51
|
Forutan M, Engle BN, Chamberlain AJ, Ross EM, Nguyen LT, D'Occhio MJ, Snr AC, Kho EA, Fordyce G, Speight S, Goddard ME, Hayes BJ. Genome-wide association and expression quantitative trait loci in cattle reveals common genes regulating mammalian fertility. Commun Biol 2024; 7:724. [PMID: 38866948 PMCID: PMC11169601 DOI: 10.1038/s42003-024-06403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Most genetic variants associated with fertility in mammals fall in non-coding regions of the genome and it is unclear how these variants affect fertility. Here we use genome-wide association summary statistics for Heifer puberty (pubertal or not at 600 days) from 27,707 Bos indicus, Bos taurus and crossbred cattle; multi-trait GWAS signals from 2119 indicine cattle for four fertility traits, including days to calving, age at first calving, pregnancy status, and foetus age in weeks (assessed by rectal palpation of the foetus); and expression quantitative trait locus for whole blood from 489 indicine cattle, to identify 87 putatively functional genes affecting cattle fertility. Our analysis reveals a significant overlap between the set of cattle and previously reported human fertility-related genes, impling the existence of a shared pool of genes that regulate fertility in mammals. These findings are crucial for developing approaches to improve fertility in cattle and potentially other mammals.
Collapse
Affiliation(s)
- Mehrnush Forutan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Bailey N Engle
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- USDA,ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Amanda J Chamberlain
- Agriculture Victoria, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Elizabeth M Ross
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Loan T Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Alf Collins Snr
- Collins Belah Valley Brahman Stud, Marlborough, 4705, QLD, Australia
| | - Elise A Kho
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Geoffry Fordyce
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael E Goddard
- Agriculture Victoria, Centre for AgriBiosciences, Bundoora, VIC, Australia
- University of Melbourne, Melbourne, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
52
|
Chiou JS, Lin YJ, Chang CYY, Liang WM, Liu TY, Yang JS, Chou CH, Lu HF, Chiu ML, Lin TH, Liao CC, Huang SM, Chou IC, Li TM, Huang PY, Chien TS, Chen HR, Tsai FJ. Menarche-a journey into womanhood: age at menarche and health-related outcomes in East Asians. Hum Reprod 2024; 39:1336-1350. [PMID: 38527428 DOI: 10.1093/humrep/deae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
STUDY QUESTION Are there associations of age at menarche (AAM) with health-related outcomes in East Asians? SUMMARY ANSWER AAM is associated with osteoporosis, Type 2 diabetes (T2D), glaucoma, and uterine fibroids, as demonstrated through observational studies, polygenic risk scores, genetic correlations, and Mendelian randomization (MR), with additional findings indicating a causal effect of BMI and T2D on earlier AAM. WHAT IS KNOWN ALREADY Puberty timing is linked to adult disease risk, but research predominantly focuses on European populations, with limited studies in other groups. STUDY DESIGN, SIZE, DURATION We performed an AAM genome-wide association study (GWAS) with 57 890 Han Taiwanese females and examined the association between AAM and 154 disease outcomes using the Taiwanese database. Additionally, we examined genetic correlations between AAM and 113 diseases and 67 phenotypes using Japanese GWAS summary statistics. PARTICIPANTS/MATERIALS, SETTING, METHODS We performed AAM GWAS and gene-based GWAS studies to obtain summary statistics and identify potential AAM-related genes. We applied phenotype, polygenic risk scores, and genetic correlation analyses of AAM to explore health-related outcomes, using multivariate regression and linkage disequilibrium score regression analyses. We also explored potential bidirectional causal relationships between AAM and related outcomes through univariable and multivariable MR analyses. MAIN RESULTS AND THE ROLE OF CHANCE Fifteen lead single-nucleotide polymorphisms and 24 distinct genes were associated with AAM in Taiwan. AAM was genetically associated with later menarche and menopause, greater height, increased osteoporosis risk, but lower BMI, and reduced risks of T2D, glaucoma, and uterine fibroids in East Asians. Bidirectional MR analyses indicated that higher BMI/T2D causally leads to earlier AAM. LIMITATIONS, REASONS FOR CAUTION Our findings were specific to Han Taiwanese individuals, with genetic correlation analyses conducted in East Asians. Further research in other ethnic groups is necessary. WIDER IMPLICATIONS OF THE FINDINGS Our study provides insights into the genetic architecture of AAM and its health-related outcomes in East Asians, highlighting causal links between BMI/T2D and earlier AAM, which may suggest potential prevention strategies for early puberty. STUDY FUNDING/COMPETING INTEREST(S) The work was supported by China Medical University, Taiwan (CMU110-S-17, CMU110-S-24, CMU110-MF-49, CMU111-SR-158, CMU111-MF-105, CMU111-MF-21, CMU111-S-35, CMU112-SR-30, and CMU112-MF-101), the China Medical University Hospital, Taiwan (DMR-111-062, DMR-111-153, DMR-112-042, DMR-113-038, and DMR-113-103), and the Ministry of Science and Technology, Taiwan (MOST 111-2314-B-039-063-MY3, MOST 111-2314-B-039-064-MY3, MOST 111-2410-H-039-002-MY3, and NSTC 112-2813-C-039-036-B). The funders had no influence on the data collection, analyses, or conclusions of the study. No conflict of interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jian-Shiun Chiou
- PhD Program for Health Science and Industry, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cherry Yin-Yi Chang
- Division of Minimal Invasive Endoscopy Surgery, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chen-Hsing Chou
- PhD Program for Health Science and Industry, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mu-Lin Chiu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Ching Chou
- Department of Pediatrics, China Medical University Children's Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Peng-Yan Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Shun Chien
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hou-Ren Chen
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Pediatrics, China Medical University Children's Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
53
|
Stenta T, Assis M, Ayers K, Tucker EJ, Halman A, Gook D, Sinclair AH, Elliott DA, Jayasinghe Y, Conyers R. Pharmacogenomic studies of fertility outcomes in pediatric cancer survivors - A systematic review. Clin Transl Sci 2024; 17:e13827. [PMID: 38924306 PMCID: PMC11199333 DOI: 10.1111/cts.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024] Open
Abstract
For the same age, sex, and dosage, there can be significant variation in fertility outcomes in childhood cancer survivors. Genetics may explain this variation. This study aims to: (i) review the genetic contributions to infertility, (ii) search for pharmacogenomic studies looking at interactions of cancer treatment, genetic predisposition and fertility-related outcomes. Systematic searches in MEDLINE Ovid, Embase Classic+Embase, and PubMed were conducted using the following selection criteria: (i) pediatric, adolescent, and young adult cancer survivors, below 25 years old at the time of diagnosis, (ii) fertility outcome measures after cancer therapy, (iii) genetic considerations. Studies were excluded if they were (i) conducted in animal models, (ii) were not published in English, (iii) editorial letters, (iv) theses. Articles were screened in Covidence by at least two independent reviewers, followed by data extraction and a risk of bias assessment using the Quality in Prognostic Studies tool. Eight articles were reviewed with a total of 29 genes. Outcome measures included sperm concentration, azoospermia, AMH levels, assessment of premature menopause, ever being pregnant or siring a pregnancy. Three studies included replication cohorts, which attempted replication of SNP findings for NPY2R, BRSK1, FANCI, CYP2C19, CYP3A4, and CYP2B6. Six studies were rated with a high risk of bias. Differing methods may explain a lack of replication, and small cohorts may have contributed to few significant findings. Larger, prospective longitudinal studies with an unbiased genome-wide focus will be important to replicate significant results, which can be applied clinically.
Collapse
Affiliation(s)
- Tayla Stenta
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Michael Assis
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
| | - Katie Ayers
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elena J. Tucker
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andreas Halman
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Debra Gook
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
- Gynaecology, Royal Children‘s HospitalParkvilleVictoriaAustralia
- Reproductive Services, The Royal Women's HospitalParkvilleVictoriaAustralia
| | - Andrew H. Sinclair
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - David A. Elliott
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Yasmin Jayasinghe
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
- Gynaecology, Royal Children‘s HospitalParkvilleVictoriaAustralia
| | - Rachel Conyers
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Children's Cancer Centre, The Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
54
|
Misicka E, Huang Y, Loomis S, Sadhu N, Fisher E, Gafson A, Runz H, Tsai E, Jia X, Herman A, Bronson PG, Bhangale T, Briggs FB. Adaptive and Innate Immunity Are Key Drivers of Age at Onset of Multiple Sclerosis. Neurol Genet 2024; 10:e200159. [PMID: 38817245 PMCID: PMC11139017 DOI: 10.1212/nxg.0000000000200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Background and Objectives Multiple sclerosis (MS) age at onset (AAO) is a clinical predictor of long-term disease outcomes, independent of disease duration. Little is known about the genetic and biological mechanisms underlying age of first symptoms. We conducted a genome-wide association study (GWAS) to investigate associations between individual genetic variation and the MS AAO phenotype. Methods The study population was comprised participants with MS in 6 clinical trials: ADVANCE (N = 655; relapsing-remitting [RR] MS), ASCEND (N = 555; secondary-progressive [SP] MS), DECIDE (N = 1,017; RRMS), OPERA1 (N = 581; RRMS), OPERA2 (N = 577; RRMS), and ORATORIO (N = 529; primary-progressive [PP] MS). Altogether, 3,905 persons with MS of European ancestry were analyzed. GWAS were conducted for MS AAO in each trial using linear additive models controlling for sex and 10 principal components. Resultant summary statistics across the 6 trials were then meta-analyzed, for a total of 8.3 × 10-6 single nucleotide polymorphisms (SNPs) across all trials after quality control and filtering for heterogeneity. Gene-based tests of associations, pathway enrichment analyses, and Mendelian randomization analyses for select exposures were also performed. Results Four lead SNPs within 2 loci were identified (p < 5 × 10-8), including a) 3 SNPs in the major histocompatibility complex and their effects were independent of HLA-DRB1*15:01 and b) a LOC105375167 variant on chromosome 7. At the gene level, the top association was HLA-C (p = 1.2 × 10-7), which plays an important role in antiviral immunity. Functional annotation revealed the enrichment of pathways related to T-cell receptor signaling, autoimmunity, and the complement cascade. Mendelian randomization analyses suggested a link between both earlier age at puberty and shorter telomere length and earlier AAO, while there was no evidence for a role for either body mass index or vitamin D levels. Discussion Two genetic loci associated with MS AAO were identified, and functional annotation demonstrated an enrichment of genes involved in adaptive and complement immunity. There was also evidence supporting a link with age at puberty and telomere length. The findings suggest that AAO in MS is multifactorial, and the factors driving onset of symptoms overlap with those influencing MS risk.
Collapse
Affiliation(s)
- Elina Misicka
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Yunfeng Huang
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Stephanie Loomis
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Nilanjana Sadhu
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Elizabeth Fisher
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Arie Gafson
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Heiko Runz
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Ellen Tsai
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Xiaoming Jia
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Ann Herman
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Paola G Bronson
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Tushar Bhangale
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| | - Farren B Briggs
- From the Department of Population and Quantitative Health Sciences (E.M.), Case Western Reserve University, Cleveland, OH; Biogen (Y.H., S.L., N.S., E.F., A.G., H.R., E.T., P.G.B.), Cambridge, MA; Human Genetics and Bioinformatics (X.J., A.H., T.B.), Genentech, San Francisco, CA; and Department of Public Health Sciences (F.B.B.), University of Miami, FL
| |
Collapse
|
55
|
Yazdanpanah M, Yazdanpanah N, Gamache I, Ong K, Perry JRB, Manousaki D. Metabolome-wide Mendelian randomization for age at menarche and age at natural menopause. Genome Med 2024; 16:69. [PMID: 38802955 PMCID: PMC11131236 DOI: 10.1186/s13073-024-01322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The role of metabolism in the variation of age at menarche (AAM) and age at natural menopause (ANM) in the female population is not entirely known. We aimed to investigate the causal role of circulating metabolites in AAM and ANM using Mendelian randomization (MR). METHODS We combined MR with genetic colocalization to investigate potential causal associations between 658 metabolites and AAM and between 684 metabolites and ANM. We extracted genetic instruments for our exposures from four genome-wide association studies (GWAS) on circulating metabolites and queried the effects of these variants on the outcomes in two large GWAS from the ReproGen consortium. Additionally, we assessed the mediating role of the body mass index (BMI) in these associations, identified metabolic pathways implicated in AAM and ANM, and sought validation for selected metabolites in the Avon Longitudinal Study of Parents and Children (ALSPAC). RESULTS Our analysis identified 10 candidate metabolites for AAM, but none of them colocalized with AAM. For ANM, 76 metabolites were prioritized (FDR-adjusted MR P-value ≤ 0.05), with 17 colocalizing, primarily in the glycerophosphocholines class, including the omega-3 fatty acid and phosphatidylcholine (PC) categories. Pathway analyses and validation in ALSPAC mothers also highlighted the role of omega and polyunsaturated fatty acids levels in delaying age at menopause. CONCLUSIONS Our study suggests that metabolites from the glycerophosphocholine and fatty acid families play a causal role in the timing of both menarche and menopause. This underscores the significance of specific metabolic pathways in the biology of female reproductive longevity.
