51
|
Uryu H, Saeki K, Haeno H, Kapadia CD, Furudate K, Nangalia J, Chapman MS, Zhao L, Hsu JI, Zhao C, Chen S, Tanaka T, Li Z, Yang H, DiNardo C, Daver N, Pemmaraju N, Jain N, Ravandi F, Zhang J, Song X, Thompson E, Tang H, Little L, Gumbs C, Orlowski RZ, Qazilbash M, Bhalla K, Colla S, Kantarjian H, Shamanna RK, Ramos CB, Nakada D, Futreal PA, Shpall E, Goodell M, Garcia-Manero G, Takahashi K. Clonal evolution of hematopoietic stem cells after cancer chemotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595594. [PMID: 38826462 PMCID: PMC11142159 DOI: 10.1101/2024.05.23.595594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Normal hematopoietic stem and progenitor cells (HSPCs) inherently accumulate somatic mutations and lose clonal diversity with age, processes implicated in the development of myeloid malignancies 1 . The impact of exogenous stressors, such as cancer chemotherapies, on the genomic integrity and clonal dynamics of normal HSPCs is not well defined. We conducted whole-genome sequencing on 1,032 single-cell-derived HSPC colonies from 10 patients with multiple myeloma (MM), who had undergone various chemotherapy regimens. Our findings reveal that melphalan treatment distinctly increases mutational burden with a unique mutation signature, whereas other MM chemotherapies do not significantly affect the normal mutation rate of HSPCs. Among these therapy-induced mutations were several oncogenic drivers such as TET2 and PPM1D . Phylogenetic analysis showed a clonal architecture in post-treatment HSPCs characterized by extensive convergent evolution of mutations in genes such as TP53 and PPM1D . Consequently, the clonal diversity and structure of post-treatment HSPCs mirror those observed in normal elderly individuals, suggesting an accelerated clonal aging due to chemotherapy. Furthermore, analysis of matched therapy-related myeloid neoplasm (t-MN) samples, which occurred 1-8 years later, enabled us to trace the clonal origin of t-MNs to a single HSPC clone among a group of clones with competing malignant potential, indicating the critical role of secondary mutations in dictating clonal dominance and malignant transformation. Our findings suggest that cancer chemotherapy promotes an oligoclonal architecture with multiple HSPC clones possessing competing leukemic potentials, setting the stage for the selective emergence of a singular clone that evolves into t-MNs after acquiring secondary mutations. These results underscore the importance of further systematic research to elucidate the long-term hematological consequences of cancer chemotherapy.
Collapse
|
52
|
Zhang D, Zhang A, He X, Deng S. Variation in cancer risk between organs can not be explained by the degree of somatic clonal expansion. ADVANCED BIOTECHNOLOGY 2024; 2:18. [PMID: 39883325 PMCID: PMC11740857 DOI: 10.1007/s44307-024-00025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 01/31/2025]
Abstract
Somatic clonal expansion refers to the proliferation and expansion of a cell clone within a multicellular organism. Since cancer also results from the uncontrolled proliferation of few cell clones, it is generally believed that aging-associated somatic clonal expansion observed in normal tissues represents a precancerous condition. For instance, hematological malignancy is often preceded by clonal hematopoiesis. However, the precise connection between cancer and somatic clonal expansion remains elusive in solid organs. In this study, we utilized a straightforward method to assess the relative quantitative degrees of clonal expansion in nine human organs. Our findings reveal that the degree of clonal expansion varies across different organs while remaining consistent among different individuals. Contrary to the general belief, we did not identify any significant correlation between lifetime cancer risk and the degree of lifetime somatic clonal expansion. For example, the lifetime risk of colorectal cancer is approximately 20 times higher than that of esophageal cancer, yet the former exhibited the lower degree of clonal expansion than the latter. Our results suggest that somatic clonal expansion represents an evolutionary process distinct from carcinogenesis in normal tissues, providing novel perspectives on precancerous conditions.
Collapse
Affiliation(s)
- Di Zhang
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China
| | - Ao Zhang
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China
| | - Xionglei He
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China.
| | - Shanjun Deng
- State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China.
| |
Collapse
|
53
|
Abstract
Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the idea that aging and cancer share common mechanistic grounds that are referred to as 'hallmarks'. Indeed, several hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular and supracellular functions that accompanies aging produces cancer as a byproduct or 'age-associated disease'. Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an important parameter that must be considered for therapeutic decisions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France
| | - Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
54
|
Kohram M, Sanderson AE, Loui A, Thompson PV, Vashistha H, Shomar A, Oltvai ZN, Salman H. Nonlethal deleterious mutation-induced stress accelerates bacterial aging. Proc Natl Acad Sci U S A 2024; 121:e2316271121. [PMID: 38709929 PMCID: PMC11098108 DOI: 10.1073/pnas.2316271121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Random mutagenesis, including when it leads to loss of gene function, is a key mechanism enabling microorganisms' long-term adaptation to new environments. However, loss-of-function mutations are often deleterious, triggering, in turn, cellular stress and complex homeostatic stress responses, called "allostasis," to promote cell survival. Here, we characterize the differential impacts of 65 nonlethal, deleterious single-gene deletions on Escherichia coli growth in three different growth environments. Further assessments of select mutants, namely, those bearing single adenosine triphosphate (ATP) synthase subunit deletions, reveal that mutants display reorganized transcriptome profiles that reflect both the environment and the specific gene deletion. We also find that ATP synthase α-subunit deleted (ΔatpA) cells exhibit elevated metabolic rates while having slower growth compared to wild-type (wt) E. coli cells. At the single-cell level, compared to wt cells, individual ΔatpA cells display near normal proliferation profiles but enter a postreplicative state earlier and exhibit a distinct senescence phenotype. These results highlight the complex interplay between genomic diversity, adaptation, and stress response and uncover an "aging cost" to individual bacterial cells for maintaining population-level resilience to environmental and genetic stress; they also suggest potential bacteriostatic antibiotic targets and -as select human genetic diseases display highly similar phenotypes, - a bacterial origin of some human diseases.
Collapse
Affiliation(s)
- Maryam Kohram
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Amy E. Sanderson
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Alicia Loui
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | | | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| | - Aseel Shomar
- Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa32000, Israel
| | - Zoltán N. Oltvai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA15260
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA15260
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY14627
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15260
| |
Collapse
|
55
|
Zhou Y, Mo S, Cui H, Sun R, Zhang W, Zhuang X, Xu E, Li H, Cheng Y, Meng Y, Liu M, Yan T, Liu H, Zhang L, Yang B, Xi Y, Wang S, Cheng X, Li S, Liu Z, Zhan Q, Hu Z, Cui Y. Immune-tumor interaction dictates spatially directed evolution of esophageal squamous cell carcinoma. Natl Sci Rev 2024; 11:nwae150. [PMID: 38803565 PMCID: PMC11129594 DOI: 10.1093/nsr/nwae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.
