51
|
Liu A, Shao C, Jin G, Liu R, Hao J, Song B, Ouyang L, Hu X. miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochem Biophys 2014; 69:341-6. [PMID: 24604208 DOI: 10.1007/s12013-013-9805-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate the role of miR-208 in the invasion and metastasis of pancreatic cancer cells and the underlying molecular mechanism. miR-208 mimic, miR-208 inhibitor and NC were transfected into pancreatic cancer cell line Bxpc3 using liposome. Transwell invasion and scratch assays were used to test cell migratory and invasive abilities. Western blotting and quantitative PCR methods were used to detect E-cadherin, fibronectin and vimentin protein and mRNA expression in pancreatic cancer cell line BxPC3 after transfection by miR-208 mimic, miR-208 inhibitor and NC. Transwell invasion and scratch assays showed that after overexpressing miR-208, pancreatic cancer cell line BxPC3 exhibited enhanced in vitro migratory and invasive abilities, while after downregulating miR-208 expression, cell migratory and invasive abilities were decreased. Western blotting and quantitative PCR showed that after overexpressing miR-208, expression of E-cadherin, an epithelial cell marker, was decreased and expression of fibronectin and vimentin, interstitial cell markers, was increased in pancreatic cancer cell line BxPC3; however, after inhibiting miR-208, increased E-cadherin expression and decreased fibronectin and vimentin expression were observed in pancreatic cancer cell line BxPC3. After overexpressing miR-208, p-AKT and p-GSK-3β expression was altered by activating AKT/GSK-3β/snail signaling pathway. miR-208 induces epithelial to mesenchymal transition of pancreatic cancer cell line BxPC3 by activating AKT/GSK-3β/snail signaling pathway and thereby promotes cell metastasis and invasion.
Collapse
Affiliation(s)
- Anan Liu
- Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai City, 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Fan M, Sun J, Wang W, Fan J, Wang L, Zhang X, Yang A, Wang W, Zhang R, Li J. Tropomyosin-related kinase B promotes distant metastasis of colorectal cancer through protein kinase B-mediated anoikis suppression and correlates with poor prognosis. Apoptosis 2014; 19:860-70. [PMID: 24549576 DOI: 10.1007/s10495-014-0968-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An increasing amount of evidence demonstrated that the neurotrophic receptor tropomyosin-related kinase B (TrkB) plays a critical role in the development and progression of multiple types of cancer. However, its underlying mechanism in distant metastasis through the circulatory and lymphatic systems in colorectal cancer (CRC) is still unclear. Here we showed that downregulation of TrkB using short hairpin RNA obviously increased anoikis (detachment-induced apoptosis resulting from loss of cell-matrix interactions) sensitivity of CRC cells in vitro. Furthermore, using tail vein injection model, we confirmed that silencing TrkB significantly inhibited metastasis of CRC cells in vivo. Conversely, overexpression of TrkB obviously protected CRC cells from anoikis in vitro. Both loss- and gain-of-functional experiments indicated that TrkB could be a functional molecule in anti-anoikis of CRC cells. Mechanistically, we found that protein kinase B (PKB, also known as Akt) signaling pathway was a functional link in TrkB-induced anoikis suppression in CRC cells. Phosphorylation levels of Akt are closely related with the expression pattern of TrkB in CRC cells and inhibition of Akt activation robustly induces anoikis of CRC cells in vitro. In addition, our clinical investigation showed that high TrkB expression levels in CRC patients were associated with lymph node metastasis, distant metastasis and unfavourable prognosis. Thus, based on our results, this study suggests that an important function of TrkB is to protect CRC cells from anoikis in the circulatory and lymphatic systems, and that TrkB could be a promising candidate in CRC therapy, especially in the inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Meng Fan
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Lu Z, Zhang Y, Yan X, Chen Y, Tao X, Wang J, Jia N, Lyu T, Wang J, Ding J, Feng W, Hua K. Estrogen stimulates the invasion of ovarian cancer cells via activation of the PI3K/AKT pathway and regulation of its downstream targets E‑cadherin and α‑actinin‑4. Mol Med Rep 2014; 10:2433-40. [PMID: 25216292 DOI: 10.3892/mmr.2014.2561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies by our group revealed that the phosphoinositide 3‑kinase (PI3K)/AKT pathway was involved in estrogen‑induced metastasis in ovarian cancer cells. In the present study, the role and mechanism of estrogen‑induced invasion was further explored using a stable short hairpin RNA (shRNA) estrogen receptor α/β (ER α/β) SKOV3 cell line when ER α and ER β were knocked down by lentiviral infection. The effects of estrogen and LY294002, a PI3K inhibitor, on the invasion of shRNA ER α/β SKOV3 cells were evaluated in vitro and in vivo. 17‑β estradiol promoted cell invasion, activated phosphorylated AKT in a dose‑ and time‑dependent manner, decreased E‑cadherin and increased cytoplasmic α‑actinin‑4 expression. When the PI3K/AKT pathway was suppressed by LY294002, the effect of estrogen was attenuated. Estrogen stimulated the growth of shRNA ER α/β SKOV3 xenograft tumors in nude mice, whereas LY294002 inhibited the growth and antagonized the effect of estrogen. The results indicate that estrogen promotes the invasion of ovarian cancer cells via activation of the PI3K/AKT pathway, downregulation of E‑cadherin and upregulation of α‑actinin‑4 in an ER‑independent manner. Inhibiting the PI3K/AKT pathway may be a useful treatment for ovarian carcinoma.
