51
|
α-Mangostin induces mitochondrial dependent apoptosis in human hepatoma SK-Hep-1 cells through inhibition of p38 MAPK pathway. Apoptosis 2013; 18:1548-60. [DOI: 10.1007/s10495-013-0888-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
52
|
Chen RM, Tai YT, Chen TG, Lin TH, Chang HC, Chen TL, Wu GJ. Propofol protects against nitrosative stress-induced apoptotic insults to cerebrovascular endothelial cells via an intrinsic mitochondrial mechanism. Surgery 2013; 154:58-68. [DOI: 10.1016/j.surg.2013.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
|
53
|
Smith F, Hu D, Young NM, Lainoff AJ, Jamniczky HA, Maltepe E, Hallgrimsson B, Marcucio RS. The effect of hypoxia on facial shape variation and disease phenotypes in chicken embryos. Dis Model Mech 2013; 6:915-24. [PMID: 23592613 PMCID: PMC3701211 DOI: 10.1242/dmm.011064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Craniofacial anomalies can arise from both genetic and environmental factors, including prenatal hypoxia. Recent clinical evidence correlates hypoxia to craniofacial malformations. However, the mechanisms by which hypoxia mediates these defects are not yet understood. We examined the cellular mechanisms underlying malformations induced by hypoxia using a chicken (Gallus gallus) embryo model. Eggs were incubated in either hypoxic (7, 9, 11, 13, 15, 17 or 19% O2) or normoxic (21% O2) conditions. Embryos were photographed for morphological analysis at days 3-6. For analysis of skeletal development, 13-day embryos were cleared and stained with alcian blue and alizarin red for cartilage and bone, respectively. Quantitative analysis of facial shape variation was performed on images of embryos via geometric morphometrics. Early-stage embryos (day 2) were analyzed for apoptosis via whole-mount and section TUNEL staining and immunostaining for cleaved caspase-3, whereas later-stage embryos (days 4-6) were sectioned in paraffin for analysis of cell proliferation (BrdU), apoptosis (TUNEL) and metabolic stress (phospho-AMPK). Results demonstrate that survival is reduced in a dose-dependent manner. Hypoxic embryos displayed a spectrum of craniofacial anomalies, from mild asymmetry and eye defects to more severe frontonasal and cephalic anomalies. Skull bone development was delayed in hypoxic embryos, with some skeletal defects observed. Morphometric analysis showed facial shape variation relative to centroid size and age in hypoxic groups. Hypoxia disrupted cell proliferation and, in early-stage embryos, caused apoptosis of neural crest progenitor cells. Hypoxic embryos also displayed an increased metabolic stress response. These results indicate that hypoxia during early embryonic craniofacial development might induce cellular oxidative stress, leading to apoptosis of the neural crest progenitor cells that are crucial to normal craniofacial morphogenesis.
Collapse
Affiliation(s)
- Francis Smith
- Graduate Program in Oral and Craniofacial Sciences, The University of California San Francisco, School of Dentistry, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int 2013; 84:138-48. [PMID: 23466994 PMCID: PMC3686831 DOI: 10.1038/ki.2013.68] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 12/10/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
Bax and Bak, two pro-apoptotic Bcl-2 family proteins, have been implicated in acute kidney injury following renal ischemia/reperfusion; however, definitive evidence for a role of these genes in the disease process is lacking. Here we first examined two Bax-deficient mouse models and found that only conditional Bax-deletion specifically from proximal tubules could ameliorate ischemic acute kidney injury. Global (whole mouse) knockout of Bax enhanced neutrophil infiltration without significant effect on kidney injury. In contrast, global knockout of Bak protected mice from ischemic acute kidney injury with improved renal function. Interestingly, in these models, Bax or Bak knockout attenuated renal tubular cell apoptosis without significantly affecting necrotic tubular damage. Cytochrome c release in ischemic acute kidney injury was also suppressed in conditional Bax or global Bak-knockout mice. In addition, Bak deficiency prevented mitochondrial fragmentation in ischemic acute kidney injury. Thus, our gene-knockout studies support a critical role of Bax and Bak in tubular cell apoptosis in ischemic acute kidney. Furthermore, necrosis and apoptosis have distinguishable regulatory functions.
Collapse
|
55
|
Altman BJ, Rathmell JC. Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol 2012; 4:a008763. [PMID: 22952396 DOI: 10.1101/cshperspect.a008763] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth factors and oncogenic kinases play important roles in stimulating cell growth during development and transformation. These processes have significant energetic and synthetic requirements and it is apparent that a central function of growth signals is to promote glucose metabolism to support these demands. Because metabolic pathways represent a fundamental aspect of cell proliferation and survival, there is considerable interest in targeting metabolism as a means to eliminate cancer. A challenge, however, is that molecular links between metabolic stress and cell death are poorly understood. Here we review current literature on how cells cope with metabolic stress and how autophagy, apoptosis, and necrosis are tightly linked to cell metabolism. Ultimately, understanding of the interplay between nutrients, autophagy, and cell death will be a key component in development of new treatment strategies to exploit the altered metabolism of cancer cells.
Collapse
Affiliation(s)
- Brian J Altman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
56
|
Estrogen receptor-beta mediates the protective effects of aromatase induction in the MMTV-Her-2/neu x aromatase double transgenic mice. Discov Oncol 2012; 3:26-36. [PMID: 22006184 DOI: 10.1007/s12672-011-0083-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancers amplified for the tyrosine kinase receptor Her-2/neu constitute ~30% of advanced breast cancer cases, and are characterized by hormone independence and aggressive growth, implicating this pathway in breast oncogenesis. The induction of Her-2/neu leads to tumor development in 60% of transgenic mice. We have previously examined the effects of estrogen in the MMTV-Her-2/neu background by generating the MMTV-Her-2/neu x aromatase double transgenic mouse strain. MMTV-Her-2/neu x aromatase mice developed fewer mammary tumors than the Her-2/neu parental strain. Our present data show the induction of several estrogen-related genes, including the tumor suppressors BRCA1 and p53, and a decrease in several angiogenic factors. The phosphorylated forms of MAPK p42/44 and AKT were lower in the MMTV-Her-2/neu x aromatase double transgenic mice compared to the MMTV-Her-2/neu parental strain; conversely, phospho-p38 levels were higher in the double transgenic strain. The ERβ-selective antagonist THC reversed these changes. The regulation of these factors by ERβ was confirmed in clones of MCF7 breast cancer cells overexpressing Her-2/neu in combination with ERβ, suggesting that ERβ may play a direct role in regulating MAPK and AKT pathways. In summary, the data suggest that ERβ may play a major role in decreasing tumorigenesis and that it may affect breast cancer cell proliferation and survival by altering MAPK and AKT activation as well as modulation of tumor suppressor and angiogenesis factors. Treatment with selective ERβ agonist may provide therapeutic advantages for the treatment and prevention of breast cancer.
Collapse
|
57
|
An YT, Zhu P, Zhong Y, Sheng YC, Zhao Z, Min Y, Xia YY. A neuroprotective mechanism of YGY-E in cerebral ischemic injury in rats. CNS Neurosci Ther 2012; 18:14-20. [PMID: 22280158 DOI: 10.1111/j.1755-5949.2011.00277.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS To investigate the anticerebral ischemic properties of YGY-E (apigenin-7-O-β-D-glucopyranosy l-4'-O-α-L-rhamnopy-ranosid, a flavonoid glycoside extracted from plant phoenix-tail fern), focusing on its effects on neuronal apoptosis. METHODS In vitro YGY-E treatment was examined in primary cultured rat hippocampal neurons subjected to hypoxia-reoxygenation (H-R) injury. In addition, in vivo effects of YGY-E on neuronal apoptosis were measured by Hoechst staining and in situ DNA end labeling (TUNEL). Finally, B cell lymphoma/lewkmia-2 (Bcl-2) level in ischemic rat brain tissue was evaluated with immunohistochemistry and western blot analyses. RESULTS In vitro YGY-E (50-100 μg/mL) treatment increased the survival rate compared to that of the vehicle-treated group (P < 0.05 and P < 0.01, respectively). In in vivo experiments, YGY-E (2.5-10 mg/kg) decreased the percentage of apoptotic neurons (P < 0.01), increased Bcl-2 (P < 0.01) in ischemic rat brain tissue. These effects were dose dependent. CONCLUSIONS Our findings indicate that YGY-E's neuroprotective effects may be because of its inhibition of neuronal apoptosis by increasing Bcl-2 expression.