Collapse
Affiliation(s)
- Yong Zhou
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Shanlan Mo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Heyang Cui
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Weimin Zhang
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Zhuang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Enwei Xu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Hongyi Li
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Yikun Cheng
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- College of Letters & Science, University of California Berkeley, Berkeley, CA 94704, USA
| | - Yongsheng Meng
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Meilin Liu
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Ting Yan
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Huijuan Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Yang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Shubin Wang
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - ShuaiCheng Li
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Yongping Cui
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
56
|
Makino K, Ishii T, Takeda H, Saito Y, Fujiwara Y, Fujimoto M, Ito T, Wakama S, Kumagai K, Munekage F, Horie H, Tomofuji K, Oshima Y, Uebayashi EY, Kawai T, Ogiso S, Fukumitsu K, Takai A, Seno H, Hatano E. Integrated analyses of the genetic and clinicopathological features of cholangiolocarcinoma: cholangiolocarcinoma may be characterized by mismatch-repair deficiency. J Pathol 2024; 263:32-46. [PMID: 38362598 DOI: 10.1002/path.6257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/25/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024]
Abstract
Cholangiolocarcinoma (CLC) is a primary liver carcinoma that resembles the canals of Hering and that has been reported to be associated with stem cell features. Due to its rarity, the nature of CLC remains unclear, and its pathological classification remains controversial. To clarify the positioning of CLC in primary liver cancers and identify characteristics that could distinguish CLC from other liver cancers, we performed integrated analyses using whole-exome sequencing (WES), immunohistochemistry, and a retrospective review of clinical information on eight CLC cases and two cases of recurrent CLC. WES demonstrated that CLC includes IDH1 and BAP1 mutations, which are characteristic of intrahepatic cholangiocarcinoma (iCCA). A mutational signature analysis showed a pattern similar to that of iCCA, which was different from that of hepatocellular carcinoma (HCC). CLC cells, including CK7, CK19, and EpCAM, were positive for cholangiocytic differentiation markers. However, the hepatocytic differentiation marker AFP and stem cell marker SALL4 were completely negative. The immunostaining patterns of CLC with CD56 and epithelial membrane antigen were similar to those of the noncancerous bile ductules. In contrast, mutational signature cluster analyses revealed that CLC formed a cluster associated with mismatch-repair deficiency (dMMR), which was separate from iCCA. Therefore, to evaluate MMR status, we performed immunostaining of four MMR proteins (PMS2, MSH6, MLH1, and MSH2) and detected dMMR in almost all CLCs. In conclusion, CLC had highly similar characteristics to iCCA but not to HCC. CLC can be categorized as a subtype of iCCA. In contrast, CLC has characteristics of dMMR tumors that are not found in iCCA, suggesting that it should be treated distinctly from iCCA. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kenta Makino
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Saito
- Laboratory of Bioengineering, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Wakama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiaki Munekage
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Horie
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiro Tomofuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Oshima
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takayuki Kawai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
57
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
58
|
Zheng W, Yuan H, Fu Y, Deng G, Zheng X, Xu L, Fan H, Jiang W, Yu X. An effective two-stage NMBzA-induced rat esophageal tumor model revealing that the FAT-Hippo-YAP1 axis drives the progression of ESCC. Cancer Lett 2024; 588:216813. [PMID: 38499266 DOI: 10.1016/j.canlet.2024.216813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Rat model of N-nitrosomethylbenzylamine (NMBzA)-induced esophageal squamous cell carcinoma (ESCC) is routinely used to study ESCC initiation, progression and new therapeutic strategies. However, the model is time-consuming and malignant tumor incidences are low. Here, we report the usage of multi-kinase inhibitor sorafenib as a tumor promoter to establish an efficient two-stage NMBzA-induced rat ESCC carcinogenesis model, resulting in increments of tumor incidences and shortened tumor formation times. By establishing the model and applying whole-genome sequencing, we discover that benign papillomas and malignant ESCCs harbor most of the "driver" events found in rat ESCCs (e.g. recurrent mutations in Ras family, the Hippo and Notch pathways and histone modifier genes) and the mutational landscapes of rat and human ESCCs overlap extensively. We generate tumor cell lines derived from NMBzA-induced papillomas and ESCCs, showing that papilloma cells retain more characteristics of normal epithelial cells than carcinoma cells, especially their exhibitions of normal rat cell karyotypes and inabilities of forming tumors in immunodeficient mice. Three-dimensional (3-D) organoid cultures and single cell RNA sequencing (scRNA-seq) indicate that, when compared to control- and papilloma-organoids, ESCC-organoids display salient abnormalities at tissue and single-cell levels. Multi-omic analyses indicate that NMBzA-induced rat ESCCs are accompanied by progressive hyperactivations of the FAT-Hippo-YAP1 axis and siRNA or inhibitors of YAP1 block the growth of rat ESCCs. Taken together, these studies provide a framework of using an effective rat ESCC model to investigate multilevel functional genomics of ESCC carcinogenesis, which justify targeting YAP1 as a therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Yuan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuxia Fu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guodong Deng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuejing Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Xu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongjun Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
59
|
Martinez P, Baghli I, Gourjon G, Seyfried TN. Mitochondrial-Stem Cell Connection: Providing Additional Explanations for Understanding Cancer. Metabolites 2024; 14:229. [PMID: 38668357 PMCID: PMC11051897 DOI: 10.3390/metabo14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial-stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses.
Collapse
Affiliation(s)
- Pierrick Martinez
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | - Ilyes Baghli
- International Society for Orthomolecular Medicine, Toronto, ON M4B 3M9, Canada;
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | | |
Collapse
|
60
|
Guo X, Bian X, Li Y, Zhu X, Zhou X. The intricate dance of tumor evolution: Exploring immune escape, tumor migration, drug resistance, and treatment strategies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167098. [PMID: 38412927 DOI: 10.1016/j.bbadis.2024.167098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Guo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaonan Bian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yitong Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
61
|
Chatsirisupachai K, de Magalhães JP. Somatic mutations in human ageing: New insights from DNA sequencing and inherited mutations. Ageing Res Rev 2024; 96:102268. [PMID: 38490496 DOI: 10.1016/j.arr.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The accumulation of somatic mutations is a driver of cancer and has long been associated with ageing. Due to limitations in quantifying mutation burden with age in non-cancerous tissues, the impact of somatic mutations in other ageing phenotypes is unclear. Recent advances in DNA sequencing technologies have allowed the large-scale quantification of somatic mutations in ageing tissues. These studies have revealed a gradual accumulation of mutations in normal tissues with age as well as a substantial clonal expansion driven mostly by cancer-related mutations. Nevertheless, it is difficult to envision how the burden and stochastic nature of age-related somatic mutations identified so far can explain most ageing phenotypes that develop gradually. Studies across species have also found that longer-lived species have lower somatic mutation rates, though these could be due to selective pressures acting on other phenotypes such as perhaps cancer. Recent studies in patients with higher somatic mutation burden and no signs of accelerated ageing further question the role of somatic mutations in ageing. Overall, with a few exceptions like cancer, recent DNA sequencing studies and inherited mutations do not support the idea that somatic mutations accumulating with age drive ageing phenotypes, and the phenotypic role, if any, of somatic mutations in ageing remains unclear.
Collapse
Affiliation(s)
- Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham, UK.
| |
Collapse
|
62
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
63
|
Ishida Y, Murata T, Kakiuchi N, Ogawa S, Kabashima K. Emergence of multiple revertant keratinocyte clones in a patient with KID syndrome. J Eur Acad Dermatol Venereol 2024; 38:e285-e287. [PMID: 37907277 DOI: 10.1111/jdv.19595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Affiliation(s)
- Y Ishida
- Department of Dermatology, Kyoto University, Kyoto, Japan
| | - T Murata
- Department of Dermatology, Hyogo Medical University, Hyogo, Japan
| | - N Kakiuchi
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - S Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - K Kabashima
- Department of Dermatology, Kyoto University, Kyoto, Japan
| |
Collapse
|
64
|
Elbadry MI, Tawfeek A, Hirano T, El-Mokhtar MA, Kenawey M, Helmy AM, Ogawa S, Mughal MZ, Nannya Y. A rare homozygous variant in TERT gene causing variable bone marrow failure, fragility fractures, rib anomalies and extremely short telomere lengths with high serum IgE. Br J Haematol 2024; 204:1086-1095. [PMID: 37926112 DOI: 10.1111/bjh.19176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
By whole exome sequencing, we identified a homozygous c.2086 C→T (p.R696C) TERT mutation in patients who present with a spectrum of variable bone marrow failure (BMF), raccoon eyes, dystrophic nails, rib anomalies, fragility fractures (FFs), high IgE level, extremely short telomere lengths (TLs), and skewed numbers of cytotoxic T cells with B and NK cytopenia. Haploinsufficiency in the other family members resulted in short TL and osteopenia. These patients also had the lowest bone mineral density Z-score compared to other BMF-patients. Danazol/zoledronic acid improved the outcomes of BMF and FFs. This causative TERT variant has been observed in one family afflicted with dyskeratosis congenita (DC), and thus, we also define a second report and new phenotype related to the variant which should be suspected in severe cases of DC with co-existent BMF, FFs, high IgE level and rib anomalies.
