51
|
Wu Y, Balasubramanian P, Wang Z, Coelho JAS, Prslja M, Siebert R, Plenio MB, Jelezko F, Weil T. Detection of Few Hydrogen Peroxide Molecules Using Self-Reporting Fluorescent Nanodiamond Quantum Sensors. J Am Chem Soc 2022; 144:12642-12651. [PMID: 35737900 PMCID: PMC9305977 DOI: 10.1021/jacs.2c01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Hydrogen peroxide
(H2O2) plays an important
role in various signal transduction pathways and regulates important
cellular processes. However, monitoring and quantitatively assessing
the distribution of H2O2 molecules inside living
cells requires a nanoscale sensor with molecular-level sensitivity.
Herein, we show the first demonstration of sub-10 nm-sized fluorescent
nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the
nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside
the NDs are employed to quantify the aforementioned radicals. We believe
that our method of combining the peroxidase-mimicking activities of
the NDs with their intrinsic quantum sensor showcases their application
as self-reporting H2O2 sensors with molecular-level
sensitivity and nanoscale spatial resolution. Given the robustness
and the specificity of the sensor, our results promise a new platform
for elucidating the role of H2O2 at the cellular
level.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Priyadharshini Balasubramanian
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Zhenyu Wang
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.,Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Mateja Prslja
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
52
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
53
|
Cui Y, Leong WH, Liu CF, Xia K, Feng X, Gergely C, Liu RB, Li Q. Revealing Capillarity in AFM Indentation of Cells by Nanodiamond-Based Nonlocal Deformation Sensing. NANO LETTERS 2022; 22:3889-3896. [PMID: 35507005 DOI: 10.1021/acs.nanolett.1c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered. In addition, we observe that both the elastic moduli and the surface tensions are reduced after depolymerization of the actin cytoskeleton in cells. This work demonstrates that the nanodiamond sensing of nonlocal deformation with nanometer precision is particularly suitable for studying mechanics of soft biorelevant materials.
Collapse
Affiliation(s)
- Yue Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weng-Hang Leong
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chu-Feng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kangwei Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xi Feng
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Csilla Gergely
- Laboratoire Charles Coulomb, University of Montpellierr, CNRS, Montpellier, 34095, France
| | - Ren-Bao Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
54
|
El Sharkasy ME, Tolba MM, Belal F, Walash MI, Aboshabana R. Thiosemicarbazide functionalized carbon quantum dots as a fluorescent probe for the determination of some oxicams: application to dosage forms and biological fluids. RSC Adv 2022; 12:13826-13836. [PMID: 35541436 PMCID: PMC9081828 DOI: 10.1039/d2ra01040b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, highly fluorescent water-soluble nitrogen and sulfur doped carbon quantum dots (N, S-CQDs) were synthesized via a one-step hydrothermal process utilizing citric acid as a carbon source and thiosemicarbazide as a sulfur and nitrogen source. The obtained N, S-CQDs exhibited an intense emission band at 415 nm (λ ex = 345 nm). In the presence of either piroxicam, tenoxicam or lornoxicam, the emission band at 415 nm was significantly quenched which might be triggered due to destruction of the surface passivation layer of the N, S-CQDs. A linear correlation was found between the reduction in the fluorescence intensity of N, S-CQDs and the concentration of each drug in the ranges of 2.0-25.0 μM, 10.0-100.0 μM and 20.0-200.0 μM with correlation coefficients of more than 0.999 for all drugs. The detection limits were 0.49 μM, 1.58 μM and 4.63 μM for piroxicam, tenoxicam and lornoxicam, respectively. The effect of experimental parameters affecting the performance of the method was investigated and optimized. The developed sensor has the advantages of simplicity, time-saving, convenience and satisfactory selectivity for determination of the studied drugs in dosage forms with high % recoveries (98.86-101.69%). The method was extended for determination of piroxicam in spiked plasma with % recoveries ranging from 97.95-101.36%. The method was validated in accordance with International Council of Harmonization (ICH) standards, and the results obtained were compared statistically to those given by reported methods, indicating no significant differences in the level of accuracy and precision. The mechanism of the quenching process was studied and elucidated. The structure-activity relationship between the three drugs and the quenching efficiency was also studied and discussed.
Collapse
Affiliation(s)
- Mona E El Sharkasy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University 35516, Mansoura Egypt
| | - Manar M Tolba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University 35516, Mansoura Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University 35516, Mansoura Egypt
| | - Mohamed I Walash
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University 35516, Mansoura Egypt
| | - Rasha Aboshabana
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University 35516, Mansoura Egypt
| |
Collapse
|
55
|
Perdriat M, Huillery P, Pellet-Mary C, Hétet G. Angle Locking of a Levitating Diamond Using Spin Diamagnetism. PHYSICAL REVIEW LETTERS 2022; 128:117203. [PMID: 35363007 DOI: 10.1103/physrevlett.128.117203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Nanodiamonds with embedded nitrogen-vacancy (NV) centers have emerged as promising magnetic field sensors, as hyperpolarizing agents in biological environments, as well as efficient tools for spin mechanics with levitating particles. These applications currently suffer from random environmental interactions with the diamond which implies poor control of the N-V direction. Here, we predict and report on a strong diamagnetism of a pure spin origin mediated by a population inversion close to a level crossing in the NV center electronic ground state. We show control of the sign of the magnetic susceptibility as well as angle locking of the crystalline axis of a microdiamond along an external magnetic field, with bright perspectives for these applications.
Collapse
Affiliation(s)
- M Perdriat
- Laboratoire De Physique de l'École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - P Huillery
- Laboratoire De Physique de l'École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - C Pellet-Mary
- Laboratoire De Physique de l'École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - G Hétet
- Laboratoire De Physique de l'École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
56
|
Schmidheini L, Tiefenauer RF, Gatterdam V, Frutiger A, Sannomiya T, Aramesh M. Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy. BIOSENSORS 2022; 12:bios12030148. [PMID: 35323419 PMCID: PMC8946096 DOI: 10.3390/bios12030148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/01/2023]
Abstract
Nanodiamonds have emerged as promising agents for sensing and imaging due to their exceptional photostability and sensitivity to the local nanoscale environment. Here, we introduce a hybrid system composed of a nanodiamond containing nitrogen-vacancy center that is paired to a gold nanoparticle via DNA hybridization. Using multiphoton optical studies, we demonstrate that the harmonic mode emission generated in gold nanoparticles induces a coupled fluorescence emission in nanodiamonds. We show that the flickering of harmonic emission in gold nanoparticles directly influences the nanodiamonds' emissions, resulting in stochastic blinking. By utilizing the stochastic emission fluctuations, we present a proof-of-principle experiment to demonstrate the potential application of the hybrid system for super-resolution microscopy. The introduced system may find applications in intracellular biosensing and bioimaging due to the DNA-based coupling mechanism and also the attractive characteristics of harmonic generation, such as low power, low background and tissue transparency.