Collapse
Affiliation(s)
- Yong-Tong An
- State Key Laboratory of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China
| | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
59
|
Song XF, Ren H, Andreasen A, Thomsen JS, Zhai XY. Expression of Bcl-2 and Bax in mouse renal tubules during kidney development. PLoS One 2012; 7:e32771. [PMID: 22389723 PMCID: PMC3289675 DOI: 10.1371/journal.pone.0032771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 12/20/2022] Open
Abstract
Bcl-2 and Bax play an important role in apoptosis regulation, as well as in cell adhesion and migration during kidney morphogenesis, which is structurally and functionally related to mitochondria. In order to elucidate the role of Bcl-2 and Bax during kidney development, it is essential to establish the exact location of their expression in the kidney. The present study localized their expression during kidney development. Kidneys from embryonic (E) 16-, 17-, 18-day-old mouse fetuses, and postnatal (P) 1-, 3-, 5-, 7-, 14-, 21-day-old pups were embedded in Epon. Semi-thin serial sections from two E17 kidneys underwent computer assisted 3D tubule tracing. The tracing was combined with a newly developed immunohistochemical technique, which enables immunohistochemistry on glutaraldehyde fixated plastic embedded sections. Thereby, the microstructure could be described in detail, and the immunochemistry can be performed using exactly the same sections. The study showed that Bcl-2 and Bax were strongly expressed in mature proximal convoluted tubules at all time points, less strongly expressed in proximal straight tubules, and only weakly in immature proximal tubules and distal tubules. No expression was detected in ureteric bud and other earlier developing structures, such as comma bodies, S shaped bodies, glomeruli, etc. Tubules expressing Bcl-2 only were occasionally observed. The present study showed that, during kidney development, Bcl-2 and Bax are expressed differently in the proximal and distal tubules, although these two tubule segments are almost equally equipped with mitochondria. The functional significance of the different expression of Bcl-2 and Bax in proximal and distal tubules is unknown. However, the findings of the present study suggest that the mitochondrial function differs between mature proximal tubules and in the rest of the tubules. The function of Bcl-2 and Bax during tubulogenesis still needs to be investigated.
Collapse
Affiliation(s)
- Xiao-Feng Song
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shen Yang, Liao Ning, China
- Department of Histology and Embryology, Liao Ning Medical College, Jin Zhou, Liao Ning, China
| | - Hao Ren
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shen Yang, Liao Ning, China
| | - Arne Andreasen
- Department of Anatomy, Deaprtment of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Xiao-Yue Zhai
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shen Yang, Liao Ning, China
- Institute of Nephropathology, China Medical University, Shen Yang, Liao Ning, China
- * E-mail:
| |
Collapse
|
60
|
Gall JM, Wang Z, Liesa M, Molina A, Havasi A, Schwartz JH, Shirihai O, Borkan SC, Bonegio RGB. Role of mitofusin 2 in the renal stress response. PLoS One 2012; 7:e31074. [PMID: 22292091 PMCID: PMC3266928 DOI: 10.1371/journal.pone.0031074] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022] Open
Abstract
The role of mitofusin 2 (MFN2), a key regulator of mitochondrial morphology and function in the renal stress response is unknown. To assess its role, the MFN2 floxed gene was conditionally deleted in the kidney of mice (MFN2 cKO) by Pax2 promoter driven Cre expression (Pax2Cre). MFN2 cKO caused severe mitochondrial fragmentation in renal epithelial cells that are critical for normal kidney tubular function. However, despite a small (20%) decrease in nephron number, newborn cKO pups had organ or tubular function that did not differ from littermate Cre-negative pups. MFN2 deficiency in proximal tubule epithelial cells in primary culture induced mitochondrial fragmentation but did not significantly alter ATP turnover, maximal mitochondrial oxidative reserve capacity, or the low level of oxygen consumption during cyanide exposure. MFN2 deficiency also did not increase apoptosis of tubule epithelial cells under non-stress conditions. In contrast, metabolic stress caused by ATP depletion exacerbated mitochondrial outer membrane injury and increased apoptosis by 80% in MFN2 deficient vs. control cells. Despite similar stress-induced Bax 6A7 epitope exposure in MFN2 deficient and control cells, MFN2 deficiency significantly increased mitochondrial Bax accumulation and was associated with greater release of both apoptosis inducing factor and cytochrome c. In conclusion, MFN2 deficiency in the kidney causes mitochondrial fragmentation but does not affect kidney or tubular function during development or under non-stress conditions. However, MFN2 deficiency exacerbates renal epithelial cell injury by promoting Bax-mediated mitochondrial outer membrane injury and apoptosis.
Collapse
Affiliation(s)
- Jonathan M Gall
- Renal Section, Boston Medical Center, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lin JW, Chen JT, Hong CY, Lin YL, Wang KT, Yao CJ, Lai GM, Chen RM. Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol 2012; 14:302-14. [PMID: 22259050 DOI: 10.1093/neuonc/nor217] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroblastomas, an embryonic cancer of the sympathetic nervous system, often occur in young children. Honokiol, a small-molecule polyphenol, has multiple therapeutic effects and pharmacological activities. This study was designed to evaluate whether honokiol could pass through the blood-brain barrier (BBB) and induce death of neuroblastoma cells and its possible mechanisms. Primary cerebral endothelial cells (CECs) prepared from mouse brain capillaries were cultured at a high density for 4 days, and these cells formed compact morphologies and expressed the ZO-1 tight-junction protein. A permeability assay showed that the CEC-constructed barrier obstructed the passing of FITC-dextran. Analyses by high-performance liquid chromatography and the UV spectrum revealed that honokiol could traverse the CEC-built junction barrier and the BBB of ICR mice. Exposure of neuroblastoma neuro-2a cells and NB41A3 cells to honokiolinduced cell shrinkage and decreased cell viability. In parallel, honokiol selectively induced DNA fragmentation and cell apoptosis rather than cell necrosis. Sequential treatment of neuro-2a cells with honokiol increased the expression of the proapoptotic Bax protein and its translocation from the cytoplasm to mitochondria. Honokiol successively decreased the mitochondrial membrane potential but increased the release of cytochrome c from mitochondria. Consequently, honokiol induced cascade activation of caspases-9, -3, and -6. In comparison, reducing caspase-6 activity by Z-VEID-FMK, an inhibitor of caspase-6, simultaneously attenuated honokiol-induced DNA fragmentation and cell apoptosis. Taken together, this study showed that honokiol can pass through the BBB and induce apoptotic insults to neuroblastoma cells through a Bax-mitochondrion-cytochrome c-caspase protease pathway. Therefore, honokiol may be a potential candidate drug for treating brain tumors.
Collapse
Affiliation(s)
- Jia-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing St, Taipei 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Bae EH, Kim IJ, Joo SY, Kim EY, Kim CS, Choi JS, Ma SK, Kim SH, Lee JU, Kim SW. Renoprotective Effects of Sildenafil in DOCA-Salt Hypertensive Rats. ACTA ACUST UNITED AC 2012; 36:248-57. [DOI: 10.1159/000343414] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 11/19/2022]
|
63
|
Yamaguchi R, Janssen E, Perkins G, Ellisman M, Kitada S, Reed JC. Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS One 2011; 6:e24102. [PMID: 21949692 PMCID: PMC3176271 DOI: 10.1371/journal.pone.0024102] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 07/31/2011] [Indexed: 01/30/2023] Open
Abstract
As single agents, ABT-263 and ABT-737 (ABT), molecular antagonists of the Bcl-2 family, bind tightly to Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1, and induce apoptosis only in limited cell types. The compound 2-deoxyglucose (2DG), in contrast, partially blocks glycolysis, slowing cell growth but rarely causing cell death. Injected into an animal, 2DG accumulates predominantly in tumors but does not harm other tissues. However, when cells that were highly resistant to ABT were pre-treated with 2DG for 3 hours, ABT became a potent inducer of apoptosis, rapidly releasing cytochrome c from the mitochondria and activating caspases at submicromolar concentrations in a Bak/Bax-dependent manner. Bak is normally sequestered in complexes with Mcl-1 and Bcl-xL. 2DG primes cells by interfering with Bak-Mcl-1 association, making it easier for ABT to dissociate Bak from Bcl-xL, freeing Bak to induce apoptosis. A highly active glucose transporter and Bid, as an agent of the mitochondrial apoptotic signal amplification loop, are necessary for efficient apoptosis induction in this system. This combination treatment of cancer-bearing mice was very effective against tumor xenograft from hormone-independent highly metastasized chemo-resistant human prostate cancer cells, suggesting that the combination treatment may provide a safe and effective alternative to genotoxin-based cancer therapies.