Collapse
Affiliation(s)
- Mahmoud I Elbadry
- Division of Haematology, Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Tawfeek
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mohamed Kenawey
- Orthopedic Surgery Department, Faculty of Medicine, Sohag University, Sohag, Egypt
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ahmed M Helmy
- Department of Internal Medicine, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Zulf Mughal
- Pediatric Bone Disorders, Al Jalila Children's Speciality Hospital, Dubai, UAE
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
65
|
Kubota Y, Viny AD. Germline predisposition for clonal hematopoiesis. Semin Hematol 2024; 61:61-67. [PMID: 38311514 PMCID: PMC11103258 DOI: 10.1053/j.seminhematol.2024.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Clonal hematopoiesis (CH) is an entity hallmarked by skewed hematopoiesis with persistent overrepresentation of cells from a common stem/progenitor lineage harboring single-nucleotide variants and/or insertions/deletions. CH is a common and age-related phenomenon that is associated with an increased risk of hematological malignancies, cardiovascular disease, and all-cause mortality. While CH is a term of the hematological aspect, there exists a complex interaction with other organ systems, especially the cardiovascular system. The strongest factor in the development of CH is aging, however, other multiple factors also affect the development of CH including lifestyle-related factors and co-morbid diseases. In recent years, germline genetic factors have been linked to CH risk. In this review, we synthesize what is currently known about how genetic variation affects the risk of CH, how this genetic architecture intersects with myeloid neoplasms, and future prospects for CH.
Collapse
Affiliation(s)
- Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | - Aaron D Viny
- Division of Hematology & Oncology, Department of Medicine, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
66
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
67
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
68
|
Okawa Y, Sasagawa S, Kato H, Johnson TA, Nagaoka K, Kobayashi Y, Hayashi A, Shibayama T, Maejima K, Tanaka H, Miyano S, Shibahara J, Nishizuka S, Hirano S, Seto Y, Iwaya T, Kakimi K, Yasuda T, Nakagawa H. Immuno-genomic analysis reveals eosinophilic feature and favorable prognosis of female non-smoking esophageal squamous cell carcinomas. Cancer Lett 2024; 581:216499. [PMID: 38013050 DOI: 10.1016/j.canlet.2023.216499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Most of esophageal squamous cell carcinoma (ESCC) develop in smoking males in Japan, but the genomic etiology and immunological characteristics of rare non-smoking female ECSS remain unclear. To elucidate the genomic and immunological features of ESCC in non-smoking females, we analyzed whole-genome or transcriptome sequencing data from 94 ESCCs, including 20 rare non-smoking female cases. In addition, 31,611 immune cells were extracted from four ESCC tissues and subject to single-cell RNA-seq. We compared their immuno-genomic and microbiome profiles between non-smoking female and smoking ESCCs. Non-smoking females showed much better prognosis. Whole-genome sequencing analysis showed no significant differences in driver genes or copy number alterations depending on smoking status. The mutational signatures specifically observed in non-smoking females ESCC could be attributed to aging. Immune profiling from RNA-seq revealed that ESCC in non-smoking females had high tumor microenvironment signatures and a high abundance of eosinophils with a favorable prognosis. Single-cell RNA-sequencing of intratumor immune cells revealed gender differences of eosinophils and their activation in female cases. ESCCs in non-smoking females have age-related mutational signatures and gender-specific tumor immune environment with eosinophils, which is likely to contribute to their favorable prognosis.
Collapse
Affiliation(s)
- Yuki Okawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroaki Kato
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Todd A Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Akimasa Hayashi
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Takahiro Shibayama
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Satoshi Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yasuyuki Seto
- Department of GI Surgery, Graduate of School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwaya
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan; Department of Immunology, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Takushi Yasuda
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
69
|
Zhang L, Hsu JI, Braekeleer ED, Chen CW, Patel TD, Martell AG, Guzman AG, Wohlan K, Waldvogel SM, Urya H, Tovy A, Callen E, Murdaugh R, Richard R, Jansen S, Vissers L, de Vries BB, Nussenzweig A, Huang S, Coarfa C, Anastas JN, Takahashi K, Vassiliou G, Goodell MA. SOD1 is a synthetic lethal target in PPM1D-mutant leukemia cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555634. [PMID: 37693622 PMCID: PMC10491179 DOI: 10.1101/2023.08.31.555634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacologic target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate the protective role of SOD1 against oxidative stress in PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Joanne I. Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
| | - Etienne D. Braekeleer
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Tajhal D. Patel
- Texas Children’s Hospital Department of Hematology/Oncology, Baylor College of Medicine, Houston, TX
| | - Alejandra G. Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Anna G. Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sarah M. Waldvogel
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Hidetaka Urya
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Rebecca Murdaugh
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Rosemary Richard
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka Vissers
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre Nussenzweig
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jamie N. Anastas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - George Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| |
Collapse
|
70
|
Tang C, Castillon VJ, Waters M, Fong C, Park T, Boscenco S, Kim S, Schultz N, Ostrovnaya I, Gusev A, Jee J, Reznik E. Obesity shapes selection for driver mutations in cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301114. [PMID: 38260500 PMCID: PMC10802644 DOI: 10.1101/2024.01.10.24301114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Obesity is a leading risk factor for cancer, but whether obesity is linked to specific genomic subtypes of cancer is unknown. Here, we examined the relationship between obesity and tumor genotype in two large clinicogenomic corpora. Obesity was associated with specific driver mutations in lung adenocarcinoma, endometrial carcinoma, and cancers of unknown primary, independent of clinical covariates and genetic ancestry. Obesity is therefore a putative driver of etiologic heterogeneity across cancers.
Collapse
Affiliation(s)
- Cerise Tang
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Venise Jan Castillon
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michele Waters
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chris Fong
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tricia Park
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sonia Boscenco
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susie Kim
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irina Ostrovnaya
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Division of Genetics, Brigham & Women's Hospital, Boston, MA
- The Broad Institute, Cambridge, MA
| | - Justin Jee
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ed Reznik
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
71
|
Liu M, Hong Y, Duan X, Zhou Q, Chen J, Liu S, Su J, Han L, Zhang J, Niu B. Unveiling the metal mutation nexus: Exploring the genomic impacts of heavy metal exposure in lung adenocarcinoma and colorectal cancer. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132590. [PMID: 37769449 DOI: 10.1016/j.jhazmat.2023.132590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Mutations that activate oncogenes and deactivate tumor suppressor genes are widely recognized as significant contributors to cancer development. We investigated relationships between heavy metal exposure and the frequencies and types of gene mutations in patients with lung adenocarcinoma (LUAD) and colorectal cancer (CRC). Plasma concentrations of arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were measured using inductively coupled plasma mass spectrometry (ICPMS), and next-generation sequencing (NGS) of 1123 cancer-related genes was performed using the tumor tissues. Through Bayesian kernel machine regression (BKMR) analysis, we found associations between the integrated concentrations of the heavy metals and the number of gene mutations, especially insertions/deletions (indels), and Pb, As, and Cd were found to be the most significant contributors to the increased mutation rates. We extracted previously established mutational signatures and observed that they exhibit significant correlations with metal exposure. Moreover, we detected substantial shifts in the mutational landscape when comparing groups with high and low metal exposures. Several frequently mutated genes displayed positive correlations with metal exposure, whereas EGFR indels showed a negative association with Cd exposure. These findings suggest that heavy metal exposure can impact genomic stability in cancer-related genes, underscoring the importance of heavy metal exposure in cancer development.
Collapse
Affiliation(s)
- Mengyuan Liu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; WillingMed Technology (Beijing) Co., Ltd, Beijing 100176, China; Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Yuting Hong
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaohong Duan
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Qiming Zhou
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Jing Chen
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Junyan Su
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Li Han
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Jiali Zhang
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science, University of the Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
72
|
Zhou Y, Yan Z, Pang Y, Jiang Y, Zhuang R, Zhang S, Nurmamat A, Xiu M, Li D, Zhao L, Liu X, Li Q, Han Y. Exploring the Multiple Roles of Notch1 in Biological Development: An Analysis and Study Based on Phylogenetics and Transcriptomics. Int J Mol Sci 2024; 25:611. [PMID: 38203782 PMCID: PMC10778765 DOI: 10.3390/ijms25010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
At present, there is a research gap concerning the specific functions and mechanisms of the Notch gene family and its signaling pathway in jawless vertebrates. In this study, we identified a Notch1 homologue (Lr. Notch1) in the Lethenteron reissneri database. Through bioinformatics analysis, we identified Lr. Notch1 as the likely common ancestor gene of the Notch gene family in higher vertebrates, indicating a high degree of conservation in the Notch gene family and its signaling pathways. To validate the biological function of Lr. Notch1, we conducted targeted silencing of Lr. Notch1 in L. reissneri and analyzed the resultant gene expression profile before and after silencing using transcriptome analysis. Our findings revealed that the silencing of Lr. Notch1 resulted in differential expression of pathways and genes associated with signal transduction, immune regulation, and metabolic regulation, mirroring the biological function of the Notch signaling pathway in higher vertebrates. This article systematically elucidated the origin and evolution of the Notch gene family while also validating the biological function of Lr. Notch1. These insights offer valuable clues for understanding the evolution of the Notch signaling pathway and establish a foundation for future research on the origin of the Notch signaling pathway, as well as its implications in human diseases and immunomodulation.