Collapse
Affiliation(s)
- Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - Isabel Gamache
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - Ken Ong
- MRC Epidemiology Unit, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Metabolic Research Laboratory, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
- Departments of Pediatrics, Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
56
|
Di S, Ning M, Yunfei L, Jiajia D, Panliang Z, Shan C, Ziyue C, Jun M, Yi S. Association between BMI and age at menarche or spermarche among both sexes: Findings from six successive national surveys in China. J Glob Health 2024; 14:04099. [PMID: 38726560 PMCID: PMC11082623 DOI: 10.7189/jogh.14.04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Background To explore trends of the association between body mass index (BMI) and age at menarche or spermarche and its urban-rural disparities from 1995 to 2019. Methods A total of 912 753 children and adolescents - including 519 940 9-18 years old girls and 392 813 11-18 years old boys - were involved in six successive cross-sectional surveys conducted across 30 provinces in China from 1995 to 2019. Data on menarche and spermarche was collected using the status quo method, where same-gender physicians conducted face-to-face interviews to determine if children and adolescents had experienced their first menstrual cycle or ejaculation (yes/no). The median age at menarche or spermarche was estimated by probit analysis. Anthropometric measurements measured the height and weight of the study subjects. Children and adolescents were classified into thinness, normal range of weight, overweight, and obesity. t test was used to compare the differences in BMI between premenarchal and postmenarchal girls or prespermarcheal and postspermarcheal boys. Logistic regression was used to explore the associations between BMI/nutritional status and menarche or spermarche stratified by urban or rural residency status. Results From 1995 to 2019, BMI in all age groups growth over time, and the values of BMI among children and adolescents under 15 who had menarche or spermarche were more significant than those without menarche or spermarche. In 2019, for girls, thinness was associated with delayed menarche (odds ratio (OR) = 0.26; 95% confidence interval (CI) = 0.24-0.28), while overweight (OR = 1.99; 95% CI = 1.85-2.14) and obesity (OR = 2.20; 95% CI = 1.92-2.53) was associated with advanced menarche. For boys, thinness was associated with delayed spermarche (OR = 0.71; 95% CI = 0.65-0.78), overweight was associated with advanced spermarche (OR = 1.08; 95% CI = 1.01-1.15) while obesity had no association with spermarche. The OR between BMI and menarche in 1995 was 1.35 (95% CI = 1.33-1.37), which decreased to 1.19 (95% CI = 1.18-1.20) by 2019. The OR between BMI and spermarche in 1995 was 1.10 (95% CI = 1.09-1.11), which decreased to 1.02 (95% CI = 1.02-1.03) by 2019. The trends by urban-rural stratification were consistent with the total sample. Conclusions We have established a dose-response relationship between BMI and menarche in girls, whereas the association appears to be nonlinear in boys, and the associations were diminishing. Similar findings were observed in both urban and rural areas. Considering the dual adverse effects of obesity and early puberty on health, the results of this study suggest that sexual health education should be strengthened, especially among obese girls. Further research on the influencing factors and biological mechanisms of early puberty will be beneficial.
Collapse
Affiliation(s)
- Shi Di
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Ma Ning
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Liu Yunfei
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Dang Jiajia
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Zhong Panliang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Cai Shan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Chen Ziyue
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Ma Jun
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Song Yi
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| |
Collapse
|
57
|
Kubo A, Acker J, Aghaee S, Kushi LH, Quesenberry CP, Greenspan LC, Srinivasan S, Kanaya AM, Deardorff J. Pubertal Timing Across Asian American, Native Hawaiian, and Pacific Islander Subgroups. JAMA Netw Open 2024; 7:e2410253. [PMID: 38739393 PMCID: PMC11091761 DOI: 10.1001/jamanetworkopen.2024.10253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/02/2024] [Indexed: 05/14/2024] Open
Abstract
Importance Earlier puberty is associated with adverse health outcomes, such as mental health issues in adolescence and cardiometabolic diseases in adulthood. Despite rapid growth of the Asian American, Native Hawaiian, and Pacific Islander populations in the US, limited research exists on their pubertal timing, potentially masking health disparities. Objective To examine pubertal timing among Asian American, Native Hawaiian, and Pacific Islander children and adolescents by disaggregating ethnic subgroups. Design, Setting, and Participants This retrospective cohort study included Asian American, Native Hawaiian, and Pacific Islander youths aged 5 to 18 years assessed for pubertal development at Kaiser Permanente Northern California, a large, integrated health care delivery system. Follow-up occurred from March 2005, through December 31, 2019. Data were analyzed in October 2023. Exposure Race and ethnicity, categorized into 11 ethnic subgroups: Asian Indian, Chinese, Filipino, Japanese, Korean, Native Hawaiian and Pacific Islander, Other South Asian, Other Southeast Asian, Vietnamese, multiethnic, and multiracial. Main Outcomes and Measures Pubertal timing was determined using physician-assessed sexual maturity ratings (SMRs). Outcomes included the median age at transition from SMR 1 (prepubertal) to SMR 2 or higher (pubertal) for onset of genital development (gonadarche) in boys, breast development (thelarche) in girls, and pubic hair development (pubarche) in both boys and girls. Results In this cohort of 107 325 Asian American, Native Hawaiian, and Pacific Islander children and adolescents (54.61% boys; 12.96% Asian Indian, 22.24% Chinese, 26.46% Filipino, 1.80% Japanese, 1.66% Korean, 1.96% Native Hawaiian and Pacific Islander, 0.86% Other South Asian, 3.26% Other Southeast Asian, 5.99% Vietnamese, 0.74% multiethnic, and 22.05% multiracial), the overall median ages for girls' pubarche and thelarche were 10.98 years (95% CI, 10.96-11.01 years) and 10.13 years (95% CI, 10.11-10.15 years), respectively. For boys' pubarche and gonadarche, median ages were 12.08 years (95% CI, 12.06-12.10 years) and 11.54 years (95% CI, 11.52-11.56 years), respectively. Differences between subgroups with earliest and latest median age at onset were 14 months for girls' pubarche, 8 months for thelarche, 8 months for boys' pubarche, and 4 months for gonadarche. In general, Asian Indian, Native Hawaiian and Pacific Islander, and Other South Asian subgroups had the earliest ages at onset across pubertal markers, while East Asian youths exhibited the latest onset. Restricting to those with healthy body mass index did not substantially change the findings. Conclusions and Relevance In this cohort study of Asian American, Native Hawaiian, and Pacific Islander children and adolescents, pubertal timing varied considerably across ethnic subgroups. Further investigation is warranted to assess whether these differences contribute to observed health disparities in adulthood, such as type 2 diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Ai Kubo
- Kaiser Permanente Division of Research, Oakland, California
| | - Julia Acker
- School of Public Health, University of California, Berkeley
| | - Sara Aghaee
- Kaiser Permanente Division of Research, Oakland, California
| | | | | | | | - Shylaja Srinivasan
- Division of Pediatric Endocrinology, Department of Pediatrics, University of California, San Francisco
| | - Alka M. Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco
| | | |
Collapse
|
58
|
Wu X, Xiao C, Rasooly D, Zhao X, Morton CC, Jiang X, Gallagher CS. A comprehensive genome-wide cross-trait analysis of sexual factors and uterine leiomyoma. PLoS Genet 2024; 20:e1011268. [PMID: 38701081 PMCID: PMC11095738 DOI: 10.1371/journal.pgen.1011268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/15/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Age at first sexual intercourse (AFS) and lifetime number of sexual partners (NSP) may influence the pathogenesis of uterine leiomyoma (UL) through their associations with hormonal concentrations and uterine infections. Leveraging summary statistics from large-scale genome-wide association studies conducted in European ancestry for each trait (NAFS = 214,547; NNSP = 370,711; NUL = 302,979), we observed a significant negative genomic correlation for UL with AFS (rg = -0.11, P = 7.83×10-4), but not with NSP (rg = 0.01, P = 0.62). Four specific genomic regions were identified as contributing significant local genetic correlations to AFS and UL, including one genomic region further identified for NSP and UL. Partitioning SNP-heritability with cell-type-specific annotations, a close clustering of UL with both AFS and NSP was identified in immune and blood-related components. Cross-trait meta-analysis revealed 15 loci shared between AFS/NSP and UL, including 7 novel SNPs. Univariable two-sample Mendelian randomization (MR) analysis suggested no evidence for a causal association between genetically predicted AFS/NSP and risk of UL, nor vice versa. Multivariable MR adjusting for age at menarche or/and age at natural menopause revealed a significant causal effect of genetically predicted higher AFS on a lower risk of UL. Such effect attenuated to null when age at first birth was further included. Utilizing participant-level data from the UK Biobank, one-sample MR based on genetic risk scores yielded consistent null findings among both pre-menopausal and post-menopausal females. From a genetic perspective, our study demonstrates an intrinsic link underlying sexual factors (AFS and NSP) and UL, highlighting shared biological mechanisms rather than direct causal effects. Future studies are needed to elucidate the specific mechanisms involved in the shared genetic influences and their potential impact on UL development.
Collapse
Affiliation(s)
- Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- National Cancer Institute, Rockville, Maryland, United States of America
| | - Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - C. Scott Gallagher
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
59
|
Askelund AD, Wootton RE, Torvik FA, Lawn RB, Ask H, Corfield EC, Magnus MC, Reichborn-Kjennerud T, Magnus PM, Andreassen OA, Stoltenberg C, Davey Smith G, Davies NM, Havdahl A, Hannigan LJ. Assessing causal links between age at menarche and adolescent mental health: a Mendelian randomisation study. BMC Med 2024; 22:155. [PMID: 38609914 PMCID: PMC11015655 DOI: 10.1186/s12916-024-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The timing of puberty may have an important impact on adolescent mental health. In particular, earlier age at menarche has been associated with elevated rates of depression in adolescents. Previous research suggests that this relationship may be causal, but replication and an investigation of whether this effect extends to other mental health domains is warranted. METHODS In this Registered Report, we triangulated evidence from different causal inference methods using a new wave of data (N = 13,398) from the Norwegian Mother, Father, and Child Cohort Study. We combined multiple regression, one- and two-sample Mendelian randomisation (MR), and negative control analyses (using pre-pubertal symptoms as outcomes) to assess the causal links between age at menarche and different domains of adolescent mental health. RESULTS Our results supported the hypothesis that earlier age at menarche is associated with elevated depressive symptoms in early adolescence based on multiple regression (β = - 0.11, 95% CI [- 0.12, - 0.09], pone-tailed < 0.01). One-sample MR analyses suggested that this relationship may be causal (β = - 0.07, 95% CI [- 0.13, 0.00], pone-tailed = 0.03), but the effect was small, corresponding to just a 0.06 standard deviation increase in depressive symptoms with each earlier year of menarche. There was also some evidence of a causal relationship with depression diagnoses during adolescence based on one-sample MR (OR = 0.74, 95% CI [0.54, 1.01], pone-tailed = 0.03), corresponding to a 29% increase in the odds of receiving a depression diagnosis with each earlier year of menarche. Negative control and two-sample MR sensitivity analyses were broadly consistent with this pattern of results. Multivariable MR analyses accounting for the genetic overlap between age at menarche and childhood body size provided some evidence of confounding. Meanwhile, we found little consistent evidence of effects on other domains of mental health after accounting for co-occurring depression and other confounding. CONCLUSIONS We found evidence that age at menarche affected diagnoses of adolescent depression, but not other domains of mental health. Our findings suggest that earlier age at menarche is linked to problems in specific domains rather than adolescent mental health in general.
Collapse
Affiliation(s)
- Adrian Dahl Askelund
- Department of Psychology, University of Oslo, Oslo, Norway.
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Robyn E Wootton
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Fartein A Torvik
- Department of Psychology, University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rebecca B Lawn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Helga Ask
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Promenta Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Elizabeth C Corfield
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per M Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Camilla Stoltenberg
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- NORCE Norwegian Research Centre, Bergen, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Neil M Davies
- Division of Psychiatry, University College London, London, UK
- Department of Statistical Sciences, University College London, London, UK
- KG Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexandra Havdahl
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Promenta Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Laurie J Hannigan
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway.
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
60
|
Guo R, Feng R, Yang J, Xiao Y, Yin C. Genetic correlation and Mendelian randomization analyses support causal relationships between dietary habits and age at menarche. Sci Rep 2024; 14:8425. [PMID: 38600095 PMCID: PMC11006932 DOI: 10.1038/s41598-024-58999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Dietary habits are essential in the mean age at menarche (AAM). However, the causal relationship between these factors remains unclear. Therefore, this study aimed to elucidate the genetic relationship between dietary habits and AAM. Genetic summary statistics for dietary habits were obtained from the UK Biobank. GWAS summary data for AAM was obtained from the ReproGen Consortium. Linkage disequilibrium score regression was used to test genetic correlations between dietary habits and AAM. The Mendelian randomization (MR) analyses used the inverse-variance weighted method. Genetic correlations with AAM were identified for 29 candi-date dietary habits, such as milk type (skimmed, semi-skimmed, full cream; coefficient = 0.2704, Pldsc = 1.13 × 10-14). MR evaluations revealed that 19 dietary habits were associated with AAM, including bread type (white vs. any other; OR 1.71, 95% CI 1.28-2.29, Pmr = 3.20 × 10-4), tablespoons of cooked vegetables (OR 0.437, 95% CI 0.29-0.67; Pmr = 1.30 × 10-4), and cups of coffee per day (OR 0.72, 95% CI 0.57-0.92, Pmr = 8.31 × 10-3). These results were observed to be stable under the sensitivity analysis. Our study provides potential insights into the genetic mechanisms underlying AAM and evidence that dietary habits are associated with AAM.
Collapse
Affiliation(s)
- Ruilong Guo
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710054, Shanxi, China
| | - Ruoyang Feng
- Department of Joint Surgery, Xi'an Jiaotong University Hong Hui Hospital, Xi'an, 710054, Shanxi, China
| | - Jiong Yang
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710054, Shanxi, China
| | - Yanfeng Xiao
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710054, Shanxi, China.
| | - Chunyan Yin
- Department of Pediatrics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710054, Shanxi, China.
| |
Collapse
|
61
|
Xue P, Wang D, Chen Y, Tang J, Chen Y, Mei H, Lin C, Liu S. Association between body fat distribution and age at menarche: a two sample Mendelian randomization study. Front Pediatr 2024; 12:1349670. [PMID: 38650991 PMCID: PMC11033318 DOI: 10.3389/fped.2024.1349670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Background Numerous studies have examined the association between obesity and age at menarche (AAM), with most focusing on traditional obesity indicators such as body mass index. However, there are limited studies that explored the connection between body fat distribution and AAM, as well as a scarcity of Mendelian randomization (MR) studies. Methods In this study, we conducted a two-sample MR study to evaluate the causal effects of eight body fat distribution indicators on AAM. Inverse variance weighted (IVW) method was used for primary analysis, while supplementary approaches such as MR-Egger and weighted median were also utilized. Considering that the eight exposures were highly correlated, we performed an MR Bayesian model averaging (MR-BMA) analysis to prioritize the effect of major exposure on AAM. A series of sensitivity analyses were also performed. Results From a range of 82-105 single nucleotide polymorphisms (SNPs) were utilized as genetic instrumental variables for each of the exposure factors. After Bonferroni correction, we found that whole body fat mass (β: -0.17; 95% CI: -0.24, -0.11), left leg fat percentage (β: -0.14; 95% CI: -0.21, -0.07), left leg fat mass (β: -0.20; 95% CI: -0.27, -0.12), left arm fat percentage (β: -0.18; 95% CI: -0.26, -0.11) and left arm fat mass (β: -0.18; 95%CI: -0.26, -0.10) were associated with decreased AAM using random effects IVW method. And the beta coefficients for all MR evaluation methods exhibited consistent trends. MR-BMA method validated that left arm fat percentage plays a dominant role in AAM. Conclusions Our MR study suggested that body fat has broad impacts on AAM. Obtaining more information on body measurements would greatly enhance our comprehension of pubertal development.