Collapse
Affiliation(s)
- Ryuji Yamaguchi
- Program of Cell Death and Apoptosis, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | |
Collapse
|
64
|
Mason EF, Rathmell JC. Cell metabolism: an essential link between cell growth and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:645-54. [PMID: 20816705 PMCID: PMC3010257 DOI: 10.1016/j.bbamcr.2010.08.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 12/12/2022]
Abstract
Growth factor-stimulated or cancerous cells require sufficient nutrients to meet the metabolic demands of cell growth and division. If nutrients are insufficient, metabolic checkpoints are triggered that lead to cell cycle arrest and the activation of the intrinsic apoptotic cascade through a process dependent on the Bcl-2 family of proteins. Given the connections between metabolism and apoptosis, the notion of targeting metabolism to induce cell death in cancer cells has recently garnered much attention. However, the signaling pathways by which metabolic stresses induce apoptosis have not as of yet been fully elucidated. Thus, the best approach to this promising therapeutic avenue remains unclear. This review will discuss the intricate links between metabolism, growth, and intrinsic apoptosis and will consider ways in which manipulation of metabolism might be exploited to promote apoptotic cell death in cancer cells. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Emily F Mason
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
65
|
Brooks C, Cho SG, Wang CY, Yang T, Dong Z. Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am J Physiol Cell Physiol 2010; 300:C447-55. [PMID: 21160028 DOI: 10.1152/ajpcell.00402.2010] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown mitochondrial fragmentation during cell stress and have suggested a role for the morphological change in mitochondrial injury and ensuing apoptosis. However, the underlying mechanism remains elusive. Here we demonstrate that mitochondrial fragmentation facilitates Bax insertion and activation in mitochondria, resulting in the release of apoptogenic factors. In HeLa cells, overexpression of mitofusins attenuated mitochondrial fragmentation during cisplatin- and azide-induced cell injury, which was accompanied by less apoptosis and less cytochrome c release from mitochondria. Similar effects were shown by inhibiting the mitochondrial fission protein Drp1 with a dominant negative mutant (dn-Drp1). Mitofusins and dn-Drp1 did not seem to significantly affect Bax translocation/accumulation to mitochondria; however, they blocked Bax insertion and activation in mitochondrial membrane. Consistently, in rat kidney proximal tubular cells, small interfering RNA knockdown of Drp1 prevented mitochondrial fragmentation during azide-induced ATP depletion, which was accompanied by less Bax activation, insertion, and oligomerization in mitochondria. These cells released less cytochrome c and AIF from mitochondria and showed significantly lower apoptosis. Finally, mitofusin-null mouse embryonic fibroblasts (MEF) had fragmented mitochondria. These MEFs were more sensitive to cisplatin-induced Bax activation, release of cytochrome c, and apoptosis. Together, this study provides further support for a role of mitochondrial fragmentation in mitochondrial injury and apoptosis. Mechanistically, mitochondrial fragmentation may sensitize the cells to Bax insertion and activation in mitochondria, facilitating the release of apoptogenic factors and consequent apoptosis.
Collapse
Affiliation(s)
- Craig Brooks
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
66
|
Wang Y, Yang B, Wu C, Zheng Z, Yuan Y, Hu Z, Ma H, Li S, Liao M, Wang Q. Plasma and liver proteomic analysis of 3Z-3-[(1H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one-induced hepatotoxicity in Wistar rats. Proteomics 2010; 10:2927-41. [PMID: 20544730 DOI: 10.1002/pmic.200900699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
3Z-3-[(1H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one (Z24), a synthetic anti-angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2-DE and MALDI-TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP-nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid beta-oxidation, and oxidative phosphorylation is a potential mechanism of Z24-induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis-mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, P R China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lin YL, Chang HC, Chen TL, Chang JH, Chiu WT, Lin JW, Chen RM. Resveratrol protects against oxidized LDL-induced breakage of the blood-brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J Nutr 2010; 140:2187-92. [PMID: 20980646 DOI: 10.3945/jn.110.123505] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cerebrovascular endothelial cells (CEC) comprise the blood-brain barrier (BBB). In a previous study, we showed that oxidized LDL (oxLDL) can induce apoptosis of mouse CEC. Resveratrol possesses chemopreventive potential. This study aimed to evaluate the effects of resveratrol on oxLDL-induced insults to mouse CEC and its possible mechanisms. Exposure of mouse CEC to 200 μmol/L oxLDL for 1 h did not cause cell death but significantly altered the permeability and transendothelial electrical resistance of the cell monolayer. However, resveratrol completely normalized such injury. As for the mechanisms, resveratrol completely protected oxLDL-induced disruption of F-actin and microtubule cytoskeletons as well as occludin and zona occludens-1 (ZO-1) tight junctions. The oxLDL-induced decreases in the mitochondrial membrane potential and intracellular ATP levels were normalized by resveratrol. Exposure of mouse CEC to 200 μmol/L oxLDL for 24 h elevated oxidative stress and simultaneously induced cell apoptosis. However, resveratrol partially protected against oxLDL-induced CEC apoptosis. The oxLDL-induced alterations in levels of Bcl-2, Bax, and cytochrome c were completely normalized by resveratrol. Consequently, resveratrol partially decreased oxLDL-induced activation of caspases-9 and -3. Therefore, in this study, we show that resveratrol can protect against oxLDL-induced damage of the BBB through protecting disruption of the tight junction structure and apoptotic insults to CEC.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
68
|
Manucha W, Kurbán F, Mazzei L, Benardón ME, Bocanegra V, Tosi MR, Vallés P. eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. Eur J Pharmacol 2010; 650:487-95. [PMID: 20940012 DOI: 10.1016/j.ejphar.2010.09.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
There is growing evidence that statins may exert renoprotective effects beyond cholesterol reduction. The cholesterol-independent or "pleiotropic" effects of statins include the upregulation of endothelial nitric oxide synthase (eNOS). Here we determined whether eNOS associated with Hsp70 expression is involved in rosuvastatin resistance to obstruction-induced oxidative stress and cell death. Neonatal rats subjected to unilateral ureteral obstruction (UUO) within two days of birth and controls were treated daily with vehicle or rosuvastatin (10 mg/kg/day) for 14 days. Decreased endogenous nitric oxide (NO) and lower mRNA and protein eNOS expression associated with downregulation of heat shock factor 1 (Hsf1) mRNA and Hsp70 protein levels were observed in the obstructed kidney cortex. Increased nicotinamide adenine dinucleotide phosphate (NADHP) oxidase activity and apoptosis induction, regulated by mitochondrial signal pathway through an increased pro-apoptotic Bax/BcL(2) ratio and caspase 3 activity, were demonstrated. Conversely, in cortex membrane fractions from rosuvastatin-treated UUO rats, marked upregulation of eNOS expression at transcriptional and posttranscriptional levels linked to increased Hsf1 mRNA expression and enhanced mRNA and protein Hsp70 expression, were observed. Consequently, there was an absence of apoptotic response and transiently decreased NADPH oxidase activity. In addition, interaction between eNOS and Hsp70 was determined by communoprecipitation in cortex membrane fractions, showing an increased ratio of both proteins, after rosuvastatin treatment in obstructed kidney. In summary, our data demonstrate that the effect of rosuvastatin on eNOS interacting with Hsp70, results in the capacity of both to prevent mitochondrial apoptotic pathway and oxidative stress in neonatal early kidney obstruction.
