51
|
Yap L, Tay HG, Nguyen MT, Tjin MS, Tryggvason K. Laminins in Cellular Differentiation. Trends Cell Biol 2019; 29:987-1000. [DOI: 10.1016/j.tcb.2019.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
|
52
|
Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies. Lancet 2019; 394:2025-2038. [PMID: 31789220 DOI: 10.1016/s0140-6736(19)32910-1] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/02/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are primary diseases of muscle due to mutations in more than 40 genes, which result in dystrophic changes on muscle biopsy. Now that most of the genes responsible for these conditions have been identified, it is possible to accurately diagnose them and implement subtype-specific anticipatory care, as complications such as cardiac and respiratory muscle involvement vary greatly. This development and advances in the field of supportive medicine have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected individuals. The improved understanding of the pathogenesis of these diseases is being used for the development of novel therapies. In the most common form, Duchenne muscular dystrophy, a few personalised therapies have recently achieved conditional approval and many more are at advanced stages of clinical development. In this Seminar, we concentrate on clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments for this group of conditions.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore Roma, Rome, Italy; Nemo Clinical Centre, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
53
|
Hall TE, Wood AJ, Ehrlich O, Li M, Sonntag CS, Cole NJ, Huttner IG, Sztal TE, Currie PD. Cellular rescue in a zebrafish model of congenital muscular dystrophy type 1A. NPJ Regen Med 2019; 4:21. [PMID: 31754462 PMCID: PMC6858319 DOI: 10.1038/s41536-019-0084-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/11/2019] [Indexed: 01/11/2023] Open
Abstract
Laminins comprise structural components of basement membranes, critical in the regulation of differentiation, survival and migration of a diverse range of cell types, including skeletal muscle. Mutations in one muscle enriched Laminin isoform, Laminin alpha2 (Lama2), results in the most common form of congenital muscular dystrophy, congenital muscular dystrophy type 1A (MDC1A). However, the exact cellular mechanism by which Laminin loss results in the pathological spectrum associated with MDC1A remains elusive. Here we show, via live tracking of individual muscle fibres, that dystrophic myofibres in the zebrafish model of MDC1A maintain sarcolemmal integrity and undergo dynamic remodelling behaviours post detachment, including focal sarcolemmal reattachment, cell extension and hyper-fusion with surrounding myoblasts. These observations imply the existence of a window of therapeutic opportunity, where detached cells may be “re-functionalised” prior to their delayed entry into the cell death program, a process we show can be achieved by muscle specific or systemic Laminin delivery. We further reveal that Laminin also acts as a pro-regenerative factor that stimulates muscle stem cell-mediated repair in lama2-deficient animals in vivo. The potential multi-mode of action of Laminin replacement therapy suggests it may provide a potent therapeutic axis for the treatment for MDC1A.
Collapse
Affiliation(s)
- T E Hall
- 1Australian Regenerative Medicine Institute, Monash University, Level 1, 15 Innovation Walk, Victoria, 3800 Australia.,2Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St Lucia, 4067 Australia
| | - A J Wood
- 1Australian Regenerative Medicine Institute, Monash University, Level 1, 15 Innovation Walk, Victoria, 3800 Australia
| | - O Ehrlich
- 1Australian Regenerative Medicine Institute, Monash University, Level 1, 15 Innovation Walk, Victoria, 3800 Australia
| | - M Li
- 1Australian Regenerative Medicine Institute, Monash University, Level 1, 15 Innovation Walk, Victoria, 3800 Australia
| | - C S Sonntag
- 1Australian Regenerative Medicine Institute, Monash University, Level 1, 15 Innovation Walk, Victoria, 3800 Australia
| | - N J Cole
- 3Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, New South Wales 2010 Australia.,4Anatomy & Histology, School of Medical Science, Anderson Stuart Building, Eastern Avenue, The University of Sydney, Sydney, New South Wales 2006 Australia
| | - I G Huttner
- 3Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, New South Wales 2010 Australia
| | - T E Sztal
- 1Australian Regenerative Medicine Institute, Monash University, Level 1, 15 Innovation Walk, Victoria, 3800 Australia.,5Department of Biological Sciences, Monash University, Victoria, 3800 Australia
| | - P D Currie
- 1Australian Regenerative Medicine Institute, Monash University, Level 1, 15 Innovation Walk, Victoria, 3800 Australia.,6EMBL Australia, Victorian Node, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
54
|
Wu S, Yan M, Ge R, Cheng CY. Crosstalk between Sertoli and Germ Cells in Male Fertility. Trends Mol Med 2019; 26:215-231. [PMID: 31727542 DOI: 10.1016/j.molmed.2019.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is supported by intricate crosstalk between Sertoli cells and germ cells including spermatogonia, spermatocytes, haploid spermatids, and spermatozoa, which takes place in the epithelium of seminiferous tubules. Sertoli cells, also known as 'mother' or 'nurse' cells, provide nutrients, paracrine factors, cytokines, and other biomolecules to support germ cell development. Sertoli cells facilitate the generation of several biologically active peptides, which include F5-, noncollagenous 1 (NC1)-, and laminin globular (LG)3/4/5-peptide, to modulate cellular events across the epithelium. Here, we critically evaluate the involvement of these peptides in facilitating crosstalk between Sertoli and germ cells to support spermatogenesis and thus fertility. Modulating or mimicking the activity of F5-, NC1-, and LG3/4/5-peptide could be used to enhance the transport across the blood-testis barrier (BTB) of contraceptive drugs or to treat male infertility.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
55
|
Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M, Grigelioniene G, Anderlid BM, Bjerin O, Gustavsson P, Hammarsjö A, Georgii-Hemming P, Iwarsson E, Johansson-Soller M, Lagerstedt-Robinson K, Lieden A, Magnusson M, Martin M, Malmgren H, Nordenskjöld M, Norling A, Sahlin E, Stranneheim H, Tham E, Wincent J, Ygberg S, Wedell A, Wirta V, Nordgren A, Lundin J, Nilsson D. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med 2019; 11:68. [PMID: 31694722 PMCID: PMC6836550 DOI: 10.1186/s13073-019-0675-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background Since different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test. Methods We analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n = 68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n = 156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure. Results First, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850 kb (min 500 bp, max 155 Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (> 10 kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data. Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively. Conclusion The overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
Collapse
Affiliation(s)
- Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olof Bjerin
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Iwarsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Johansson-Soller
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Lieden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcel Martin
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ameli Norling
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josephine Wincent
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Ygberg
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Lundin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
56
|
Hamada K, Omura N, Taguchi A, Baradaran-Heravi A, Kotake M, Arai M, Takayama K, Taniguchi A, Roberge M, Hayashi Y. New Negamycin-Based Potent Readthrough Derivative Effective against TGA-Type Nonsense Mutations. ACS Med Chem Lett 2019; 10:1450-1456. [PMID: 31620232 DOI: 10.1021/acsmedchemlett.9b00273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/23/2019] [Indexed: 11/28/2022] Open
Abstract
We report a novel negamycin derivative TCP-1109 (13x) which serves as a potent readthrough drug candidate against nonsense-associated diseases. We previously demonstrated that TCP-112 (7), a nor-compound of native 3-epi-deoxynegmaycin, showed a higher readthrough activity than (+)-negamycin. In the present study, we performed a structure-activity relationship (SAR) study of compound 7 focused on its 3-amino group in an effort to develop a more potent readthrough compound. Introduction of a variety of natural or unnatural amino acids to the 3-amino group gave us the more potent derivative 13x which has about four times higher readthrough activity than 7 in a cell-based assay using a premature termination codon of TGA derived from Duchenne muscular dystrophy. The activity was dose-dependent and relatively selective for TGA. However, the activities for TAG and TAA were also higher than those of (+)-negamycin and 7. Moreover, compound 13x showed significant cell-based readthrough activity for several nonsense mutations derived from other nonsense-associated diseases. It is suggested that 13x has the potential to be a readthrough drug useful for the treatment of many kinds of nonsense-associated diseases.