Collapse
Affiliation(s)
- Peng Xue
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wang
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Yao Chen
- Department of Endocrinology and Genetic Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Tang
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Chen
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, United States
| | - Cuilan Lin
- Boai Hospital of Zhongshan, South Medical University, Guangdong, China
| | - Shijian Liu
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
62
|
Peng Q, Qiu W, Li Z, Zhao J, Zhu C. Fetal genetically determined birth weight plays a causal role in earlier puberty timing: evidence from human genetic studies. Hum Reprod 2024; 39:792-800. [PMID: 38384258 DOI: 10.1093/humrep/deae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
STUDY QUESTION Does fetal genetically determined birth weight associate with the timing of puberty? SUMMARY ANSWER Lower fetal genetically determined birth weight was causally associated with an earlier onset of puberty, independent of the indirect effects of the maternal intrauterine environment. WHAT IS KNOWN ALREADY Previous Mendelian randomization (MR) studies have indicated a potential causal link between birth weight, childhood BMI, and the onset of puberty. However, they did not distinguish between genetic variants that have a direct impact on birth weight through the fetal genome (referred to as fetal genetic effects) and those that influence birth weight indirectly by affecting the intrauterine environment (known as maternal genetic effects). It is crucial to emphasize that previous studies were limited because they did not account for the potential bias caused by unaddressed correlations between maternal and fetal genetic effects. Additionally, the proportion of birth weight variation explained by the fetal genome is considerably larger than that of the maternal genome. STUDY DESIGN, SIZE, DURATION We performed two-sample MR analyses to investigate the causal effect of fetal genetically determined birth weight on puberty timing using summary data from large-scale genome-wide association studies (GWASs) in individuals of European ancestry. PARTICIPANTS/MATERIALS, SETTING, METHODS From the two most recent GWASs specifically centered on birth weight, which included 406 063 individuals and 423 683 individuals (63 365 trios) respectively, we identified genetic variants associated with fetal genetically determined birth weight, while adjusting for maternal genetic effects. We identified genetic variants associated with childhood BMI from an independent GWAS involving 21 309 European participants. On this basis, we employed two-sample MR techniques to examine the possible causal effects of fetal genetically determined birth weight on puberty timing using a large-scale GWAS of puberty timing (including 179 117 females of European ancestry). Furthermore, we employed advanced analytical methods, specifically MR mediation and MR-Cluster, to enhance our comprehension of the causal relationship between birth weight determined by fetal genetics and the timing of puberty. We also explored the pathways through which childhood BMI might act as a mediator in this relationship. MAIN RESULTS AND THE ROLE OF CHANCE In the univariable MR analysis, a one SD decrease in fetal genetically determined birth weight (∼ 418 g) was associated with a 0.16 (95% CI [0.07-0.26]) years earlier onset of puberty. The multivariable MR analysis including fetal genetically determined birth weight and childhood BMI in relation to puberty timing provided compelling evidence that birth weight had a direct influence on the timing of puberty. Lower birth weight (one SD) was associated with an earlier onset of puberty, with a difference of 0.23 (95% CI [0.05-0.42]) years. We found little evidence to support a mediating role of childhood BMI between birth weight and puberty timing (-0.07 years, 95% CI [-0.20 to 0.06]). LIMITATIONS, REASONS FOR CAUTION Our data came from European ancestry populations, which may restrict the generalizability of our results to other populations. Moreover, our analysis could not investigate potential non-linear relationships between birth weight and puberty timing due to limitations in genetic summary data. WIDER IMPLICATIONS OF THE FINDINGS Findings from this study suggested that low birth weight, determined by the fetal genome, contributes to early puberty, and offered supporting evidence to enhance comprehension of the fetal origins of disease hypothesis. STUDY FUNDING/COMPETING INTEREST(S) C.Z. was funded by the Sichuan Province Science and Technology Program [grant number 2021JDR0189]. J.Z. was supported by grants from the National Natural Science Foundation of China [grant number 82373588]. No other authors declare any sources of funding. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qinghui Peng
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Qiu
- Department of Paediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Paediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengjun Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jian Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Cairong Zhu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
63
|
Lunddorf LLH, Ramlau-Hansen CH, Arendt LH, Patton GC, Sawyer SM, Dashti SG, Ernst A, Olsen J, Brix N. Characteristics of Puberty in a Population-Based Sample of Danish Adolescents. J Adolesc Health 2024; 74:657-664. [PMID: 38127018 DOI: 10.1016/j.jadohealth.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To describe the duration, timing, tempo, and synchronicity of puberty, as well as the correlation between timing and tempo of puberty. METHODS Overall, 15,819 of 22,439 invited children participated in the Puberty Cohort within the Danish National Birth Cohort. Participants completed a web-based questionnaire every 6 months through maturation with questions on current pubertal status. Girls reported current Tanner stage of breast and pubic hair development, and timing of menarche. Boys reported current Tanner stage of genital and pubic hair development, timing of first ejaculation, and vocal changes. While accounting for this interval-censored puberty information, we estimated the duration of puberty. Then, we used a nonlinear mixed effect growth model to estimate timing, tempo, synchronicity of puberty, and correlation between timing and tempo of puberty. RESULTS In girls, the average duration of breast development was longer, whereas the average tempo was slower than pubic hair development. The average timing of breast development was earlier than the average timing of pubic hair development. The majority of girls had asynchronous puberty. In boys, the average duration was longer and average tempo slower for genital than pubic hair development. The average timing of genital and pubic hair development were comparable; hence, the majority had synchronous pubertal development. Adolescents who had earlier timing also tended to have a faster tempo. DISCUSSION Being one of the largest puberty cohorts worldwide, these unique contemporary data can help physicians, parents, and children to understand and anticipate expected progression through pubertal development.
Collapse
Affiliation(s)
| | | | - Linn Håkonsen Arendt
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - George C Patton
- Centre for Adolescent Health, Murdoch Children's Research Institute and Royal Children's Hospital, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia; Child and Adolescent Psychiatry, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Sawyer
- Centre for Adolescent Health, Murdoch Children's Research Institute and Royal Children's Hospital, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - S Ghazaleh Dashti
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia; Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Nis Brix
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
64
|
Xiao C, Wu X, Gallagher CS, Rasooly D, Jiang X, Morton CC. Genetic contribution of reproductive traits to risk of uterine leiomyomata: a large-scale, genome-wide, cross-trait analysis. Am J Obstet Gynecol 2024; 230:438.e1-438.e15. [PMID: 38191017 DOI: 10.1016/j.ajog.2023.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Although phenotypic associations between female reproductive characteristics and uterine leiomyomata have long been observed in epidemiologic investigations, the shared genetic architecture underlying these complex phenotypes remains unclear. OBJECTIVE We aimed to investigate the shared genetic basis, pleiotropic effects, and potential causal relationships underlying reproductive traits (age at menarche, age at natural menopause, and age at first birth) and uterine leiomyomata. STUDY DESIGN With the use of large-scale, genome-wide association studies conducted among women of European ancestry for age at menarche (n=329,345), age at natural menopause (n=201,323), age at first birth (n=418,758), and uterine leiomyomata (ncases/ncontrols=35,474/267,505), we performed a comprehensive, genome-wide, cross-trait analysis to examine systematically the common genetic influences between reproductive traits and uterine leiomyomata. RESULTS Significant global genetic correlations were identified between uterine leiomyomata and age at menarche (rg, -0.17; P=3.65×10-10), age at natural menopause (rg, 0.23; P=3.26×10-07), and age at first birth (rg, -0.16; P=1.96×10-06). Thirteen genomic regions were further revealed as contributing significant local correlations (P<.05/2353) to age at natural menopause and uterine leiomyomata. A cross-trait meta-analysis identified 23 shared loci, 3 of which were novel. A transcriptome-wide association study found 15 shared genes that target tissues of the digestive, exo- or endocrine, nervous, and cardiovascular systems. Mendelian randomization suggested causal relationships between a genetically predicted older age at menarche (odds ratio, 0.88; 95% confidence interval, 0.85-0.92; P=1.50×10-10) or older age at first birth (odds ratio, 0.95; 95% confidence interval, 0.90-0.99; P=.02) and a reduced risk for uterine leiomyomata and between a genetically predicted older age at natural menopause and an increased risk for uterine leiomyomata (odds ratio, 1.08; 95% confidence interval, 1.06-1.09; P=2.30×10-27). No causal association in the reverse direction was found. CONCLUSION Our work highlights that there are substantial shared genetic influences and putative causal links that underlie reproductive traits and uterine leiomyomata. The findings suggest that early identification of female reproductive risk factors may facilitate the initiation of strategies to modify potential uterine leiomyomata risk.
Collapse
Affiliation(s)
- Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
65
|
Tian Y, Ma G, Zi J, Hu Y, Zeng Y, Li H, Luo H, Shan S, Xiong J, Cheng G. Sex- and time-specific associations of obesity with glycaemic traits: A two-step multivariate Mendelian randomization study. Diabetes Obes Metab 2024; 26:1443-1453. [PMID: 38240050 DOI: 10.1111/dom.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
AIM To assess the sex- and time-specific causal effects of obesity-related anthropometric traits on glycaemic traits. MATERIALS AND METHODS We used univariate and multivariate Mendelian randomization to assess the causal associations of anthropometric traits (gestational variables, birth weight, childhood body mass index [BMI], BMI, waist-to-hip ratio [WHR], BMI-adjusted WHR [WHRadj BMI]) with fasting glucose and insulin in Europeans from the Early Growth Genetics Consortium (n ≤ 298 142), the UK Biobank, the Genetic Investigation of Anthropometric Traits Consortium (n ≤ 697 734; females: n ≤ 434 794; males: n ≤ 374 754) and the Meta-Analyses of Glucose and Insulin-related traits Consortium (n ≤ 151 188; females: n ≤ 73 089; males: n ≤ 67 506), adjusting for maternal genetic effects, smoking, alcohol consumption, and age at menarche. RESULTS We observed a null association for gestational variables, a negative association for birth weight, and positive associations for childhood BMI and adult traits (BMI, WHR, and WHRadj BMI). In female participants, increased birth weight causally decreased fasting insulin (betaIVW , -0.07, 95% confidence interval [CI] -0.11 to -0.03; p = 1.92 × 10-3 ), but not glucose levels, which was annulled by adjusting for age at menarche. In male participants, increased birth weight causally decreased fasting glucose (betainverse-variance-weighted (IVW) , -0.07, 95% CI -0.11 to -0.03; p = 3.22 × 10-4 ), but not insulin levels. In time-specific analyses, independent effects of birth weight were absent in female participants, and were more pronounced in male participants. Independent effects of childhood BMI were attenuated in both sexes; independent effects of adult traits differed by sex. CONCLUSIONS Our findings provide evidence for causal and independent effects of sex- and time-specific anthropometric traits on glycaemic variables, and highlight the importance of considering multiple obesity exposures at different time points in the life course.
Collapse
Affiliation(s)
- Ye Tian
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Guochen Ma
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Zi
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yifan Hu
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yaxian Zeng
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Haoqi Li
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hang Luo
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- Department of Occupational and Environmental Health, Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
66
|
Li Q, Wei Z, Zhang Y, Zheng C. Causal role of metabolites in non-small cell lung cancer: Mendelian randomization (MR) study. PLoS One 2024; 19:e0300904. [PMID: 38517880 PMCID: PMC10959361 DOI: 10.1371/journal.pone.0300904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
On a global scale, lung cancer(LC) is the most commonly occurring form of cancer. Nonetheless, the process of screening and detecting it in its early stages presents significant challenges. Earlier research endeavors have recognized metabolites as potentially reliable biomarkers for LC. However, the majority of these studies have been limited in scope, featuring inconsistencies in terms of the relationships and levels of association observed.Moreover, there has been a lack of consistency in the types of biological samples utilized in previous studies. Therefore, the main objective of our research was to explore the correlation between metabolites and Non-small cell lung cancer (NSCLC).Thorough two-sample Mendelian randomization (TSMR) analysis, we investigated potential cause-and-effect relationships between 1400 metabolites and the risk of NSCLC.The analysis of TSMR revealed a significant causal impact of 61 metabolites on NSCLC.To ensure the reliability and validity of our findings, we perform FDR correction for P-values by Benjaminiand Hochberg(BH) method, Our results indicate that Oleate/vaccenate (18:1) levels and Caffeine to paraxanthine ratio may be causally associated with an increased risk of NSCLC [Oleate/vaccenate(18:1)levels: OR = 1.171,95%CI: 1.085-1.265, FDR = 0.036; Caffeine to paraxanthine ratio: OR = 1.386, 95%CI:1.191-1.612,FDR = 0.032].
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Zedong Wei
- Department of Thoracic Surgery, Qianjiang Central Hospital, Qianjiang, 433100, China
| | - Yonglun Zhang
- Department of Thoracic Surgery, Qianjiang Central Hospital, Qianjiang, 433100, China
| | - Chongqing Zheng
- Department of Thoracic Surgery, Qianjiang Central Hospital, Qianjiang, 433100, China
| |
Collapse
|
67
|
Wei SM, Gregory MD, Nash T, de Abreu e Gouvêa A, Mervis CB, Cole KM, Garvey MH, Kippenhan JS, Eisenberg DP, Kolachana B, Schmidt PJ, Berman KF. Altered pubertal timing in 7q11.23 copy number variations and associated genetic mechanisms. iScience 2024; 27:109113. [PMID: 38375233 PMCID: PMC10875153 DOI: 10.1016/j.isci.2024.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Pubertal timing, including age at menarche (AAM), is a heritable trait linked to lifetime health outcomes. Here, we investigate genetic mechanisms underlying AAM by combining genome-wide association study (GWAS) data with investigations of two rare genetic conditions clinically associated with altered AAM: Williams syndrome (WS), a 7q11.23 hemideletion characterized by early puberty; and duplication of the same genes (7q11.23 Duplication syndrome [Dup7]) characterized by delayed puberty. First, we confirm that AAM-derived polygenic scores in typically developing children (TD) explain a modest amount of variance in AAM (R2 = 0.09; p = 0.04). Next, we demonstrate that 7q11.23 copy number impacts AAM (WS < TD < Dup7; p = 1.2x10-8, η2 = 0.45) and pituitary volume (WS < TD < Dup7; p = 3x10-5, ηp2 = 0.2) with greater effect sizes. Finally, we relate an AAM-GWAS signal in 7q11.23 to altered expression in postmortem brains of STAG3L2 (p = 1.7x10-17), a gene we also find differentially expressed with 7q11.23 copy number (p = 0.03). Collectively, these data explicate the role of 7q11.23 in pubertal onset, with STAG3L2 and pituitary development as potential mediators.