Collapse
Affiliation(s)
- Lukas Schmidheini
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Raphael F. Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Volker Gatterdam
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Takumi Sannomiya
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
- Department of Materials Science and Engineering, Division of Biomedical Engineering, Uppsala University, 751 21 Uppsala, Sweden
| |
Collapse
|
57
|
Nie L, Nusantara AC, Damle VG, Baranov MV, Chipaux M, Reyes-San-Martin C, Hamoh T, Epperla CP, Guricova M, Cigler P, van den Bogaart G, Schirhagl R. Quantum Sensing of Free Radicals in Primary Human Dendritic Cells. NANO LETTERS 2022; 22:1818-1825. [PMID: 34929080 PMCID: PMC8880378 DOI: 10.1021/acs.nanolett.1c03021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/06/2021] [Indexed: 05/21/2023]
Abstract
Free radicals are crucial indicators for stress and appear in all kinds of pathogenic conditions, including cancer, cardiovascular diseases, and infection. However, they are difficult to detect due to their reactivity and low abundance. We use relaxometry for the detection of radicals with subcellular resolution. This method is based on a fluorescent defect in a diamond, which changes its optical properties on the basis of the magnetic surroundings. This technique allows nanoscale MRI with unprecedented sensitivity and spatial resolution. Recently, this technique was used inside living cells from a cell line. Cell lines differ in terms of endocytic capability and radical production from primary cells derived from patients. Here we provide the first measurements of phagocytic radical production by the NADPH oxidase (NOX2) in primary dendritic cells from healthy donors. The radical production of these cells differs greatly between donors. We investigated the cell response to stimulation or inhibition.
Collapse
Affiliation(s)
- Linyan Nie
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anggrek C. Nusantara
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Viraj G. Damle
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Maxim V. Baranov
- University
of Groningen, Department of Molecular Immunology,
Groningen Biomolecular Sciences and Biotechnology Institute, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mayeul Chipaux
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Claudia Reyes-San-Martin
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thamir Hamoh
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chandra Prakash Epperla
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Miroslava Guricova
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Petr Cigler
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Geert van den Bogaart
- University
of Groningen, Department of Molecular Immunology,
Groningen Biomolecular Sciences and Biotechnology Institute, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Email for R.S.:
| |
Collapse
|
58
|
Lightly Boron-Doped Nanodiamonds for Quantum Sensing Applications. NANOMATERIALS 2022; 12:nano12040601. [PMID: 35214930 PMCID: PMC8874591 DOI: 10.3390/nano12040601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Unlike standard nanodiamonds (NDs), boron-doped nanodiamonds (BNDs) have shown great potential in heating a local environment, such as tumor cells, when excited with NIR lasers (808 nm). This advantage makes BNDs of special interest for hyperthermia and thermoablation therapy. In this study, we demonstrate that the negatively charged color center (NV) in lightly boron-doped nanodiamonds (BNDs) can optically sense small temperature changes when heated with an 800 nm laser even though the correct charge state of the NV is not expected to be as stable in a boron-doped diamond. The reported BNDs can sense temperature changes over the biological temperature range with a sensitivity reaching 250 mK/√Hz. These results suggest that BNDs are promising dual-function bio-probes in hyperthermia or thermoablation therapy as well as other quantum sensing applications, including magnetic sensing.
Collapse
|
59
|
Li R, Vedelaar T, Mzyk A, Morita A, Padamati SK, Schirhagl R. Following Polymer Degradation with Nanodiamond Magnetometry. ACS Sens 2022; 7:123-130. [PMID: 34982542 PMCID: PMC8809337 DOI: 10.1021/acssensors.1c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
Degradable polymers are widely used in the biomedical fields due to non-toxicity and great biocompatibility and biodegradability, and it is crucial to understand how they degrade. These polymers are exposed to various biochemical media in medical practice. Hence, it is important to precisely follow the degradation of the polymer in real time. In this study, we made use of diamond magnetometry for the first time to track polymer degradation with nanoscale precision. The method is based on a fluorescent defect in nanodiamonds, which changes its optical properties based on its magnetic surrounding. Since optical signals can be read out more sensitively than magnetic signals, this method allows unprecedented sensitivity. We used a specific mode of diamond magnetometry called relaxometry or T1 measurements. These are sensitive to magnetic noise and thus can detect paramagnetic species (gadolinium in this case). Nanodiamonds were incorporated into polylactic acid (PLA) films and PLA nanoparticles in order to follow polymer degradation. However, in principle, they can be incorporated into other polymers too. We found that T1 constants decreased gradually with the erosion of the film exposed to an alkaline condition. In addition, the mobility of nanodiamonds increased, which allows us to estimate polymer viscosity. The degradation rates obtained using this approach were in good agreement with data obtained by quartz crystal microbalance, Fourier-transform infrared spectroscopy, and atomic force microscopy.
Collapse
Affiliation(s)
- Runrun Li
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Thea Vedelaar
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Krakow 30-059, Poland
| | - Aryan Morita
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Sandeep Kumar Padamati
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| |
Collapse
|
60
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
61
|
Wang QY, Wang ZH, Du B, Chen XD, Guo GC, Sun FW. Charge state depletion nanoscopy with a nitrogen-vacancy center in nanodiamonds. OPTICS LETTERS 2022; 47:66-69. [PMID: 34951884 DOI: 10.1364/ol.447864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The development of super-resolution imaging has driven research into biological labeling, new materials' characterization, and nanoscale sensing. Here, we studied the photoinduced charge state conversion of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), which show the potential for multifunction sensing and labeling at the nanoscale. Charge state depletion (CSD) nanoscopy is subsequently demonstrated for the diffraction-unlimited imaging of NDs in biological cells. A resolution of 77 nm is obtained with 50 nm NDs. The depletion laser power of CSD nanoscopy is approximately 1/16 of stimulated emission depletion (STED) microscopy with the same resolution. The results can be used to improve the spatial resolution of biological labeling and sensing with NDs and other nanoparticles.
Collapse
|
62
|
Sotoma S, Okita H, Chuma S, Harada Y. Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. Biophys Physicobiol 2022; 19:e190034. [PMID: 36349322 PMCID: PMC9592573 DOI: 10.2142/biophysico.bppb-v19.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as “quantum sensors”. In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122–124 (2022).
Collapse
Affiliation(s)
| | | | - Shunsuke Chuma
- Department of Biological Sciences, Graduate School of Science, Osaka University
| | - Yoshie Harada
- Center for Quantum Information and Quantum Biology, Osaka University
| |
Collapse
|
63
|
Shen Y, Su S, Zhao W, Cheng S, Xu T, Yin K, Chen L, He L, Zhou Y, Bi H, Wan S, Zhang Q, Wang L, Ni Z, Banhart F, Botton GA, Ding F, Ruoff RS, Sun L. Sub-4 nm Nanodiamonds from Graphene-Oxide and Nitrated Polycyclic Aromatic Hydrocarbons at 423 K. ACS NANO 2021; 15:17392-17400. [PMID: 34128643 DOI: 10.1021/acsnano.1c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanodiamonds are interesting materials from the point of view of their biocompatibility and their chemical, spectroscopic, and mechanical properties. Current synthetic methods for nanodiamonds involve harsh environments, which are potentially hazardous in addition to being expensive. We report a low-temperature (423 K) hydrothermal approach to form nanodiamonds by using graphene-oxide or nitrated polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene, or pyrene) as a starting material. The reaction products contain single-crystalline or twinned nanodiamonds with average diameters in the 2-3 nm range. Theoretical calculations prove that, at the nanoscale, sub-4 nm nanodiamonds may adopt a structure that is more stable than graphene-oxide and nitrated polycyclic aromatic hydrocarbons. Our findings show that sp2 carbon in the polycyclic aromatic precursor can be converted to sp3 carbon under unexpectedly moderate temperature conditions by using nanoscale precursors and thus offer a low-temperature approach for the synthesis of sub-4 nm nanodiamonds.