Collapse
Affiliation(s)
- Yuesi Zhou
- Key Research Base of Humanities and Social Sciences of Ministry of Education, Institute of Marine Sustainable Development, Liaoning Normal University, Dalian 116029, China;
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Zihao Yan
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ya Pang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Yao Jiang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ruyu Zhuang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Shuyuan Zhang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ayqeqan Nurmamat
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Min Xiu
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ding Li
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Liang Zhao
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Xin Liu
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qingwei Li
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglun Han
- Key Research Base of Humanities and Social Sciences of Ministry of Education, Institute of Marine Sustainable Development, Liaoning Normal University, Dalian 116029, China;
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
73
|
Cong B, Cagan RL. Cell competition and cancer from Drosophila to mammals. Oncogenesis 2024; 13:1. [PMID: 38172609 PMCID: PMC10764339 DOI: 10.1038/s41389-023-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Throughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK.
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
74
|
Shah A. Rethinking cancer initiation: The role of large-scale mutational events. Genes Chromosomes Cancer 2024; 63:e23213. [PMID: 37950638 DOI: 10.1002/gcc.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Cancer initiation is revisited in light of recent discoveries in cancer pathogenesis. Of note is the detection of mutated cancer genes in benign conditions. More significantly, somatic clones, which harbor mutations in cancer genes, arise in normal tissues from early development through adulthood, but seldom do they transform into cancer. Further, clustered mutational events-kataegis, chromothripsis and chromoplexy-are widespread in cancer, generating point mutations and chromosomal rearrangements in a single cellular catastrophe. These observations are contrary to the prevailing somatic mutation theory, which states that a cancer is caused by the gradual accumulation of mutations over time. A different perspective is proposed within the framework of Waddington's epigenetic landscape wherein tumorigenesis is viewed primarily as a disruption of cell development. Cell types are defined by their specific gene-expression profiles, determined by the gene regulatory network, and can be regarded as attractor states of the network dynamics: they represent specific, self-stabilizing patterns of gene activities across the genome. However, large-scale mutational events reshape the landscape topology, creating abnormal "unphysiological" attractors. This is the crux of the process of initiation. Initiation primes the cell for conversion into a tumor phenotype by oncogenes and tumor suppressor genes, which drive cell proliferation and clonal diversification. This view of tumorigenesis calls for a different approach to therapy.
Collapse
Affiliation(s)
- Amil Shah
- Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
75
|
Pandey M, Shah SK, Gromiha MM. Computational approaches for identifying disease-causing mutations in proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 139:141-171. [PMID: 38448134 DOI: 10.1016/bs.apcsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Advancements in genome sequencing have expanded the scope of investigating mutations in proteins across different diseases. Amino acid mutations in a protein alter its structure, stability and function and some of them lead to diseases. Identification of disease-causing mutations is a challenging task and it will be helpful for designing therapeutic strategies. Hence, mutation data available in the literature have been curated and stored in several databases, which have been effectively utilized for developing computational methods to identify deleterious mutations (drivers), using sequence and structure-based properties of proteins. In this chapter, we describe the contents of specific databases that have information on disease-causing and neutral mutations followed by sequence and structure-based properties. Further, characteristic features of disease-causing mutations will be discussed along with computational methods for identifying cancer hotspot residues and disease-causing mutations in proteins.
Collapse
Affiliation(s)
- Medha Pandey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Suraj Kumar Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
76
|
Yun JK, Kim S, An H, Lee GD, Kim HR, Kim YH, Kim DK, Park SI, Choi S, Koh Y. Pre-operative clonal hematopoiesis is related to adverse outcome in lung cancer after adjuvant therapy. Genome Med 2023; 15:111. [PMID: 38087308 PMCID: PMC10714617 DOI: 10.1186/s13073-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Clonal hematopoiesis (CH) frequently progresses after chemotherapy or radiotherapy. We evaluated the clinical impact of preoperative CH on the survival outcomes of patients with non-small cell lung cancer (NSCLC) who underwent surgical resection followed by adjuvant therapy. METHODS A total of 415 consecutive patients with NSCLC who underwent surgery followed by adjuvant therapy from 2011 to 2017 were analyzed. CH status was evaluated using targeted deep sequencing of blood samples collected before surgery. To minimize the possible selection bias between the two groups according to CH status, a propensity score matching (PSM) was adopted. Early-stage patients were further analyzed with additional matched cohort of patients who did not receive adjuvant therapy. RESULTS CH was detected in 21% (86/415) of patients with NSCLC before adjuvant therapy. Patients with CH mutations had worse overall survival (OS) than those without (hazard ratio [95% confidence interval] = 1.56 [1.07-2.28], p = 0.020), which remained significant after the multivariable analysis (1.58 [1.08-2.32], p = 0.019). Of note, the presence of CH was associated with non-cancer mortality (p = 0.042) and mortality of unknown origin (p = 0.018). In patients with stage IIB NSCLC, there was a significant interaction on OS between CH and adjuvant therapy after the adjustment with several cofactors through the multivariable analysis (HR 1.19, 95% CI 1.00-1.1.41, p = 0.041). CONCLUSIONS In resected NSCLC, existence of preoperative CH might amplify CH-related adverse outcomes through adjuvant treatments, resulting in poor survival results.
Collapse
Affiliation(s)
- Jae Kwang Yun
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sugyeong Kim
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea
| | - Hongyul An
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea
| | - Geun Dong Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Hyeong Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Dong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Seung-Il Park
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sehoon Choi
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Ulsan University College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Republic of Korea.
| | - Youngil Koh
- Genome Opinion Inc., Sungsu SKV1 Center, 1-721, 48, Achasan-Ro 17-Gil, Seongdong-Gu, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea.
| |
Collapse
|
77
|
Huang KK, Ma H, Chong RHH, Uchihara T, Lian BSX, Zhu F, Sheng T, Srivastava S, Tay ST, Sundar R, Tan ALK, Ong X, Lee M, Ho SWT, Lesluyes T, Ashktorab H, Smoot D, Van Loo P, Chua JS, Ramnarayanan K, Lau LHS, Gotoda T, Kim HS, Ang TL, Khor C, Lee JWJ, Tsao SKK, Yang WL, Teh M, Chung H, So JBY, Yeoh KG, Tan P. Spatiotemporal genomic profiling of intestinal metaplasia reveals clonal dynamics of gastric cancer progression. Cancer Cell 2023; 41:2019-2037.e8. [PMID: 37890493 PMCID: PMC10729843 DOI: 10.1016/j.ccell.2023.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/08/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. Analyzing 1,256 gastric samples (1,152 IMs) across 692 subjects from a prospective 10-year study, we identify 26 IM driver genes in diverse pathways including chromatin regulation (ARID1A) and intestinal homeostasis (SOX9). Single-cell and spatial profiles highlight changes in tissue ecology and IM lineage heterogeneity, including an intestinal stem-cell dominant cellular compartment linked to early malignancy. Expanded transcriptome profiling reveals expression-based molecular subtypes of IM associated with incomplete histology, antral/intestinal cell types, ARID1A mutations, inflammation, and microbial communities normally associated with the healthy oral tract. We demonstrate that combined clinical-genomic models outperform clinical-only models in predicting IMs likely to transform to GC. By highlighting strategies for accurately identifying IM patients at high GC risk and a role for microbial dysbiosis in IM progression, our results raise opportunities for GC precision prevention and interception.