Collapse
Affiliation(s)
- Shau-Ming Wei
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Michael D. Gregory
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany Nash
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Andrea de Abreu e Gouvêa
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn B. Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Katherine M. Cole
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Madeline H. Garvey
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - J. Shane Kippenhan
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Daniel P. Eisenberg
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Karen F. Berman
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
68
|
Chen Z, Si L, Zhang X, Wei C, Shu W, Wei M, Cheng L, Chen Z, Qiao Y, Yang S. Therapeutic effects of melatonin in female mice with central precocious puberty by regulating the hypothalamic Kiss-1/Kiss1R system. Behav Brain Res 2024; 461:114783. [PMID: 38029845 DOI: 10.1016/j.bbr.2023.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/11/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
In recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide. The vaginal opening was checked daily. Mice were weighed, gonads were weighed, gonadal index was calculated, and gonadal development was observed by hematoxylin and eosin (HE) staining. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were measured by ELISA. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus Kiss-1, Kiss-1 receptor (Kiss1R), gonadotropin-releasing hormone (GnRH), and pituitary GnRH receptor (GnRHR) were identified. The results showed that melatonin delayed vaginal opening time and reduced body weight, gonadal weight and indices in female CPP mice. Melatonin treatment prevents uterine wall thickening and ovarian luteinization in female CPP mice. Melatonin treatment reduces serum concentrations of FSH, LH, and E2 in female CPP mice. Melatonin suppressed the expressions of Kiss-1, Kiss1R and GnRH in the hypothalamus, and the expression of GnRHR in the pituitary of the female CPP mice. Our results suggest that melatonin can inhibit the hypothalamic-pituitary-gonadal (HPG) axis by down-regulating the Kiss-1/Kiss1R system, thereby treating CPP in female mice.
Collapse
Affiliation(s)
- Zixuan Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Xin Zhang
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Chenyang Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Weihan Shu
- Department of Immunology, Chengde Medical University, Chengde, China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, China
| | - Zhihong Chen
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, China.
| | - Songhe Yang
- Faculty of Graduate Studies, Chengde Medical University, Chengde, China.
| |
Collapse
|
69
|
Ingold N, Seviiri M, Ong JS, Gordon S, Neale RE, Whiteman DC, Olsen CM, MacGregor S, Law MH. Genetic Analysis of Perceived Youthfulness Reveals Differences in How Men's and Women's Age Is Assessed. J Invest Dermatol 2024:S0022-202X(24)00180-5. [PMID: 38460809 DOI: 10.1016/j.jid.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Skin aging is a natural process that occurs over time but can be accelerated by sun exposure. Measuring skin age in a large population can provide insight into the extent of skin damage from sun exposure and skin cancer risk. Understanding the genetics of skin aging, within and across sexes (males and females), could improve our understanding of the genetic drivers of both skin aging and skin cancer. We used UK Biobank data to examine the genetic overlap between perceived youthfulness and traits relevant to actinic photoaging. Our GWAS identified 22 genome-wide significant loci for women and 43 for men. The genetic correlation (rg) between perceived youthfulness in men and women was significantly less than unity (rg = 0.75, 95% confidence interval = 0.69-0.80), suggesting a gene-by-sex interaction. In women, perceived youthfulness was modestly correlated with keratinocyte cancer (rg = -0.19) and skin tanning (rg = 0.18). In men, perceived youthfulness was correlated with male-pattern baldness (rg = -0.23). This suggests that the genetic architecture of perceived youthfulness may differ between sexes, with genes influencing skin tanning and skin cancer susceptibility driving the difference in women, whereas genes influencing male-pattern baldness and other puberty-related traits drive the difference in men. We recommend that future genetic analysis of skin aging include a sex-stratified component.
Collapse
Affiliation(s)
- Nathan Ingold
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Mathias Seviiri
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rachel E Neale
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Herston, Australia
| | - David C Whiteman
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Public Health, University of Queensland, Herston, Australia
| | - Catherine M Olsen
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
70
|
Nordengen K, Cappelletti C, Bahrami S, Frei O, Pihlstrøm L, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Andreassen OA, Toft M. Pleiotropy with sex-specific traits reveals genetic aspects of sex differences in Parkinson's disease. Brain 2024; 147:858-870. [PMID: 37671566 PMCID: PMC10907091 DOI: 10.1093/brain/awad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease is an age-related neurodegenerative disorder with a higher incidence in males than females. The causes for this sex difference are unknown. Genome-wide association studies (GWAS) have identified 90 Parkinson's disease risk loci, but the genetic studies have not found sex-specific differences in allele frequency on autosomal chromosomes or sex chromosomes. Genetic variants, however, could exert sex-specific effects on gene function and regulation of gene expression. To identify genetic loci that might have sex-specific effects, we studied pleiotropy between Parkinson's disease and sex-specific traits. Summary statistics from GWASs were acquired from large-scale consortia for Parkinson's disease (n cases = 13 708; n controls = 95 282), age at menarche (n = 368 888 females) and age at menopause (n = 69 360 females). We applied the conditional/conjunctional false discovery rate (FDR) method to identify shared loci between Parkinson's disease and these sex-specific traits. Next, we investigated sex-specific gene expression differences in the superior frontal cortex of both neuropathologically healthy individuals and Parkinson's disease patients (n cases = 61; n controls = 23). To provide biological insights to the genetic pleiotropy, we performed sex-specific expression quantitative trait locus (eQTL) analysis and sex-specific age-related differential expression analysis for genes mapped to Parkinson's disease risk loci. Through conditional/conjunctional FDR analysis we found 11 loci shared between Parkinson's disease and the sex-specific traits age at menarche and age at menopause. Gene-set and pathway analysis of the genes mapped to these loci highlighted the importance of the immune response in determining an increased disease incidence in the male population. Moreover, we highlighted a total of nine genes whose expression or age-related expression in the human brain is influenced by genetic variants in a sex-specific manner. With these analyses we demonstrated that the lack of clear sex-specific differences in allele frequencies for Parkinson's disease loci does not exclude a genetic contribution to differences in disease incidence. Moreover, further studies are needed to elucidate the role that the candidate genes identified here could have in determining a higher incidence of Parkinson's disease in the male population.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Chiara Cappelletti
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, 0424 Oslo, Norway
| | - Shahram Bahrami
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Oleksandr Frei
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Hanneke Geut
- Section of Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Section of Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Ole A Andreassen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
71
|
Kahal F, Alshayeb S, Torbey A, Al Helwani O, Kadri S, Helwani A, Al-Habal S, Moufti M, Johari M, Aldarra A, Alswaedan G, Albaghajati S, Sarraj H, Ataya S, Mansour M, Sakka K. The prevalence of menstrual disorders and their association with psychological stress in Syrian students enrolled at health-related schools: A cross-sectional study. Int J Gynaecol Obstet 2024; 164:1086-1093. [PMID: 37743817 DOI: 10.1002/ijgo.15152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVES Menstrual disorders are among the most prevalent health issues among young female students studying in health science faculties. This study aimed to provide insights into the menstrual patterns among medical faculty students and determine whether stress can be a risk factor for its various disorders. METHODS This cross-sectional study was conducted in the Faculties of Medicine, Dentistry, and Pharmacy at the Syrian Private University, Damascus, Syria, between October and November 2022. A total of 980 female students anonymously completed the identification of menstrual problems and the perceived stress scale (PSS) questionnaire. The data were analyzed using SPSS-25. RESULTS The mean age of students was 21.52 ± 2.06 years. The most common menstrual disorders in this study were dysmenorrhea (88%), and premenstrual syndrome (87%). A total of 82% had mild to moderate stress, 10% had high stress, and 8% had low stress. Moderate to high perceived stress was associated with an increased risk of PMS (OR = 1.79, P = 0.0037). CONCLUSION These findings stress the importance of universities, especially health science faculties, establishing protocols for early detection and intervention in students with stress and menstrual disorders. Implementing stress reduction education and timely counseling, along with preventive measures, is crucial for students' well-being. Further research is needed to refine interventions for this group.
Collapse
Affiliation(s)
- Fares Kahal
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Sarah Alshayeb
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - André Torbey
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Omar Al Helwani
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Saeed Kadri
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Ahmad Helwani
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Sedra Al-Habal
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Mayssa Moufti
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Massa Johari
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Ahmad Aldarra
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | | | | | - Hala Sarraj
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Sham Ataya
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Mazenh Mansour
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| | - Kanaan Sakka
- Department of Obstetrics and Gynecology, Faculty of Medicine, Syrian Private University, Damascus, Syria
| |
Collapse
|
72
|
Marceau K, Loviska AM, Horvath G, Knopik VS. Interactions Between Genetic, Prenatal Substance Use, Puberty, and Parenting are Less Important for Understanding Adolescents' Internalizing, Externalizing, and Substance Use than Developmental Cascades in Multifactorial Models. Behav Genet 2024; 54:181-195. [PMID: 37840057 PMCID: PMC11373084 DOI: 10.1007/s10519-023-10164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
This study tested interactions among puberty-related genetic risk, prenatal substance use, harsh discipline, and pubertal timing for the severity and directionality (i.e., differentiation) of externalizing and internalizing problems and adolescent substance use. This is a companion paper to Marceau et al. (2021) which examined the same influences in developmental cascade models. Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (n = 4504 White boys, n = 4287 White girls assessed from the prenatal period through 18.5 years). We hypothesized generally that later predictors would strengthen the influence of puberty-related genetic risk, prenatal substance use exposure, and pubertal risk on psychopathology and substance use (two-way interactions), and that later predictors would strengthen the interactions of earlier influences on psychopathology and substance use (three-way interactions). Interactions were sparse. Although all fourteen interactions showed that later influences can exacerbate or trigger the effects of earlier ones, they often were not in the expected direction. The most robust moderator was parental discipline, and differing and synergistic effects of biological and socially-relevant aspects of puberty were found. In all, the influences examined here operate more robustly in developmental cascades than in interaction with each other for the development of psychopathology and transitions to substance use.
Collapse
Affiliation(s)
- Kristine Marceau
- Purdue University, 225 Hanley Hall, 1202 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA.
| | - Amy M Loviska
- Purdue University, 225 Hanley Hall, 1202 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Gregor Horvath
- Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Valerie S Knopik
- Purdue University, 225 Hanley Hall, 1202 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| |
Collapse
|
73
|
Cui H, Zhang W, Zhang L, Qu Y, Xu Z, Tan Z, Yan P, Tang M, Yang C, Wang Y, Chen L, Xiao C, Zou Y, Liu Y, Zhang L, Yang Y, Yao Y, Li J, Liu Z, Yang C, Jiang X, Zhang B. Risk factors for prostate cancer: An umbrella review of prospective observational studies and mendelian randomization analyses. PLoS Med 2024; 21:e1004362. [PMID: 38489391 PMCID: PMC10980219 DOI: 10.1371/journal.pmed.1004362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/29/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The incidence of prostate cancer is increasing in older males globally. Age, ethnicity, and family history are identified as the well-known risk factors for prostate cancer, but few modifiable factors have been firmly established. The objective of this study was to identify and evaluate various factors modifying the risk of prostate cancer reported in meta-analyses of prospective observational studies and mendelian randomization (MR) analyses. METHODS AND FINDINGS We searched PubMed, Embase, and Web of Science from the inception to January 10, 2022, updated on September 9, 2023, to identify meta-analyses and MR studies on prostate cancer. Eligibility criteria for meta-analyses were (1) meta-analyses including prospective observational studies or studies that declared outcome-free at baseline; (2) evaluating the factors of any category associated with prostate cancer incidence; and (3) providing effect estimates for further data synthesis. Similar criteria were applied to MR studies. Meta-analysis was repeated using the random-effects inverse-variance model with DerSimonian-Laird method. Quality assessment was then conducted for included meta-analyses using AMSTAR-2 tool and for MR studies using STROBE-MR and assumption evaluation. Subsequent evidence grading criteria for significant associations in meta-analyses contained sample size, P values and 95% confidence intervals, 95% prediction intervals, heterogeneity, and publication bias, assigning 4 evidence grades (convincing, highly suggestive, suggestive, or weak). Significant associations in MR studies were graded as robust, probable, suggestive, or insufficient considering P values and concordance of effect directions. Finally, 92 selected from 411 meta-analyses and 64 selected from 118 MR studies were included after excluding the overlapping and outdated studies which were published earlier and contained fewer participants or fewer instrument variables for the same exposure. In total, 123 observational associations (45 significant and 78 null) and 145 causal associations (55 significant and 90 null) were categorized into lifestyle; diet and nutrition; anthropometric indices; biomarkers; clinical variables, diseases, and treatments; and environmental factors. Concerning evidence grading on significant associations, there were 5 highly suggestive, 36 suggestive, and 4 weak associations in meta-analyses, and 10 robust, 24 probable, 4 suggestive, and 17 insufficient causal associations in MR studies. Twenty-six overlapping factors between meta-analyses and MR studies were identified, with consistent significant effects found for physical activity (PA) (occupational PA in meta: OR = 0.87, 95% CI: 0.80, 0.94; accelerator-measured PA in MR: OR = 0.49, 95% CI: 0.33, 0.72), height (meta: OR = 1.09, 95% CI: 1.06, 1.12; MR: OR = 1.07, 95% CI: 1.01, 1.15, for aggressive prostate cancer), and smoking (current smoking in meta: OR = 0.74, 95% CI: 0.68, 0.80; smoking initiation in MR: OR = 0.91, 95% CI: 0.86, 0.97). Methodological limitation is that the evidence grading criteria could be expanded by considering more indices. CONCLUSIONS In this large-scale study, we summarized the associations of various factors with prostate cancer risk and provided comparisons between observational associations by meta-analysis and genetically estimated causality by MR analyses. In the absence of convincing overlapping evidence based on the existing literature, no robust associations were identified, but some effects were observed for height, physical activity, and smoking.