Collapse
Affiliation(s)
- Walter Manucha
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
69
|
Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. Arch Toxicol 2010; 85:209-18. [DOI: 10.1007/s00204-010-0585-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/01/2010] [Indexed: 02/08/2023]
|
70
|
Cho SG, Du Q, Huang S, Dong Z. Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am J Physiol Renal Physiol 2010; 299:F199-206. [PMID: 20410216 PMCID: PMC2904162 DOI: 10.1152/ajprenal.00716.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/15/2010] [Indexed: 01/06/2023] Open
Abstract
Recent studies revealed a striking morphological change of mitochondria during apoptosis. Mitochondria become fragmented and notably, the fragmentation contributes to mitochondrial outer membrane permeabilization and consequent release of apoptotic factors. In renal tubular cells, mitochondrial fragmentation involves the activation of Drp1, a key mitochondrial fission protein. However, it is unclear how Drp1 is regulated during tubular cell apoptosis. In this study, we examined Drp1 regulation during tubular cell apoptosis following ATP depletion. Rat kidney proximal tubular cells (RPTC) were subjected to azide treatment or severe hypoxia in glucose-free medium to induce ATP depletion. During ATP depletion, Drp1 was shown to be dephosphorylated at serine-637. Drp1 dephosphorylation could be suppressed by cyclosporine A and FK506, two calcineurin inhibitors. Importantly, cyclosporine A and FK506 could also prevent mitochondrial fragmentation, Bax accumulation, cytochrome c release, and apoptosis following ATP depletion in RPTC. The results suggest that calcineurin-mediated serine-637 dephosphorylation is involved in Drp1 activation during ATP depletion in renal tubular cells. Upon activation, Drp1 contributes to mitochondrial fragmentation and outer membrane permeabilization, resulting in the release of apoptogenic factors and apoptosis.
Collapse
Affiliation(s)
- Sung-Gyu Cho
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
71
|
Sun Z, Cheng Z, Taylor CA, McConkey BJ, Thompson JE. Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway. J Cell Physiol 2010; 223:798-809. [PMID: 20232312 DOI: 10.1002/jcp.22100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The regulatory role of eukaryotic translation initiation factor 5A1 (eIF5A1) in apoptosis was examined using HT-29 and HeLa S3 cells. eIF5A is the only known protein to contain the unusual amino acid, hypusine, and eIF5A1 is one of two human eIF5A family members. Two observations indicated that eIF5A1 is involved in apoptosis. First, siRNA-mediated suppression of eIF5A1 resulted in inhibition of apoptosis induced by various apoptotic stimuli, and second, adenovirus-mediated over-expression of eIF5A1 strongly induced apoptotic cell death. A mutant of eIF5A1 incapable of being hypusinated also induced apoptosis when over-expressed indicating that unhypusinated eIF5A1 is the pro-apoptotic form of the protein. Over-expression of eIF5A1 or of the mutant resulted in loss of mitochondrial transmembrane potential, translocation of Bax to the mitochondria, release of cytochrome c, caspase activation, up-regulation of p53, and up-regulation of Bim, a pro-apoptotic BH3-only Bcl-2 family protein. In addition, Bim(L) and Bim(S), the pro-apoptotic alternative spliced forms of Bim, were induced in response to over-expression of eIF5A1. Thus eIF5A1 appears to induce apoptosis by activating the mitochondrial apoptotic pathway. Proteomic analyses indicated that, of 1,899 proteins detected, 131 showed significant changes in expression (P or=1.5) within 72 h of eIF5A1 up-regulation. Among these are proteins involved in translation and protein folding, transcription factors, proteins mediating proteolysis, and a variety of proteins known to be directly involved in apoptosis. These observations collectively indicate that unhypusinated eIF5A1 plays a central role in the regulation of apoptosis.
Collapse
Affiliation(s)
- Zhong Sun
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
72
|
Zhang L, Chen D, Chen Z, Moeckel GW. Hypertonicity-induced mitochondrial membrane permeability in renal medullary interstitial cells: protective role of osmolytes. Cell Physiol Biochem 2010; 25:753-60. [PMID: 20511721 DOI: 10.1159/000315095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hyperosmotic stress causes cell death through activation of apoptotic pathways if the protective osmolyte response is impaired. In this study we attempt to elucidate the molecular mechanisms of hypertonicity-induced apoptosis and the effect of major organic osmolytes upon those. METHODS Hypertonicity-induced changes in Bcl2-family protein abundance and the presence of cytochrome c and apoptosis inducing factor (AIF) in the cytoplasm, were measured using western blot and immunofluorescence labeling. To determine dissipation of mitochondrial membrane potential (Delta Psi) though the permeability transition pore (PTP), the lipophilic cationic carbocyanine fluorescence probe JC-1 and TMRM fluorescence probes were used. RESULTS Hypertonic culture conditions increase the abundance of proapoptotic Bax and the concentration of cytochrome c and apoptosis inducing factor (AIF) in the cytoplasm. These changes are associated with a dissipation of Delta Psi and increased permeability of the PTP. We further show that organic osmolytes stabilize the Delta Psi and decrease the concentration of cytochrome c and AIF in the cytoplasm. CONCLUSION Our study shows that organic osmolytes prevent hypertonicity-induced apoptosis by preventing dissipation of Delta Psi through stabilization of the PTP. These findings further support the important role of organic osmolytes in preventing hypertonicity-mediated cell death in medullary kidney cells.
Collapse
Affiliation(s)
- Li Zhang
- Renal Pathology and Electron Microscopy Laboratory, Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | |
Collapse
|
73
|
Li X, Pabla N, Wei Q, Dong G, Messing RO, Wang CY, Dong Z. PKC-delta promotes renal tubular cell apoptosis associated with proteinuria. J Am Soc Nephrol 2010; 21:1115-24. [PMID: 20395372 DOI: 10.1681/asn.2009070760] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Proteinuria may contribute to progressive renal damage by inducing tubulointerstitial inflammation, fibrosis, and tubular cell injury and death, but the mechanisms underlying these pathologic changes remain largely unknown. Here, in a rat kidney proximal tubular cell line (RPTC), albumin induced apoptosis in a time- and dose-dependent manner. Caspase activation accompanied albumin-induced apoptosis, and general caspase inhibitors could suppress this activation. In addition, Bcl-2 transfection inhibited apoptosis and attenuated albumin-induced Bax translocation to mitochondria and cytochrome c release from the organelles, further confirming a role for the intrinsic pathway of apoptosis in albuminuria-associated tubular apoptosis. We observed phosphorylation and activation of PKC-delta early during treatment of RPTC cells with albumin. Rottlerin, a pharmacologic inhibitor of PKC-delta, suppressed albumin-induced Bax translocation, cytochrome c release, and apoptosis. Moreover, a dominant-negative mutant of PKC-delta blocked albumin-induced apoptosis in RPTC cells. In vivo, we observed activated PKC-delta in proteinuric kidneys of streptozotocin-induced diabetic mice and in kidneys after direct albumin overload. Notably, albumin overload induced apoptosis in renal tubules, which was less severe in PKC-delta-knockout mice. Taken together, these results suggest that activation of PKC-delta promotes tubular cell injury and death during albuminuria, broadening our understanding of the pathogenesis of progressive proteinuric kidney diseases.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans' Affairs Medical Center, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Ke B, Shen XD, Gao F, Qiao B, Ji H, Busuttil RW, Volk HD, Kupiec-Weglinski JW. Small interfering RNA targeting heme oxygenase-1 (HO-1) reinforces liver apoptosis induced by ischemia-reperfusion injury in mice: HO-1 is necessary for cytoprotection. Hum Gene Ther 2010; 20:1133-42. [PMID: 19534599 DOI: 10.1089/hum.2009.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have shown that overexpression of heme oxygenase-1 (HO-1) prevents the liver inflammation response leading to ischemia and reperfusion injury (IRI). This study was designed to explore the precise function and mechanism of HO-1 cytoprotection in liver IRI by employing a small interfering RNA (siRNA) that effectively suppresses HO-1 expression both in vitro and in vivo. Using a partial lobar liver warm ischemia model, mice were injected with HO-1 siRNA/nonspecific control siRNA or Ad-HO-1/Ad-beta-gal. Those treated with HO-1 siRNA showed increased serum glutamic-oxaloacetic transaminase levels, significant liver edema, sinusoidal congestion/cytoplasmic vacuolization, and severe hepatocellular necrosis. In contrast, Ad-HO-1-pretreated animals revealed only minimal sinusoidal congestion without edema/vacuolization or necrosis. Administration of HO-1 siRNA significantly increased local neutrophil accumulation and the frequency of apoptotic cells. Mice treated with HO-1 siRNA were characterized by increased caspase-3 activity and reduced HO-1 expression, whereas those given Ad-HO-1 showed decreased caspase-3 activity and increased HO-1/Bcl-2/Bcl-x(L), data confirmed by use of an in vitro cell culture system. Thus, by using an siRNA approach this study confirms that HO-1 provides potent cytoprotection against hepatic IRI and regulates liver apoptosis. Indeed, siRNA provides a powerful tool with which to study gene function in a wide range of liver diseases.