Collapse
Affiliation(s)
- Yuting Shen
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Shi Su
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
- School of Aeronautic Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, People's Republic of China
| | - Wen Zhao
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 689-798, Republic of Korea
| | - Shaobo Cheng
- Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON, Canada L8S 4M1
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Linjiang Chen
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Longbing He
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Yilong Zhou
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Hengchang Bi
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Shu Wan
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Qiubo Zhang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhenhua Ni
- Department of Physics, Southeast University, 211189, Nanjing, China
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 Université de Strasbourg - CNRS, 23 rue du Loess, 67034 Strasbourg, France
| | - Gianluigi A Botton
- Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON, Canada L8S 4M1
| | - Feng Ding
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 689-798, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Rodney S Ruoff
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
64
|
Zhang Z, Chen F, Feng J, Chen J, Chen L, Zhang Z, Wang H, Cheng X, Liu M, Liu C. −22-Fold of 1H signal enhancement in-situ low-field liquid NMR using nanodiamond as polarizer of overhauser dynamic nuclear polarization. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
65
|
Nishikawa M, Kang HG, Zou Y, Takeuchi H, Matsuno N, Suzuki M, Komatsu N. Conjugation of Phenylboronic Acid Moiety through Multistep Organic Transformations on Nanodiamond Surface for an Anticancer Nanodrug for Boron Neutron Capture Therapy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Masahiro Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yajuan Zou
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidekazu Takeuchi
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Naoyoshi Matsuno
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
66
|
Yanagi T, Kaminaga K, Suzuki M, Abe H, Yamamoto H, Ohshima T, Kuwahata A, Sekino M, Imaoka T, Kakinuma S, Sugi T, Kada W, Hanaizumi O, Igarashi R. All-Optical Wide-Field Selective Imaging of Fluorescent Nanodiamonds in Cells, In Vivo and Ex Vivo. ACS NANO 2021; 15:12869-12879. [PMID: 34339180 DOI: 10.1021/acsnano.0c07740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescence imaging is a critical tool to understand the spatial distribution of biomacromolecules in cells and in vivo, providing information on molecular dynamics and interactions. Numerous valuable insights into biological systems have been provided by the specific detection of various molecular species. However, molecule-selective detection is often hampered by background fluorescence, such as cell autofluorescence and fluorescence leakage from molecules stained by other dyes. Here we describe a method for all-optical selective imaging of fluorescent nanodiamonds containing nitrogen-vacancy centers (NVCs) for wide-field fluorescence bioimaging. The method is based on the fact that the fluorescence intensity of NVCs strictly depends on the configuration of ground-state electron spins, which can be controlled by changing the pulse recurrence intervals of microsecond excitation laser pulses. Therefore, by using regulated laser pulses, we can oscillate the fluorescence from NVCs in a nanodiamond, while oscillating other optical signals in the opposite phase to NVCs. As a result, we can reconstruct a selective image of a nanodiamond by using a series of oscillated fluorescence images. We demonstrate application of the method to the selective imaging of nanodiamonds in live cells, in microanimals, and on a hippocampal slice culture obtained from a rat. Our approach potentially enables us to achieve high-contrast images of nanodiamond-labeled biomolecules with a signal-to-background ratio improved by up to 100-fold over the standard fluorescence image, thereby providing a more powerful tool for the investigation of molecular dynamics in cells and in vivo.
Collapse
Affiliation(s)
- Tamami Yanagi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Michiyo Suzuki
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Hiroshi Abe
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Hiroki Yamamoto
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeshi Ohshima
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Akihiro Kuwahata
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electrical Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Masaki Sekino
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuhiko Imaoka
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Takuma Sugi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Wataru Kada
- Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Osamu Hanaizumi
- Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
67
|
Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal - endosomal escape in fluorescent nanodiamonds in different cells. NANOSCALE 2021; 13:13294-13300. [PMID: 34477735 DOI: 10.1039/d1nr02503a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Successful delivery of fluorescent nanodiamonds (FNDs) into the cytoplasm is essential to many biological applications. Other applications require FNDs to stay within the endosomes. The diversity of cellular uptake of FNDs and following endosomal escape are less explored. In this article, we quantify particle uptake at a single cell level. We report that FNDs enter into the cells gradually. The number of internalized FNDs per cell differs significantly for the cell lines we investigated at the same incubation time. In HeLa cells we do not see any significant endosomal escape. We also found a wide distribution of FND endosomal escape efficiency within the same cell type. However, compared with HeLa cells, FNDs in HUVECs can easily escape from the endosomes and less than 25% FNDs remained in the vesicles after 4 h incubation time. We believe this work can bring more attention to the diversity of the cells and provide potential guidelines for future studies.
Collapse
Affiliation(s)
- Yue Zhang
- University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands.
| | | | | | | | | | | |
Collapse
|
68
|
Fujisaku T, So FTK, Igarashi R, Shirakawa M. Machine-Learning Optimization of Multiple Measurement Parameters Nonlinearly Affecting the Signal Quality. ACS MEASUREMENT SCIENCE AU 2021; 1:20-26. [PMID: 36785732 PMCID: PMC9836064 DOI: 10.1021/acsmeasuresciau.1c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Determination of optimal measurement parameters is essential for measurement experiments. They can be manually optimized if the linear correlation between them and the corresponding signal quality is known or easily determinable. However, in practice, this correlation is often nonlinear and not known a priori; hence, complicated trial and error procedures are employed for finding optimal parameters while avoiding local optima. In this work, we propose a novel approach based on machine learning for optimizing multiple measurement parameters, which nonlinearly influence the signal quality. Optically detected magnetic resonance measurements of nitrogen-vacancy centers in fluorescent nanodiamonds were used as a proof-of-concept system. We constructed a suitable dataset of optically detected magnetic resonance spectra for predicting the optimal laser and microwave powers that deliver the highest contrast and signal-to-noise ratio values by means of linear regression, neural networks, and random forests. The model developed by the considered neural network turned out to have a coefficient of determination significantly higher than that of the other methods. The proposed method thus provided a novel approach for the rapid setting of measurement parameters that influence the signal quality in a nonlinear way, opening a gate for fields like nuclear magnetic resonance, electron paramagnetic resonance, and fluorescence microscopy to benefit from it.
Collapse
Affiliation(s)
- Takahiro Fujisaku
- Institute
for Quantum Life Science, National Institutes
for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Frederick Tze Kit So
- Institute
for Quantum Life Science, National Institutes
for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Institute
for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryuji Igarashi
- Institute
for Quantum Life Science, National Institutes
for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- National
Institute for Radiological Sciences, National Institute for Quantum
and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- JST,
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Shirakawa
- Institute
for Quantum Life Science, National Institutes
for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| |
Collapse
|
69
|
Mi Z, Chen CB, Tan HQ, Dou Y, Yang C, Turaga SP, Ren M, Vajandar SK, Yuen GH, Osipowicz T, Watt F, Bettiol AA. Quantifying nanodiamonds biodistribution in whole cells with correlative iono-nanoscopy. Nat Commun 2021; 12:4657. [PMID: 34341359 PMCID: PMC8329174 DOI: 10.1038/s41467-021-25004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Correlative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy. The authors demonstrate efficient excitation of nanodiamonds by a focused beam of helium ions, resulting in ionoluminescence. They use this for quantification and correlative localization of single particles within a whole cell at sub-30 nm resolution, and investigate nanodiamond radiosensitisation effects.