Collapse
Affiliation(s)
- Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Qu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengxing Xu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixin Tan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfang Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ben Zhang
- Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
74
|
Abreu AP. Unveiling the Central Regulation of Pubertal Development. J Clin Endocrinol Metab 2024; 109:e1307-e1308. [PMID: 37589951 DOI: 10.1210/clinem/dgad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Affiliation(s)
- Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
75
|
Clayton GL, Borges MC, Lawlor DA. The impact of reproductive factors on the metabolic profile of females from menarche to menopause. Nat Commun 2024; 15:1103. [PMID: 38320991 PMCID: PMC10847109 DOI: 10.1038/s41467-023-44459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
We explore the relation between age at menarche, parity and age at natural menopause with 249 metabolic traits in over 65,000 UK Biobank women using multivariable regression, Mendelian randomization and negative control (parity only). Older age of menarche is related to a less atherogenic metabolic profile in multivariable regression and Mendelian randomization, which is largely attenuated when accounting for adult body mass index. In multivariable regression, higher parity relates to more particles and lipids in VLDL, which are not observed in male negative controls. In multivariable regression and Mendelian randomization, older age at natural menopause is related to lower concentrations of inflammation markers, but we observe inconsistent results for LDL-related traits due to chronological age-specific effects. For example, older age at menopause is related to lower LDL-cholesterol in younger women but slightly higher in older women. Our findings support a role of reproductive traits on later life metabolic profile and provide insights into identifying novel markers for the prevention of adverse cardiometabolic outcomes in women.
Collapse
Affiliation(s)
- Gemma L Clayton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
76
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
77
|
Bradfield JP, Kember RL, Ulrich A, Balkhiyarova Z, Alyass A, Aris IM, Bell JA, Broadaway KA, Chen Z, Chai JF, Davies NM, Fernandez-Orth D, Bustamante M, Fore R, Ganguli A, Heiskala A, Hottenga JJ, Íñiguez C, Kobes S, Leinonen J, Lowry E, Lyytikainen LP, Mahajan A, Pitkänen N, Schnurr TM, Have CT, Strachan DP, Thiering E, Vogelezang S, Wade KH, Wang CA, Wong A, Holm LA, Chesi A, Choong C, Cruz M, Elliott P, Franks S, Frithioff-Bøjsøe C, Gauderman WJ, Glessner JT, Gilsanz V, Griesman K, Hanson RL, Kaakinen M, Kalkwarf H, Kelly A, Kindler J, Kähönen M, Lanca C, Lappe J, Lee NR, McCormack S, Mentch FD, Mitchell JA, Mononen N, Niinikoski H, Oken E, Pahkala K, Sim X, Teo YY, Baier LJ, van Beijsterveldt T, Adair LS, Boomsma DI, de Geus E, Guxens M, Eriksson JG, Felix JF, Gilliland FD, Biobank PM, Hansen T, Hardy R, Hivert MF, Holm JC, Jaddoe VWV, Järvelin MR, Lehtimäki T, Mackey DA, Meyre D, Mohlke KL, Mykkänen J, Oberfield S, Pennell CE, Perry JRB, Raitakari O, Rivadeneira F, Saw SM, Sebert S, Shepherd JA, Standl M, Sørensen TIA, Timpson NJ, Torrent M, Willemsen G, Hypponen E, Power C, McCarthy MI, Freathy RM, Widén E, et alBradfield JP, Kember RL, Ulrich A, Balkhiyarova Z, Alyass A, Aris IM, Bell JA, Broadaway KA, Chen Z, Chai JF, Davies NM, Fernandez-Orth D, Bustamante M, Fore R, Ganguli A, Heiskala A, Hottenga JJ, Íñiguez C, Kobes S, Leinonen J, Lowry E, Lyytikainen LP, Mahajan A, Pitkänen N, Schnurr TM, Have CT, Strachan DP, Thiering E, Vogelezang S, Wade KH, Wang CA, Wong A, Holm LA, Chesi A, Choong C, Cruz M, Elliott P, Franks S, Frithioff-Bøjsøe C, Gauderman WJ, Glessner JT, Gilsanz V, Griesman K, Hanson RL, Kaakinen M, Kalkwarf H, Kelly A, Kindler J, Kähönen M, Lanca C, Lappe J, Lee NR, McCormack S, Mentch FD, Mitchell JA, Mononen N, Niinikoski H, Oken E, Pahkala K, Sim X, Teo YY, Baier LJ, van Beijsterveldt T, Adair LS, Boomsma DI, de Geus E, Guxens M, Eriksson JG, Felix JF, Gilliland FD, Biobank PM, Hansen T, Hardy R, Hivert MF, Holm JC, Jaddoe VWV, Järvelin MR, Lehtimäki T, Mackey DA, Meyre D, Mohlke KL, Mykkänen J, Oberfield S, Pennell CE, Perry JRB, Raitakari O, Rivadeneira F, Saw SM, Sebert S, Shepherd JA, Standl M, Sørensen TIA, Timpson NJ, Torrent M, Willemsen G, Hypponen E, Power C, McCarthy MI, Freathy RM, Widén E, Hakonarson H, Prokopenko I, Voight BF, Zemel BS, Grant SFA, Cousminer DL. Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes. Genome Biol 2024; 25:22. [PMID: 38229171 PMCID: PMC10790528 DOI: 10.1186/s13059-023-03136-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.
Collapse
Affiliation(s)
- Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Anna Ulrich
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Zhanna Balkhiyarova
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
| | - Akram Alyass
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Joshua A Bell
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, 90032, USA
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Neil M Davies
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Ruby Fore
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Amitavo Ganguli
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Anni Heiskala
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carmen Íñiguez
- Department of Statistics and Computational Research, Universitat de València, Valencia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Center, NIDDK, NIH, Bethesda, USA
| | - Jaakko Leinonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Estelle Lowry
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Leo-Pekka Lyytikainen
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, 33521, Tampere, Finland
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Theresia M Schnurr
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christian Theil Have
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Suzanne Vogelezang
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Louise Aas Holm
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, The Children's Obesity Clinic, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine Choong
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Steve Franks
- Institute of Reproductive & Developmental Biology, Imperial College London, London, UK
| | - Christine Frithioff-Bøjsøe
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, The Children's Obesity Clinic, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, 90032, USA
| | - Joseph T Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Vicente Gilsanz
- Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Center, NIDDK, NIH, Bethesda, USA
| | - Marika Kaakinen
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- Institute of Reproductive & Developmental Biology, Imperial College London, London, UK
| | - Heidi Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Endocrinology & Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph Kindler
- College of Family and Consumer Sciences, University of Georgia, Athens, GA, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, 33521, Tampere, Finland
| | - Carla Lanca
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Joan Lappe
- Department of Medicine and College of Nursing, Creighton University School of Medicine, Omaha, NB, USA
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc, University of San Carlos, Cebu, Philippines
| | - Shana McCormack
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Endocrinology & Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jonathan A Mitchell
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center - Tampere, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, 33520, Tampere, Finland
| | - Harri Niinikoski
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Physiology, University of Turku, Turku, Finland
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
- Department of Nutrition, Harvard T.H Chan School of Public Health, Boston, MA, 02115, USA
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre, Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Center, NIDDK, NIH, Bethesda, USA
| | - Toos van Beijsterveldt
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johan G Eriksson
- Institute of Clinical Medicine Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, 90032, USA
| | | | - Torben Hansen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Hardy
- Cohort and Longitudinal Studies Enhancement Resources (CLOSER), UCL Institute of Education, London, UK
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Jens-Christian Holm
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, The Children's Obesity Clinic, Copenhagen University Hospital Holbæk, Holbæk, Denmark
- The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Kajaanintie 50, 90220, Oulu, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Finnish Cardiovascular Research Center - Tampere, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, 33520, Tampere, Finland
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, Centre for Eye Research Australia, University of Western Australia, Perth, WA, Australia
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, Nancy, France
- Department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, Nancy, France
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Sharon Oberfield
- Division of Pediatric Endocrinology, Columbia University Medical Center, New York, NY, USA
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - John R B Perry
- Metabolic Research Laboratory, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Epidemiology Unit, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - John A Shepherd
- Department of Epidemiology and Population Science, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany
| | - Thorkild I A Sørensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Maties Torrent
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears - IdISBa, Palma, Spain
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elina Hypponen
- UCL Great Ormond Street Institute of Child Health, London, UK
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Power
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Current Address: Genentech, 1 DNA Way, San Francisco, CA, 94080, USA
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- UMR 8199 - EGID, Institut Pasteur de Lille, CNRS, University of Lille, 59000, Lille, France
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Babette S Zemel
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Division of Endocrinology & Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Diana L Cousminer
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Currently Employed By GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA, 19426, USA.
| |
Collapse
|
78
|
Yazdanpanah N, Jumentier B, Yazdanpanah M, Ong KK, Perry JRB, Manousaki D. Mendelian randomization identifies circulating proteins as biomarkers for age at menarche and age at natural menopause. Commun Biol 2024; 7:47. [PMID: 38184718 PMCID: PMC10771430 DOI: 10.1038/s42003-023-05737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Age at menarche (AAM) and age at natural menopause (ANM) are highly heritable traits and have been linked to various health outcomes. We aimed to identify circulating proteins associated with altered ANM and AAM using an unbiased two-sample Mendelian randomization (MR) and colocalization approach. By testing causal effects of 1,271 proteins on AAM, we identified 22 proteins causally associated with AAM in MR, among which 13 proteins (GCKR, FOXO3, SEMA3G, PATE4, AZGP1, NEGR1, LHB, DLK1, ANXA2, YWHAB, DNAJB12, RMDN1 and HPGDS) colocalized. Among 1,349 proteins tested for causal association with ANM using MR, we identified 19 causal proteins among which 7 proteins (CPNE1, TYMP, DNER, ADAMTS13, LCT, ARL and PLXNA1) colocalized. Follow-up pathway and gene enrichment analyses demonstrated links between AAM-related proteins and obesity and diabetes, and between AAM and ANM-related proteins and various types of cancer. In conclusion, we identified proteomic signatures of reproductive ageing in women, highlighting biological processes at both ends of the reproductive lifespan.
Collapse
Affiliation(s)
- Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Basile Jumentier
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada.
- Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
79
|
Mbarek H, Gordon SD, Duffy DL, Hubers N, Mortlock S, Beck JJ, Hottenga JJ, Pool R, Dolan CV, Actkins KV, Gerring ZF, Van Dongen J, Ehli EA, Iacono WG, Mcgue M, Chasman DI, Gallagher CS, Schilit SLP, Morton CC, Paré G, Willemsen G, Whiteman DC, Olsen CM, Derom C, Vlietinck R, Gudbjartsson D, Cannon-Albright L, Krapohl E, Plomin R, Magnusson PKE, Pedersen NL, Hysi P, Mangino M, Spector TD, Palviainen T, Milaneschi Y, Penninnx BW, Campos AI, Ong KK, Perry JRB, Lambalk CB, Kaprio J, Ólafsson Í, Duroure K, Revenu C, Rentería ME, Yengo L, Davis L, Derks EM, Medland SE, Stefansson H, Stefansson K, Del Bene F, Reversade B, Montgomery GW, Boomsma DI, Martin NG. Genome-wide association study meta-analysis of dizygotic twinning illuminates genetic regulation of female fecundity. Hum Reprod 2024; 39:240-257. [PMID: 38052102 PMCID: PMC10767824 DOI: 10.1093/humrep/dead247] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2023] [Indexed: 12/07/2023] Open
Abstract
STUDY QUESTION Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S) Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Skłodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Qatar Genome Program, Qatar Foundation, Doha, Qatar
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Sally Mortlock
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jeffrey J Beck
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ky’Era V Actkins
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | | | - Jenny Van Dongen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Matt Mcgue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel I Chasman
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Samantha L P Schilit
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Cynthia C Morton
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | - Eva Krapohl
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Statistical Sciences & Innovation, UCB Biosciences GmbH, Monheim, Germany
| | - Robert Plomin
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pirro Hysi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brenda W Penninnx
- Department of Psychiatry, EMGO Institute for Health and Care Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Adrian I Campos
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Cornelis B Lambalk
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
- Amsterdam University Medical Centers Location VU Medical Center, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Ísleifur Ólafsson
- Department of Clinical Biochemistry, National University Hospital of Iceland, Reykjavik, Iceland
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Céline Revenu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Loic Yengo
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Lea Davis
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Eske M Derks
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Bruno Reversade
- Genome Institute of Singapore, Laboratory of Human Genetics & Therapeutics, A*STAR, Singapore, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Grant W Montgomery
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
80
|
Hübel C, Abdulkadir M, Herle M, Palmos AB, Loos RJF, Breen G, Micali N, Bulik CM. Persistent thinness and anorexia nervosa differ on a genomic level. Eur J Hum Genet 2024; 32:117-124. [PMID: 37474786 PMCID: PMC10772076 DOI: 10.1038/s41431-023-01431-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Thinness and anorexia nervosa are both characterised by persistent low weight. Individuals with anorexia nervosa concurrently report distorted perceptions of their body and engage in weight-loss behaviours, whereas individuals with thinness often wish to gain weight. Both conditions are heritable and share genomics with BMI, but are not genetically correlated with each other. Based on their pattern of genetic associations with other traits, we explored differences between thinness and anorexia nervosa on a genomic level. In Part 1, using publicly available data, we compared genetic correlations of persistent thinness/anorexia nervosa with eleven psychiatric disorders. In Part 2, we identified individuals with adolescent persistent thinness in the Avon Longitudinal Study of Parents and Children (ALSPAC) by latent class growth analysis of measured BMI from 10 to 24 years (n = 6594) and evaluated associations with psychiatric and anthropometric polygenic scores. In Part 1, in contrast to the positive genetic correlations of anorexia nervosa with various psychiatric disorders, persistent thinness showed negative genetic correlations with attention deficit hyperactivity disorder (rgAN = 0.08 vs. rgPT = -0.30), alcohol dependence (rgAN = 0.07 vs. rgPT = -0.44), major depressive disorder (rgAN = 0.27 vs. rgPT = -0.18) and post-traumatic stress disorder (rgAN = 0.26 vs. rgPT = -0.20). In Part 2, individuals with adolescent persistent thinness in the ALSPAC had lower borderline personality disorder polygenic scores (OR = 0.77; Q = 0.01). Overall, results suggest that genetic variants associated with thinness are negatively associated with psychiatric disorders and therefore thinness may be differentiable from anorexia nervosa on a genomic level.