Collapse
Affiliation(s)
- Bibo Ke
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Ljubicic V, Menzies KJ, Hood DA. Mitochondrial dysfunction is associated with a pro-apoptotic cellular environment in senescent cardiac muscle. Mech Ageing Dev 2010; 131:79-88. [DOI: 10.1016/j.mad.2009.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/25/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
|
76
|
Soriano ME, Scorrano L. The interplay between BCL-2 family proteins and mitochondrial morphology in the regulation of apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 687:97-114. [PMID: 20919640 DOI: 10.1007/978-1-4419-6706-0_6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Apoptosis is a highly regulated process where key players such as BCL-2 family members control the recruitment of the mitochondrial subroutine. This culminates in the release of cytochrome c from the organelle in the cytoplasm, where it is required for the activation of effector caspases. The complete release of cytochrome c is the result of the combined action of proapoptotic BCL-2 family members and of changes in the complex morphology and ultrastructure of the organelle, controlled by the balance between fusion and fission processes. Here we discuss recent findings pointing to a role for changes in mitochondrial morphology during apoptosis and how these might be regulated by members of the BCL-2 family.
Collapse
Affiliation(s)
- Maria Eugenia Soriano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | | |
Collapse
|
77
|
Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent bcl-2 signaling. Transplantation 2009; 88:1251-60. [PMID: 19996924 DOI: 10.1097/tp.0b013e3181bb4a07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In response to ischemic/hypoxic preconditioning, tissues/organs exhibit protective responses to subsequent and severe ischemic stress. We hypothesized that repetitive hypoxic preconditioning (RHP) may provide long-lasting protection than single preconditioning against ischemia/reperfusion injury in rat kidneys through hypoxia-induced factor (HIF)-1-dependent pathway. METHODS For RHP induction, female Wistar rats were subjected to intermittent hypoxic exposure (380 Torr) 15 hr/day for 28 days. RESULTS RHP increased renal HIF-1 alpha mRNA and protein expression and triggered HIF-1 alpha-dependent renal Bcl-2 protein expression in a time-dependent manner. When returning to normoxia, increased RHP exposure prolonged renal Bcl-2 expression. Forty-five minutes of renal ischemia with 4 hr of reperfusion enhanced O2- levels and proapoptotic mechanisms, including enhanced cytosolic Bax translocation to mitochondria, release of cytochrome c to cytosol, activation of caspase 3, poly-(ADP-ribose)-polymerase fragments, tubular apoptosis, blood urea nitrogen, and creatinine level. RHP treatment depressed renal O2- production, mitochondrial Bax translocation and cytochrome c release, and tubular apoptosis. In the primary tubular cultures from RHP-treated kidneys, antisense oligodeoxyribonucleotides of bcl-2 abrogated this protection. CONCLUSIONS RHP activates an HIF-1 alpha-dependent signaling cascade leading to an increase in Bcl-2 protein expression, an inhibition in cytosolic Bax and mitochondrial cytochrome c translocation, and a hypoxic/ischemia tolerance against renal ischemia/reperfusion injury.
Collapse
|
78
|
Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis. Biochem Pharmacol 2009; 79:1072-80. [PMID: 19944673 DOI: 10.1016/j.bcp.2009.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 01/14/2023]
Abstract
Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status.
Collapse
|
79
|
Okroj M, Corrales L, Stokowska A, Pio R, Blom AM. Hypoxia increases susceptibility of non-small cell lung cancer cells to complement attack. Cancer Immunol Immunother 2009; 58:1771-80. [PMID: 19259664 PMCID: PMC11030643 DOI: 10.1007/s00262-009-0685-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
The complement system can be specifically targeted to tumor cells due to molecular changes on their surfaces that are recognized by complement directly or via naturally occurring antibodies. However, tumor cells often overexpress membrane-bound complement inhibitors protecting them from complement attack. We have previously shown that non-small cell lung cancer (NSCLC) cells, additionally to membrane-bound inhibitors, produce substantial amounts of soluble regulators such as factor I (FI) and factor H (FH). Since low oxygen concentration is associated with rapidly growing solid tumors, we studied how NSCLC cells protect themselves from complement attack under hypoxic conditions. Unexpectedly, mRNA levels and secretion of both FI and FH were significantly decreased already after 24 h exposure to hypoxia while cell viability measured by XTT assay and annexin V/7-AAD staining was affected only marginally. Furthermore, we observed decrease of mRNA level and loss of membrane-bound complement inhibitor CD46 and increased deposition of early (C3b) and terminal (C9) complement components on hypoxic NSCLC cells. All three complement pathways (classical, lectin and alternative) were employed to deposit C3b on cell surface. Taken together, our results imply that under hypoxic conditions NSCLC give up some of their available defense mechanisms and become more prone to complement attack.
Collapse
Affiliation(s)
- Marcin Okroj
- Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital, UMAS, Lund University, entrance 46, 205 02 Malmö, Sweden
| | - Leticia Corrales
- Division of Oncology, Center for Applied Medical Research, Pamplona, Spain
| | - Anna Stokowska
- Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital, UMAS, Lund University, entrance 46, 205 02 Malmö, Sweden
| | - Ruben Pio
- Division of Oncology, Center for Applied Medical Research, Pamplona, Spain
- Department of Biochemistry, University of Navarra, Pamplona, Spain
| | - Anna M. Blom
- Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital, UMAS, Lund University, entrance 46, 205 02 Malmö, Sweden
| |
Collapse
|
80
|
Snyder CM, Chandel NS. Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid Redox Signal 2009; 11:2673-83. [PMID: 19580395 PMCID: PMC2821141 DOI: 10.1089/ars.2009.2730] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria can initiate cell death or activate genes that promote cell survival in response to low oxygen. The BCL-2 family of proteins regulate cell death in response to anoxia (0-0.5% O2). By contrast, under hypoxia (0.5-3% O2), mitochondrial oxidative stress activates hypoxia-inducible factors (HIFs) to promote cell survival. In this review, we discuss how mitochondria, BCL-2 proteins, and HIFs are crucial for cellular responses to low oxygen.