Collapse
Affiliation(s)
- Zhaohong Mi
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Ce-Belle Chen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Hong Qi Tan
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.,Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yanxin Dou
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Chengyuan Yang
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Shuvan Prashant Turaga
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Minqin Ren
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Saumitra K Vajandar
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Gin Hao Yuen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Thomas Osipowicz
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Frank Watt
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Andrew A Bettiol
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore. .,Division of Science, Yale-NUS College, Singapore, Singapore.
| |
Collapse
|
70
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
71
|
Wang G, Liu YX, Zhu Y, Cappellaro P. Nanoscale Vector AC Magnetometry with a Single Nitrogen-Vacancy Center in Diamond. NANO LETTERS 2021; 21:5143-5150. [PMID: 34086471 DOI: 10.1021/acs.nanolett.1c01165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
Collapse
Affiliation(s)
- Guoqing Wang
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yi-Xiang Liu
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuan Zhu
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paola Cappellaro
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
72
|
Li S, Bai D, Capelli M, Sun Q, Afshar V S, Simpson DA, Foster S, Ebendorff-Heidepriem H, Gibson BC, Greentree AD. Preferential coupling of diamond NV centres in step-index fibres. OPTICS EXPRESS 2021; 29:14425-14437. [PMID: 33985166 DOI: 10.1364/oe.417825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Diamonds containing the negatively charged nitrogen-vacancy centre are a promising system for room-temperature magnetometry. The combination of nano- and micro-diamond particles with optical fibres provides an option for deploying nitrogen-vacancy magnetometers in harsh and challenging environments. Here we numerically explore the coupling efficiency from nitrogen-vacancy centres within a diamond doped at the core/clad interface across a range of commercially available fibre types so as to inform the design process for a diamond in fibre magnetometers. We determine coupling efficiencies from nitrogen-vacancy centres to the guided modes of a step-index fibre and predict the optically detected magnetic resonance (ODMR) generated by a ensemble of four nitrogen-vacancy centres in this hybrid fibre system. Our results show that the coupling efficiency is enhanced with a high refractive index difference between the fibre core and cladding and depends on the radial position of the nitrogen-vacancy centres in the fibre core. Our ODMR simulations show that due to the preferential coupling of the nitrogen-vacancy emission to the fibre guided modes, certain magnetometry features such as ODMR contrast can be enhanced and lead to improved sensitivity in such diamond-fibre systems, relative to conventional diamond only ensemble geometries.
Collapse
|
73
|
Nie L, Nusantara AC, Damle VG, Sharmin R, Evans EPP, Hemelaar SR, van der Laan KJ, Li R, Perona Martinez FP, Vedelaar T, Chipaux M, Schirhagl R. Quantum monitoring of cellular metabolic activities in single mitochondria. SCIENCE ADVANCES 2021; 7:7/21/eabf0573. [PMID: 34138746 PMCID: PMC8133708 DOI: 10.1126/sciadv.abf0573] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Free radicals play a vital role in all kinds of biological processes including immune responses. However, free radicals have short lifetimes and are highly reactive, making them difficult to measure using current methods. Here, we demonstrate that relaxometry measurement, or T1, inherited from the field of diamond magnetometry can be used to detect free radicals in living cells with subcellular resolution. This quantum sensing technique is based on defects in diamond, which convert a magnetic signal into an optical signal, allowing nanoscale magnetic resonance measurements. We functionalized fluorescent nanodiamonds (FNDs) to target single mitochondria within macrophage cells to detect the metabolic activity. In addition, we performed measurements on single isolated mitochondria. We were able to detect free radicals generated by individual mitochondria in either living cells or isolated mitochondria after stimulation or inhibition.
Collapse
Affiliation(s)
- L Nie
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - A C Nusantara
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - V G Damle
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - R Sharmin
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - E P P Evans
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - S R Hemelaar
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - K J van der Laan
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - R Li
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - F P Perona Martinez
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - T Vedelaar
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - M Chipaux
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - R Schirhagl
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
74
|
Feng X, Leong WH, Xia K, Liu CF, Liu GQ, Rendler T, Wrachtrup J, Liu RB, Li Q. Association of Nanodiamond Rotation Dynamics with Cell Activities by Translation-Rotation Tracking. NANO LETTERS 2021; 21:3393-3400. [PMID: 33847115 DOI: 10.1021/acs.nanolett.0c04864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Correlated translation-orientation tracking of single particles can provide important information for understanding the dynamics of live systems and their interaction with the probes. However, full six-dimensional (6D) motion tracking has yet to be achieved. Here, we developed synchronized 3D translation and 3D rotation tracking of single diamond particles based on nitrogen-vacancy center sensing. We first performed 6D tracking of diamond particles attached to a giant plasma membrane vesicle to demonstrate the method. Quantitative analysis of diamond particles' motion allowed elimination of the geometric effect and revealed the net rotation on the vesicle. 6D tracking was then applied to measure live cell dynamics. Motion characteristics of nanodiamonds on cell membranes under various controlled physiological conditions suggest that the nanodiamonds' rotation is associated with cell metabolic activities. Our technique extends the toolbox of single particle tracking and provides a unique solution to problems where correlated analysis of translation and rotation is critical.
Collapse
Affiliation(s)
- Xi Feng
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weng-Hang Leong
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kangwei Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chu-Feng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gang-Qin Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Torsten Rendler
- 3rd Institute of Physics and Center for Applied Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany
| | - Joerg Wrachtrup
- 3rd Institute of Physics and Center for Applied Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ren-Bao Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
75
|
Craigie K, Gauger EM, Altmann Y, Bonato C. Resource-efficient adaptive Bayesian tracking of magnetic fields with a quantum sensor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:195801. [PMID: 33540392 DOI: 10.1088/1361-648x/abe34f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Single-spin quantum sensors, for example based on nitrogen-vacancy centres in diamond, provide nanoscale mapping of magnetic fields. In applications where the magnetic field may be changing rapidly, total sensing time is crucial and must be minimised. Bayesian estimation and adaptive experiment optimisation can speed up the sensing process by reducing the number of measurements required. These protocols consist of computing and updating the probability distribution of the magnetic field based on measurement outcomes and of determining optimized acquisition settings for the next measurement. However, the computational steps feeding into the measurement settings of the next iteration must be performed quickly enough to allow real-time updates. This article addresses the issue of computational speed by implementing an approximate Bayesian estimation technique, where probability distributions are approximated by a finite sum of Gaussian functions. Given that only three parameters are required to fully describe a Gaussian density, we find that in many cases, the magnetic field probability distribution can be described by fewer than ten parameters, achieving a reduction in computation time by factor 10 compared to existing approaches. ForT2*=1μs, only a small decrease in computation time is achieved. However, in these regimes, the proposed Gaussian protocol outperforms the existing one in tracking accuracy.
Collapse
Affiliation(s)
- K Craigie
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - E M Gauger
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Y Altmann
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - C Bonato
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
76
|
Tandale P, Choudhary N, Singh J, Sharma A, Shukla A, Sriram P, Soni U, Singla N, Barnwal RP, Singh G, Kaur IP, Suttee A. Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer. Biochem Biophys Rep 2021; 26:100962. [PMID: 33763604 PMCID: PMC7973288 DOI: 10.1016/j.bbrep.2021.100962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/01/2023] Open
Abstract
Quantum dots (QDs) are nanocrystals of semiconducting material possessing quantum mechanical characteristics with capability to get conjugated with drug moieties. The particle size of QDs varies from 2 to 10 nm and can radiate a wide range of colours depending upon their size. Their wide and diverse usage of QDs across the world is due to their adaptable properties like large quantum yield, photostability, and adjustable emission spectrum. QDs are nanomaterials with inherent electrical characteristics that can be used as drug carrier vehicle and as a diagnostic in the field of nanomedicine. Scientists from various fields are aggressively working for the development of single platform that can sense, can produce a microscopic image and even be used to deliver a therapeutic agent. QDs are the fluorescent nano dots with which the possibilities of the drug delivery to a targeted site and its biomedical imaging can be explored. This review is mainly focused on the different process of synthesis of QDs, their application especially in the areas of malignancies and as a theranostic tool. The attempt is to consolidate the data available for the use of QDs in the biomedical applications. QDs are nonmaterial's that can be used for drug delivery, imaging and diagnostic tool in the field of nanomedicine. The various approaches to synthesize the QDs were explored. QDs are accepted in the treatment strategies due to their biocompatibility with human physiology. QDs posses' several biomedical application particularly in the area of cancer theranostics. Fluorescents dots (QDs) can illuminate the complicated terrain of oncology sciences, novel biomarkers and a patient compliant treatment regimens.