Collapse
Affiliation(s)
- Keisuke Hamada
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Noriko Omura
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Masaya Kotake
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Misaki Arai
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
57
|
Early skeletal muscle pathology and disease progress in the dy 3K/dy 3K mouse model of congenital muscular dystrophy with laminin α2 chain-deficiency. Sci Rep 2019; 9:14324. [PMID: 31586140 PMCID: PMC6778073 DOI: 10.1038/s41598-019-50550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
Deficiency of laminin α2 chain leads to a severe form of congenital muscular dystrophy (LAMA2-CMD), and dystrophic symptoms progress rapidly in early childhood. Currently, there is no treatment for this detrimental disorder. Development of therapies is largely hindered by lack of understanding of mechanisms involved in the disease initiation and progress, both in patients but also in mouse models that are commonly used in the preclinical setup. Here, we unveil the first pathogenic events and characterise the disease development in a mouse model for LAMA2-CMD (dy3K/dy3K), by analysing muscles at perinatal, neonatal and postnatal stages. We found that apoptotic muscle fibres were present as early as postnatal day 1. Other typical dystrophic hallmarks (muscle degeneration, inflammation, and extensive production of the extracellular matrix proteins) were clearly evident already at postnatal day 4, and the highest degree of muscle deterioration was reached by day 7. Interestingly, the severe phenotype of limb muscles partially recovered on days 14 and 21, despite worsening of the general condition of the dy3K/dy3K mouse by that age. We found that masticatory muscles were severely affected in dy3K/dy3K mice and this may be an underlying cause of their malnutrition, which contributes to death around day 21. We also showed that several signalling pathways were affected already in 1-day-old dy3K/dy3K muscle. Therapeutic tests in the dy3K/dy3K mouse model should therefore be initiated shortly after birth, but should also take into account timing and correlation between regenerative and pathogenic events.
Collapse
|
58
|
Ahmed M, Marziali LN, Arenas E, Feltri ML, Ffrench-Constant C. Laminin α2 controls mouse and human stem cell behaviour during midbrain dopaminergic neuron development. Development 2019; 146:dev.172668. [PMID: 31371375 DOI: 10.1242/dev.172668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/24/2019] [Indexed: 01/16/2023]
Abstract
Development of the central nervous system requires coordination of the proliferation and differentiation of neural stem cells. Here, we show that laminin alpha 2 (lm-α2) is a component of the midbrain dopaminergic neuron (mDA) progenitor niche in the ventral midbrain (VM) and identify a concentration-dependent role for laminin α2β1γ1 (lm211) in regulating mDA progenitor proliferation and survival via a distinct set of receptors. At high concentrations, lm211-rich environments maintain mDA progenitors in a proliferative state via integrins α6β1 and α7β1, whereas low concentrations of lm211 support mDA lineage survival via dystroglycan receptors. We confirmed our findings in vivo, demonstrating that the VM was smaller in the absence of lm-α2, with increased apoptosis; furthermore, the progenitor pool was depleted through premature differentiation, resulting in fewer mDA neurons. Examination of mDA neuron subtype composition showed a reduction in later-born mDA neurons of the ventral tegmental area, which control a range of cognitive behaviours. Our results identify a novel role for laminin in neural development and provide a possible mechanism for autism-like behaviours and the brainstem hypoplasia seen in some individuals with mutations of LAMA2.
Collapse
Affiliation(s)
- Maqsood Ahmed
- MRC Centre of Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Leandro N Marziali
- Departments of Biochemistry and Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | | |
Collapse
|
59
|
Rabie M, Yanay N, Fellig Y, Konikov-Rozenman J, Nevo Y. Improvement of motor conduction velocity in hereditary neuropathy of LAMA2-CMD dy 2J/dy 2J mouse model by glatiramer acetate. Clin Neurophysiol 2019; 130:1988-1994. [PMID: 31476705 DOI: 10.1016/j.clinph.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/19/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Glatiramer acetate (GA), an agent modulating the immune system, has been shown to cause significantly improved mobility and hind limb muscle strength in the dy2J/dy2J mouse model for LAMA2-congenital muscular dystrophy (LAMA2-CMD). In view of these findings and the prominent peripheral nervous system involvement in this laminin-α2 disorder we evaluated GA's effect on dy2J/dy2J motor nerve conduction electrophysiologically. METHODS Left sciatic-tibial motor nerve conduction studies were performed on wild type (WT) mice (n = 10), control dy2J/dy2J mice (n = 11), and GA treated dy2J/dy2J mice (n = 10) at 18 weeks of age. RESULTS Control dy2J/dy2J mice average velocities (34.49 ± 2.15 m/s) were significantly slower than WT (62.57 ± 2.23 m/s; p < 0.0005), confirming the clinical observation of hindlimb paresis in dy2J/dy2J mice attributed to peripheral neuropathy. GA treated dy2J/dy2J mice showed significantly improved average sciatic-tibial motor nerve conduction velocity versus control dy2J/dy2J (50.35 ± 2.9 m/s; p < 0.0005). CONCLUSION In this study we show for the first time improvement in motor nerve conduction velocity of LAMA2-CMD dy2J/dy2J mouse model's hereditary peripheral neuropathy following GA treatment. SIGNIFICANCE This study suggests a possible therapeutic effect of glatiramer acetate on hereditary peripheral neuropathy in this laminin-α2 disorder.
Collapse
Affiliation(s)
- Malcolm Rabie
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel; Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Nurit Yanay
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah-Hebrew-University-Medical-Center, Kiryat Hadassah P.O.B. 12000, Jerusalem 91120, Israel
| | - Jenya Konikov-Rozenman
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Yoram Nevo
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel; Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel.
| |
Collapse
|
60
|
Bailey EC, Alrowaished SS, Kilroy EA, Crooks ES, Drinkert DM, Karunasiri CM, Belanger JJ, Khalil A, Kelley JB, Henry CA. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy. Skelet Muscle 2019; 9:21. [PMID: 31391079 PMCID: PMC6685180 DOI: 10.1186/s13395-019-0206-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 01/26/2023] Open
Abstract
Background Secondary dystroglycanopathies are muscular dystrophies that result from mutations in genes that participate in Dystroglycan glycosylation. Glycosylation of Dystroglycan is essential for muscle fibers to adhere to the muscle extracellular matrix (myomatrix). Although the myomatrix is disrupted in a number of secondary dystroglycanopathies, it is unknown whether improving the myomatrix is beneficial for these conditions. We previously determined that either NAD+ supplementation or overexpression of Paxillin are sufficient to improve muscle structure and the myomatrix in a zebrafish model of primary dystroglycanopathy. Here, we investigate how these modulations affect neuromuscular phenotypes in zebrafish fukutin-related protein (fkrp) morphants modeling FKRP-associated secondary dystroglycanopathy. Results We found that NAD+ supplementation prior to muscle development improved muscle structure, myotendinous junction structure, and muscle function in fkrp morphants. However, Paxillin overexpression did not improve any of these parameters in fkrp morphants. As movement also requires neuromuscular junction formation, we examined early neuromuscular junction development in fkrp morphants. The length of neuromuscular junctions was disrupted in fkrp morphants. NAD+ supplementation prior to neuromuscular junction development improved length. We investigated NMJ formation in dystroglycan (dag1) morphants and found that although NMJ morphology is disrupted in dag1 morphants, NAD+ is not sufficient to improve NMJ morphology in dag1 morphants. Ubiquitous overexpression of Fkrp rescued the fkrp morphant phenotype but muscle-specific overexpression only improved myotendinous junction structure. Conclusions These data indicate that Fkrp plays an early and essential role in muscle, myotendinous junction, and neuromuscular junction development. These data also indicate that, at least in the zebrafish model, FKRP-associated dystroglycanopathy does not exactly phenocopy DG-deficiency. Paxillin overexpression improves muscle structure in dag1 morphants but not fkrp morphants. In contrast, NAD+ supplementation improves NMJ morphology in fkrp morphants but not dag1 morphants. Finally, these data show that muscle-specific expression of Fkrp is insufficient to rescue muscle development and homeostasis. Electronic supplementary material The online version of this article (10.1186/s13395-019-0206-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin C Bailey
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | | | - Elisabeth A Kilroy
- Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Emma S Crooks
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Daisy M Drinkert
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Chaya M Karunasiri
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Joseph J Belanger
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Andre Khalil
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Joshua B Kelley
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA.