Collapse
Affiliation(s)
- Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Haoran Ma
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Roxanne Hui Heng Chong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Tomoyuki Uchihara
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Benedict Shi Xiang Lian
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Su Ting Tay
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Raghav Sundar
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Haematology-Oncology, National University Health System, Singapore 119074, Singapore
| | - Angie Lay Keng Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Xuewen Ong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Minghui Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Duane Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Peter Van Loo
- The Francis Crick Institute, London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joy Shijia Chua
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kalpana Ramnarayanan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Louis Ho Shing Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Takuji Gotoda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hyun Soo Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Seoul, Korea
| | - Tiing Leong Ang
- Department of Gastroenterology & Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - Christopher Khor
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore 169854, Singapore
| | - Jonathan Wei Jie Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; iHealthtech, National University of Singapore, Singapore, Singapore; SynCTI, National University of Singapore, Singapore 117599, Singapore; Department of Gastroenterology & Hepatology, National University Hospital, Singapore 119074, Singapore
| | - Stephen Kin Kwok Tsao
- Department of Gastroenterology & Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Wei Lyn Yang
- Department of Gastroenterology & Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Ming Teh
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hyunsoo Chung
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Jimmy Bok Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Division of Surgical Oncology, National University Cancer Institute of Singapore (NCIS), Singapore, Singapore.
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Department of Gastroenterology & Hepatology, National University Hospital, Singapore 119074, Singapore.
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore; Singhealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore 168752, Singapore.
| |
Collapse
|
78
|
Zhang C, Jiao X, Shen L. From intestinal metaplasia to gastric cancer: Witnessing the rise of evil over time and space. Cancer Cell 2023; 41:2011-2013. [PMID: 37890491 DOI: 10.1016/j.ccell.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Intestinal metaplasia (IM) is a precancerous lesion associated with increased gastric cancer (GC) risk. However, the molecular characteristics and heterogeneity distinguishing the two stages remain unclear. Huang et al. provide a spatiotemporal insight into the transition from IM to GC, offering the potential for tailored precision prevention strategies for GC.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xi Jiao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
79
|
Chang J, Zhao X, Wang Y, Liu T, Zhong C, Lao Y, Zhang S, Liao H, Bai F, Lin D, Wu C. Genomic alterations driving precancerous to cancerous lesions in esophageal cancer development. Cancer Cell 2023; 41:2038-2050.e5. [PMID: 38039962 DOI: 10.1016/j.ccell.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) develops through a series of increasingly abnormal precancerous lesions. Previous studies have revealed the striking differences between normal esophageal epithelium and ESCC in copy number alterations (CNAs) and mutations in genes driving clonal expansion. However, due to limited data on early precancerous lesions, the timing of these transitions and which among them are prerequisites for malignant transformation remained unclear. Here, we analyze 1,275 micro-biopsies from normal esophagus, early and late precancerous lesions, and esophageal cancers to decipher the genomic alterations at each stage. We show that the frequency of TP53 biallelic inactivation increases dramatically in early precancerous lesion stage while CNAs and APOBEC mutagenesis substantially increase at late stages. TP53 biallelic loss is the prerequisite for the development of CNAs of genes in cell cycle, DNA repair, and apoptosis pathways, suggesting it might be one of the earliest steps initiating malignant transformation.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Yichen Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Yueqiong Lao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Han Liao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China; Center for Translational Cancer Research, Peking University First Hospital, Beijing 100034, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
80
|
Köhrer S, Dittrich T, Schorb M, Weinhold N, Haberbosch I, Börmel M, Pajor G, Goldschmidt H, Müller-Tidow C, Raab MS, John L, Seckinger A, Brobeil A, Dreger P, Tornóczky T, Pajor L, Hegenbart U, Schönland SO, Schwab Y, Krämer A. High-throughput electron tomography identifies centriole over-elongation as an early event in plasma cell disorders. Leukemia 2023; 37:2468-2478. [PMID: 37821581 PMCID: PMC10681902 DOI: 10.1038/s41375-023-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Plasma cell disorders are clonal outgrowths of pre-malignant or malignant plasma cells, characterized by extensive chromosomal aberrations. Centrosome abnormalities are a major driver of chromosomal instability in cancer but their origin, incidence, and composition in primary tumor cells is poorly understood. Using cutting-edge, semi-automated high-throughput electron tomography, we characterized at nanoscale 1386 centrioles in CD138pos plasma cells from eight healthy donors and 21 patients with plasma cell disorders, and 722 centrioles from different control populations. In plasma cells from healthy individuals, over-elongated centrioles accumulated with age. In plasma cell disorders, centriole over-elongation was notably frequent in early, pre-malignant disease stages, became less pronounced in overt multiple myeloma, and almost entirely disappeared in aggressive plasma cell leukemia. Centrioles in other types of patient-derived B cell neoplasms showed no over-elongation. In contrast to current belief, centriole length appears to be highly variable in long-lived, healthy plasma cells, and over-elongation and structural aberrations are common in this cell type. Our data suggest that structural centrosome aberrations accumulate with age in healthy CD138pos plasma cells and may thus play an important role in early aneuploidization as an oncogenic driver in plasma cell disorders.
Collapse
Affiliation(s)
- Sebastian Köhrer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Tobias Dittrich
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Isabella Haberbosch
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mandy Börmel
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gabor Pajor
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Pathology, University of Pécs Medical School and Clinic, Pécs, Hungary
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, GMMG-Studygroup at University of Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Marc S Raab
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Lukas John
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anja Seckinger
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School and Clinic, Pécs, Hungary
| | - László Pajor
- Department of Pathology, University of Pécs Medical School and Clinic, Pécs, Hungary
| | - Ute Hegenbart
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Stefan O Schönland
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
81
|
Usui G, Matsusaka K, Huang KK, Zhu F, Shinozaki T, Fukuyo M, Rahmutulla B, Yogi N, Okada T, Minami M, Seki M, Sakai E, Fujibayashi K, Kwok Tsao SK, Khor C, Ang TL, Abe H, Matsubara H, Fukayama M, Gunji T, Matsuhashi N, Morikawa T, Ushiku T, Yeoh KG, Tan P, Kaneda A. Integrated environmental, lifestyle, and epigenetic risk prediction of primary gastric neoplasia using the longitudinally monitored cohorts. EBioMedicine 2023; 98:104844. [PMID: 38251469 PMCID: PMC10755115 DOI: 10.1016/j.ebiom.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND DNA methylation accumulates in non-malignant gastric mucosa after exposure to pathogens. To elucidate how environmental, methylation, and lifestyle factors interplay to influence primary gastric neoplasia (GN) risk, we analyzed longitudinally monitored cohorts in Japan and Singapore. METHODS Asymptomatic subjects who underwent a gastric mucosal biopsy on the health check-up were enrolled. We analyzed the association between clinical factors and GN development using Cox hazard models. We further conducted comprehensive methylation analysis on selected tissues, including (i) mucosae from subjects developing GN later, (ii) mucosae from subjects not developing GN later, and (iii) GN tissues and surrounding mucosae. We also use the methylation data of mucosa collected in Singapore. The association between methylation and GN risk, as well as lifestyle and methylation, were analyzed. FINDINGS Among 4234 subjects, GN was developed in 77 subjects. GN incidence was correlated with age, drinking, smoking, and Helicobacter pylori (HP) status. Accumulation of methylation in biopsied gastric mucosae was predictive of higher future GN risk and shorter duration to GN incidence. Whereas methylation levels were associated with HP positivity, lifestyle, and morphological alterations, DNA methylation remained an independent GN risk factor through multivariable analyses. Pro-carcinogenic epigenetic alterations initiated by HP exposure were amplified by unfavorable but modifiable lifestyle choices. Adding DNA methylation to the model with clinical factors improved the predictive ability for the GN risk. INTERPRETATION The integration of environmental, lifestyle, and epigenetic information can provide increased resolution in the stratification of primary GN risk. FUNDING The funds are listed in Acknowledgements section.