Collapse
Affiliation(s)
- P Tandale
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Neeraj Choudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Joga Singh
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Ananya Shukla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pavani Sriram
- Vaagdevi College of Pharmacy, Kakatiya University. Warangal, Telangana State, India
| | - Udit Soni
- Teri School of Advanced Studies, Teri University, New Delhi, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gurpal Singh
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| |
Collapse
|
77
|
Suarez-Kelly L, Sun SH, Ren C, Rampersaud IV, Albertson D, Duggan MC, Noel TC, Courtney N, Buteyn NJ, Moritz C, Yu L, Yildiz VO, Butchar JP, Tridandapani S, Rampersaud AA, Carson WE. Antibody Conjugation of Fluorescent Nanodiamonds for Targeted Innate Immune Cell Activation. ACS APPLIED NANO MATERIALS 2021; 4:3122-3139. [PMID: 34027313 PMCID: PMC8136585 DOI: 10.1021/acsanm.1c00256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.
Collapse
Affiliation(s)
- Lorena
P. Suarez-Kelly
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey Ren
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Isaac V. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - David Albertson
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Megan C. Duggan
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany C. Noel
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Courtney
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathaniel J. Buteyn
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles Moritz
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - Lianbo Yu
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Vedat O. Yildiz
- Department
of Biomedical Informatics, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan P. Butchar
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Susheela Tridandapani
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Arfaan A. Rampersaud
- Columbus
NanoWorks, Inc., 1507
Chambers Road, Columbus, Ohio 43212, United
States
| | - William E. Carson
- The
Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department
of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
- . Phone: (614)
293-6306. Fax: (614) 293-3465
| |
Collapse
|
78
|
Leung HM, Lau CH, Ho JWT, Chan MS, Chang TJH, Law LH, Wang F, Tam DY, Liu LS, Chan KWY, Tin C, Lo PK. Targeted brain tumor imaging by using discrete biopolymer-coated nanodiamonds across the blood-brain barrier. NANOSCALE 2021; 13:3184-3193. [PMID: 33527933 DOI: 10.1039/d0nr06765b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Short circulation lifetime, poor blood-brain barrier (BBB) permeability and low targeting specificity limit nanovehicles from crossing the vascular barrier and reaching the tumor site. Consequently, the precise diagnosis of malignant brain tumors remains a great challenge. This study demonstrates the imaging of photostable biopolymer-coated nanodiamonds (NDs) with tumor targeting properties inside the brain. NDs are labeled with PEGylated denatured bovine serum albumin (BSA) and tumor vasculature targeting tripeptides RGD. The modified NDs show high colloidal stability in different buffer systems. Moreover, it is found that discrete dcBSA-PEG-NDs cross the in vitro BBB model more effectively than aggregated NDs. Importantly, compared with the non-targeting NDs, RGD-dcBSA-PEG-NDs can selectively target the tumor site in U-87 MG bearing mice after systemic injection. Overall, this discrete ND system enables efficacious brain tumor visualization with minimal toxicity to other major organs, and is worthy of further investigation into the applications as a unique platform for noninvasive theragnostics and/or thermometry at different stages of human diseases in the brain.
Collapse
Affiliation(s)
- Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Liu K, Zhang S, Ralchenko V, Qiao P, Zhao J, Shu G, Yang L, Han J, Dai B, Zhu J. Tailoring of Typical Color Centers in Diamond for Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000891. [PMID: 32815269 DOI: 10.1002/adma.202000891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/16/2020] [Indexed: 06/11/2023]
Abstract
On the demand of single-photon entangled light sources and high-sensitivity probes in the fields of quantum information processing, weak magnetic field detection and biosensing, the nitrogen vacancy (NV) color center is very attractive and has been deeply and intensively studied, due to its convenience of spin initialization, operation, and optical readout combined with long coherence time in the ambient environment. Although the application prospect is promising, there are still some problems to be solved before fully exerting its characteristic performance, including enhancement of emission of NV centers in certain charge state (NV- or NV0 ), obtaining indistinguishable photons, and improving of collecting efficiency for the photons. Herein, the research progress in these issues is reviewed and commented on to help researchers grasp the current trends. In addition, the development of emerging color centers, such as germanium vacancy defects, and rare-earth dopants, with great potential for various applications, are also briefly surveyed.
Collapse
Affiliation(s)
- Kang Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Sen Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Victor Ralchenko
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pengfei Qiao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jiwen Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Guoyang Shu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Lei Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Bing Dai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, 150080, P. R. China
| |
Collapse
|
80
|
Webb JL, Troise L, Hansen NW, Olsson C, Wojciechowski AM, Achard J, Brinza O, Staacke R, Kieschnick M, Meijer J, Thielscher A, Perrier JF, Berg-Sørensen K, Huck A, Andersen UL. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor. Sci Rep 2021; 11:2412. [PMID: 33510264 PMCID: PMC7844290 DOI: 10.1038/s41598-021-81828-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spatial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond. With 50 pT/[Formula: see text] sensitivity, we show the first measurements of magnetic sensing from mammalian tissue with a diamond sensor using mouse muscle optogenetically activated with blue light. We show these proof of principle measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques. Although as yet uncompetitive with probe electrophysiology in terms of sensitivity, we demonstrate the feasibility of sensing action potentials via magnetic field in mammals using a diamond quantum sensor, as a step towards microscopic imaging of electrical activity in a biological sample using nitrogen vacancy centres in diamond.
Collapse
Affiliation(s)
- James Luke Webb
- Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Luca Troise
- Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Christoffer Olsson
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Jocelyn Achard
- Laboratoire des Sciences des Procédés et des Matériaux, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - Ovidiu Brinza
- Laboratoire des Sciences des Procédés et des Matériaux, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - Robert Staacke
- Division Applied Quantum System, Felix Bloch Institute for Solid State Physics, Leipzig University, 04103, Leipzig, Germany
| | - Michael Kieschnick
- Division Applied Quantum System, Felix Bloch Institute for Solid State Physics, Leipzig University, 04103, Leipzig, Germany
| | - Jan Meijer
- Division Applied Quantum System, Felix Bloch Institute for Solid State Physics, Leipzig University, 04103, Leipzig, Germany
| | - Axel Thielscher
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | | | - Kirstine Berg-Sørensen
- Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alexander Huck
- Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulrik Lund Andersen
- Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
81
|
McMichael RD, Dushenko S, Blakley SM. Sequential Bayesian experiment design for adaptive Ramsey sequence measurements. JOURNAL OF APPLIED PHYSICS 2021; 130:10.1063/5.0055630. [PMID: 36618327 PMCID: PMC9813949 DOI: 10.1063/5.0055630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/20/2021] [Indexed: 06/17/2023]
Abstract
The Ramsey sequence is a canonical example of a quantum phase measurement for a spin qubit. In Ramsey measurements, the measurement efficiency can be optimized through careful selection of settings for the phase accumulation time setting, τ. This paper implements a sequential Bayesian experiment design protocol in low-fidelity Ramsey measurements, and its performance is compared to a previously reported adaptive heuristic protocol, a quantum phase estimation algorithm, and random setting choices. A workflow allowing measurements and design calculations to run concurrently largely eliminates computation time from measurement overhead. When precession frequency is the lone parameter to estimate, the Bayesian design is faster by factors of roughly 2 and 4 and 5 relative to the adaptive heuristic, random τ choices and the quantum phase estimation algorithm respectively. When four parameters are to be determined, Bayesian experiment design and random τ choices can converge to roughy equivalent sensitivity, but the Bayesian method converges 4 times faster.