| |
Collapse
|
61
|
Nguyen Q, Lim KRQ, Yokota T. Current understanding and treatment of cardiac and skeletal muscle pathology in laminin-α2 chain-deficient congenital muscular dystrophy. APPLICATION OF CLINICAL GENETICS 2019; 12:113-130. [PMID: 31308722 PMCID: PMC6618038 DOI: 10.2147/tacg.s187481] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023]
Abstract
Congenital muscular dystrophy (CMD) is a class of severe early-onset muscular dystrophies affecting skeletal/cardiac muscles as well as the central nervous system (CNS). Laminin-α2 chain-deficient congenital muscular dystrophy (LAMA2 MD), also known as merosin-deficient congenital muscular dystrophy type 1A (MDC1A), is an autosomal recessive CMD characterized by severe muscle weakness and degeneration apparent at birth or in the first 6 months of life. LAMA2 MD is the most common congenital muscular dystrophy, affecting approximately 4 in 500,000 children. The most common cause of death in early-onset LAMA2 MD is respiratory tract infection, with 30% of them dying within the first decade of life. LAMA2 MD is caused by loss-of-function mutations in the LAMA2 gene encoding for the laminin-α2 chain, one of the subunits of laminin-211. Laminin-211 is an extracellular matrix protein that functions to stabilize the basement membrane and muscle fibers during contraction. Since laminin-α2 is expressed in many tissue types including skeletal muscle, cardiac muscle, Schwann cells, and trophoblasts, patients with LAMA2 MD experience a multi-systemic clinical presentation depending on the extent of laminin-α2 chain deficiency. Cardiac manifestations are typically associated with a complete absence of laminin-α2; however, recent case reports highlight cardiac involvement in partial laminin-α2 chain deficiency. Laminin-211 is also expressed in the brain, and many patients have abnormalities on brain imaging; however, mental retardation and/or seizures are rarely seen. Currently, there is no cure for LAMA2 MD, but various therapies are being investigated in an effort to lessen the severity of LAMA2 MD. For example, antisense oligonucleotide-mediated exon skipping and CRISPR-Cas9 genome editing have efficiently restored the laminin-α2 chain in mouse models in vivo. This review consolidates information on the clinical presentation, genetic basis, pathology, and current treatment approaches for LAMA2 MD.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
62
|
Willmann R, Gordish-Dressman H, Meinen S, Rüegg MA, Yu Q, Nagaraju K, Kumar A, Girgenrath M, Coffey CBM, Cruz V, Van Ry PM, Bogdanik L, Lutz C, Rutkowski A, Burkin DJ. Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy. J Neuromuscul Dis 2019; 4:115-126. [PMID: 28550268 PMCID: PMC5467719 DOI: 10.3233/jnd-170217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laminin-α2 related Congenital Muscular Dystrophy (LAMA2-CMD) is a progressive muscle disease caused by partial or complete deficiency of laminin-211, a skeletal muscle extracellular matrix protein. In the last decade, basic science research has queried underlying disease mechanisms in existing LAMA2-CMD murine models and identified possible clinical targets and pharmacological interventions. Experimental rigor in preclinical studies is critical to efficiently and accurately quantify both negative and positive results, degree of efficiency of potential therapeutics and determine whether to move a compound forward for additional preclinical testing. In this review, we compare published available data measured to assess three common parameters in the widely used mouse model DyW, that mimics LAMA2-CMD, we quantify variability and analyse its possible sources. Finally, on the basis of this analysis, we suggest standard set of assessments and the use of available standardized protocols, to reduce variability of outcomes in the future and to improve the value of preclinical research.
Collapse
Affiliation(s)
- Raffaella Willmann
- Swiss Foundation for Research on Muscle Diseases, Cortaillod, Switzerland.,Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Qing Yu
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | - Ayar Kumar
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | | - Caroline B M Coffey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| | - Vivian Cruz
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| | - Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| | | | | | - Anne Rutkowski
- Cure Congenital Muscular Dystrophy and Kaiser SCPMG, Los Angeles, CA, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
63
|
Labelle-Dumais C, Schuitema V, Hayashi G, Hoff K, Gong W, Dao DQ, Ullian EM, Oishi P, Margeta M, Gould DB. COL4A1 Mutations Cause Neuromuscular Disease with Tissue-Specific Mechanistic Heterogeneity. Am J Hum Genet 2019; 104:847-860. [PMID: 31051113 DOI: 10.1016/j.ajhg.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Collagen type IV alpha 1 and alpha 2 chains form heterotrimers ([α1(IV)]2α2(IV)) that represent a fundamental basement membrane constituent. Dominant COL4A1 and COL4A2 mutations cause a multisystem disorder that is marked by clinical heterogeneity and variable expressivity and that is generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular involvement. Despite the fact that muscle pathology is reported in up to one-third of individuals with COL4A1 and COL4A2 mutations and in animal models with mutations in COL4A1 and COL4A2 orthologs, the pathophysiological mechanisms underlying COL4A1-related myopathy are unknown. In general, mutations are thought to impair [α1(IV)]2α2(IV) secretion. Whether pathogenesis results from intracellular retention, extracellular deficiency, or the presence of mutant proteins in basement membranes represents an important gap in knowledge and a major obstacle for developing targeted interventions. We report that Col4a1 mutant mice develop progressive neuromuscular pathology that models human disease. We demonstrate that independent muscular, neural, and vascular insults contribute to neuromyopathy and that there is mechanistic heterogeneity among tissues. Importantly, we provide evidence of a COL4A1 functional subdomain with disproportionate significance for tissue-specific pathology and demonstrate that a potential therapeutic strategy aimed at promoting [α1(IV)]2α2(IV) secretion can ameliorate or exacerbate myopathy in a mutation-dependent manner. These data have important translational implications for prediction of clinical outcomes based on genotype, development of mechanism-based interventions, and genetic stratification for clinical trials. Collectively, our data underscore the importance of the [α1(IV)]2α2(IV) network as a multifunctional signaling platform and show that allelic and tissue-specific mechanistic heterogeneities contribute to the variable expressivity of COL4A1 and COL4A2 mutations.
Collapse
|
64
|
Saredi S, Gibertini S, Matalonga L, Farina L, Ardissone A, Moroni I, Mora M. Exome sequencing detects compound heterozygous nonsense LAMA2 mutations in two siblings with atypical phenotype and nearly normal brain MRI. Neuromuscul Disord 2019; 29:376-380. [PMID: 31040037 DOI: 10.1016/j.nmd.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
LAMA2 mutations cause the most frequent congenital muscular dystrophy subtype MDC1A and a variety of milder phenotypes, characterized by total or partial laminin-α2 deficiency. In both severe and milder cases brain MRI invariably shows abnormal white matter signal intensity. We report clinical, histopathological, imaging and genetic data on two siblings with very subtle, and at first undetected, reduction in laminin-α2 expression, and brain MRI showing minor non-specific abnormalities. Clinical features in the female proband were characterized by muscle weakness involving neck and axial muscles, and pelvic girdle and distal lower limb muscles, reduced tendon reflexes and pes cavus. Clinical features in a younger brother were similar, and remained stable in both siblings during the follow up. Whole exome sequencing (WES) detected two heterozygous truncating LAMA2 mutations. Brain MRI in combination with laminin-α2 immunohistochemistry might not be sufficient and WES might be the only means to reach a diagnosis.
Collapse
Affiliation(s)
- Simona Saredi
- Muscle Cell Biology Lab, Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Temolo 4, 20126 Milano, Italy
| | - Sara Gibertini
- Muscle Cell Biology Lab, Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Temolo 4, 20126 Milano, Italy
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Laura Farina
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Anna Ardissone
- Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Isabella Moroni
- Child Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marina Mora
- Muscle Cell Biology Lab, Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Temolo 4, 20126 Milano, Italy.
| |
Collapse
|
65
|
|
66
|
Min R, van der Knaap MS. Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol 2019; 28:372-387. [PMID: 29740942 PMCID: PMC8028498 DOI: 10.1111/bpa.12602] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Electrical activity of neurons in the brain, caused by the movement of ions between intracellular and extracellular compartments, is the basis of all our thoughts and actions. Maintaining the correct ionic concentration gradients is therefore crucial for brain functioning. Ion fluxes are accompanied by the displacement of osmotically obliged water. Since even minor brain swelling leads to severe brain damage and even death, brain ion and water movement has to be tightly regulated. Glial cells, in particular astrocytes, play a key role in ion and water homeostasis. They are endowed with specific channels, pumps and carriers to regulate ion and water flow. Glial cells form a large panglial syncytium to aid the uptake and dispersal of ions and water, and make extensive contacts with brain fluid barriers for disposal of excess ions and water. Genetic defects in glial proteins involved in ion and water homeostasis disrupt brain functioning, thereby leading to neurological diseases. Since white matter edema is often a hallmark disease feature, many of these diseases are characterized as leukodystrophies. In this review we summarize our current understanding of inherited glial diseases characterized by disturbed brain ion and water homeostasis by integrating findings from MRI, genetics, neuropathology and animal models for disease. We discuss how mutations in different glial proteins lead to disease, and highlight the similarities and differences between these diseases. To come to effective therapies for this group of diseases, a better mechanistic understanding of how glial cells shape ion and water movement in the brain is crucial.