Collapse
Affiliation(s)
- Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tomohiro Shinozaki
- Faculty of Engineering, Department of Information and Computer Technology, Tokyo University of Science, Tokyo, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norikazu Yogi
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoka Okada
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mizuki Minami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Cancer Genomics Center, Chiba University Hospital, Chiba, Japan
| | - Eiji Sakai
- Department of Gastroenterology, NTT Medical Center Tokyo, Tokyo, Japan; Division of Gastroenterology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Kazutoshi Fujibayashi
- Center for Preventive Medicine, NTT Medical Center Tokyo, Tokyo, Japan; Department of General Medicine, Juntendo University Hospital, Tokyo, Japan
| | - Stephen Kin Kwok Tsao
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Christopher Khor
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Gunji
- Center for Preventive Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | | | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore.
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Genome Institute of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan.
| |
Collapse
|
82
|
Boeke JD, Burns KH, Chiappinelli KB, Classon M, Coffin JM, DeCarvalho DD, Dukes JD, Greenbaum B, Kassiotis G, Knutson SK, Levine AJ, Nath A, Papa S, Rios D, Sedivy J, Ting DT. Proceedings of the inaugural Dark Genome Symposium: November 2022. Mob DNA 2023; 14:18. [PMID: 37990347 PMCID: PMC10664479 DOI: 10.1186/s13100-023-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.
Collapse
Affiliation(s)
- Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Marie Classon
- Pfizer Centre for Therapeutic Innovation, San Diego, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, 02111, USA
| | - Daniel D DeCarvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph D Dukes
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sarah K Knutson
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sophie Papa
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK.
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Daniel Rios
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - John Sedivy
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - David T Ting
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Nakai K, Lin H, Yamano S, Tanaka S, Kitamoto S, Saitoh H, Sakuma K, Kurauchi J, Akter E, Konno M, Ishibashi K, Kamata R, Ohashi A, Koseki J, Takahashi H, Yokoyama H, Shiraki Y, Enomoto A, Abe S, Hayakawa Y, Ushiku T, Mutoh M, Fujita Y, Kon S. Wnt activation disturbs cell competition and causes diffuse invasion of transformed cells through NF-κB-MMP21 pathway. Nat Commun 2023; 14:7048. [PMID: 37923722 PMCID: PMC10624923 DOI: 10.1038/s41467-023-42774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Normal epithelial cells exert their competitive advantage over RasV12-transformed cells and eliminate them into the apical lumen via cell competition. However, the internal or external factors that compromise cell competition and provoke carcinogenesis remain elusive. In this study, we examine the effect of sequential accumulation of gene mutations, mimicking multi-sequential carcinogenesis on RasV12-induced cell competition in intestinal epithelial tissues. Consequently, we find that the directionality of RasV12-cell extrusion in Wnt-activated epithelia is reversed, and transformed cells are delaminated into the basal lamina via non-cell autonomous MMP21 upregulation. Subsequently, diffusively infiltrating, transformed cells develop into highly invasive carcinomas. The elevated production of MMP21 is elicited partly through NF-κB signaling, blockage of which restores apical elimination of RasV12 cells. We further demonstrate that the NF-κB-MMP21 axis is significantly bolstered in early colorectal carcinoma in humans. Collectively, this study shows that cells with high mutational burdens exploit cell competition for their benefit by behaving as unfit cells, endowing them with an invasion advantage.
Collapse
Affiliation(s)
- Kazuki Nakai
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Hancheng Lin
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, 257-0015, Japan
| | - Shinya Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Sho Kitamoto
- Division of Microbiology and Immunology, The WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Hitoshi Saitoh
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Kenta Sakuma
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Junpei Kurauchi
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Eilma Akter
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Masamitsu Konno
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Ryo Kamata
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Akihiro Ohashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Sohei Abe
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shunsuke Kon
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| |
Collapse
|
84
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
85
|
Lander S, Lander E, Gibson MK. Esophageal Cancer: Overview, Risk Factors, and Reasons for the Rise. Curr Gastroenterol Rep 2023; 25:275-279. [PMID: 37812328 DOI: 10.1007/s11894-023-00899-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Esophageal cancer (EC) is a common cancer affecting many regions of the world and carries significant morbidity and mortality. In this article, we review the key risk factors and their associated impact on the changing incidence and prevalence of EC subtypes within different global regions. We also highlight potential reasons for the ever-changing epidemiology of this prevalent cancer type. RECENT FINDINGS There has been a shift in incidence of Esophageal Adenocarcinoma (AC) and Squamous Cell Carcinoma (SCC) within certain populations primarily due to an increase prevalence of primary risk factors. In Western nations, more often the United States, there has been a shift from SCC predominance to the majority of new cases of EC being adenocarcinoma. This shift within the United States has largely correlated with a rise in obesity. The prevalence of AC in Asia is also starting to rise as more countries adopt a western diet. The pathophysiology, associated risk factors, and presentation of ESCC and AC are different. This difference is seen in varying lifestyles, population health, and certain genetic risks. With further development closer analysis of primary risk factors and implementation of policies and programs that promote public health literacy, there is a potential to decrease esophageal cancer's global disease burden.
Collapse
Affiliation(s)
- Steve Lander
- Department of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN, USA.
| | - Eric Lander
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael K Gibson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
86
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
87
|
Briest F, Noerenberg D, Hennch C, Yoshida K, Hablesreiter R, Nimo J, Sasca D, Kirchner M, Mansouri L, Inoue Y, Wiegand L, Staiger AM, Casadei B, Korkolopoulou P, Weiner J, Lopez-Guillermo A, Warth A, Schneider T, Nagy Á, Klapper W, Hummel M, Kanellis G, Anagnostopoulos I, Mertins P, Bullinger L, Rosenquist R, Vassilakopoulos TP, Ott G, Ogawa S, Damm F. Frequent ZNF217 mutations lead to transcriptional deregulation of interferon signal transduction via altered chromatin accessibility in B cell lymphoma. Leukemia 2023; 37:2237-2249. [PMID: 37648814 PMCID: PMC10624633 DOI: 10.1038/s41375-023-02013-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n = 120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and aberrant differentiation. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.
Collapse
Affiliation(s)
- Franziska Briest
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Noerenberg
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Hennch
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Genome Project Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Raphael Hablesreiter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose Nimo
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Laura Wiegand
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, and University of Tuebingen, Stuttgart, Germany
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - January Weiner
- Core Unit Bioinformatics Berlin, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Ákos Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Michael Hummel
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - George Kanellis
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Ioannis Anagnostopoulos
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
88
|
Olafsson S, Rodriguez E, Lawson ARJ, Abascal F, Huber AR, Suembuel M, Jones PH, Gerdes S, Martincorena I, Weidinger S, Campbell PJ, Anderson CA. Effects of psoriasis and psoralen exposure on the somatic mutation landscape of the skin. Nat Genet 2023; 55:1892-1900. [PMID: 37884686 PMCID: PMC10632143 DOI: 10.1038/s41588-023-01545-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Somatic mutations are hypothesized to play a role in many non-neoplastic diseases. We performed whole-exome sequencing of 1,182 microbiopsies dissected from lesional and nonlesional epidermis from 111 patients with psoriasis to search for evidence that somatic mutations in keratinocytes may influence the disease process. Lesional skin remained highly polyclonal, showing no evidence of large-scale spread of clones carrying potentially pathogenic mutations. The mutation rate of keratinocytes was similarly only modestly affected by the disease. We found evidence of positive selection in previously reported driver genes NOTCH1, NOTCH2, TP53, FAT1 and PPM1D and also identified mutations in four genes (GXYLT1, CHEK2, ZFP36L2 and EEF1A1) that we hypothesize are selected for in squamous epithelium irrespective of disease status. Finally, we describe a mutational signature of psoralens-a class of chemicals previously found in some sunscreens and which are used as part of PUVA (psoralens and ultraviolet-A) photochemotherapy treatment for psoriasis.