Collapse
Affiliation(s)
- Robert D McMichael
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sergey Dushenko
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Sean M Blakley
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
82
|
Ma X, Liu X, Li Y, Xi X, Yao Q, Fan J. Influence of crystallization temperature on fluorescence of n-diamond quantum dots. NANOTECHNOLOGY 2020; 31:505712. [PMID: 33021232 DOI: 10.1088/1361-6528/abb72d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanodiamonds are popular biological labels because of their superior mechanical and optical properties. Their surfaces bridging the core and surrounding medium play a key role in determining their bio-linkage and photophysical properties. n-diamond is a mysterious carbon allotrope whose crystal structure remains debated. We study the influence of the crystallization temperature on the fluorescence properties of the colloidal n-diamond quantum dots (n-DQDs) with sizes of several nanometers. They exhibit multiband fluorescence across the whole visible region which depends sensitively on the crystallization temperature. Their surfaces turn from hydrophobic ones rich of sp2-bonded carbon into hydrophilic ones rich of carboxyl derivatives and hydroxyl groups as the crystallization temperature increases. The different surface states correlated with the surface structures account for the distinct fluorescence properties of the n-DQDs crystallized at different temperatures. These high-purity ultrasmall n-DQDs with tunable surface chemistry and fluorescence properties are promising multicolor biomarkers and lighting sources.
Collapse
Affiliation(s)
- Xuanxuan Ma
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaoyu Liu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuanyuan Li
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaonan Xi
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qianqin Yao
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiyang Fan
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
83
|
Yanagi T, Kaminaga K, Kada W, Hanaizumi O, Igarashi R. Optimization of Wide-Field ODMR Measurements Using Fluorescent Nanodiamonds to Improve Temperature Determination Accuracy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2282. [PMID: 33217922 PMCID: PMC7698612 DOI: 10.3390/nano10112282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Fluorescent nanodiamonds containing nitrogen-vacancy centers have attracted attention as nanoprobes for temperature measurements in microenvironments, potentially enabling the measurement of intracellular temperature distributions and temporal changes. However, to date, the time resolution and accuracy of the temperature determinations using fluorescent nanodiamonds have been insufficient for wide-field fluorescence imaging. Here, we describe a method for highly accurate wide-field temperature imaging using fluorescent nanodiamonds for optically detected magnetic resonance (ODMR) measurements. We performed a Monte Carlo simulation to determine the optimal frequency sweep range for ODMR temperature determination. We then applied this sweep range to fluorescent nanodiamonds. As a result, the temperature determination accuracies were improved by a factor ~1.5. Our result paves the way for the contribution of quantum sensors to cell biology for understanding, for example, differentiation in multicellular systems.
Collapse
Affiliation(s)
- Tamami Yanagi
- Division of Electronics and Informatics, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; (T.Y.); (W.K.)
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan;
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan;
- National Institute for Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Wataru Kada
- Division of Electronics and Informatics, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; (T.Y.); (W.K.)
| | - Osamu Hanaizumi
- Division of Electronics and Informatics, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan; (T.Y.); (W.K.)
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan;
- National Institute for Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
84
|
Chen B, Hou X, Ge F, Zhang X, Ji Y, Li H, Qian P, Wang Y, Xu N, Du J. Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam. NANO LETTERS 2020; 20:8267-8272. [PMID: 33135901 DOI: 10.1021/acs.nanolett.0c03377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a new method to determine the orientation of individual nitrogen-vacancy (NV) centers in a bulk diamond and use them to realize a calibration-free vector magnetometer with nanoscale resolution. Optical vortex beam is used for optical excitation and scanning the NV center in a [111]-oriented diamond. The scanning fluorescence patterns of NV center with different orientations are completely different. Thus, the orientation information on each NV center in the lattice can be known directly without any calibration process. Further, we use three differently oriented NV centers to form a magnetometer and reconstruct the complete vector information on the magnetic field based on the optically detected magnetic resonance(ODMR) technique. Compared with previous schemes to realize vector magnetometry using an NV center, our method is much more efficient and is easily applied in other NV-based quantum sensing applications.
Collapse
Affiliation(s)
- Bing Chen
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xianfei Hou
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Feifei Ge
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaohan Zhang
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunlan Ji
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hongju Li
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Peng Qian
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ya Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Nanyang Xu
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
85
|
Sow M, Steuer H, Adekanye S, Ginés L, Mandal S, Gilboa B, Williams OA, Smith JM, Kapanidis AN. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. NANOSCALE 2020; 12:21821-21831. [PMID: 33103692 PMCID: PMC8329943 DOI: 10.1039/d0nr05931e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The fluorescent nitrogen-vacancy (NV) defect in diamond has remarkable photophysical properties, including high photostability which allows stable fluorescence emission for hours; as a result, there has been much interest in using nanodiamonds (NDs) for applications in quantum optics and biological imaging. Such applications have been limited by the heterogeneity of NDs and our limited understanding of NV photophysics in NDs, which is partially due to the lack of sensitive and high-throughput methods for photophysical analysis of NDs. Here, we report a systematic analysis of NDs using two-color wide-field epifluorescence imaging coupled to high-throughput single-particle detection of single NVs in NDs with sizes down to 5-10 nm. By using fluorescence intensity ratios, we observe directly the charge conversion of single NV center (NV- or NV0) and measure the lifetimes of different NV charge states in NDs. We also show that we can use changes in pH to control the main NV charge states in a direct and reversible fashion, a discovery that paves the way for performing pH nanosensing with a non-photobleachable probe.
Collapse
Affiliation(s)
- Maabur Sow
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Horst Steuer
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Sanmi Adekanye
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Laia Ginés
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Soumen Mandal
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Barak Gilboa
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | | | - Jason M. Smith
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Achillefs N. Kapanidis
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| |
Collapse
|
86
|
Barton J, Gulka M, Tarabek J, Mindarava Y, Wang Z, Schimer J, Raabova H, Bednar J, Plenio MB, Jelezko F, Nesladek M, Cigler P. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2020; 14:12938-12950. [PMID: 32790348 DOI: 10.1021/acsnano.0c04010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.
Collapse
Affiliation(s)
- Jan Barton
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Michal Gulka
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Jan Tarabek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Yuliya Mindarava
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Zhenyu Wang
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| | - Jan Bednar
- Institute for Advanced Biosciences, UMR 5309, Allée des Alpes, 38700 la Tronche, France
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czechia
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Milos Nesladek
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 27201 Kladno, Czechia
- IMOMEC Division, IMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czechia
| |
Collapse
|
87
|
Jović D, Jaćević V, Kuča K, Borišev I, Mrdjanovic J, Petrovic D, Seke M, Djordjevic A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1508. [PMID: 32752020 PMCID: PMC7466546 DOI: 10.3390/nano10081508] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.