Collapse
Affiliation(s)
- Colleen M Snyder
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Medical School , Chicago, Illinois, USA
| | | |
Collapse
|
81
|
Shang Y, Liu Y, Du L, Wang Y, Cheng X, Xiao W, Wang X, Jin H, Yang X, Liu S, Chen Q. Targeted expression of uncoupling protein 2 to mouse liver increases the susceptibility to lipopolysaccharide/galactosamine-induced acute liver injury. Hepatology 2009; 50:1204-16. [PMID: 19637283 DOI: 10.1002/hep.23121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Normal hepatocytes do not express endogenous uncoupling protein 2 (UCP2) in adult liver, although Kupffer cells do, and it is strikingly induced in hepatocytes in steatotic liver and obese conditions. However, the direct link of UCP2 with the pathogenic development of liver diseases and liver injury remains elusive. Here we report that targeted expression of UCP2 to mouse liver increases susceptibility to acute liver injury induced by lipopolysaccharide (LPS) and galactosamine (GalN). UCP2 appears to enhance proton leak, leading to mild uncoupling in a guanosine diphosphate-repressible manner. Indeed, mitochondria from the genetically manipulated mouse liver have increased state 4 respiration, lower respiratory control ratio, and reduced adenosine triphosphate (ATP) levels, which altered mitochondrial physiology. To address the underlying mechanism of how UCP2 and the reduced energy coupling efficiency enhance cell death in mouse liver, we show that the reduced ATP levels lead to activation of 5'AMP-activated protein kinase (AMPK) and its downstream effector, c-Jun N-terminal kinase; thus, the increased sensitivity toward LPS/GalN-induces apoptosis. Importantly, we show that inhibition of UCP2 activity by its pharmacological inhibitor genipin prevents LPS/GalN-induced ATP reduction, AMPK activation, and apoptosis. Also, inhibition of ATP production by oligomycin promotes LPS/GalN-induced cell death both in vivo and in vitro. CONCLUSION Our results clearly show that targeted expression of UCP2 in liver may result in compromised mitochondrial physiology that contributes to enhanced cell death and suggests a potential role of UCP2 in the development of liver diseases.
Collapse
Affiliation(s)
- Yingli Shang
- Laboratory of Apoptosis and Cancer Biology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mitochondria: joining forces to thwart cell death. Biochim Biophys Acta Mol Basis Dis 2009; 1802:162-6. [PMID: 19747972 DOI: 10.1016/j.bbadis.2009.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/31/2009] [Accepted: 09/08/2009] [Indexed: 11/20/2022]
Abstract
Mitochondria are highly dynamic organelles that undergo constant cycles of fusion and fission. An additional level of regulation of mitochondrial function, which is particularly important in neurons, is their active transport along microtubules. Recent evidence suggests that the mitochondrial fusion/fission machinery as well as the molecular motors responsible for their movement constitute powerful regulatory control points that directly impact metabolism and regulation of cell death. This is true for not only apoptosis, but also for excitotoxicity where calcium overload is a major component of the cell death process. In this review, we will describe the molecular mechanisms regulating fusion and fission and how this impinges on cell survival in the context of acute neuronal injury.
Collapse
|
83
|
Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 2009; 28:2719-32. [PMID: 19696742 DOI: 10.1038/emboj.2009.214] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/02/2009] [Indexed: 12/24/2022] Open
Abstract
We here report that miR-17-92 cluster is a novel target for p53-mediated transcriptional repression under hypoxia. We found the expression levels of miR-17-92 cluster were reduced in hypoxia-treated cells containing wild-type p53, but were unchanged in hypoxia-treated p53-deficient cells. The repression of miR-17-92 cluster under hypoxia is independent of c-Myc. Luciferase reporter assays mapped the region responding to p53-mediated repression to a p53-binding site in the proximal region of the miR-17-92 promoter. Chromatin immunoprecipitation (ChIP), Re-ChIP and gel retardation assays revealed that the binding sites for p53- and the TATA-binding protein (TBP) overlap within the miR-17-92 promoter; these proteins were found to compete for binding. Finally, we show that pri-miR-17-92 expression correlated well with p53 status in colorectal carcinomas. Over-express miR-17-92 cluster markedly inhibits hypoxia-induced apoptosis, whereas blocked miR-17-5p and miR-20a sensitize the cells to hypoxia-induced apoptosis. These data indicated that p53-mediated repression of miR-17-92 expression likely has an important function in hypoxia-induced apoptosis, and thus further our understanding of the tumour suppressive function of p53.
Collapse
|
84
|
Sheikh-Hamad D. Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium. Am J Physiol Renal Physiol 2009; 298:F248-54. [PMID: 19656913 DOI: 10.1152/ajprenal.00260.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian homolog of the fish calcium regulatory hormone stanniocalcin-1 (STC1) is ubiquitously expressed and likely functions in an autocrine/paracrine fashion. Mammalian STC1 does not appear to exert significant effects on serum calcium, and its physiological role remains to be determined. In macrophages, STC1 decreases intracellular calcium and cell mobility; attenuates the response to chemoattractants; and diminishes superoxide generation through induction of uncoupling protein-2 (UCP2). In cytokine-treated endothelial cells, STC1 attenuates superoxide generation and the activation of inflammatory pathways [c-Jun NH(2)-terminal kinase (JNK) and NF-kappaB]; maintains the expression of tight junction proteins, preserving the endothelial monolayer seal; and decreases transendothelial migration of leukocytes. Combined, the effects of STC1 on endothelial cells and macrophages predict potent anti-inflammatory action. Indeed, application of the anti-glomerular basement membrane (GBM) glomerulonephritis model to STC1 transgenic mice that display increased expression of STC1 transgene in endothelial cells and macrophages yields renal protection. Our data suggest that STC1 activates antioxidant pathways in endothelial cells and macrophages and displays cytoprotective and anti-inflammatory actions.
Collapse
Affiliation(s)
- David Sheikh-Hamad
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
85
|
Wang Y, Huang L, Abdelrahim M, Cai Q, Truong A, Bick R, Poindexter B, Sheikh-Hamad D. Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. J Leukoc Biol 2009; 86:981-8. [PMID: 19602668 DOI: 10.1189/jlb.0708454] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mammalian STC1 decreases the mobility of macrophages and diminishes their response to chemokines. In the current experiments, we sought to determine the impact of STC1 on energy metabolism and superoxide generation in mouse macrophages. STC1 decreases ATP level in macrophages but does not affect the activity of respiratory chain complexes I-IV. STC1 induces the expression of mitochondrial UCP2, diminishing mitochondrial membrane potential and superoxide generation; studies in UCP2 null and gp91phox null macrophages suggest that suppression of superoxide by STC1 is UCP2-dependent yet is gp91phox-independent. Furthermore, STC1 blunts the effects of LPS on superoxide generation in macrophages. Exogenous STC1 is internalized by macrophages within 10 min and localizes to the mitochondria, suggesting a role for circulating and/or tissue-derived STC1 in regulating macrophage function. STC1 induces arrest of the cell cycle at the G1 phase and reduces cell necrosis and apoptosis in serum-starved macrophages. Our data identify STC1 as a key regulator of superoxide generation in macrophages and suggest that STC1 may profoundly affect the immune/inflammatory response.
Collapse
Affiliation(s)
- Yanlin Wang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Choi DE, Jeong JY, Lim BJ, Chung S, Chang YK, Lee SJ, Na KR, Kim SY, Shin YT, Lee KW. Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am J Physiol Renal Physiol 2009; 297:F362-70. [PMID: 19474186 DOI: 10.1152/ajprenal.90609.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sildenafil was the first selective inhibitor of phosphodiesterase-5 (PDE5) to be widely used for treating erectile dysfunction. Many recent studies have investigated the cardioprotective role of sildenafil in animal models. We evaluated the protective effects of sildenafil in experimental renal ischemia-reperfusion (IR) injury in two studies. In study 1, male Sprague-Dawley rats were divided into four groups: sham, sildenafil-treated sham, vehicle-treated IR, and sildenafil-treated IR groups. In study 2, we divided the rats into two groups: sildenafil-treated IR rats and PD98059 (ERK inhibitor)+sildenafil-treated IR rats. Functional parameters of the kidney were evaluated at the molecular and structural levels. Blood urea nitrogen (BUN) and serum creatinine levels were lower in sildenafil-treated IR rats than in vehicle-treated IR rats. The expression of inducible (iNOS) and endothelial nitric oxide synthase (eNOS) proteins in sildenafil-treated IR rats was significantly higher than in vehicle-treated IR rats. Pretreatment with sildenafil in IR rats increased ERK phosphorylation and reduced the renal Bax/Bcl-2 ratio, renal caspase-3 activity, and terminal dUTP nick end-labeling-positive apoptotic cells. In contrast, PD98059 treatment increased BUN and serum creatinine levels and attenuated the sildenafil-induced expression of pERK, iNOS, eNOS, and Bcl-2. PD98059 also increased caspase-3 activity but did not decrease the sildenafil-induced accumulation of cGMP. In conclusion, this study suggests that sildenafil has antiapoptotic effects in experimental IR renal injury via ERK phosphorylation, induction of iNOS and eNOS production, and a decrease in the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
- Dae Eun Choi
- Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest 2009; 119:1275-85. [PMID: 19349686 DOI: 10.1172/jci37829] [Citation(s) in RCA: 616] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 02/18/2009] [Indexed: 12/22/2022] Open
Abstract
The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. This change contributed to mitochondrial outer membrane permeabilization, release of apoptogenic factors, and consequent apoptosis. Following either ATP depletion or cisplatin treatment of rat renal tubular cells, mitochondrial fragmentation was observed prior to cytochrome c release and apoptosis. This mitochondrial fragmentation was inhibited by Bcl2 but not by caspase inhibitors. Dynamin-related protein 1 (Drp1), a critical mitochondrial fission protein, translocated to mitochondria early during tubular cell injury, and both siRNA knockdown of Drp1 and expression of a dominant-negative Drp1 attenuated mitochondrial fragmentation, cytochrome c release, caspase activation, and apoptosis. Further in vivo analysis revealed that mitochondrial fragmentation also occurred in proximal tubular cells in mice during renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. Notably, both tubular cell apoptosis and acute kidney injury were attenuated by mdivi-1, a newly identified pharmacological inhibitor of Drp1. This study demonstrates a rapid regulation of mitochondrial dynamics during acute kidney injury and identifies mitochondrial fragmentation as what we believe to be a novel mechanism contributing to mitochondrial damage and apoptosis in vivo in mouse models of disease.