Collapse
Affiliation(s)
- Zhiying Lu
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Ying Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiaohui Yan
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Yisong Chen
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiang Tao
- Department of Pathology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Jiajia Wang
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Nan Jia
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Tianjiao Lyu
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Junyan Wang
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Jingxin Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Weiwei Feng
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
54
|
Khabele D, Kabir SM, Dong Y, Lee E, Rice VM, Son DS. Preferential effect of akt2-dependent signaling on the cellular viability of ovarian cancer cells in response to EGF. J Cancer 2014; 5:670-8. [PMID: 25258648 PMCID: PMC4174511 DOI: 10.7150/jca.9688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/13/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Overexpression of the epidermal growth factor receptor (EGFR) is associated with the malignant phenotype in many cancers including ovarian cancer, which leads to increased cell proliferation and survival. In spite of emerging EGFR inhibitors as a potentially useful agent, they are largely ineffective in patients with advanced or recurrent ovarian cancers. Since Akt as a key downstream factor of EGFR is highly activated in some high grade serous ovarian tumors, the augmented Akt activation may attribute to irregular EGFR-mediated signaling observed in ovarian cancer. Here we investigated the differential effect of Akt on the EGF-induced cell viability in a panel of ovarian cancer cell lines. METHODS Cellular viability assay and western blot analysis were used to measure cell viability and expression levels of proteins, respectively. Knockdown of Akt was achieved with siRNA and stable transfection of expression vectors was performed. RESULTS Cellular viability increased in OVCAR-3 ovarian cancer cells exposed to EGF, but little to no difference was observed in the 5 other ovarian cancer cells including SKOV-3 cells despite of the expression of EGFR. In OVCAR-3 cells, EGF activated Erk and Akt, but an Erk inhibitor had no impact on cellular viability. On the other hand, the EGFR and PI3K inhibitors decreased EGF-induced cellular viability, indicating the involvement of Akt signaling. Although EGF activated Erk in SKOV-3 cells, the Akt activation was very weak as compared to OVCAR-3 cells. Furthermore, we observed a different expression of Akt isoforms: Akt1 was constitutively expressed in all tested ovarian cancer cells, while Akt3 was little expressed. Interestingly, Akt2 was highly expressed in OVCAR-3 cells. Knockdown of Akt2 blocked EGF-induced OVCAR-3 cell viability whereas knockdown for Akt1 and Erk1/2 had no significant effect. Stable transfection of Akt2 into SKOV-3 cells phosphorylated more Akt and enhanced cell viability in response to EGF. CONCLUSIONS Akt2-dependent signaling appears to play an important role in EGFR-mediated cellular viability in ovarian cancer and targeting specific Akt isoform may provide a potential therapeutic approach for EGFR-expressing ovarian cancers.