Collapse
Affiliation(s)
- Rogier Min
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| |
Collapse
|
67
|
Gallia GL, Zhang M, Ning Y, Haffner MC, Batista D, Binder ZA, Bishop JA, Hann CL, Hruban RH, Ishii M, Klein AP, Reh DD, Rooper LM, Salmasi V, Tamargo RJ, Wang Q, Williamson T, Zhao T, Zou Y, Meeker AK, Agrawal N, Vogelstein B, Kinzler KW, Papadopoulos N, Bettegowda C. Genomic analysis identifies frequent deletions of Dystrophin in olfactory neuroblastoma. Nat Commun 2018; 9:5410. [PMID: 30575736 PMCID: PMC6303314 DOI: 10.1038/s41467-018-07578-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Olfactory neuroblastoma (ONB) is a rare malignant neoplasm arising in the upper portion of the sinonasal cavity. To better understand the genetic bases for ONB, here we perform whole exome and whole genome sequencing as well as single nucleotide polymorphism array analyses in a series of ONB patient samples. Deletions involving the dystrophin (DMD) locus are found in 12 of 14 (86%) tumors. Interestingly, one of the remaining tumors has a deletion in LAMA2, bringing the number of ONBs with deletions of genes involved in the development of muscular dystrophies to 13 or 93%. This high prevalence implicates an unexpected functional role for genes causing hereditary muscular dystrophies in ONB.
Collapse
Affiliation(s)
- Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Ming Zhang
- Ludwig Center for Cancer Genetics and Therapeutics, Department of Oncology and Pathology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yi Ning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Denise Batista
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zev A Binder
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Masaru Ishii
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alison P Klein
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Douglas D Reh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lisa M Rooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Vafi Salmasi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Rafael J Tamargo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Qing Wang
- Ludwig Center for Cancer Genetics and Therapeutics, Department of Oncology and Pathology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tara Williamson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tianna Zhao
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ying Zou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nishant Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Surgery, Division of Otolaryngology and Head and Neck Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Department of Oncology and Pathology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Howard Hughes Medical Institutes, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Department of Oncology and Pathology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Department of Oncology and Pathology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Ludwig Center for Cancer Genetics and Therapeutics, Department of Oncology and Pathology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
68
|
Deletion of exon 4 in LAMA2 is the most frequent mutation in Chinese patients with laminin α2-related muscular dystrophy. Sci Rep 2018; 8:14989. [PMID: 30301903 PMCID: PMC6177444 DOI: 10.1038/s41598-018-33098-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022] Open
Abstract
Although recessive mutations in LAMA2 are already known to cause laminin α2-related muscular dystrophy, a rare neuromuscular disorder, large deletions or duplications within this gene are not well-characterized. In this study, we applied next-generation sequencing-based copy number variation profiling in 114 individuals clinically diagnosed with laminin α2-related muscular dystrophy, including 96 who harboured LAMA2 mutations and 34 who harboured intragenic rearrangements. In total, we detected 18 distinct LAMA2 copy number variations that have been reported only among Chinese, 10 of which are novel. The frequency of CNVs in the cohort was 19.3%. Deletion of exon 4 was detected in 10 alleles of eight patients, accounting for 27% of all copy number variations. These patients are Han Chinese and were found to have the same haplotype and sequence at the breakpoint junction, suggesting that exon 4 deletion is a founder mutation in Chinese Han and a mutation hotspot. Moreover, the data highlight our approach, a modified next-generation sequencing assay, as a robust and sensitive tool to detect LAMA2 variants; the assay identifies 85.7% of breakpoint junctions directly alongside sequence information. The method can be applied to clinical samples to determine causal variants underlying various Mendelian disorders.
Collapse
|
69
|
CBP and P300 regulate distinct gene networks required for human primary myoblast differentiation and muscle integrity. Sci Rep 2018; 8:12629. [PMID: 30135524 PMCID: PMC6105712 DOI: 10.1038/s41598-018-31102-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
The acetyltransferases CBP and P300 have been implicated in myogenesis in mouse immortalized cell lines but these studies focused only on the expression of a handful of myogenic factors. Hence, the respective role of these two related cofactors and their impact at global scale on gene expression rewiring during primary myoblast differentiation remain unknown. Here, we characterised the gene networks regulated by these two epigenetic enzymes during human primary myoblast differentiation (HPM). We found that CBP and p300 play a critical role in the activation of the myogenic program and mostly regulate distinct gene sets to control several aspects of HPM biology, even though they also exhibit some degree of redundancy. Moreover, CBP or P300 knockdown strongly impaired muscle cell adhesion and resulted in the activation of inflammation markers, two hallmarks of dystrophic disease. This was further validated in zebrafish where inhibition of CBP and P300 enzymatic activities led to cell adhesion defects and muscle fiber detachment. Our data highlight an unforeseen link between CBP/P300 activity and the emergence of dystrophic phenotypes. They thereby identify CBP and P300 as mediators of adult muscle integrity and suggest a new lead for intervention in muscular dystrophy.
Collapse
|
70
|
Oliveira J, Gruber A, Cardoso M, Taipa R, Fineza I, Gonçalves A, Laner A, Winder TL, Schroeder J, Rath J, Oliveira ME, Vieira E, Sousa AP, Vieira JP, Lourenço T, Almendra L, Negrão L, Santos M, Melo-Pires M, Coelho T, den Dunnen JT, Santos R, Sousa M. LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin-α2 variome and its related phenotypes. Hum Mutat 2018; 39:1314-1337. [PMID: 30055037 DOI: 10.1002/humu.23599] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Congenital muscular dystrophy type 1A (MDC1A) is one of the main subtypes of early-onset muscle disease, caused by disease-associated variants in the laminin-α2 (LAMA2) gene. MDC1A usually presents as a severe neonatal hypotonia and failure to thrive. Muscle weakness compromises normal motor development, leading to the inability to sit unsupported or to walk independently. The phenotype associated with LAMA2 defects has been expanded to include milder and atypical cases, being now collectively known as LAMA2-related muscular dystrophies (LAMA2-MD). Through an international multicenter collaborative effort, 61 new LAMA2 disease-associated variants were identified in 86 patients, representing the largest number of patients and new disease-causing variants in a single report. The collaborative variant collection was supported by the LOVD-powered LAMA2 gene variant database (https://www.LOVD.nl/LAMA2), updated as part of this work. As of December 2017, the database contains 486 unique LAMA2 variants (309 disease-associated), obtained from direct submissions and literature reports. Database content was systematically reviewed and further insights concerning LAMA2-MD are presented. We focus on the impact of missense changes, especially the c.2461A > C (p.Thr821Pro) variant and its association with late-onset LAMA2-MD. Finally, we report diagnostically challenging cases, highlighting the relevance of modern genetic analysis in the characterization of clinically heterogeneous muscle diseases.
Collapse
Affiliation(s)
- Jorge Oliveira
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | - Márcio Cardoso
- Consulta de Doenças Neuromusculares e Serviço de Neurofisiologia, Departamento de Neurociências, Centro Hospitalar do Porto, Porto, Portugal
| | - Ricardo Taipa
- Unidade de Neuropatologia, Centro Hospitalar do Porto, Porto, Portugal
| | - Isabel Fineza
- Unidade de Neuropediatria, Centro de Desenvolvimento da Criança Luís Borges, Hospital Pediátrico de Coimbra, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Ana Gonçalves
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | | | | | - Julie Rath
- PreventionGenetics, Marshfield, Wisconsin
| | - Márcia E Oliveira
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Emília Vieira
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Sousa
- Consulta de Doenças Neuromusculares e Serviço de Neurofisiologia, Departamento de Neurociências, Centro Hospitalar do Porto, Porto, Portugal
| | - José Pedro Vieira
- Serviço de Neurologia, Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Teresa Lourenço
- Serviço de Genética Médica, Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Luciano Almendra
- Consulta de Doenças Neuromusculares, Hospitais da Universidade de Coimbra, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Luís Negrão
- Consulta de Doenças Neuromusculares, Hospitais da Universidade de Coimbra, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Manuela Santos
- Consulta de Doenças Neuromusculares e Serviço de Neuropediatria, Centro Hospitalar do Porto, Porto, Portugal
| | - Manuel Melo-Pires
- Unidade de Neuropatologia, Centro Hospitalar do Porto, Porto, Portugal
| | - Teresa Coelho
- Consulta de Doenças Neuromusculares e Serviço de Neurofisiologia, Departamento de Neurociências, Centro Hospitalar do Porto, Porto, Portugal
| | - Johan T den Dunnen
- Departments of Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Mário Sousa
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Departamento de Microscopia, Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Centro de Genética da Reprodução Prof. Alberto Barros, Porto, Portugal
| |
Collapse
|
71
|
Ito M, Ohno K. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations. Matrix Biol 2018; 68-69:628-636. [PMID: 29475025 DOI: 10.1016/j.matbio.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors.