Collapse
Affiliation(s)
- Craig Brooks
- Department of Cellular Biology and Anatomy, Medical College of Georgia, and Charlie Norwood VA Medical Center, Augusta, 30912, USA
| | | | | | | |
Collapse
|
88
|
Lin BR, Yu CJ, Chen WC, Lee HS, Chang HM, Lee YC, Chien CT, Chen CF. Green tea extract supplement reduces D-galactosamine-induced acute liver injury by inhibition of apoptotic and proinflammatory signaling. J Biomed Sci 2009; 16:35. [PMID: 19317920 PMCID: PMC2667169 DOI: 10.1186/1423-0127-16-35] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/25/2009] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress and inflammation contributed to the propagation of acute liver injury (ALI). The present study was undertaken to determine whether D-galactosamine (D-GalN) induces ALI via the mitochondrial apoptosis- and proinflammatory cytokine-signaling pathways, and possible mechanism(s) by which green tea (GT) extract modulates the apoptotic and proinflammatory signaling in rat. D-GalN induced hepatic hypoxia/hypoperfusion and triggered reactive oxygen species (ROS) production from affected hepatocytes, infiltrated leukocytes, and activated Kupffer cells. D-GalN evoked cytosolic Bax and mitochondrial cytochrome C translocation and activated proinflammatory nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) translocation, contributing to the increase of intercellular adhesion molecule-1 expression, terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL)-positive hepatocytes, multiple plasma cytokines and chemokines release, and alanine aminotransferase (ALT) activity. An altered biliary secretion profile of several acute phase proteins directly indicates oxidative stress affecting intracellular trafficking in the hepatocyte. GT pretreatment attenuated ROS production, mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, plasma ALT and cytokines levels, biliary acute phase proteins secretion and hepatic pathology by the enhancement of anti-apoptotic mechanisms. In conclusion, D-GalN induced ALI via hypoxia/hypoperfusion-enhanced mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, contributing to oxidative stress and inflammation in the liver. GT can counteract the D-GalN-induced ALI via the attenuation of apoptotic and proinflammatory signaling by the upregulation of anti-apoptotic mechanism.
Collapse
Affiliation(s)
- Bor-Ru Lin
- National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Wu HH, Hsiao TY, Chien CT, Lai MK. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat. J Biomed Sci 2009; 16:19. [PMID: 19272187 PMCID: PMC2653526 DOI: 10.1186/1423-0127-16-19] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 02/11/2009] [Indexed: 11/10/2022] Open
Abstract
Prolonged ischemia amplified iscehemia/reperfusion (IR) induced renal apoptosis and autophagy. We hypothesize that ischemic conditioning (IC) by a briefly intermittent reperfusion during a prolonged ischemic phase may ameliorate IR induced renal dysfunction. We evaluated the antioxidant/oxidant mechanism, autophagy and apoptosis in the uninephrectomized Wistar rats subjected to sham control, 4 stages of 15-min IC (I15 x 4), 2 stages of 30-min IC (I30 x 2), and total 60-min ischema (I60) in the kidney followed by 4 or 24 hours of reperfusion. By use of ATP assay, monitoring O2-. amounts, autophagy and apoptosis analysis of rat kidneys, I60 followed by 4 hours of reperfusion decreased renal ATP and enhanced reactive oxygen species (ROS) level and proapoptotic and autophagic mechanisms, including enhanced Bax/Bcl-2 ratio, cytochrome C release, active caspase 3, poly-(ADP-ribose)-polymerase (PARP) degradation fragments, microtubule-associated protein light chain 3 (LC3) and Beclin-1 expression and subsequently tubular apoptosis and autophagy associated with elevated blood urea nitrogen and creatinine level. I30 x 2, not I15 x 4 decreased ROS production and cytochrome C release, increased Manganese superoxide dismutase (MnSOD), Copper-Zn superoxide dismutase (CuZnSOD) and catalase expression and provided a more efficient protection than I60 against IR induced tubular apoptosis and autophagy and blood urea nitrogen and creatinine level. We conclude that 60-min renal ischemia enhanced renal tubular oxidative stress, proapoptosis and autophagy in the rat kidneys. Two stages of 30-min ischemia with 3-min reperfusion significantly preserved renal ATP content, increased antioxidant defense mechanisms and decreased ischemia/reperfusion enhanced renal tubular oxidative stress, cytosolic cytochrome C release, proapoptosis and autophagy in rat kidneys.
Collapse
Affiliation(s)
- Hsing-Hui Wu
- Department of Medicine, Kuang-Tien General Hospital, Taichung, Taiwan.
| | | | | | | |
Collapse
|
90
|
|
91
|
|
92
|
Devalaraja-Narashimha K, Padanilam BJ. PARP-1 inhibits glycolysis in ischemic kidneys. J Am Soc Nephrol 2008; 20:95-103. [PMID: 19056868 DOI: 10.1681/asn.2008030325] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
After ischemic renal injury (IRI), selective damage occurs in the S(3) segments of the proximal tubules as a result of inhibition of glycolysis, but the mechanism of this inhibition is unknown. We previously reported that inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) activity protects against ischemia-induced necrosis in proximal tubules by preserving ATP levels. Here, we tested whether PARP-1 activation in proximal tubules after IRI leads to poly(ADP-ribosyl)ation of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a modification that inhibits its activity. Using in vitro and in vivo models, under hypoxic conditions, we detected poly(ADP-ribosyl)ation and reduced activity of GAPDH; inhibition of PARP-1 activity restored GAPDH activity and ATP levels. Inhibition of GAPDH with iodoacetate exacerbated ATP depletion, cytotoxicity, and necrotic cell death of LLCPK(1) cells subjected to hypoxic conditions, whereas inhibition of PARP-1 activity was cytoprotective. In conclusion, these data indicate that poly(ADP-ribosyl)ation of GAPDH and the subsequent inhibition of anaerobic respiration exacerbate ATP depletion selectively in the proximal tubule after IRI.
