hospital, Dublin, Ireland
| | - Maurice O'Kane
- Clinical Chemistry Laboratory, Western Health and Social Care Trust, Altnagelvin Hospital, Londonderry, Northern Ireland, UK
| | - Michael J Gibney
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Albert Flynn
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Janette Walton
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Breige A McNulty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Adrian McCann
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Laura Kirwan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John M Scott
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Helene McNulty
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
99
|
Ji LD, Tang NLS, Xu ZF, Xu J. Genes Regulate Blood Pressure, but "Environments" Cause Hypertension. Front Genet 2020; 11:580443. [PMID: 33240327 PMCID: PMC7680891 DOI: 10.3389/fgene.2020.580443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Laboratory for Genetics of Disease Susceptibility, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Feng Xu
- Department of Cardiology, Ningbo No. 7 Hospital, Ningbo, China
| | - Jin Xu
- Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China.,Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
100
|
El Shamieh S, Stathopoulou MG, Bonnefond A, Ndiaye NC, Lecoeur C, Meyre D, Dadé S, Chedid P, Salami A, Shahabi P, Dedoussis GV, Froguel P, Visvikis-Siest S. Obesity status modifies the association between rs7556897T>C in the intergenic region SLC19A3-CCL20 and blood pressure in French children. Clin Chem Lab Med 2020; 58:1819-1827. [PMID: 32238601 DOI: 10.1515/cclm-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Background Growing evidence reports an association between inflammatory markers, obesity and blood pressure (BP). Specifically, the intergenic single nucleotide polymorphism (SNP) rs7556897T > C (MAF = 0.34) located between SLC19A3 and the CCL20 was shown to be associated with chronic inflammatory diseases. In addition, CCL20 expression was found increased in pancreatic islets of obese rodents and human pancreatic β cells under the influence of inflammation. In this study, we hypothesized that SNP rs7556897 could affect BP levels, thus providing a link between inflammation, BP and obesity. Methods BP was measured under supine position with a manual sphygmomanometer; values reported were the means of three readings. We analyzed rs7556897 in 577 normal weight and 689 obese French children. Using real-time polymerase chain reaction (PCR), we quantified CCL20 and SLC19A3 expression in adipose tissue and peripheral blood mononuclear cells (PBMCs) of normal weight and overweight children. Results The rs7556897C allele was negatively associated with diastolic BP in normal weight children (β = -0.012 ± 0.004, p = 0.006) but positively associated in obese children (β = 2.178 ± 0.71, p = 0.002). A significant interaction between rs7556897T > C and the obesity status (obese or normal weight) was detected (β = 3.49, p = 9.79 × 10-5) for BP in a combined population analysis. CCL20 mRNA was only expressed in the adipose tissue of overweight children, and its expression levels were 10.7× higher in PBMCs of overweight children than normal weight children. Finally, CCL20 mRNA levels were positively associated with rs7556897T > C in PBMCs of 58 normal weight children (β = 0.43, p = 0.002). SLC19A3 was not expressed in PBMCs, and in adipose tissue, it showed same levels of expression in normal weight and overweight children. The gene expression results may highlight a specific involvement of CCL20 via communicating obesity/inflammation pathways that regulate BP. Conclusions Childhood obesity reverses the effect of rs7556897T > C on diastolic BP, possibly via the modulation of CCL20 expression levels.
Collapse
Affiliation(s)
- Said El Shamieh
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Maria G Stathopoulou
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Amélie Bonnefond
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France
| | - Ndeye Coumba Ndiaye
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Cécile Lecoeur
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France
| | - David Meyre
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Sébastien Dadé
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Pia Chedid
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - Ali Salami
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
| | - Payman Shahabi
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| | - George V Dedoussis
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France.,Department of Nutrition - Dietetics, Harokopio University, Athens, Greece
| | - Philippe Froguel
- CNRS 8199-University Lille North of France, Institut Pasteur de Lille, Lille, France.,Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - Sophie Visvikis-Siest
- Research Unit EA_1122; IGE-PCV - Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire, Université de Lorraine, Faculté de Pharmacie, Nancy, France
| |
Collapse
|