Collapse
Affiliation(s)
- Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
72
|
Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H, Farrokh P. The relationship between L-leucine-7-amido-4-methyl coumarin 1 gene polymorphism and susceptibility to the chronic hepatitis B virus infection in an Iranian population. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:62. [PMID: 30181744 PMCID: PMC6091139 DOI: 10.4103/jrms.jrms_372_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/02/2017] [Accepted: 05/02/2018] [Indexed: 11/25/2022]
Abstract
Background: Lamnin has important effects on human immunity system. The current study aimed to assess the role of L-leucine-7-amido-4-methyl coumarin 1 gene polymorphisms on hepatitis B virus (HBV) susceptibility. Materials and Methods: The rs20558, rs20563, rs10911193, rs10911251, and rs1413390 polymorphisms were analyzed using polymerase chain reaction (PCR) and PCR-reaction–restriction fragment-length polymorphism and amplification-refractory mutation system-PCR using three different groups including chronic HBV-infected patients, HBV patients who were resolved their infection spontaneously and healthy volunteers. Laminin concentrations were also measured in the blood of these individuals. Results: People with rs20558C, rs20563G, and rs10911193T alleles have an increased risk of HBV infection. Moreover, we found that CGTAT haplotype was more frequent in chronically infected people who could affect the mechanism of disease. Furthermore, there was a significant relationship between laminin concentration and rs20558, rs20563, and rs10911193 genotypes in patients. Conclusion: According to the statistical analysis, rs20558, rs20563, rs10911193 polymorphisms probably, related to the chronic HBV infection. In addition, no association of the rs10911251, rs1413390 single nucleotide polymorphisms with the disease was found.
Collapse
Affiliation(s)
- Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Parisa Farrokh
- Department of Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
73
|
Fu XN, Xiong H. Genetic and Clinical Advances of Congenital Muscular Dystrophy. Chin Med J (Engl) 2018; 130:2624-2631. [PMID: 29067961 PMCID: PMC5678264 DOI: 10.4103/0366-6999.217091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: The aim was to update the genetic and clinical advances of congenital muscular dystrophy (CMD), based on a systematic review of the literature from 1991 to 2017. Data Sources: Articles in English published in PubMed from 1991 to 2017 English were searched. The terms used in the literature searches were CMD. Study Selection: The task force initially identified citations for 98 published articles. Of the 98 articles, 52 studies were selected after further detailed review. Three articles, which were not written in English, were excluded from the study. This study referred to all the important and English literature in full. Results: CMD is a group of early-onset disorders encompassing great clinical and genetic heterogeneity. Patients present with muscle weakness typically from birth to early infancy, delay or arrest of gross motor development, and joint and/or spinal rigidity. The diagnosis of CMD relies on clinical findings, brain and muscle imaging, muscle biopsy histology, muscle and/or skin immunohistochemical staining, and molecular genetic testing. Conclusions: Advances in next-generation sequencing and histopathological techniques have enabled the recognition of distinct CMD subtypes supported by specific gene identification. Genetic counseling and multidisciplinary management of CMD play an important role in help patients and their family. Further elucidation of the significant clinical and genetic heterogeneity, therapeutic targets, and the clinical care for patients remains our challenge for the future.
Collapse
Affiliation(s)
- Xiao-Na Fu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
74
|
Li Z, Zeppa JJ, Hancock MA, McCormick JK, Doherty TM, Hendy GN, Madrenas J. Staphylococcal Superantigens Use LAMA2 as a Coreceptor To Activate T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:1471-1479. [PMID: 29335257 DOI: 10.4049/jimmunol.1701212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023]
Abstract
Canonical Ag-dependent TCR signaling relies on activation of the src-family tyrosine kinase LCK. However, staphylococcal superantigens can trigger TCR signaling by activating an alternative pathway that is independent of LCK and utilizes a Gα11-containing G protein-coupled receptor (GPCR) leading to PLCβ activation. The molecules linking the superantigen to GPCR signaling are unknown. Using the ligand-receptor capture technology LRC-TriCEPS, we identified LAMA2, the α2 subunit of the extracellular matrix protein laminin, as the coreceptor for staphylococcal superantigens. Complementary binding assays (ELISA, pull-downs, and surface plasmon resonance) provided direct evidence of the interaction between staphylococcal enterotoxin E and LAMA2. Through its G4 domain, LAMA2 mediated the LCK-independent T cell activation by these toxins. Such a coreceptor role of LAMA2 involved a GPCR of the calcium-sensing receptor type because the selective antagonist NPS 2143 inhibited superantigen-induced T cell activation in vitro and delayed the effects of toxic shock syndrome in vivo. Collectively, our data identify LAMA2 as a target of antagonists of staphylococcal superantigens to treat toxic shock syndrome.
Collapse
Affiliation(s)
- Zhigang Li
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Joseph J Zeppa
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Mark A Hancock
- Surface Plasmon Resonance-Mass Spectrometry Facility, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Lawson Health Research Institute, London, Ontario N6A 5C1, Canada
| | - Terence M Doherty
- Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90277; and
| | - Geoffrey N Hendy
- Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre, and Departments of Medicine, Physiology, and Human Genetics, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Joaquín Madrenas
- Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; .,Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90277; and
| |
Collapse
|
75
|
Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell Reports 2018; 10:568-582. [PMID: 29337118 PMCID: PMC5830886 DOI: 10.1016/j.stemcr.2017.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Satellite cells function as precursor cells in mature skeletal muscle homeostasis and regeneration. In healthy tissue, these cells are maintained in a state of quiescence by a microenvironment formed by myofibers and basement membrane in which LAMININs (LMs) form a major component. In the present study, we evaluated the satellite cell microenvironment in vivo and found that these cells are encapsulated by LMα2–5. We sought to recapitulate this satellite cell niche in vitro by culturing satellite cells in the presence of recombinant LM-E8 fragments. We show that treatment with LM-E8 promotes proliferation of satellite cells in an undifferentiated state, through reduced phosphorylation of JNK and p38. On transplantation into injured muscle tissue, satellite cells cultured with LM-E8 promoted the regeneration of skeletal muscle. These findings represent an efficient method of culturing satellite cells for use in transplantation through the recapitulation of the satellite cell niche using recombinant LM-E8 fragments. Satellite cells are encapsulated by LMα2–5 LM-E8 promotes proliferation of satellite cells in an undifferentiated state Satellite cells cultured with LM-E8 enhanced the regeneration of skeletal muscle
Collapse
|
76
|
Cornwall KM, Butterfield RJ, Hernandez A, Heatwole C, Johnson NE. A Qualitative Approach to Health Related Quality-of-Life in Congenital Muscular Dystrophy. J Neuromuscul Dis 2018; 5:251-255. [PMID: 29689733 PMCID: PMC7251779 DOI: 10.3233/jnd-170252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Congenital muscular dystrophies (CMD) cause progressive muscle weakness resulting in severe motor disabilities. Previous studies focused on the effects of motor disability. Here, we explore other factors affecting health related quality-of-life (HRQOL) in CMD. Qualitative interviews were conducted with participant-parent dyads to identify symptoms having the greatest impact on HRQOL. Symptoms were classified into themes and domains representing physical, mental, social health, and disease specific issues. Social role limitations and specific activity impairment were frequently mentioned. A greater understanding of symptoms impacting HRQOL will provide a framework for improved clinical care and patient centered outcomes as new therapies are developed.