Collapse
Affiliation(s)
- Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11040 Belgrade, Serbia
- Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jasminka Mrdjanovic
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Danijela Petrovic
- Department of Natural Sciences and Management in Education, Faculty of Education Sombor, University of Novi Sad, Podgorička 4, 25101 Sombor, Serbia
| | - Mariana Seke
- Institute of Nuclear Sciences "Vinca", University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
88
|
Balhaddad AA, Garcia IM, Ibrahim MS, Rolim JPML, Gomes EAB, Martinho FC, Collares FM, Xu H, Melo MAS. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:481-496. [PMID: 32716697 DOI: 10.1089/photob.2020.4815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: This review clusters the growing field of nano-based platforms for antimicrobial photodynamic therapy (aPDT) targeting pathogenic oral biofilms and increase interactions between dental researchers and investigators in many related fields. Background data: Clinically relevant disinfection of dental tissues is difficult to achieve with aPDT alone. It has been found that limited penetrability into soft and hard dental tissues, diffusion of the photosensitizers, and the small light absorption coefficient are contributing factors. As a result, the effectiveness of aPDT is reduced in vivo applications. To overcome limitations, nanotechnology has been implied to enhance the penetration and delivery of photosensitizers to target microorganisms and increase the bactericidal effect. Materials and methods: The current literature was screened for the various platforms composed of photosensitizers functionalized with nanoparticles and their enhanced performance against oral pathogenic biofilms. Results: The evidence-based findings from the up-to-date literature were promising to control the onset and the progression of dental biofilm-triggered diseases such as dental caries, endodontic infections, and periodontal diseases. The antimicrobial effects of aPDT with nano-based platforms on oral bacterial disinfection will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in oral infections. Conclusions: There is enthusiasm about the potential of nano-based platforms to treat currently out of the reach pathogenic oral biofilms. Much of the potential exists because these nano-based platforms use unique mechanisms of action that allow us to overcome the challenging of intra-oral and hard-tissue disinfection.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Isadora M Garcia
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Edison A B Gomes
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Frederico C Martinho
- Endodontic Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fabricio M Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hockin Xu
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Anne S Melo
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
89
|
Gulka M, Salehi H, Varga B, Middendorp E, Pall O, Raabova H, Cloitre T, Cuisinier FJG, Cigler P, Nesladek M, Gergely C. Simultaneous label-free live imaging of cell nucleus and luminescent nanodiamonds. Sci Rep 2020; 10:9791. [PMID: 32555227 PMCID: PMC7299945 DOI: 10.1038/s41598-020-66593-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
In recent years, fluorescent nanodiamond (fND) particles containing nitrogen-vacancy (NV) centers gained recognition as an attractive probe for nanoscale cellular imaging and quantum sensing. For these applications, precise localization of fNDs inside of a living cell is essential. Here we propose such a method by simultaneous detection of the signal from the NV centers and the spectroscopic Raman signal from the cells to visualize the nucleus of living cells. However, we show that the commonly used Raman cell signal from the fingerprint region is not suitable for organelle imaging in this case. Therefore, we develop a method for nucleus visualization exploiting the region-specific shape of C-H stretching mode and further use k-means cluster analysis to chemically distinguish the vicinity of fNDs. Our technique enables, within a single scan, to detect fNDs, distinguish by chemical localization whether they have been internalized into cell and simultaneously visualize cell nucleus without any labeling or cell-fixation. We show for the first time spectral colocalization of unmodified high-pressure high-temperature fND probes with the cell nucleus. Our methodology can be, in principle, extended to any red- and near-infrared-luminescent cell-probes and is fully compatible with quantum sensing measurements in living cells.
Collapse
Affiliation(s)
- Michal Gulka
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium.
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01, Kladno, Czech Republic.
| | - Hamideh Salehi
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Bela Varga
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Elodie Middendorp
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Orsolya Pall
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Thierry Cloitre
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Frederic J G Cuisinier
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Milos Nesladek
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01, Kladno, Czech Republic
| | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
90
|
Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relationship between the unique characteristics of nanodiamonds (NDs) and the fluorescence properties of nitrogen-vacancy (NV) centers has lead to a tool with quantum sensing capabilities and nanometric spatial resolution; this tool is able to operate in a wide range of temperatures and pressures and in harsh chemical conditions. For the development of devices based on NDs, a great effort has been invested in researching cheap and easily scalable synthesis techniques for NDs and NV-NDs. In this review, we discuss the common fluorescent NDs synthesis techniques as well as the laser-assisted production methods. Then, we report recent results regarding the applications of fluorescent NDs, focusing in particular on sensing of the environmental parameters as well as in catalysis. Finally, we underline that the highly non-equilibrium processes occurring in the interactions of laser-materials in controlled laboratory conditions for NDs synthesis present unique opportunities for investigation of the phenomena occurring under extreme thermodynamic conditions in planetary cores or under warm dense matter conditions.
Collapse
|
91
|
|
92
|
Barbiero M, Castelletto S, Zhang Q, Chen Y, Charnley M, Russell S, Gu M. Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles. NANOSCALE 2020; 12:8847-8857. [PMID: 32254877 DOI: 10.1039/c9nr10701k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanodiamonds containing the nitrogen vacancy centre (NV) have a significant role in biosensing, bioimaging, drug delivery, and as biomarkers in fluorescence imaging, due to their photo-stability and biocompatibility. The optical read out of the NV unpaired electron spin has been used in diamond magnetometry to image living cells and magnetically labelled cells. Diamond magnetometry is mostly based on the use of bulk diamond with a large concentration of NV centres in a wide field fluorescence microscope equipped with microwave excitation. It is possible to correlate the fluorescence maps with the magnetic field maps of magnetically labelled cells with diffraction limit resolution. Nanodiamonds have not as yet been implemented to image magnetic fields within complex biological systems at the nanometre scale. Here we demonstrate the suitability of nanodiamonds to correlate the fluorescence map with the magnetic imaging map of magnetically labelled cells. Nanoscale optical images with 17 nm resolution of nanodiamonds labelling fixed cells bound to iron oxide magnetic nanoparticles are demonstrated by using a single molecule localisation microscope. Nanoscale magnetic field images of the magnetised magnetic nanoparticles spatially assigned to individual cells are superresolved by the NV centres within nanodiamonds conjugated with the magnetic nanoparticles with 20 nm resolutions. Our method offers a new platform for the super-resolution of optical magnetic imaging in biological samples conjugated with nanodiamonds and iron-oxide magnetic nanoparticles.
Collapse
Affiliation(s)
- Martina Barbiero
- Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | | | | | | | | | | | |
Collapse
|
93
|
Igarashi R, Sugi T, Sotoma S, Genjo T, Kumiya Y, Walinda E, Ueno H, Ikeda K, Sumiya H, Tochio H, Yoshinari Y, Harada Y, Shirakawa M. Tracking the 3D Rotational Dynamics in Nanoscopic Biological Systems. J Am Chem Soc 2020; 142:7542-7554. [DOI: 10.1021/jacs.0c01191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ryuji Igarashi
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- National Institute for Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1,
Inage-ku, Chiba 263-8555, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuma Sugi
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shingo Sotoma
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Institute for Protein Research (IPR), Osaka University, 3-2 Yamadaoka,
Suita-shi, Osaka 565-0871, Japan
| | - Takuya Genjo
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Yuta Kumiya
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhiro Ikeda
- Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd., 1-1-1, Koyakita, Itami, Hyogo 664-0016, Japan
| | - Hitoshi Sumiya
- Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd., 1-1-1, Koyakita, Itami, Hyogo 664-0016, Japan
| | - Hidehito Tochio
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Yohsuke Yoshinari
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshie Harada
- Institute for Protein Research (IPR), Osaka University, 3-2 Yamadaoka,
Suita-shi, Osaka 565-0871, Japan
- Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Shirakawa
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| |
Collapse
|
94
|
Nag OK, Muroski ME, Hastman DA, Almeida B, Medintz IL, Huston AL, Delehanty JB. Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS NANO 2020; 14:2659-2677. [PMID: 32078291 DOI: 10.1021/acsnano.9b10163] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bethany Almeida
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Alan L Huston
- Division of Optical Sciences, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
95
|
Single-particle spectroscopy for functional nanomaterials. Nature 2020; 579:41-50. [PMID: 32132689 DOI: 10.1038/s41586-020-2048-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022]
Abstract
Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles.