Collapse
Affiliation(s)
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | - Melike Suembuel
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Sascha Gerdes
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | |
Collapse
|
89
|
Gao T, Kastriti ME, Ljungström V, Heinzel A, Tischler AS, Oberbauer R, Loh PR, Adameyko I, Park PJ, Kharchenko PV. A pan-tissue survey of mosaic chromosomal alterations in 948 individuals. Nat Genet 2023; 55:1901-1911. [PMID: 37904053 PMCID: PMC10838621 DOI: 10.1038/s41588-023-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
Genetic mutations accumulate in an organism's body throughout its lifetime. While somatic single-nucleotide variants have been well characterized in the human body, the patterns and consequences of large chromosomal alterations in normal tissues remain largely unknown. Here, we present a pan-tissue survey of mosaic chromosomal alterations (mCAs) in 948 healthy individuals from the Genotype-Tissue Expression project, augmenting RNA-based allelic imbalance estimation with haplotype phasing. We found that approximately a quarter of the individuals carry a clonally-expanded mCA in at least one tissue, with incidence strongly correlated with age. The prevalence and genome-wide patterns of mCAs vary considerably across tissue types, suggesting tissue-specific mutagenic exposure and selection pressures. The mCA landscapes in normal adrenal and pituitary glands resemble those in tumors arising from these tissues, whereas the same is not true for the esophagus and skin. Together, our findings show a widespread age-dependent emergence of mCAs across normal human tissues with intricate connections to tumorigenesis.
Collapse
Affiliation(s)
- Teng Gao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Maria Eleni Kastriti
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Viktor Ljungström
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andreas Heinzel
- Department of Nephrology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Rainer Oberbauer
- Department of Nephrology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA.
| |
Collapse
|
90
|
Kholodenko BN, Kolch W, Rukhlenko OS. Reversing pathological cell states: the road less travelled can extend the therapeutic horizon. Trends Cell Biol 2023; 33:913-923. [PMID: 37263821 PMCID: PMC10593090 DOI: 10.1016/j.tcb.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Acquisition of omics data advances at a formidable pace. Yet, our ability to utilize these data to control cell phenotypes and design interventions that reverse pathological states lags behind. Here, we posit that cell states are determined by core networks that control cell-wide networks. To steer cell fate decisions, core networks connecting genotype to phenotype must be reconstructed and understood. A recent method, cell state transition assessment and regulation (cSTAR), applies perturbation biology to quantify causal connections and mechanistically models how core networks influence cell phenotypes. cSTAR models are akin to digital cell twins enabling us to purposefully convert pathological states back to physiologically normal states. While this capability has a range of applications, here we discuss reverting oncogenic transformation.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
91
|
Zhou RW, Harpaz N, Itzkowitz SH, Parsons RE. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 2023; 12:48. [PMID: 37884500 PMCID: PMC10603140 DOI: 10.1038/s41389-023-00492-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Sustained chronic inflammation of the large intestine leads to tissue damage and repair, which is associated with an increased incidence of colitis-associated colorectal cancer (CAC). The genetic makeup of CAC is somewhat similar to sporadic colorectal carcinoma (sCRC), but there are differences in the sequence and timing of alterations in the carcinogenesis process. Several models have been developed to explain the development of CAC, particularly the "field cancerization" model, which proposes that chronic inflammation accelerates mutagenesis and selects for the clonal expansion of phenotypically normal, pro-tumorigenic cells. In contrast, the "Big Bang" model posits that tumorigenic clones with multiple driver gene mutations emerge spontaneously. The details of CAC tumorigenesis-and how they differ from sCRC-are not yet fully understood. In this Review, we discuss recent genetic, epigenetic, and environmental findings related to CAC pathogenesis in the past five years, with a focus on unbiased, high-resolution genetic profiling of non-dysplastic field cancerization in the context of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Royce W Zhou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Medicine Program, Internal Medicine Residency Program, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Noam Harpaz
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven H Itzkowitz
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ramon E Parsons
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
92
|
Bao C, Tourdot RW, Brunette GJ, Stewart C, Sun L, Baba H, Watanabe M, Agoston AT, Jajoo K, Davison JM, Nason KS, Getz G, Wang KK, Imamura Y, Odze R, Bass AJ, Stachler MD, Zhang CZ. Genomic signatures of past and present chromosomal instability in Barrett's esophagus and early esophageal adenocarcinoma. Nat Commun 2023; 14:6203. [PMID: 37794034 PMCID: PMC10550953 DOI: 10.1038/s41467-023-41805-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The progression of precancerous lesions to malignancy is often accompanied by increasing complexity of chromosomal alterations but how these alterations arise is poorly understood. Here we perform haplotype-specific analysis of chromosomal copy-number evolution in the progression of Barrett's esophagus (BE) to esophageal adenocarcinoma (EAC) on multiregional whole-genome sequencing data of BE with dysplasia and microscopic EAC foci. We identify distinct patterns of copy-number evolution indicating multigenerational chromosomal instability that is initiated by cell division errors but propagated only after p53 loss. While abnormal mitosis, including whole-genome duplication, underlies chromosomal copy-number changes, segmental alterations display signatures of successive breakage-fusion-bridge cycles and chromothripsis of unstable dicentric chromosomes. Our analysis elucidates how multigenerational chromosomal instability generates copy-number variation in BE cells, precipitates complex alterations including DNA amplifications, and promotes their independent clonal expansion and transformation. In particular, we suggest sloping copy-number variation as a signature of ongoing chromosomal instability that precedes copy-number complexity. These findings suggest copy-number heterogeneity in advanced cancers originates from chromosomal instability in precancerous cells and such instability may be identified from the presence of sloping copy-number variation in bulk sequencing data.
Collapse
Affiliation(s)
- Chunyang Bao
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, 10 Shattuck St, Boston, MA, 02115, USA
| | - Gregory J Brunette
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, 10 Shattuck St, Boston, MA, 02115, USA
| | - Chip Stewart
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Lili Sun
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 2 Chome-40-1 Kurokami, Chuo Ward, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation of Cancer Research, 3-8-31 Ariake, Koto, Tokyo, Japan
| | - Agoston T Agoston
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Kunal Jajoo
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Jon M Davison
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Katie S Nason
- Department of Surgery, Baystate Medical Center, University of Massachusetts Medical School, 759 Chestnut St, Springfield, MA, 01107, USA
| | - Gad Getz
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Kenneth K Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation of Cancer Research, 3-8-31 Ariake, Koto, Tokyo, Japan
| | - Robert Odze
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
- Department of Pathology and Lab Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA.
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| | - Matthew D Stachler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA.
- Department of Pathology, University of California, San Francisco. 513 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA.
| |
Collapse
|
93
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
94
|
Cortés-López M, Chamely P, Hawkins AG, Stanley RF, Swett AD, Ganesan S, Mouhieddine TH, Dai X, Kluegel L, Chen C, Batta K, Furer N, Vedula RS, Beaulaurier J, Drong AW, Hickey S, Dusaj N, Mullokandov G, Stasiw AM, Su J, Chaligné R, Juul S, Harrington E, Knowles DA, Potenski CJ, Wiseman DH, Tanay A, Shlush L, Lindsley RC, Ghobrial IM, Taylor J, Abdel-Wahab O, Gaiti F, Landau DA. Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths. Cell Stem Cell 2023; 30:1262-1281.e8. [PMID: 37582363 PMCID: PMC10528176 DOI: 10.1016/j.stem.2023.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.
Collapse
Affiliation(s)
- Mariela Cortés-López
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Paulina Chamely
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Allegra G Hawkins
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariel D Swett
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Saravanan Ganesan
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tarek H Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies Inc., New York, NY, USA
| | - Lloyd Kluegel
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Celine Chen
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kiran Batta
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Nili Furer
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel
| | - Rahul S Vedula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Scott Hickey
- Oxford Nanopore Technologies Inc., San Francisco, CA, USA
| | - Neville Dusaj
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gavriel Mullokandov
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Adam M Stasiw
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jiayu Su
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ronan Chaligné
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sissel Juul
- Oxford Nanopore Technologies Inc., New York, NY, USA
| | | | - David A Knowles
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA
| | - Catherine J Potenski
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel H Wiseman
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Amos Tanay
- Weizmann Institute of Science, Department of Computer Science and Applied Mathematics, Rehovot, Israel
| | - Liran Shlush
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel
| | - Robert C Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Federico Gaiti
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada; University of Toronto, Medical Biophysics, Toronto, ON, Canada.