Collapse
Affiliation(s)
- Kylie M Cornwall
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Russell J Butterfield
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Antonio Hernandez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chad Heatwole
- Department of Neurology, University of Rochester Medical Center School of Medicine and Dentistry, Rochester, NY, USA
| | - Nicholas E Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
77
|
Muniz L, Deb MK, Aguirrebengoa M, Lazorthes S, Trouche D, Nicolas E. Control of Gene Expression in Senescence through Transcriptional Read-Through of Convergent Protein-Coding Genes. Cell Rep 2017; 21:2433-2446. [DOI: 10.1016/j.celrep.2017.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/04/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
|
78
|
Nunes AM, Wuebbles RD, Sarathy A, Fontelonga TM, Deries M, Burkin DJ, Thorsteinsdóttir S. Impaired fetal muscle development and JAK-STAT activation mark disease onset and progression in a mouse model for merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2017; 26:2018-2033. [PMID: 28334989 DOI: 10.1093/hmg/ddx083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a dramatic neuromuscular disease in which crippling muscle weakness is evident from birth. Here, we use the dyW mouse model for human MDC1A to trace the onset of the disease during development in utero. We find that myotomal and primary myogenesis proceed normally in homozygous dyW-/- embryos. Fetal dyW-/- muscles display the same number of myofibers as wildtype (WT) muscles, but by E18.5 dyW-/- muscles are significantly smaller and muscle size is not recovered post-natally. These results suggest that fetal dyW-/- myofibers fail to grow at the same rate as WT myofibers. Consistent with this hypothesis between E17.5 and E18.5 dyW-/- muscles display a dramatic drop in the number of Pax7- and myogenin-positive cells relative to WT muscles, suggesting that dyW-/- muscles fail to generate enough muscle cells to sustain fetal myofiber growth. Gene expression analysis of dyW-/- E17.5 muscles identified a significant increase in the expression of the JAK-STAT target gene Pim1 and muscles from 2-day and 3-week old dyW-/- mice demonstrate a dramatic increase in pSTAT3 relative to WT muscles. Interestingly, myotubes lacking integrin α7β1, a laminin-receptor, also show a significant increase in pSTAT3 levels compared with WT myotubes, indicating that α7β1 can act as a negative regulator of STAT3 activity. Our data reveal for the first time that dyW-/- mice exhibit a myogenesis defect already in utero. We propose that overactivation of JAK-STAT signaling is part of the mechanism underlying disease onset and progression in dyW-/- mice.
Collapse
Affiliation(s)
- Andreia M Nunes
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.,Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Ryan D Wuebbles
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Apurva Sarathy
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Tatiana M Fontelonga
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Marianne Deries
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Dean J Burkin
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sólveig Thorsteinsdóttir
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
79
|
González MN, de Mello W, Butler-Browne GS, Silva-Barbosa SD, Mouly V, Savino W, Riederer I. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle 2017; 7:20. [PMID: 29017538 PMCID: PMC5635537 DOI: 10.1186/s13395-017-0138-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Background The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. Methods We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. Results We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. Conclusions We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving the migration of donor cells within the host tissue, a main issue regarding this approach. Electronic supplementary material The online version of this article (10.1186/s13395-017-0138-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Wallace de Mello
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Suse Dayse Silva-Barbosa
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Department of Clinical Research, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil. .,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil.
| |
Collapse
|
80
|
Heinig M, Adriaens ME, Schafer S, van Deutekom HWM, Lodder EM, Ware JS, Schneider V, Felkin LE, Creemers EE, Meder B, Katus HA, Rühle F, Stoll M, Cambien F, Villard E, Charron P, Varro A, Bishopric NH, George AL, Dos Remedios C, Moreno-Moral A, Pesce F, Bauerfeind A, Rüschendorf F, Rintisch C, Petretto E, Barton PJ, Cook SA, Pinto YM, Bezzina CR, Hubner N. Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biol 2017; 18:170. [PMID: 28903782 PMCID: PMC5598015 DOI: 10.1186/s13059-017-1286-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genetic variation is an important determinant of RNA transcription and splicing, which in turn contributes to variation in human traits, including cardiovascular diseases. RESULTS Here we report the first in-depth survey of heart transcriptome variation using RNA-sequencing in 97 patients with dilated cardiomyopathy and 108 non-diseased controls. We reveal extensive differences of gene expression and splicing between dilated cardiomyopathy patients and controls, affecting known as well as novel dilated cardiomyopathy genes. Moreover, we show a widespread effect of genetic variation on the regulation of transcription, isoform usage, and allele-specific expression. Systematic annotation of genome-wide association SNPs identifies 60 functional candidate genes for heart phenotypes, representing 20% of all published heart genome-wide association loci. Focusing on the dilated cardiomyopathy phenotype we found that eQTL variants are also enriched for dilated cardiomyopathy genome-wide association signals in two independent cohorts. CONCLUSIONS RNA transcription, splicing, and allele-specific expression are each important determinants of the dilated cardiomyopathy phenotype and are controlled by genetic factors. Our results represent a powerful resource for the field of cardiovascular genetics.
Collapse
Affiliation(s)
- Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München, München, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Michiel E Adriaens
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105AZ, The Netherlands.,Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Sebastian Schafer
- National Heart Research Institute Singapore, National Heart Centre Singapore, 168752, Singapore, Singapore.,Division of Cardiovascular & Metabolic Disorders, Duke-National University of Singapore, 169857, Singapore, Singapore
| | - Hanneke W M van Deutekom
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105AZ, The Netherlands
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105AZ, The Netherlands
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield Hospitals and Imperial College London, London, UK.,Medical Research Council (MRC) London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Valentin Schneider
- Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield Hospitals and Imperial College London, London, UK
| | - Esther E Creemers
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105AZ, The Netherlands
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg & Department of Cardiology, Angiology and Pneumology, University Heidelberg, Heidelberg, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung, Heidelberg/Mannheim, Germany
| | - Hugo A Katus
- Institute for Cardiomyopathies Heidelberg & Department of Cardiology, Angiology and Pneumology, University Heidelberg, Heidelberg, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung, Heidelberg/Mannheim, Germany
| | - Frank Rühle
- Institute of Human Genetics, Genetic Epidemiology, University of Münster, Münster, Germany
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, University of Münster, Münster, Germany.,Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - François Cambien
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, F-75013, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, F-75013, Paris, France
| | - Eric Villard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, F-75013, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, F-75013, Paris, France
| | - Philippe Charron
- ICAN Institute for Cardiometabolism and Nutrition, F-75013, Paris, France.,Université Versailles Saint Quentin, AP-HP, CESP, INSERM U1018, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Andras Varro
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Nanette H Bishopric
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, USA
| | - Alfred L George
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Cristobal Dos Remedios
- Sydney Heart Bank, Department of Anatomy, Bosch Institute, The University of Sydney, Sydney, Australia
| | - Aida Moreno-Moral
- Program in Cardiovascular and Metabolic Disorders, Center for Computational Biology, DUKE-NUS Medical School, Singapore, 169857, Singapore
| | - Francesco Pesce
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield Hospitals and Imperial College London, London, UK
| | - Anja Bauerfeind
- Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Franz Rüschendorf
- Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Carola Rintisch
- Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders, Center for Computational Biology, DUKE-NUS Medical School, Singapore, 169857, Singapore
| | - Paul J Barton
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield Hospitals and Imperial College London, London, UK
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, 168752, Singapore, Singapore.,Division of Cardiovascular & Metabolic Disorders, Duke-National University of Singapore, 169857, Singapore, Singapore.,National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield Hospitals and Imperial College London, London, UK.,Medical Research Council (MRC) London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yigal M Pinto
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105AZ, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105AZ, The Netherlands.
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Deutsches Zentrum für Herz-Kreislauf-Forschung, Heidelberg/Mannheim, Germany. .,Charité-Universitätsmedizin, Berlin, Germany. .,Deutsches Zentrum für Herz-Kreislauf-Forschung, Berlin, Germany.
| |
Collapse
|
81
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
82
|
Carr SJ, Zahedi RP, Lochmüller H, Roos A. Mass spectrometry-based protein analysis to unravel the tissue pathophysiology in Duchenne muscular dystrophy. Proteomics Clin Appl 2017. [DOI: 10.1002/prca.201700071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie J. Carr
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| |
Collapse
|
83
|
A novel early onset phenotype in a zebrafish model of merosin deficient congenital muscular dystrophy. PLoS One 2017; 12:e0172648. [PMID: 28241031 PMCID: PMC5328290 DOI: 10.1371/journal.pone.0172648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease. The zebrafish has emerged as a powerful model system for the identification of novel therapies. However, drug discovery in the zebrafish is largely dependent on the identification of phenotypes suitable for chemical screening. Our goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf) zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing.