Collapse
Affiliation(s)
- Christopher Hübel
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
- National Centre for Register-based Research, Aarhus Business and Social Sciences, Aarhus University, Aarhus, Denmark.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Mohamed Abdulkadir
- National Centre for Register-based Research, Aarhus Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Moritz Herle
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alish B Palmos
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Gerome Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Nadia Micali
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Mental Health Services in the Capital Region of Denmark, Eating Disorders Research Unit, Psychiatric Centre Ballerup, Ballerup, Denmark
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
81
|
Weinberg-Shukron A, Youngson NA, Ferguson-Smith AC, Edwards CA. Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain. Front Cell Dev Biol 2023; 11:1328806. [PMID: 38155837 PMCID: PMC10754522 DOI: 10.3389/fcell.2023.1328806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Genomic imprinting is an epigenetic process whereby genes are monoallelically expressed in a parent-of-origin-specific manner. Imprinted genes are frequently found clustered in the genome, likely illustrating their need for both shared regulatory control and functional inter-dependence. The Dlk1-Dio3 domain is one of the largest imprinted clusters. Genes in this region are involved in development, behavior, and postnatal metabolism: failure to correctly regulate the domain leads to Kagami-Ogata or Temple syndromes in humans. The region contains many of the hallmarks of other imprinted domains, such as long non-coding RNAs and parental origin-specific CTCF binding. Recent studies have shown that the Dlk1-Dio3 domain is exquisitely regulated via a bipartite imprinting control region (ICR) which functions differently on the two parental chromosomes to establish monoallelic expression. Furthermore, the Dlk1 gene displays a selective absence of imprinting in the neurogenic niche, illustrating the need for precise dosage modulation of this domain in different tissues. Here, we discuss the following: how differential epigenetic marks laid down in the gametes cause a cascade of events that leads to imprinting in the region, how this mechanism is selectively switched off in the neurogenic niche, and why studying this imprinted region has added a layer of sophistication to how we think about the hierarchical epigenetic control of genome function.
Collapse
Affiliation(s)
| | - Neil A. Youngson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
82
|
Ghanbari F, Otomo N, Gamache I, Iwami T, Koike Y, Khanshour AM, Ikegawa S, Wise CA, Terao C, Manousaki D. Interrogating Causal Effects of Body Composition and Puberty-Related Risk Factors on Adolescent Idiopathic Scoliosis: A Two-Sample Mendelian Randomization Study. JBMR Plus 2023; 7:e10830. [PMID: 38130750 PMCID: PMC10731118 DOI: 10.1002/jbm4.10830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of pediatric musculoskeletal disorder. Observational studies have pointed to several risk factors for AIS, but almost no evidence exists to support their causal association with AIS. Here, we applied Mendelian randomization (MR), known to limit bias from confounding and reverse causation, to investigate causal associations between body composition and puberty-related exposures and AIS risk in Europeans and Asians. For our two-sample MR studies, we used single nucleotide polymorphisms (SNPs) associated with body mass index (BMI), waist-hip ratio, lean mass, childhood obesity, bone mineral density (BMD), 25-hydroxyvitamin D (25OHD), age at menarche, and pubertal growth in large European genome-wide association studies (GWAS), and with adult osteoporosis risk and age of menarche in Biobank Japan. We extracted estimates of the aforementioned SNPs on AIS risk from the European or Asian subsets of the largest multiancestry AIS GWAS (N = 7956 cases/88,459 controls). The results of our inverse variance-weighted (IVW) MR estimates suggest no causal association between the aforementioned risk factors and risk of AIS. Pleiotropy-sensitive MR methods yielded similar results. However, restricting our analysis to European females with AIS, we observed a causal association between estimated BMD and the risk of AIS (IVW odds ratio for AIS = 0.1, 95% confidence interval 0.01 to 0.7, p = 0.02 per SD increase in estimated BMD), but this association was no longer significant after adjusting for BMI, body fat mass, and 25OHD and remained significant after adjusting for age at menarche in multivariable MR. In conclusion, we demonstrated a protective causal effect of BMD on AIS risk in females of European ancestry, but this effect was modified by BMI, body fat mass, and 25OHD levels. Future MR studies using larger AIS GWAS are needed to investigate small effects of the aforementioned exposures on AIS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
| | - Nao Otomo
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryKeio University School of MedicineTokyoJapan
| | - Isabel Gamache
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
| | - Takuro Iwami
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryKeio University School of MedicineTokyoJapan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryHokkaido University Graduate School of MedicineSapporoJapan
| | - Anas M. Khanshour
- Scottish Rite for Children Center for Pediatric Bone Biology and Translational ResearchDallasTexasUSA
| | - Shiro Ikegawa
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Carol A. Wise
- Scottish Rite for Children Center for Pediatric Bone Biology and Translational ResearchDallasTexasUSA
- McDermott Center for Human Growth & DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Despoina Manousaki
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
- Department of PediatricsUniversity of MontrealMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
83
|
Mozhui K, Kim H, Villani F, Haghani A, Sen S, Horvath S. Pleiotropic influence of DNA methylation QTLs on physiological and ageing traits. Epigenetics 2023; 18:2252631. [PMID: 37691384 PMCID: PMC10496549 DOI: 10.1080/15592294.2023.2252631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is influenced by genetic and non-genetic factors. Here, we chart quantitative trait loci (QTLs) that modulate levels of methylation at highly conserved CpGs using liver methylome data from mouse strains belonging to the BXD family. A regulatory hotspot on chromosome 5 had the highest density of trans-acting methylation QTLs (trans-meQTLs) associated with multiple distant CpGs. We refer to this locus as meQTL.5a. Trans-modulated CpGs showed age-dependent changes and were enriched in developmental genes, including several members of the MODY pathway (maturity onset diabetes of the young). The joint modulation by genotype and ageing resulted in a more 'aged methylome' for BXD strains that inherited the DBA/2J parental allele at meQTL.5a. Further, several gene expression traits, body weight, and lipid levels mapped to meQTL.5a, and there was a modest linkage with lifespan. DNA binding motif and protein-protein interaction enrichment analyses identified the hepatic nuclear factor, Hnf1a (MODY3 gene in humans), as a strong candidate. The pleiotropic effects of meQTL.5a could contribute to variations in body size and metabolic traits, and influence CpG methylation and epigenetic ageing that could have an impact on lifespan.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hyeonju Kim
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
84
|
Duckett K, Williamson A, Kincaid JWR, Rainbow K, Corbin LJ, Martin HC, Eberhardt RY, Huang QQ, Hurles ME, He W, Brauner R, Delaney A, Dunkel L, Grinspon RP, Hall JE, Hirschhorn JN, Howard SR, Latronico AC, Jorge AAL, McElreavey K, Mericq V, Merino PM, Palmert MR, Plummer L, Rey RA, Rezende RC, Seminara SB, Salnikov K, Banerjee I, Lam BYH, Perry JRB, Timpson NJ, Clayton P, Chan YM, Ong KK, O’Rahilly S. Prevalence of Deleterious Variants in MC3R in Patients With Constitutional Delay of Growth and Puberty. J Clin Endocrinol Metab 2023; 108:e1580-e1587. [PMID: 37339320 PMCID: PMC10655545 DOI: 10.1210/clinem/dgad373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
CONTEXT The melanocortin 3 receptor (MC3R) has recently emerged as a critical regulator of pubertal timing, linear growth, and the acquisition of lean mass in humans and mice. In population-based studies, heterozygous carriers of deleterious variants in MC3R report a later onset of puberty than noncarriers. However, the frequency of such variants in patients who present with clinical disorders of pubertal development is currently unknown. OBJECTIVE This work aimed to determine whether deleterious MC3R variants are more frequently found in patients clinically presenting with constitutional delay of growth and puberty (CDGP) or normosmic idiopathic hypogonadotropic hypogonadism (nIHH). METHODS We examined the sequence of MC3R in 362 adolescents with a clinical diagnosis of CDGP and 657 patients with nIHH, experimentally characterized the signaling properties of all nonsynonymous variants found and compared their frequency to that in 5774 controls from a population-based cohort. Additionally, we established the relative frequency of predicted deleterious variants in individuals with self-reported delayed vs normally timed menarche/voice-breaking in the UK Biobank cohort. RESULTS MC3R loss-of-function variants were infrequent but overrepresented in patients with CDGP (8/362 [2.2%]; OR = 4.17; P = .001). There was no strong evidence of overrepresentation in patients with nIHH (4/657 [0.6%]; OR = 1.15; P = .779). In 246 328 women from the UK Biobank, predicted deleterious variants were more frequently found in those self-reporting delayed (aged ≥16 years) vs normal age at menarche (OR = 1.66; P = 3.90E-07). CONCLUSION We have found evidence that functionally damaging variants in MC3R are overrepresented in individuals with CDGP but are not a common cause of this phenotype.
Collapse
Affiliation(s)
- Katie Duckett
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Alice Williamson
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - John W R Kincaid
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Kara Rainbow
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Hilary C Martin
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ruth Y Eberhardt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Qin Qin Huang
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Wen He
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Raja Brauner
- Pediatric Endocrinology Unit, Hôpital Fondation Adolphe de Rothschild and Université Paris Cité, 25 rue Manin, 75019 Paris, France
| | - Angela Delaney
- Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS 737, Memphis, TN 38105, USA
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London Medical School, Charterhouse Square, London EC1M 6BQ, UK
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET–FEI–Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Janet E Hall
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Science, National Institute of Health, 111 TW Alexander Dr, Bldg 101 – A222, Research Triangle Park, NC 27709, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ana C Latronico
- Departamento de Clínica Médica, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246903 São Paulo - SP, Brazil
| | - Alexander A L Jorge
- Departamento de Clínica Médica, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246903 São Paulo - SP, Brazil
| | - Ken McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Verónica Mericq
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santa Rosa 1234, 2° piso, Santiago 8320000, Chile
| | - Paulina M Merino
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santa Rosa 1234, 2° piso, Santiago 8320000, Chile
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children and Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lacey Plummer
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, MA 02114, USA
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET–FEI–Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Raíssa C Rezende
- Departamento de Clínica Médica, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246903 São Paulo - SP, Brazil
| | - Stephanie B Seminara
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, MA 02114, USA
| | - Kathryn Salnikov
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, MA 02114, USA
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - John R B Perry
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Peter Clayton
- Paediatric Endocrinology, Royal Manchester Children’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Box 285, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen O’Rahilly
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
85
|
Sehovic E, Zellers SM, Youssef MK, Heikkinen A, Kaprio J, Ollikainen M. DNA methylation sites in early adulthood characterised by pubertal timing and development: a twin study. Clin Epigenetics 2023; 15:181. [PMID: 37950287 PMCID: PMC10638786 DOI: 10.1186/s13148-023-01594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Puberty is a highly heritable and variable trait, with environmental factors having a role in its eventual timing and development. Early and late pubertal onset are both associated with various diseases developing later in life, and epigenetic characterisation of pubertal timing and development could lead to important insights. Blood DNA methylation, reacting to both genotype and environment, has been associated with puberty; however, such studies are relatively scarce. We investigated peripheral blood DNA methylation profiles (using Illumina 450 K and EPIC platforms) of 1539 young adult Finnish twins associated with pubertal development scale (PDS) at ages 12 and 14 as well as pubertal age (PA). RESULTS Fixed effect meta-analysis of the two platforms on 347,521 CpGs in common identified 58 CpG sites associated (p < 1 × 10-5) with either PDS or PA. All four CpGs associated with PA and 45 CpGs associated with PDS were sex-specific. Thirteen CpGs had a high heritability (h2: 0.51-0.98), while one CpG site (mapped to GET4) had a high shared environmental component accounting for 68% of the overall variance in methylation at the site. Utilising twin discordance analysis, we found 6 CpG sites (5 associated with PDS and 1 with PA) that had an environmentally driven association with puberty. Furthermore, genes with PDS- or PA-associated CpGs were consistently linked to various developmental processes and diseases such as breast, prostate and ovarian cancer, while methylation quantitative trait loci of associated CpG sites were enriched in immune pathways developing during puberty. CONCLUSIONS By identifying puberty-associated DNA methylation sites and examining the effects of sex, environment and genetics, we shed light on the intricate interplay between environment and genetics in the context of puberty. Through our comprehensive analysis, we not only deepen the understanding of the significance of both genetic and environmental factors in the complex processes of puberty and its timing, but also gain insights into potential links with disease risks.
Collapse
Affiliation(s)
- Emir Sehovic
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Stephanie M Zellers
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Markus K Youssef
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, 1015, Lausanne, Switzerland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
86
|
Phung MT, Lee AW, McLean K, Anton-Culver H, Bandera EV, Carney ME, Chang-Claude J, Cramer DW, Doherty JA, Fortner RT, Goodman MT, Harris HR, Jensen A, Modugno F, Moysich KB, Pharoah PDP, Qin B, Terry KL, Titus LJ, Webb PM, Wu AH, Zeinomar N, Ziogas A, Berchuck A, Cho KR, Hanley GE, Meza R, Mukherjee B, Pike MC, Pearce CL, Trabert B. A framework for assessing interactions for risk stratification models: the example of ovarian cancer. J Natl Cancer Inst 2023; 115:1420-1426. [PMID: 37436712 PMCID: PMC10637032 DOI: 10.1093/jnci/djad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Generally, risk stratification models for cancer use effect estimates from risk/protective factor analyses that have not assessed potential interactions between these exposures. We have developed a 4-criterion framework for assessing interactions that includes statistical, qualitative, biological, and practical approaches. We present the application of this framework in an ovarian cancer setting because this is an important step in developing more accurate risk stratification models. Using data from 9 case-control studies in the Ovarian Cancer Association Consortium, we conducted a comprehensive analysis of interactions among 15 unequivocal risk and protective factors for ovarian cancer (including 14 non-genetic factors and a 36-variant polygenic score) with age and menopausal status. Pairwise interactions between the risk/protective factors were also assessed. We found that menopausal status modifies the association among endometriosis, first-degree family history of ovarian cancer, breastfeeding, and depot-medroxyprogesterone acetate use and disease risk, highlighting the importance of understanding multiplicative interactions when developing risk prediction models.