Collapse
Affiliation(s)
- Kishor Devalaraja-Narashimha
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | |
Collapse
|
93
|
Lee ST, Wu TT, Yu PY, Chen RM. Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway. Br J Anaesth 2008; 102:80-9. [PMID: 19001360 DOI: 10.1093/bja/aen322] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ketamine is widely used as an i.v. anaesthetic agent and as a drug of abuse. Hepatocytes contribute to the metabolism of endogenous and exogenous substances. This study evaluated the toxic effects of S-(+)-ketamine and possible mechanisms using human hepatoma HepG2 cells as the experimental model. METHODS HepG2 cells were exposed to S-(+)-ketamine. Cell viability and the release of lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GPT) were measured to determine the toxicity of S-(+)-ketamine to HepG2 cells. Cell morphology, DNA fragmentation, and apoptotic cells were analysed to evaluate the mechanism of S-(+)-ketamine-induced cell death. Amounts of Bax, an apoptotic protein, and cytochrome c in the cytoplasm or mitochondria were quantified by immunoblotting. Cellular adenosine triphosphate levels were analysed using a bioluminescence assay. Caspases-3, -9, and -6 were measured fluorometrically. RESULTS Exposure of HepG2 cells to S-(+)-ketamine increased the release of LDH and GPT, but decreased cell viability (all P<0.01). S-(+)-Ketamine time-dependently caused shrinkage of HepG2 cells. Exposure to S-(+)-ketamine led to significant DNA fragmentation and cell apoptosis (P=0.003 and 0.002). S-(+)-Ketamine increased translocation of Bax from the cytoplasm to mitochondria, but decreased the mitochondrial membrane potential and cellular adenosine triphosphate levels (all P<0.01). Sequentially, cytosolic cytochrome c levels and activities of caspases-9, -3, and -6 were augmented after S-(+)-ketamine administration (all P<0.001). Z-VEID-FMK, an inhibitor of caspase-6, alleviated the S-(+)-ketamine-induced augmentation of caspase-6 activity, DNA fragmentation, and cell apoptosis (all P<0.001). CONCLUSIONS This study shows that S-(+)-ketamine can induce apoptotic insults to human HepG2 cells via a Bax-mitochondria-caspase protease pathway. Thus, we suggest that S-(+)-ketamine at a clinically relevant or an abused concentration may induce liver dysfunction possibly due to its toxicity to hepatocytes.
Collapse
Affiliation(s)
- S-T Lee
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
94
|
Regulation of apoptosis by Caspases under oxidative stress conditions in mice testicular cells: in vitro molecular mechanism. Mol Cell Biochem 2008; 322:43-52. [DOI: 10.1007/s11010-008-9938-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
|
95
|
Protective effects of glycyrrhizin in a gut hypoxia (ischemia)-reoxygenation (reperfusion) model. Intensive Care Med 2008; 35:687-97. [PMID: 18953525 DOI: 10.1007/s00134-008-1334-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 10/04/2008] [Indexed: 11/27/2022]
|
96
|
Favaro E, Nardo G, Persano L, Masiero M, Moserle L, Zamarchi R, Rossi E, Esposito G, Plebani M, Sattler U, Mann T, Mueller-Klieser W, Ciminale V, Amadori A, Indraccolo S. Hypoxia inducible factor-1alpha inactivation unveils a link between tumor cell metabolism and hypoxia-induced cell death. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1186-201. [PMID: 18772337 DOI: 10.2353/ajpath.2008.071183] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia and the acquisition of a glycolytic phenotype are intrinsic features of the tumor microenvironment. The hypoxia inducible factor-1alpha (HIF-1alpha) pathway is activated under hypoxic conditions and orchestrates a complex transcriptional program that enhances cell survival. Although the consequences of HIF-1alpha inactivation in cancer cells have been widely investigated, only a few studies have addressed the role of HIF-1alpha in the survival of cancer cells endowed with different glycolytic capacities. In this study, we investigated this aspect in ovarian cancer cells. Hypoxia-induced toxicity was increased in highly glycolytic cells compared with poorly glycolytic cells; it was also associated with a sharp decrease in intracellular ATP levels and was prevented by glucose supplementation. Stable HIF-1alpha silencing enhanced hypoxia-induced cell death in vitro due to a lack of cell cycle arrest. Tumors bearing attenuated HIF-1alpha levels had similar growth rates and vascularization as did controls, but tumors showed higher proliferation levels and increased necrosis. Moreover, tumors formed by HIF-1alpha deficient cells had higher levels of lactate and lower ATP concentrations than controls as shown by metabolic imaging. The findings that such metabolic properties can affect the survival of cancer cells under hypoxic conditions and that these properties contribute to the determination of the consequences of HIF-1alpha inactivation could have important implications on the understanding of the effects of anti-angiogenic and HIF-1alpha-targeting drugs in cancer.
Collapse
Affiliation(s)
- Elena Favaro
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 2008; 74:631-40. [DOI: 10.1038/ki.2008.214] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
98
|
Dong G, Wang L, Wang CY, Yang T, Kumar MV, Dong Z. Induction of apoptosis in renal tubular cells by histone deacetylase inhibitors, a family of anticancer agents. J Pharmacol Exp Ther 2008; 325:978-84. [PMID: 18310471 DOI: 10.1124/jpet.108.137398] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibitors of histone deacetylases, including suberoylanilide hydroxamic acid (SAHA) and Trichostatin A, are a new class of anticancer agents. With potent chemotherapy effects in cancers, these agents are not obviously toxic in normal nonmalignant cells or tissues. However, their toxicity in kidney cells has not been carefully evaluated. Here, we demonstrate a potent apoptosis-inducing activity of SAHA in cultured renal proximal tubular cells. SAHA induces apoptosis at low micromolar concentrations. At 5 muM, SAHA induces 30 to approximately 40% apoptosis in 18 h. The apoptosis is accompanied by notable caspase activation; however, the general caspase inhibitor VAD can only partially suppress SAHA-induced apoptosis, suggesting the involvement of both caspase-dependent and -independent mechanisms. SAHA treatment leads to cytochrome c release from mitochondria, which is suppressed by Bcl-2 but not by VAD. Bcl-2 consistently blocks SAHA-induced apoptosis. During SAHA treatment, Bcl-2 and Bcl-XL decrease, and Bid is proteolytically cleaved, whereas Bax and Bak expression remains constant. Bid cleavage, but not Bcl-2/Bcl-XL decrease, is completely suppressed by VAD. SAHA does not activate p53, and pifithrin-alpha (a pharmacological p53 inhibitor) does not attenuate SAHA-induced apoptosis, negating a role of p53 in SAHA-induced apoptosis. SAHA induces histone acetylation, which is not affected by VAD, Bcl-2, or pifithrin-alpha. Trichostatin A can also induce apoptosis and histone acetylation in renal tubular cells. Together, the results have shown evidence for renal toxicity of histone deacetylase inhibitors. The toxicity may be related to protein acetylation and decrease of antiapoptotic proteins including Bcl-2 and Bcl-XL.
Collapse
Affiliation(s)
- Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
99
|
Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, Schwartz JH, Borkan SC. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2008; 283:12305-13. [PMID: 18299320 PMCID: PMC2431006 DOI: 10.1074/jbc.m801291200] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Indexed: 12/31/2022] Open
Abstract
Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by >50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up- or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.
Collapse
Affiliation(s)
- Andrea Havasi
- Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
BACKGROUND Diabetes impairs the ability of tissue to respond adequately to ischemia. The underlying mechanisms contributing to this impaired response remain unknown. Because increases in apoptosis have been linked to a spectrum of diabetic complications, the authors examined whether programmed cell death is involved in the pathogenesis of poor diabetic tissue responses to ischemia. METHODS Analysis for apoptosis and levels of proaptotic protein, p53, were performed on streptozocin-induced diabetic mice and wild-type controls in a murine model of soft-tissue ischemia (n = 6). In vitro, chronic hyperglycemic culture conditions were used to test inducibility and reversibility of the diabetic phenotype. Small interfering RNA was used to assess the role of p53. RESULTS Ischemia-induced apoptosis and p53 levels were increased significantly in diabetic dermal fibroblasts both in vivo and in vitro. Chronic hyperglycemic culture was sufficient to induce the increased apoptotic phenotype, and this was not reversible with long-term normoglycemic conditions. Blocking p53 with small interfering RNA resulted in significant protection against ischemic apoptosis. CONCLUSIONS These findings suggest that diabetes causes an increased apoptotic response to ischemia through a p53-mediated mechanism. This increase is not reversible by exposure to low-glucose conditions. This suggests that glycemic control alone will be unable to prevent tissue necrosis in diabetic patients and suggests novel therapeutic strategies for this condition.
Collapse
|