Collapse
|
84
|
Gao Y, Mruk D, Chen H, Lui WY, Lee WM, Cheng CY. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane. FASEB J 2017; 31:584-597. [PMID: 27815338 PMCID: PMC5240664 DOI: 10.1096/fj.201600870r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
Laminin α2 is one of the constituent components of the basement membrane (BM) in adult rat testes. Earlier studies that used a mouse genetic model have shown that a deletion of laminin α2 impedes male fertility by disrupting ectoplasmic specialization (ES; a testis-specific, actin-rich anchoring junction) function along the length of Sertoli cell in the testis. This includes ES at the Sertoli cell-elongating/elongated spermatid interface, which is known as apical ES and possibly the Sertoli-Sertoli cell interface, known as basal ES, at the blood-testis barrier (BTB). Studies have also illustrated that there is a local regulatory axis that functionally links cellular events of spermiation that occur near the luminal edge of tubule lumen at the apical ES and the basal ES/BTB remodeling near the BM at opposite ends of the seminiferous epithelium during the epithelial cycle, known as the apical ES-BTB-BM axis. However, the precise role of BM in this axis remains unknown. Here, we show that laminin α2 in the BM serves as the crucial regulator in this axis as laminin α2, likely its 80-kDa fragment from the C terminus, was found to be transported across the seminiferous epithelium at stages VIII-IX of the epithelial cycle, from the BM to the luminal edge of the tubule, possibly being used to modulate apical ES restructuring at these stages. Of more importance, a knockdown of laminin α2 in Sertoli cells was shown to induce the Sertoli cell tight junction permeability barrier disruption via changes in localization of adhesion proteins at the tight junction and basal ES at the Sertoli cell BTB. These changes were found to be mediated by a disruption of F-actin organization that was induced by changes in the spatiotemporal expression of actin binding/regulatory proteins. Furthermore, laminin α2 knockdown also perturbed microtubule (MT) organization by considerable down-regulation of MT polymerization via changes in the spatiotemporal expression of EB1 (end-binding protein 1), a +TIP (MT plus-end tracking protein). In short, laminin α2 in the BM seems to play a crucial role in the BTB-BM axis by modulating BTB dynamics during spermatogenesis.-Gao, Y., Mruk, D., Chen, H., Lui, W.-Y., Lee, W. M., Cheng, C. Y. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA;
| |
Collapse
|
85
|
Guiraud S, Migeon T, Ferry A, Chen Z, Ouchelouche S, Verpont MC, Sado Y, Allamand V, Ronco P, Plaisier E. HANAC Col4a1 Mutation in Mice Leads to Skeletal Muscle Alterations due to a Primary Vascular Defect. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:505-516. [PMID: 28056338 DOI: 10.1016/j.ajpath.2016.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Collagen IV is a major component of basement membranes (BMs). The α1(IV) chain, encoded by the COL4A1 gene, is expressed ubiquitously and associates with the α2(IV) chain to form the α1α1α2(IV) heterotrimer. Several COL4A1 mutations affecting a conformational domain containing integrin-binding sites are responsible for the systemic syndrome of hereditary angiopathy, nephropathy, aneurysms, and cramps (HANAC). To analyze the pathophysiology of HANAC, Col4a1 mutant mice bearing the p.Gly498Val mutation were generated. Analysis of the skeletal muscles of Col4a1G498V mutant animals showed morphologic characteristics of a muscular dystrophy phenotype with myofiber atrophy, centronucleation, focal inflammatory infiltrates, and fibrosis. Abnormal ultrastructural aspects of muscle BMs was associated with reduced extracellular secretion of the mutant α1α1α2(IV) trimer. In addition to muscular dystrophic features, endothelial cell defects of the muscle capillaries were observed, with intracytoplasmic accumulation of the mutant α1α1α2(IV) molecules, endoplasmic reticulum cisternae dilation, and up-regulation of endoplasmic reticulum stress markers. Induction of the unfolded protein response in Col4a1 mutant muscle tissue resulted in an excess of apoptosis in endothelial cells. HANAC mutant animals also presented with a muscular functional impairment and increased serum creatine kinase levels reflecting altered muscle fiber sarcolemma. This extensive description of the muscular phenotype of the Col4a1 HANAC murine model suggests a potential contribution of primary endothelial cell defects, together with muscle BM alterations, to the development of COL4A1-related myopathy.
Collapse
Affiliation(s)
- Simon Guiraud
- Mixed Research Unit S1155, INSERM, Paris, France; University Pierre and Marie Curie Paris 06, Sorbonne University, Paris, France; Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tiffany Migeon
- Mixed Research Unit S1155, INSERM, Paris, France; University Pierre and Marie Curie Paris 06, Sorbonne University, Paris, France
| | - Arnaud Ferry
- Research Center in Myology, Institut de Myologie, the Inserm UMRS974, CNRS FRE3617, Pitié-Salpêtrière Hospital Group, University Pierre and Marie Curie Paris 06, Paris Descartes University, The Sorbonne University, Paris, France
| | - Zhiyong Chen
- Mixed Research Unit S1155, INSERM, Paris, France
| | - Souhila Ouchelouche
- Mixed Research Unit S1155, INSERM, Paris, France; University Pierre and Marie Curie Paris 06, Sorbonne University, Paris, France
| | - Marie-Christine Verpont
- Mixed Research Unit S1155, INSERM, Paris, France; University Pierre and Marie Curie Paris 06, Sorbonne University, Paris, France
| | | | - Valérie Allamand
- Research Center in Myology, Institut de Myologie, the Inserm UMRS974, CNRS FRE3617, Pitié-Salpêtrière Hospital Group, University Pierre and Marie Curie Paris 06, Paris Descartes University, The Sorbonne University, Paris, France
| | - Pierre Ronco
- Mixed Research Unit S1155, INSERM, Paris, France; University Pierre and Marie Curie Paris 06, Sorbonne University, Paris, France; Department of Nephrology and Dialysis, Assistance Publique-Hôpitaux de Paris, Tenon Hospital, Paris, France
| | - Emmanuelle Plaisier
- Mixed Research Unit S1155, INSERM, Paris, France; University Pierre and Marie Curie Paris 06, Sorbonne University, Paris, France; Department of Nephrology and Dialysis, Assistance Publique-Hôpitaux de Paris, Tenon Hospital, Paris, France.
| |
Collapse
|
86
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
87
|
Rao CV, Asch AS, Yamada HY. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. Carcinogenesis 2016; 38:2-11. [PMID: 27838634 DOI: 10.1093/carcin/bgw118] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/16/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022] Open
Abstract
The incidence of liver cancer has increased in recent years. Worldwide, liver cancer is common: more than 600000 related deaths are estimated each year. In the USA, about 27170 deaths due to liver cancer are estimated for 2016. Liver cancer is highly resistant to conventional chemotherapy and radiotherapy. For all stages combined, the 5-year survival rate is 15-17%, leaving much to be desired for liver cancer prevention and therapy. Heterogeneity, which can originate from genomic instability, is one reason for poor outcome. About 80-90% of liver cancers are hepatocellular carcinoma (HCC), and recent cancer genome sequencing studies have revealed frequently mutated genes in HCC. In this review, we discuss the cause of the tumor heterogeneity based on the functions of genes that are frequently mutated in HCC. We overview the functions of the genes that are most frequently mutated (e.g. TP53, CTNNB1, AXIN1, ARID1A and WWP1) that portray major pathways leading to HCC and identify the roles of these genes in preventing genomic instability. Notably, the pathway analysis suggested that oxidative stress management may be critical to prevent accumulation of DNA damage and further mutations. We propose that both chromosome instability (CIN) and microsatellite instability (MIN) are integral to the hepatic carcinogenesis process leading to heterogeneity in HCC and that the pathways leading to heterogeneity may be targeted for prognosis, prevention and treatment.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), 975 NE 10th Street BRC1207, Oklahoma City, OK 73104, USA and
| | - Adam S Asch
- Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK 73104, USA
| | - Hiroshi Y Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), 975 NE 10th Street BRC1207, Oklahoma City, OK 73104, USA and
| |
Collapse
|
88
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
89
|
Nyström A, Bornert O, Kühl T. Cell therapy for basement membrane-linked diseases. Matrix Biol 2016; 57-58:124-139. [PMID: 27609402 DOI: 10.1016/j.matbio.2016.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
For most disorders caused by mutations in genes encoding basement membrane (BM) proteins, there are at present only limited treatment options available. Genetic BM-linked disorders can be viewed as especially suited for treatment with cell-based therapy approaches because the proteins that need to be restored are located in the extracellular space. In consequence, complete and permanent engraftment of cells does not necessarily have to occur to achieve substantial causal therapeutic effects. For these disorders cells can be used as transient vehicles for protein replacement. In addition, it is becoming evident that BM-linked genetic disorders are modified by secondary diseases mechanisms. Cell-based therapies have also the ability to target such disease modifying mechanisms. Thus, cell therapies can simultaneously provide causal treatment and symptomatic relief, and accordingly hold great potential for treatment of BM-linked disorders. However, this potential has for most applications and diseases so far not been realized. Here, we will present the state of cell therapies for BM-linked diseases. We will discuss use of both pluripotent and differentiated cells, the limitation of the approaches, their challenges, and the way forward to potential wider implementation of cell therapies in the clinics.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Kühl
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
90
|
Targeting β1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med 2016; 22:889-96. [PMID: 27376575 PMCID: PMC4974124 DOI: 10.1038/nm.4116] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
Abstract
Interactions between stem cells and their microenvironment, or niche, are essential for stem cell maintenance and function. Our knowledge of the niche for the skeletal muscle stem cell, i.e., the satellite cell (SC), is incomplete. Here we show that β1-integrin is an essential niche molecule that maintains SC homeostasis, and sustains the expansion and self-renewal of this stem cell pool during regeneration. We further show that β1-integrin cooperates with fibroblast growth factor 2 (Fgf2), a potent growth factor for SCs, to synergistically activate their common downstream effectors, the mitogen-activated protein (MAP) kinase Erk and protein kinase B (Akt). Notably, SCs in aged mice show altered β1-integrin activity and insensitivity to Fgf2. Augmenting β1-integrin activity with a monoclonal antibody restores Fgf2 sensitivity and improves regeneration after experimentally induced muscle injury. The same treatment also enhances regeneration and function of dystrophic muscles in mdx mice, a model for Duchenne muscular dystrophy. Therefore, β1-integrin senses the SC niche to maintain responsiveness to Fgf2, and this integrin represents a potential therapeutic target for pathological conditions of the muscle in which the stem cell niche is compromised.