Collapse
Affiliation(s)
- Minh Tung Phung
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alice W Lee
- Department of Public Health, California State University, Fullerton, Fullerton, CA, USA
| | - Karen McLean
- Department of Gynecologic Oncology and Department of Pharmacology & Therapeutics, Elm & Carlton Streets, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hoda Anton-Culver
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michael E Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel W Cramer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Anne Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Renee T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Allan Jensen
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesmary Modugno
- Women’s Cancer Research Center, Magee-Women’s Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburg, PA, USA
| | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Linda J Titus
- Public Health, Muskie School of Public Service, University of Southern Maine, Portland, ME, USA
| | - Penelope M Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nur Zeinomar
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gillian E Hanley
- Department of Obstetrics & Gynecology, University of British Columbia Faculty of Medicine, Vancouver, BC, Canada
| | - Rafael Meza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Bhramar Mukherjee
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Malcolm C Pike
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Britton Trabert
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Populations Sciences Program, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
87
|
Yu Y, Hou L, Wu Y, Yu Y, Liu X, Wu S, He Y, Ge Y, Wei Y, Qian F, Luo Q, Feng Y, Cheng X, Yu T, Li H, Xue F. Causal associations between female reproductive behaviors and psychiatric disorders: a lifecourse Mendelian randomization study. BMC Psychiatry 2023; 23:799. [PMID: 37915018 PMCID: PMC10621101 DOI: 10.1186/s12888-023-05203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The timings of reproductive life events have been examined to be associated with various psychiatric disorders. However, studies have not considered the causal pathways from reproductive behaviors to different psychiatric disorders. This study aimed to investigate the nature of the relationships between five reproductive behaviors and twelve psychiatric disorders. METHODS Firstly, we calculated genetic correlations between reproductive factors and psychiatric disorders. Then two-sample Mendelian randomization (MR) was conducted to estimate the causal associations among five reproductive behaviors, and these reproductive behaviors on twelve psychiatric disorders, using genome-wide association study (GWAS) summary data from genetic consortia. Multivariable MR was then applied to evaluate the direct effect of reproductive behaviors on these psychiatric disorders whilst accounting for other reproductive factors at different life periods. RESULTS Univariable MR analyses provide evidence that age at menarche, age at first sexual intercourse and age at first birth have effects on one (depression), seven (anxiety disorder, ADHD, bipolar disorder, bipolar disorder II, depression, PTSD and schizophrenia) and three psychiatric disorders (ADHD, depression and PTSD) (based on p<7.14×10-4), respectively. However, after performing multivariable MR, only age at first sexual intercourse has direct effects on five psychiatric disorders (Depression, Attention deficit or hyperactivity disorder, Bipolar disorder, Posttraumatic stress disorder and schizophrenia) when accounting for other reproductive behaviors with significant effects in univariable analyses. CONCLUSION Our findings suggest that reproductive behaviors predominantly exert their detrimental effects on psychiatric disorders and age at first sexual intercourse has direct effects on psychiatric disorders.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lei Hou
- Beijing International Center for Mathematical Research, Peking University, Beijing, People's Republic of China
| | - Yutong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanyuan Yu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinhui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Sijia Wu
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yina He
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yilei Ge
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun Wei
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fengtong Qian
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qingxin Luo
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yue Feng
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaojing Cheng
- Shandong Mental Health Center, Shandong Province, Jinan, China
| | - Tiangui Yu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Hongkai Li
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Fuzhong Xue
- Department of Epidemiology and Health Statistics, School of Public Health, , Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong Province, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
88
|
Wang S, Fang J, Li J, Wang S, Su P, Wan Y, Tao F, Sun Y. Identification of urine biomarkers associated with early puberty in children: An untargeted metabolomics analysis. Physiol Behav 2023; 270:114305. [PMID: 37507079 DOI: 10.1016/j.physbeh.2023.114305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
A trend toward earlier pubertal maturation in both sexes has been shown in many countries. Early puberty affects an increasing proportion of children for reasons that remain obscure. Novel candidate biomarkers are strongly needed. We sought to apply untargeted metabolomic profiling to identify triggering mechanisms and candidate biomarkers in children with early puberty. Participants aged 7 - 12 years old were recruited directly from two elementary schools of Bengbu, Anhui Province, China, from Feb 2021 to May 2021. Early puberty was determined by breast and testicular development at baseline (May 2021) and 6-month later. Ultra-high-performance liquid chromatography-based untargeted metabolomic profiling was performed on urine samples of children with early puberty and control subjects. Metabolomic profiling for early puberty in a sex dependent manner. For boys, we identified several perturbed pathways, including histidine metabolism, glycine, serine and threonine metabolism, and selenoamino acid metabolism, associated with early puberty. In contrast, there were differences in pyruvate metabolism, one carbon pool by folate, and D-glutamine and D-glutamate metabolism pathways in girls with early puberty compared with controls. In addition, 4-hydroxyhippuric acid and 5-methoxytryptophol were shown as potential independent diagnostic biomarker for early puberty in boys, 3-hydroxybenzoic acid and glutaminylproline were shown as early biomarker for early puberty in girls, achieving area under the ROC curve of 0.71 and 0.72 in discriminating early puberty boys, and 0.70 and 0.74 in discriminating early puberty girls from controls. Through metabolomic analysis, we have identified metabolic perturbations and potential biomarkers of early puberty.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jiao Fang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jing Li
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Shihong Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yuhui Wan
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
89
|
Rahimi F, Mirghafourvand M, Farvareshi M, Yavarikia P. The effect of cognitive behavioral therapy on stress and anxiety of mothers of girls with precocious puberty symptoms: a randomized controlled trial. BMC Psychiatry 2023; 23:738. [PMID: 37817169 PMCID: PMC10565989 DOI: 10.1186/s12888-023-05216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Precocious puberty in girls has been associated with an increased risk of stress and anxiety in their mothers. This study aimed to investigate the effect of cognitive behavioral therapy (CBT) on perceived stress and anxiety of mothers of girls with precocious puberty symptoms. METHODS This randomized controlled trial was conducted on 70 mothers of girls with precocious puberty symptoms in Tabriz-Iran, 2021. The participants were randomly assigned to CBT and control groups through blocked randomization. Group counseling was provided to the intervention group in eight sessions of 45-60 min weekly with 5 to 7 women. A booklet containing explanations about puberty was provided for the both groups. Data were collected using the questionnaires of socio-demographic characteristics, Spielberger State-Trait Anxiety Inventory (STAI), Perceived Stress Scale (PSS) and quality of life (SF-36). Independent t-test, ANCOVA, chi-square, and fisher's exact tests were used to compare the outcomes between the groups. FINDINGS After the intervention, based on ANCOVA test with adjusting the baseline values, mean scores of stress (mean difference (MD): -10.75; 95% confidence interval (95% CI): -11.77 to -9.72; P < 0.001), state anxiety (MD: -14.36; 95% CI: -15.7 to -12.7; P < 0.001) and trait anxiety (MD: -12.8; 95% CI: -14.4 to -11.1; P < 0.001) were significantly lower in CBT group compared to the control group. Also mean score of quality of life (MD: 9.82; 95% CI: -6.74 to -12.90; P < 0.001) was significantly higher in CBT group compared to the control group. CONCLUSION Based on the results, group CBT is effective in reducing stress and anxiety and improving the quality of life of mothers of girls with precocious puberty symptoms. However, more studies are required to make a definite conclusion in this field. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT): IRCT20110826007418N6. Date of registration: 11/10/2021. URL: https://en.irct.ir/trial/57346 ; Date of first registration: 11/10/2021.
Collapse
Affiliation(s)
- Faranak Rahimi
- Department of midwifery, Student Research Committee, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Farvareshi
- Clinical Psychologist, Razi Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Yavarikia
- Department of midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
90
|
Ruth KS, Beaumont RN, Locke JM, Tyrrell J, Crandall CJ, Hawkes G, Frayling TM, Prague JK, Patel KA, Wood AR, Weedon MN, Murray A. Insights into the genetics of menopausal vasomotor symptoms: genome-wide analyses of routinely-collected primary care health records. BMC Med Genomics 2023; 16:231. [PMID: 37784116 PMCID: PMC10546673 DOI: 10.1186/s12920-023-01658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/08/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Vasomotor symptoms (VMS) can often significantly impact women's quality of life at menopause. In vivo studies have shown that increased neurokinin B (NKB) / neurokinin 3 receptor (NK3R) signalling contributes to VMS, with previous genetic studies implicating the TACR3 gene locus that encodes NK3R. Large-scale genomic analyses offer the possibility of biological insights but few such studies have collected data on VMS, while proxy phenotypes such as hormone replacement therapy (HRT) use are likely to be affected by changes in clinical practice. We investigated the genetic basis of VMS by analysing routinely-collected health records. METHODS We performed a GWAS of VMS derived from linked primary-care records and cross-sectional self-reported HRT use in up to 153,152 women from UK Biobank, a population-based cohort. In a subset of this cohort (n = 39,356), we analysed exome-sequencing data to test the association with VMS of rare deleterious genetic variants. Finally, we used Mendelian randomisation analysis to investigate the reasons for HRT use over time. RESULTS Our GWAS of health-records derived VMS identified a genetic signal near TACR3 associated with a lower risk of VMS (OR=0.76 (95% CI 0.72,0.80) per A allele, P=3.7x10-27), which was consistent with previous studies, validating this approach. Conditional analyses demonstrated independence of genetic signals for puberty timing and VMS at the TACR3 locus, including a rare variant predicted to reduce functional NK3R levels that was associated with later menarche (P = 5 × 10-9) but showed no association with VMS (P = 0.6). Younger menopause age was causally-associated with greater HRT use before 2002 but not after. CONCLUSIONS We provide support for TACR3 in the genetic basis of VMS but unexpectedly find that rare genomic variants predicted to lower NK3R levels did not modify VMS, despite the proven efficacy of NK3R antagonists. Using genomics we demonstrate changes in genetic associations with HRT use over time, arising from a change in clinical practice since the early 2000s, which is likely to reflect a switch from preventing post-menopausal complications in women with earlier menopause to primarily treating VMS. Our study demonstrates that integrating routinely-collected primary care health records and genomic data offers great potential for exploring the genetic basis of symptoms.
Collapse
Affiliation(s)
- Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK.
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Jonathan M Locke
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Carolyn J Crandall
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California, Los Angeles, CA, 90024, USA
| | - Gareth Hawkes
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Julia K Prague
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, Exeter, EX2 5DW, UK
- Macleod Diabetes and Endocrinology Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, EX2 5DW, UK
| | - Kashyap A Patel
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, Exeter, EX2 5DW, UK
- Macleod Diabetes and Endocrinology Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, EX2 5DW, UK
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| |
Collapse
|
91
|
Barrett ES, Rivera-Núñez Z. Invited Perspective: PFAS and Pubertal Timing in Girls-A Maturing Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:91304. [PMID: 37751324 PMCID: PMC10521913 DOI: 10.1289/ehp12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Affiliation(s)
- Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
92
|
Ma Y, Cai J, Liu LW, Hou W, Wei Z, Wang Y, Xu Y. Age at menarche and polycystic ovary syndrome: A Mendelian randomization study. Int J Gynaecol Obstet 2023; 162:1050-1056. [PMID: 37128830 DOI: 10.1002/ijgo.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE The authors aimed to use a large two-sample Mendelian randomization (MR) study to reveal the causality between age at menarche (AAM) and polycystic ovary syndrome (PCOS) incidence. METHODS The authors collected summary statistics from the hitherto largest genome-wide association studies conducted in AAM and PCOS in the same ancestry. MR with inverse variance weighting was conducted as the main analysis method, while weighted median and MR-Egger regression were used for comprehensive analysis. As for pleiotropy detection, inverse variance weighting, MR-Egger regression, Mendelian Randomization Pleiotropy Residual Sum and Outlier, as well as leave-one-out analysis were used to detect pleiotropy. Risk factor analysis was conducted to investigate the underlying mechanisms linking AAM to PCOS. RESULTS Each standard deviation increment in AAM was associated with a significantly lower incidence of PCOS (odds ratio, 0.86 [95% confidence interval, 0.75-0.98]). After adjustment in horizontal pleiotropy by eliminating four outliers, this pathogenic association was still statistically detected. All pleiotropy indexes were without statistical differences, which suggested the conclusions were robust. It showed the causal association between later AAM and lower body mass index, lower fasting insulin level and insulin resistance. CONCLUSION Our MR analysis verified that a slightly later onset age (15 to 18 years) at menarche could reduce the risk of PCOS. A more comprehensive investigation in a prospective setting is strongly advised.
Collapse
Affiliation(s)
- Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| | - Jiahao Cai
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lok-Wan Liu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| | - Wenhui Hou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zixin Wei
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizi Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sun University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
- Clinical Research Center for Obstetrical and Gynecological Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
93
|
Mortlock S, Houshdaran S, Kosti I, Rahmioglu N, Nezhat C, Vitonis AF, Andrews SV, Grosjean P, Paranjpe M, Horne AW, Jacoby A, Lager J, Opoku-Anane J, Vo KC, Manvelyan E, Sen S, Ghukasyan Z, Collins F, Santamaria X, Saunders P, Kober K, McRae AF, Terry KL, Vallvé-Juanico J, Becker C, Rogers PAW, Irwin JC, Zondervan K, Montgomery GW, Missmer S, Sirota M, Giudice L. Global endometrial DNA methylation analysis reveals insights into mQTL regulation and associated endometriosis disease risk and endometrial function. Commun Biol 2023; 6:780. [PMID: 37587191 PMCID: PMC10432557 DOI: 10.1038/s42003-023-05070-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
Endometriosis is a leading cause of pain and infertility affecting millions of women globally. Herein, we characterize variation in DNA methylation (DNAm) and its association with menstrual cycle phase, endometriosis, and genetic variants through analysis of genotype data and methylation in endometrial samples from 984 deeply-phenotyped participants. We estimate that 15.4% of the variation in endometriosis is captured by DNAm and identify significant differences in DNAm profiles associated with stage III/IV endometriosis, endometriosis sub-phenotypes and menstrual cycle phase, including opening of the window for embryo implantation. Menstrual cycle phase was a major source of DNAm variation suggesting cellular and hormonally-driven changes across the cycle can regulate genes and pathways responsible for endometrial physiology and function. DNAm quantitative trait locus (mQTL) analysis identified 118,185 independent cis-mQTLs including 51 associated with risk of endometriosis, highlighting candidate genes contributing to disease risk. Our work provides functional evidence for epigenetic targets contributing to endometriosis risk and pathogenesis. Data generated serve as a valuable resource for understanding tissue-specific effects of methylation on endometrial biology in health and disease.