Collapse
Affiliation(s)
- Dineo Khabele
- 1. Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Syeda M Kabir
- 2. Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Yuanlin Dong
- 2. Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Eunsook Lee
- 3. Department of Physiology, Meharry Medical College, Nashville, TN, USA
| | | | - Deok-Soo Son
- 2. Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
55
|
Lin YH, Chen BYH, Lai WT, Wu SF, Guh JH, Cheng AL, Hsu LC. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:19-31. [PMID: 25164962 DOI: 10.1007/s00210-014-1032-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023]
Abstract
Abnormalities in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway are commonly observed in human cancers and contribute to chemotherapy resistance. Combination therapy, involving the use of molecular targeted agents and traditional cytotoxic drugs, may represent a promising strategy to lower resistance and enhance cytotoxicity. Here, we demonstrate the efficacy of an Akt inhibitor, MK-2206, in increasing the cytotoxic effect of either paclitaxel (Taxol) or cisplatin against the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Sequential treatment of Taxol or cisplatin, followed by MK-2206, induced a synergistic inhibition of cell proliferation and effectively promoted cell death, either by inhibiting the phosphorylation of Akt and its downstream effectors 4E-BP1 and p70S6K in SKOV3 cells or by restoring p53 levels, which were downregulated after Taxol or cisplatin treatment, in ES2 cells. Combination treatment also downregulated the pro-survival protein Bcl-2 in both SKOV3 and ES2 cells, which may have contributed to cell death. In addition, we discovered that Taxol/MK-2206 or cisplatin/MK-2206 combination treatment resulted in significant enhancement of intracellular reactive oxygen species (ROS) induced by MK-2206, in both SKOV3 and ES2 cells; however, MK-2206-induced growth inhibition was reversed by a ROS scavenger only in ES2 cells. MK-2206 also suppressed DNA repair, particularly in SKOV3 cells. Taken together, our results demonstrate that the Akt inhibitor MK-2206 enhances the efficacy of cytotoxic agents in both Akt-active and Akt-inactive ovarian cancer cells but through different mechanisms.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Taipei, 10050, Taiwan
| | | | | | | | | | | | | |
Collapse
|
56
|
Jin L, Chen Y, Mu X, Lian Q, Deng H, Ge R. Phosphoproteomic analysis of gossypol-induced apoptosis in ovarian cancer cell line, HOC1a. BIOMED RESEARCH INTERNATIONAL 2014; 2014:123482. [PMID: 25180175 PMCID: PMC4144078 DOI: 10.1155/2014/123482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/17/2022]
Abstract
Ovarian cancer is a major cause for death of gynecological cancer patients. The efficacy of traditional surgery and chemotherapy is rather compromised and platinum-resistant cancer recurs. Finding new therapeutic targets is urgently needed to increase the survival rate and to improve life quality of patients with ovarian cancer. In the present work, phosphoproteomic analysis was carried out on untreated and gossypol-treated ovarian cancer cell line, HOC1a. We identified approximately 9750 phosphopeptides from 3030 phosphoproteins, which are involved in diverse cellular processes including cytoskeletal organization, RNA and nucleotide binding, and cell cycle regulation. Upon gossypol treatment, changes in phosphorylation of twenty-nine proteins including YAP1 and AKAP12 were characterized. Western blotting and qPCR analysis were used to determine expression levels of proteins in YAP1-related Hippo pathway showing that gossypol induced upregulation of LATS1, which phosphorylates YAP1 at Ser 61. Furthermore, our data showed that gossypol targets the actin cytoskeletal organization through mediating phosphorylation states of actin-binding proteins. Taken together, our data provide valuable information to understand effects of gossypol on protein phosphorylation and apoptosis of ovarian cancer cells.
Collapse
Affiliation(s)
- Lixu Jin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinlin Mu
- Peking University People's Hospital, Beijing 100044, China
| | - Qingquan Lian
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haiyun Deng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Renshan Ge
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
57
|
Ko SY, Naora H. HOXA9 promotes homotypic and heterotypic cell interactions that facilitate ovarian cancer dissemination via its induction of P-cadherin. Mol Cancer 2014; 13:170. [PMID: 25023983 PMCID: PMC4105245 DOI: 10.1186/1476-4598-13-170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/04/2014] [Indexed: 12/30/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is a lethal disease that frequently involves the peritoneal cavity. Dissemination of EOC is a multi-step process in which exfoliated tumor cells survive in the peritoneal fluid as multi-cellular aggregates and then form invasive implants on peritoneal surfaces. The mechanisms that control this process are poorly understood. We previously identified that high expression of the developmental patterning gene HOXA9 is associated with poor survival in EOC patients. In this study, we investigated the significance and mechanisms of HOXA9 in controlling aggregation and implantation of floating EOC cells. Methods HOXA9 was inhibited by shRNAs or expressed in EOC cells that were propagated in suspension cultures and in the peritoneal cavity of mice. Cell death was assayed by flow cytometry and ELISA. Cell aggregation, attachment and migration were evaluated by microscopy, transwell chamber assays and histopathologic analysis. DNA-binding of HOXA9 and its effect on expression of the cell adhesion molecule P-cadherin were assayed by chromatin immunoprecipitation, quantitative RT-PCR and Western blot. HOXA9 and P-cadherin expression was evaluated in publicly available datasets of EOC clinical specimens. Results We identified that HOXA9 promotes aggregation and inhibits anoikis in floating EOC cells in vitro and in xenograft models. HOXA9 also stimulated the ability of EOC cells to attach to peritoneal cells and to migrate. HOXA9 bound the promoter of the CDH3 gene that encodes P-cadherin, induced CDH3 expression in EOC cells, and was associated with increased CDH3 expression in clinical specimens of EOC. Inhibiting P-cadherin in EOC cells that expressed HOXA9 abrogated the stimulatory effects of HOXA9 on cell aggregation, implantation and migration. Conversely, these stimulatory effects of HOXA9 were restored when P-cadherin was reconstituted in EOC cells in which HOXA9 was inhibited. Conclusion These findings indicate that HOXA9 contributes to poor outcomes in EOC in part by promoting intraperitoneal dissemination via its induction of P-cadherin.