Collapse
|
96
|
Terada D, Genjo T, Segawa TF, Igarashi R, Shirakawa M. Nanodiamonds for bioapplications–specific targeting strategies. Biochim Biophys Acta Gen Subj 2020; 1864:129354. [DOI: 10.1016/j.bbagen.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
|
97
|
Wood AA, Hollenberg LCL, Scholten RE, Martin AM. Observation of a Quantum Phase from Classical Rotation of a Single Spin. PHYSICAL REVIEW LETTERS 2020; 124:020401. [PMID: 32004025 DOI: 10.1103/physrevlett.124.020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The theory of angular momentum connects physical rotations and quantum spins together at a fundamental level. Physical rotation of a quantum system will therefore affect fundamental quantum operations, such as spin rotations in projective Hilbert space, but these effects are subtle and experimentally challenging to observe due to the fragility of quantum coherence. We report on a measurement of a single-electron-spin phase shift arising directly from physical rotation, without transduction through magnetic fields or ancillary spins. This phase shift is observed by measuring the phase difference between a microwave driving field and a rotating two-level electron spin system, and it can accumulate nonlinearly in time. We detect the nonlinear phase using spin-echo interferometry of a single nitrogen-vacancy qubit in a diamond rotating at 200 000 rpm. Our measurements demonstrate the fundamental connections between spin, physical rotation, and quantum phase, and they will be applicable in schemes where the rotational degree of freedom of a quantum system is not fixed, such as spin-based rotation sensors and trapped nanoparticles containing spins.
Collapse
Affiliation(s)
- A A Wood
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - L C L Hollenberg
- School of Physics, University of Melbourne, Victoria 3010, Australia
- Center for Quantum Computation and Communication Technology, University of Melbourne, Victoria 3010, Australia
| | - R E Scholten
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - A M Martin
- School of Physics, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
98
|
Torelli MD, Nunn NA, Shenderova OA. A Perspective on Fluorescent Nanodiamond Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902151. [PMID: 31215753 PMCID: PMC6881523 DOI: 10.1002/smll.201902151] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Indexed: 05/28/2023]
Abstract
The field of fluorescent nanodiamonds (FNDs) has advanced greatly over the past few years. Though historically limited primarily to red fluorescence, the wavelengths available for nanodiamonds have increased due to continuous technical advancement. This Review summarizes the strides made in the synthesis, functionalization, and application of FNDs to bioimaging. Highlights range from super-resolution microscopy, through cellular and whole animal imaging, up to constantly emerging fields including sensing and hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Marco D. Torelli
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Nicholas A. Nunn
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Olga A. Shenderova
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| |
Collapse
|
99
|
Fujisaku T, Tanabe R, Onoda S, Kubota R, Segawa TF, So FTK, Ohshima T, Hamachi I, Shirakawa M, Igarashi R. pH Nanosensor Using Electronic Spins in Diamond. ACS NANO 2019; 13:11726-11732. [PMID: 31538479 DOI: 10.1021/acsnano.9b05342] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoscale measurements provide insight into the nano world. For instance, nanometric spatiotemporal distribution of intracellular pH is regulated by and regulates a variety of biological processes. However, there is no general method to fabricate nanoscale pH sensors. Here, we, to endow pH-sensing functions, tailor the surface properties of a fluorescent nanodiamond (FND) containing nitrogen-vacancy centers (NV centers) by coating the FND with an ionic chemical layer. The longitudinal relaxation time T1 of the electron spins in the NV centers inside a nanodiamond modified by carboxyl groups on the particle surface was found to depend on ambient pH between pH 3 and pH 7, but not between pH 7 and pH 11. Therefore, a single particle of the carboxylated nanodiamond works as a nanometer-sized pH meter within a microscopic image and directly measures the nanometric local pH environment. Moreover, the pH dependence of an FND was changed by coating it with a polycysteine layer, which contains a multitude of thiol groups with higher pKa. The polycysteine-coated nanodiamond obtained a pH dependence between pH 7 and pH 11. The pH dependence of the FND was also observed in heavy water (D2O) buffers. This indicates that the pH dependence is not caused by magnetic noise induced by 1H nuclear spin fluctuations, but by electric noise induced by ion exchanges. Via our method, the sensitive pH range of the nanodiamond pH sensor can potentially be controlled by changing the ionic layer appropriately according to the target biological phenomena.
Collapse
Affiliation(s)
- Takahiro Fujisaku
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
| | - Ryotaro Tanabe
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
| | - Shinobu Onoda
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- Takasaki Advanced Radiation Research Institute , National Institutes for Quantum and Radiological Science and Technology , 1233 Watanuki , Takasaki , Gunma 370-1292 , Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Takuya F Segawa
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Laboratory for Solid State Physics , ETH Zurich , Otto-Stern-Weg 1 , 8093 Zürich , Switzerland
| | - Frederick T-K So
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
| | - Takeshi Ohshima
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- Takasaki Advanced Radiation Research Institute , National Institutes for Quantum and Radiological Science and Technology , 1233 Watanuki , Takasaki , Gunma 370-1292 , Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering , Kyoto University , Nishikyo-Ku, Kyoto 615-8510 , Japan
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- National Institute for Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Anagawa 4-9-1 , Inage-ku, Chiba 263-8555 , Japan
- JST , PRESTO, 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
100
|
Sigaeva A, Morita A, Hemelaar SR, Schirhagl R. Nanodiamond uptake in colon cancer cells: the influence of direction and trypsin-EDTA treatment. NANOSCALE 2019; 11:17357-17367. [PMID: 31517372 DOI: 10.1039/c9nr04228h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticles are routinely used in cell biology. They deliver drugs or function as labels or sensors. For many of these applications it is essential that the nanoparticles enter the cells. While some cell types readily ingest all kinds of particles, others just don't. We report that uptake can be enhanced for some cells if the particles are administered from the basolateral side of the cells (in this case from below). Compared to apical uptake (from above), we report an 8-fold increase in the number of fluorescent nanodiamonds internalized by the colon cancer cell line HT29. Up to 96% of the cells treated by a modified protocol contain at least one nanodiamond, whereas in the control group we could observe nanodiamonds in less than half of the cells. We were also able to show that simple treatment of cell clusters with trypsin-EDTA leads to the same enhancement of the nanodiamond uptake as seeding the cells on top of the nanoparticles. Although our study is focused on nanodiamonds in HT29 cells, we believe that this method could also be applicable for other nanoparticles and cells with a specific directionality.
Collapse
Affiliation(s)
- Alina Sigaeva
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - Aryan Morita
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands. and Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah, Mada, Jl Denta 1, 55281 Yogyakarta, Indonesia
| | - Simon R Hemelaar
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - R Schirhagl
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| |
Collapse
|