Collapse
Affiliation(s)
- Sally Mortlock
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Idit Kosti
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Camran Nezhat
- Stanford University Medical Center, Palo Alto, CA, USA
- University of California San Francisco, San Francisco, CA, USA
- Camran Nezhat Institute, Center for Special Minimally Invasive and Robotic Surgery, Woodside, CA, USA
| | - Allison F Vitonis
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shan V Andrews
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Parker Grosjean
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Manish Paranjpe
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrew W Horne
- MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, UK
| | - Alison Jacoby
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeannette Lager
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Opoku-Anane
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Evelina Manvelyan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sushmita Sen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zhanna Ghukasyan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Frances Collins
- MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, UK
| | - Xavier Santamaria
- Carlos Simon Foundation, Health Research Institute, Valencia, Spain
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Philippa Saunders
- Centre for Inflammation Research, Institute for Regeneration and Repair University of Edinburgh, Edinburgh, UK
| | - Kord Kober
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Allan F McRae
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Christian Becker
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter A W Rogers
- University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne, Australia
| | - Juan C Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Krina Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stacey Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Neonatology, University of California San Francisco, San Francisco, CA, USA
| | - Linda Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
94
|
Kaisinger LR, Kentistou KA, Stankovic S, Gardner EJ, Day FR, Zhao Y, Mörseburg A, Carnie CJ, Zagnoli-Vieira G, Puddu F, Jackson SP, O’Rahilly S, Farooqi IS, Dearden L, Pantaleão LC, Ozanne SE, Ong KK, Perry JR. Large-scale exome sequence analysis identifies sex- and age-specific determinants of obesity. CELL GENOMICS 2023; 3:100362. [PMID: 37601970 PMCID: PMC10435378 DOI: 10.1016/j.xgen.2023.100362] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
Obesity contributes substantially to the global burden of disease and has a significant heritable component. Recent large-scale exome sequencing studies identified several genes in which rare, protein-coding variants have large effects on adult body mass index (BMI). Here we extended such work by performing sex-stratified associations in the UK Biobank study (N∼420,000). We identified genes in which rare heterozygous loss-of-function increases adult BMI in women (DIDO1, PTPRG, and SLC12A5) and in men (SLTM), with effect sizes up to ∼8 kg/m2. This is complemented by analyses implicating rare variants in OBSCN and MADD for recalled childhood adiposity. The known functions of these genes, as well as findings of common variant genome-wide pathway enrichment analyses, suggest a role for neuron death, apoptosis, and DNA damage response mechanisms in the susceptibility to obesity across the life-course. These findings highlight the importance of considering sex-specific and life-course effects in the genetic regulation of obesity.
Collapse
Affiliation(s)
- Lena R. Kaisinger
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine A. Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eugene J. Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Felix R. Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alexander Mörseburg
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christopher J. Carnie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Guido Zagnoli-Vieira
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fabio Puddu
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Stephen P. Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - I. Sadaf Farooqi
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Laura Dearden
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lucas C. Pantaleão
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Susan E. Ozanne
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ken K. Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John R.B. Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
95
|
Qu Y, Chen L, Guo S, Liu Y, Wu H. Genetic liability to multiple factors and uterine leiomyoma risk: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1133260. [PMID: 37576957 PMCID: PMC10415162 DOI: 10.3389/fendo.2023.1133260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background and objective Uterine leiomyoma is the most common benign tumor in females of reproductive age. However, its causes have never been fully understood. The objective of our study was to analyze the causal association between various factors and uterine leiomyoma using Mendelian randomization (MR). Methods Genetic variables associated with risk factors were obtained from genome-wide association studies. Summary-level statistical data for uterine leiomyoma were obtained from FinnGen and the UK Biobank (UKB) consortium. We used inverse variance weighted, MR-Egger, and weighted median methods in univariate analysis. Multivariable MR analysis was used to identify independent risk factors. A fixed-effect model meta-analysis was used to combine the results of the FinnGen and UKB data. Results In the FinnGen data, higher genetically predicted age at natural menopause, systolic blood pressure (SBP), diastolic blood pressure (DBP), and fasting insulin were associated with an increased risk of uterine leiomyoma, while higher age at menarche was associated with a reduced risk of uterine leiomyoma. Multivariable MR analysis of SBP and DBP showed that higher DBP might be an independent risk factor of uterine leiomyoma. In the UKB data, the results for age at natural menopause, SBP, DBP, and age at menarche were replicated. The result of the meta-analysis suggested that uterine leiomyoma could also be affected by polycystic ovary syndrome (PCOS), endometriosis, and 2-hour glucose level. Conclusion Our MR study confirmed that earlier menstrual age, hypertension, obesity, and elevated 2-hour glucose post-challenge were risk factors for uterine leiomyoma, and the causal relationship between smoking and uterine leiomyoma was ruled out. In addition, later age of menopause and endometriosis were found to increase the risk of uterine leiomyoma, while PCOS was found to decrease the risk.
Collapse
Affiliation(s)
- Yangming Qu
- Department of Neonatology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Shijie Guo
- Department of Neonatology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Liu
- Department of Neonatology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Wu
- Department of Neonatology, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
96
|
Ren J, Huang Q, Lie X, Tong X, Yao Q, Zhou G. Kidney damage on fertility and pregnancy: A Mendelian randomization. PLoS One 2023; 18:e0288788. [PMID: 37478100 PMCID: PMC10361496 DOI: 10.1371/journal.pone.0288788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Low fertility and adverse pregnancy outcomes are commonly observed in women with chronic kidney disease (CKD). However, a causal relationship between low fertility and adverse pregnancy outcomes with CKD remains unclear. Besides, whether mild kidney dysfunction can affect fertility and pregnancy still needs exploration. Hence, this study aimed to investigate the causal effect of kidney damage on fertility and pregnancy using Mendelian randomization (MR). METHODS We first used two-sample MR to examine the effects of kidney damage on fertility and pregnancy. Next, we introduced the Bayesian model averaging MR analysis to detect major causal relationships and render the results robust. The genetic instruments and outcome data were derived from various large genome-wide association studies. RESULTS Adverse pregnancy outcomes: Our analyses supported a suggestive causal effect of CKD and estimated glomerular filtration rate (eGFR) rapid on stillbirth, with CKD having an odds ratio (OR) of 1.020 [95% confidence interval (CI) 1.002 to 1.038] and eGFR rapid having an OR of 1.026 (95% CI 1.004-1.048). We also discovered a suggestive causal effect of eGFR on spontaneous abortion, with an OR of 2.63 (95% CI 1.269 to 5.450). Moreover, increased urinary albumin-to-creatinine ratio (UACR) was regarded as a potential risk factor for pre-eclampsia (OR = 1.936; 95% CI 1.065 to 3.517) and gestational hypertension (OR = 1.700; 95% CI 1.002 to 2.886). Fertility assessment: The results indicated that eGFR and UACR had a suggestive causal relationship with the anti-Müllerian hormone level (eGFR beta: 1.004; UACR beta: 0.405). CONCLUSIONS Our study used MR to demonstrate a suggestive causal relationship between kidney damage and fertility and pregnancy. We reported that mild kidney dysfunction might be a risk factor for reduced fertility and adverse pregnancy outcomes. Dynamic renal detection may help preserve fertility and reduce the risk of pregnancy loss.
Collapse
Affiliation(s)
- Jin Ren
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First College of Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyan Huang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- The First College of Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Lie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xingli Tong
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ge Zhou
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
97
|
McAuley ABT, Varley I, Herbert AJ, Suraci B, Baker J, Johnston K, Kelly AL. Maturity-Associated Polygenic Profiles of under 12-16-Compared to under 17-23-Year-Old Male English Academy Football Players. Genes (Basel) 2023; 14:1431. [PMID: 37510335 PMCID: PMC10380058 DOI: 10.3390/genes14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to examine polygenic profiles previously associated with maturity timing in male academy football players across different age phases. Thus, 159 male football players from four English academies (U12-16, n = 86, aged 13.58 ± 1.58 years; U17-23, n = 73, aged 18.07 ± 1.69 years) and 240 male European controls were examined. Polygenic profiles comprised 39 single nucleotide polymorphisms and were analysed using unweighted and weighted total genotype scores (TGSs; TWGSs). There were significant differences in polygenic profiles between groups, whereby U17-23 players had more genetic variants associated with later maturity compared to U12-16 players (TGS, p = 0.010; TWGS, p = 0.024) and controls (TGS, p = 0.038; TWGS, p = 0.020). More specifically, U17-23 players had over two-times the odds of possessing >36 later-maturing alleles than <30 compared to U12-16 players (odds ratio (OR) = 2.84) and controls (OR = 2.08). These results suggest there was a greater proportion of relatively later-maturing players as maturation plateaus towards adulthood, which may be explained by the 'underdog hypothesis'. This study provides the first known molecular evidence that supports the notion that a maturity selection bias exists within male academy football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth, Bournemouth BH7 7AF, UK
| | - Joseph Baker
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Kathryn Johnston
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| |
Collapse
|
98
|
Reshetnikova Y, Churnosova M, Stepanov V, Bocharova A, Serebrova V, Trifonova E, Ponomarenko I, Sorokina I, Efremova O, Orlova V, Batlutskaya I, Ponomarenko M, Churnosov V, Eliseeva N, Aristova I, Polonikov A, Reshetnikov E, Churnosov M. Maternal Age at Menarche Gene Polymorphisms Are Associated with Offspring Birth Weight. Life (Basel) 2023; 13:1525. [PMID: 37511900 PMCID: PMC10381708 DOI: 10.3390/life13071525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, the association between maternal age at menarche (AAM)-related polymorphisms and offspring birth weight (BW) was studied. The work was performed on a sample of 716 pregnant women and their newborns. All pregnant women underwent genotyping of 50 SNPs of AAM candidate genes. Regression methods (linear and Model-Based Multifactor Dimensionality Reduction (MB-MDR)) with permutation procedures (the indicator pperm was calculated) were used to identify the correlation between SNPs and newborn weight (transformed BW values were analyzed) and in silico bioinformatic examination was applied to assess the intended functionality of BW-associated loci. Four AAM-related genetic variants were BW-associated including genes such as POMC (rs7589318) (βadditive = 0.202/pperm = 0.015), KDM3B (rs757647) (βrecessive = 0.323/pperm = 0.005), INHBA (rs1079866) (βadditive = 0.110/pperm = 0.014) and NKX2-1 (rs999460) (βrecessive = -0.176/pperm = 0.015). Ten BW-significant models of interSNPs interactions (pperm ≤ 0.001) were identified for 20 polymorphisms. SNPs rs7538038 KISS1, rs713586 RBJ, rs12324955 FTO and rs713586 RBJ-rs12324955 FTO two-locus interaction were included in the largest number of BW-associated models (30% models each). BW-associated AAM-linked 22 SNPs and 350 proxy loci were functionally related to 49 genes relevant to pathways such as the hormone biosynthesis/process and female/male gonad development. In conclusion, maternal AMM-related genes polymorphism is associated with the offspring BW.
Collapse
Affiliation(s)
- Yuliya Reshetnikova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Vadim Stepanov
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Anna Bocharova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Victoria Serebrova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Ekaterina Trifonova
- Research Institute for Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia; (V.S.); (A.B.); (V.S.); (E.T.)
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Olga Efremova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Valentina Orlova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Irina Batlutskaya
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Marina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Vladimir Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Natalya Eliseeva
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (Y.R.); (M.C.); (I.P.); (I.S.); (O.E.); (V.O.); (I.B.); (M.P.); (V.C.); (N.E.); (I.A.); (A.P.); (E.R.)
| |
Collapse
|
99
|
Denos M, Sun YQ, Jiang L, Brumpton BM, Mai XM. Age at Menarche, age at Natural Menopause, and Risk of Lung and Colorectal Cancers: A Mendelian Randomization Study. J Endocr Soc 2023; 7:bvad077. [PMID: 37404243 PMCID: PMC10315561 DOI: 10.1210/jendso/bvad077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 07/06/2023] Open
Abstract
Background The roles of age at menarche and age at menopause in the etiology of lung and colorectal cancers are unclear. Objective We aimed to investigate potential causal associations between age at menarche, age at natural menopause, and risk of lung and colorectal cancers using a Mendelian randomization (MR) approach. Methods From the Trøndelag Health Study in Norway, we defined two cohorts of 35 477 and 17 118 women to study the effects of age at menarche and age at natural menopause, respectively. We ran univariable MR to evaluate the potential causal associations. We performed multivariable MR adjusting for genetic variants of adult body mass index (BMI) to estimate the direct effect of age at menarche. Results Genetically predicted 1-year increase in age at menarche was associated with a lower risk of lung cancer overall (hazard ratio [HR, 0.64; 95% CI, 0.48-0.86), lung adenocarcinoma (HR, 0.61; 95% CI, 0.38-0.99), and lung non-adenocarcinoma (HR, 0.66; 95% CI, 0.45-0.95). After adjusting for adult BMI using a multivariable MR model, the direct effect estimates reduced to HR 0.72 (95% CI, 0.54-0.95) for lung cancer overall, HR 0.67 (95% CI, 0.43-1.03) for lung adenocarcinoma, and HR 0.77 (95% CI, 0.54-1.09) for lung non-adenocarcinoma. Age at menarche was not associated with colorectal cancer. Moreover, genetically predicted age at natural menopause was not associated with lung and colorectal cancers. Conclusion Our MR study suggested that later age at menarche was causally associated with a decreased risk of lung cancer overall and its subtypes, and adult BMI might be a mediator.
Collapse
Affiliation(s)
- Marion Denos
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Yi-Qian Sun
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, 7030 Trondheim, Norway
- Center for Oral Health Services and Research Mid-Norway (TkMidt), 7030 Trondheim, Norway
| | - Lin Jiang
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Ben Michael Brumpton
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Xiao-Mei Mai
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| |
Collapse
|
100
|
Oropeza E, Seker S, Carrel S, Mazumder A, Lozano D, Jimenez A, VandenHeuvel SN, Noltensmeyer DA, Punturi NB, Lei JT, Lim B, Waltz SE, Raghavan SA, Bainbridge MN, Haricharan S. Molecular portraits of cell cycle checkpoint kinases in cancer evolution, progression, and treatment responsiveness. SCIENCE ADVANCES 2023; 9:eadf2860. [PMID: 37390209 PMCID: PMC10313178 DOI: 10.1126/sciadv.adf2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..
Collapse
Affiliation(s)
- Elena Oropeza
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sinem Seker
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sabrina Carrel
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aloran Mazumder
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Daniel Lozano
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Athena Jimenez
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | | - Nindo B. Punturi
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Research Service, Cincinnati Veteran's Affairs Medical Center, 3200 Vine St., Cincinnati, OH, USA
| | | | | | - Svasti Haricharan
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|