Collapse
|
91
|
|
92
|
Incecik F, Herguner OM, Ceylaner S, Altunbasak S. Merosin-negative congenital muscular dystrophy: Report of five cases. J Pediatr Neurosci 2016; 10:346-9. [PMID: 26962340 PMCID: PMC4770646 DOI: 10.4103/1817-1745.174432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Context: Congenital muscular dystrophy type 1A (MDC1A) is caused by mutations in the laminin α-2 gene encoding laminin-a2. Aims: The purpose of this study is to determine clinical and genetic results in five Turkish patients with MDC1A. Setting and Designs: Five children with MDC1A were retrospectively analyzed. Results: Three (60%) were boys, and 2 (40%) were girls. Parental consanguinity was found in all the families. In all the patients, hypotonia, weakness, delayed motor milestones, markedly elevated creatine phosphokinase (CPK) concentration, and brain white matter abnormalities on magnetic resonance imaging were detected. Mutation analysis was performed in all the patients, and 3 different mutations were detected. However, a mutation in patient 1 and 2 has not been previously described in the literature. Conclusions: When a patient presents with severe congenital hypotonia, muscle weakness, high serum CPK levels, and white matter abnormalities, should be suspected as MDC1A.
Collapse
Affiliation(s)
- Faruk Incecik
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ozlem M Herguner
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | | | - Sakir Altunbasak
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
93
|
Zlotina A, Nikulina T, Yany N, Moiseeva O, Pervunina T, Grekhov E, Kostareva A. Ring chromosome 18 in combination with 18q12.1 (DTNA) interstitial microdeletion in a patient with multiple congenital defects. Mol Cytogenet 2016; 9:18. [PMID: 26893613 PMCID: PMC4758088 DOI: 10.1186/s13039-016-0229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/10/2016] [Indexed: 11/20/2022] Open
Abstract
Background Ring chromosome 18 [r(18)] syndrome represents a relatively rare condition with a complex clinical picture including multiple congenital dysmorphia and varying degrees of mental retardation. The condition is cytogenetically characterized by a complete or mosaic form of ring chromosome 18, with ring formation being usually accompanied by the partial loss of both chromosomal arms. Here we observed a 20-year-old male patient who along with the features typical for r(18) carriers additionally manifested a severe congenital subaortic stenosis. To define the genetic basis of such a compound phenotype, standard cytogenetic and high-resolution molecular-cytogenetic analysis of the patient was performed. Case presentation Standard chromosome analysis of cultured lymphocytes confirmed 46, XY, r(18) karyotype. Array-based comparative genomic hybridization (array-CGH) allowed to define precisely the breakpoints of 18p and 18q terminal deletions, thus identifying the hemizygosity extent, and to reveal an additional duplication adjoining the breakpoint of the 18p deletion. Apart from the terminal imbalances, we found an interstitial microdeletion of 442 kb in size (18q12.1) that encompassed DTNA gene encoding α-dystrobrevin, a member of dystrophin-associated glycoprotein complex. While limited data on the role of DTNA missense mutations in pathogenesis of human cardiac abnormalities exist, a microdeletion corresponding to whole DTNA sequence and not involving other genes has not been earlier described. Conclusions A detailed molecular-cytogenetic characterization of the patient with multiple congenital abnormalities enabled to unravel a combination of genetic defects, namely, a ring chromosome 18 with terminal imbalances and DTNA whole-gene deletion. We suggest that such combination could contribute to the complex phenotype. The findings obtained allow to extend the knowledge of the role of DTNA haploinsufficiency in congenital heart malformation, though further comprehensive functional studies are required. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0229-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zlotina
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia ; Institute of translational Medicine, ITMO University, Saint-Petersburg, 199034 Russia ; Cytology and Histology Department, Saint Petersburg State University, Saint-Petersburg, 199034 Russia
| | - Tatiana Nikulina
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Natalia Yany
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Olga Moiseeva
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Tatiana Pervunina
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Eugeny Grekhov
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Anna Kostareva
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia ; Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institute, Stockholm, 17176 Sweden
| |
Collapse
|
94
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1560] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
95
|
Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6842568. [PMID: 26798425 PMCID: PMC4700198 DOI: 10.1155/2016/6842568] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022]
Abstract
Oxidative stress is a loss of balance between the production of reactive oxygen species during cellular metabolism and the mechanisms that clear these species to maintain cellular redox homeostasis. Increased oxidative stress has been associated with muscular dystrophy, and many studies have proposed mechanisms that bridge these two pathological conditions at the molecular level. In this review, the evidence indicating a causal role of oxidative stress in the pathogenesis of various muscular dystrophies is revisited. In particular, the mediation of cellular redox status in dystrophic muscle by NF-κB pathway, autophagy, telomere shortening, and epigenetic regulation are discussed. Lastly, the current stance of targeting these pathways using antioxidant therapies in preclinical and clinical trials is examined.
Collapse
|
96
|
Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Sci Rep 2015; 5:17535. [PMID: 26657343 PMCID: PMC4675991 DOI: 10.1038/srep17535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023] Open
Abstract
Follistatin is an inhibitor of TGF-β superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting.
Collapse
|
97
|
Merosin-deficient congenital muscular dystrophy: A novel homozygous mutation in the laminin-2 gene. J Clin Neurosci 2015; 22:1983-5. [DOI: 10.1016/j.jocn.2015.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/11/2015] [Indexed: 01/16/2023]
|
98
|
Li M, Arner A. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy. PLoS One 2015; 10:e0139483. [PMID: 26536238 PMCID: PMC4633184 DOI: 10.1371/journal.pone.0139483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022] Open
Abstract
Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.
Collapse
Affiliation(s)
- Mei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
99
|
Gawlik KI, Durbeej M. Deletion of integrin α7 subunit does not aggravate the phenotype of laminin α2 chain-deficient mice. Sci Rep 2015; 5:13916. [PMID: 26355035 PMCID: PMC4564817 DOI: 10.1038/srep13916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/10/2015] [Indexed: 11/09/2022] Open
Abstract
Laminin-211 is a major constituent of the skeletal muscle basement membrane, exerting its biological functions by binding to cell surface receptors integrin α7β1 and dystroglycan (the latter is part of the dystrophin-glycoprotein complex). The importance of these molecules for normal muscle function is underscored by the fact that their respective deficiency leads to different forms of muscular dystrophy with different severity in humans and animal models. We recently demonstrated that laminin α2 chain and members of the dystrophin-glycoprotein complex have overlapping but non-redundant roles despite being part of the same adhesion complex. To analyse whether laminin-211 and integrin α7 subunit have non-redundant functions we generated mice deficient in laminin α2 chain and integrin α7 subunit (dy3K/itga7). We show that lack of both molecules did not exacerbate the severe phenotype of laminin α2-chain deficient animals. They displayed the same weight, survival and dystrophic pattern of muscle biopsy, with similar degree of inflammation and fibrosis. These data suggest that laminin-211 and integrin α7β1 have intersecting roles in skeletal muscle.
Collapse
Affiliation(s)
- Kinga I Gawlik
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| |
Collapse
|
100
|
Holland A, Murphy S, Dowling P, Ohlendieck K. Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 2015; 16:345-66. [PMID: 26256116 DOI: 10.1002/pmic.201500158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|