| | - Dan A Landau
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
95
|
Johnson B, Shuai Y, Schweinsberg J, Curtius K. cloneRate: fast estimation of single-cell clonal dynamics using coalescent theory. Bioinformatics 2023; 39:btad561. [PMID: 37699006 PMCID: PMC10534056 DOI: 10.1093/bioinformatics/btad561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
MOTIVATION While evolutionary approaches to medicine show promise, measuring evolution itself is difficult due to experimental constraints and the dynamic nature of body systems. In cancer evolution, continuous observation of clonal architecture is impossible, and longitudinal samples from multiple timepoints are rare. Increasingly available DNA sequencing datasets at single-cell resolution enable the reconstruction of past evolution using mutational history, allowing for a better understanding of dynamics prior to detectable disease. There is an unmet need for an accurate, fast, and easy-to-use method to quantify clone growth dynamics from these datasets. RESULTS We derived methods based on coalescent theory for estimating the net growth rate of clones using either reconstructed phylogenies or the number of shared mutations. We applied and validated our analytical methods for estimating the net growth rate of clones, eliminating the need for complex simulations used in previous methods. When applied to hematopoietic data, we show that our estimates may have broad applications to improve mechanistic understanding and prognostic ability. Compared to clones with a single or unknown driver mutation, clones with multiple drivers have significantly increased growth rates (median 0.94 versus 0.25 per year; P = 1.6×10-6). Further, stratifying patients with a myeloproliferative neoplasm (MPN) by the growth rate of their fittest clone shows that higher growth rates are associated with shorter time to MPN diagnosis (median 13.9 versus 26.4 months; P = 0.0026). AVAILABILITY AND IMPLEMENTATION We developed a publicly available R package, cloneRate, to implement our methods (Package website: https://bdj34.github.io/cloneRate/). Source code: https://github.com/bdj34/cloneRate/.
Collapse
Affiliation(s)
- Brian Johnson
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Yubo Shuai
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States
| | - Jason Schweinsberg
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
- VA San Diego Healthcare System, San Diego, CA 92161, United States
| |
Collapse
|
96
|
Marongiu F, Cheri S, Laconi E. Clones of aging: When better fitness can be dangerous. Eur J Cell Biol 2023; 102:151340. [PMID: 37423036 DOI: 10.1016/j.ejcb.2023.151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
The biological and clinical significance of aberrant clonal expansions in aged tissues is being intensely discussed. Evidence is accruing that these clones often result from the normal dynamics of cell turnover in our tissues. The aged tissue microenvironment is prone to favour the emergence of specific clones with higher fitness partly because of an overall decline in cell intrinsic regenerative potential of surrounding counterparts. Thus, expanding clones in aged tissues need not to be mechanistically associated with the development of cancer, albeit this is a possibility. We suggest that growth pattern is a critical phenotypic attribute that impacts on the fate of such clonal proliferations. The acquisition of a better proliferative fitness, coupled with a defect in tissue pattern formation, could represent a dangerous mix setting the stage for their evolution towards neoplasia.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
97
|
Mentis AFA, Papavassiliou KA, Papavassiliou AG. Do 'cancer mutations' stand only for cancer? Translational and clinical implications. Trends Mol Med 2023; 29:684-686. [PMID: 37414648 DOI: 10.1016/j.molmed.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
DNA mutations represent a hallmark of cancer. However, next-generation sequencing (NGS) approaches have revealed that similar somatic mutations are present in healthy tissues as well as in those of several diseases, aging, abnormal vascular formation, and in placental development. These findings call for a reappraisal of whether such mutations are pathognomonic for cancer and provide further mechanistic, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
98
|
Ng AS, Chan DKH. Commonalities and differences in the mutational signature and somatic driver mutation landscape across solid and hollow viscus organs. Oncogene 2023; 42:2713-2724. [PMID: 37573406 PMCID: PMC10491491 DOI: 10.1038/s41388-023-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Advances in sequencing have revealed a highly variegated landscape of mutational signatures and somatic driver mutations in a range of normal tissues. Normal tissues accumulate mutations at varying rates ranging from 11 per cell per year in the liver, to 1879 per cell per year in the bladder. In addition, some normal tissues are also comprised of a large proportion of cells which possess driver mutations while appearing phenotypically normal, as in the oesophagus where a majority of cells harbour driver mutations. Individual tissue proliferation and mutation rate, unique mutagenic stimuli, and local tissue architecture contribute to this highly variegated landscape which confounds the functional characterization of driver mutations found in normal tissue. In particular, our understanding of the relationship between normal tissue somatic mutations and tumour initiation or future cancer risk remains poor. Here, we describe the mutational signatures and somatic driver mutations in solid and hollow viscus organs, highlighting unique characteristics in a tissue-specific manner, while simultaneously seeking to describe commonalities which can bring forward a basic unified theory on the role of these driver mutations in tumour initiation. We discuss novel findings which can be used to inform future research in this field.
Collapse
Affiliation(s)
- Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dedrick Kok Hong Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Division of Colorectal Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
99
|
Akizue N, Okimoto K, Hirotsu Y, Amemiya K, Kaneko T, Ohta Y, Taida T, Saito K, Matsumura T, Nishimura M, Matsushita K, Mochizuki H, Chiba T, Arai M, Kato J, Omata M, Kato N. Carcinogenic potential in regenerated mucosa after endoscopic resection of esophageal squamous cell carcinoma. J Gastroenterol Hepatol 2023; 38:1546-1551. [PMID: 37194195 DOI: 10.1111/jgh.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIM Little is known about genetic mutations in the regenerated mucosa (RM) after endoscopic resection (ER) of esophageal carcinoma. Thus, this study investigates the status of genetic variation in RM after ER of esophageal squamous cell carcinoma (ESCC). METHODS The study cohort included 19 patients with ESCC. We used an esophageal carcinoma panel to identify target sequences for squamous cell carcinoma (SCC), background mucosa (BM), and RM after ER of ESCC. We used OncoKB to check whether each mutation was a putative driver. RESULTS We identified 77 mutations of 32 genes in SCC, 133 mutations of 34 genes in BM, and 100 mutations of 29 genes in RM. Putative driver mutations were identified in 20 mutations in 14 cases in SCC, 16 mutations in 10 cases in BM, and 7 mutations in 11 cases in RM. The rate of putative driver mutations to total mutations was significantly lower in RM (26% in SCC vs 12% in BM vs 7% in RM, P = 0.009). Additionally, the rate of cases with TP53 putative driver mutations was significantly lower in RM (63% in SCC vs 37% in BM vs 16% in RM, P = 0.011). The percentage of putative driver mutations and the percentage of cases with a putative driver of TP53 were significantly lower in RM. CONCLUSION Esophageal RM after ER of ESCC could have a lower risk of carcinogenesis.
Collapse
Affiliation(s)
- Naoki Akizue
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenichiro Okimoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Japan
| | - Tatsuya Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Taida
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keiko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoi Nishimura
- Division of Clinical Genetics and Proteomics, Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of Clinical Genetics and Proteomics, Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makoto Arai
- Department of Gastroenterology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Prefectural Central Hospital, Kofu, Japan
- Tokyo University, Tokyo, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
100
|
Liu X, Zhao S, Wang K, Zhou L, Jiang M, Gao Y, Yang R, Yan S, Zhang W, Lu B, Liu F, Zhao R, Liu W, Zhang Z, Liu K, Li X, Dong Z. Spatial transcriptomics analysis of esophageal squamous precancerous lesions and their progression to esophageal cancer. Nat Commun 2023; 14:4779. [PMID: 37553345 PMCID: PMC10409784 DOI: 10.1038/s41467-023-40343-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Esophageal squamous precancerous lesions (ESPL) are the precursors of esophageal squamous cell carcinoma (ESCC) including low-grade and high-grade intraepithelial neoplasia. Due to the absence of molecular indicators, which ESPL will eventually develop into ESCC and thus should be treated is not well defined. Indicators, for predicting risks of ESCC at ESPL stages, are an urgent need. We perform spatial whole-transcriptome atlas analysis, which can eliminate other tissue interference by sequencing the specific ESPL regions. In this study, the expression of TAGLN2 significantly increases, while CRNN expression level decreases along the progression of ESCC. Additionally, TAGLN2 protein level significantly increases in paired after-progression tissues compared with before-progression samples, while CRNN expression decreases. Functional studies suggest that TAGLN2 promotes ESCC progression, while CRNN inhibits it by regulating cell proliferation. Taken together, TAGLN2 and CRNN are suggested as candidate indicators for the risk of ESCC at ESPL stages.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Liting Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Jiang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yunfeng Gao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ran Yang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Shiwen Yan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wenting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Zihan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|