Collapse
Affiliation(s)
| | - Honami Naora
- Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
58
|
Shipe WD, Wolkenberg SE, Lindsley CW. Accelerating lead development by microwave-enhanced medicinal chemistry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 2:155-61. [PMID: 24981843 DOI: 10.1016/j.ddtec.2005.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microwave-assisted organic synthesis (MAOS) addresses the need for accelerated chemical synthesis by providing many advantages over classical thermal conditions. Microwave instruments produced by Biotage, CEM and Milestone enable chemistry to be safely and reproducibly performed on various scales and in a parallel fashion. To illustrate the high utility of this technology for lead development, our Akt kinase program will be described wherein MAOS played a pivotal role in the identification of isozyme-selective Akt inhibitors.:
Collapse
Affiliation(s)
- William D Shipe
- Merck Research Laboratories, Department of Medicinal Chemistry, West Point, PA 19486, USA
| | - Scott E Wolkenberg
- Merck Research Laboratories, Department of Medicinal Chemistry, West Point, PA 19486, USA
| | - Craig W Lindsley
- Merck Research Laboratories, Department of Medicinal Chemistry, West Point, PA 19486, USA.
| |
Collapse
|
59
|
Nagy Z, Kovács I, Török M, Tóth D, Vereb G, Buzás K, Juhász I, Blumberg PM, Bíró T, Czifra G. Function of RasGRP3 in the formation and progression of human breast cancer. Mol Cancer 2014; 13:96. [PMID: 24779681 PMCID: PMC4113147 DOI: 10.1186/1476-4598-13-96] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/21/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Ras guanine nucleotide exchange factors (RasGEFs) mediate the activation of the Ras signaling pathway that is over activated in many human cancers. The RasGRP3, an activator of H-Ras and R-Ras protein exerts oncogenic effects and the overexpression of the protein is observed in numerous malignant cancer types. Here, we investigated the putative alteration of expression and potential function of RasGRP3 in the formation and progression of human breast cancer. Methods The RasGRP3 and phosphoRasGRP3 expressions were examined in human invasive ductal adenocarcinoma derived samples and cell lines (BT-474, JIMT-1, MCF7, SK-BR-3, MDA-MB-453, T-47D) both in mRNA (Q-PCR) and protein (Western blot; immunohistochemistry) levels. To explore the biological function of the protein, RasGRP3 knockdown cultures were established. To assess the role of RasGRP3 in the viability of cells, annexin-V/PI staining and MitoProbe™ DilC1 (5) assay were performed. To clarify the function of the protein in cell proliferation and in the development of chemotherapeutic resistance, CyQuant assay was performed. To observe the RasGRP3 function in tumor formation, the Severe combined immunodeficiency (SCID) mouse model was used. To investigate the role of the protein in Ras-related signaling Q-PCR and Western blot experiments were performed. Results RasGRP3 expression was elevated in human breast tumor tissue samples as well as in multiple human breast cancer cell lines. Down-regulation of RasGRP3 expression in breast cancer cells decreased cell proliferation, induced apoptosis in MCF7 cells, and sensitized T-47D cells to the action of drugs Tamoxifen and trastuzumab (Herceptin). Gene silencing of RasGRP3 reduced tumor formation in mouse xenografts as well. Inhibition of RasGRP3 expression also reduced Akt, ERK1/2 and estrogen receptor alpha phosphorylation downstream from IGF-I insulin like growth factor-I (IGF-I) or epidermal growth factor (EGF) stimulation confirming the functional role of RasGRP3 in the altered behavior of these cells. Conclusions Taken together, our results suggest that the Ras activator RasGRP3 may have a role in the pathological behavior of breast cancer cells and may constitute a therapeutic target for human breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gabriella Czifra
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt, 98, PO Box 22, Debrecen H-4032, Hungary.
| |
Collapse
|
60
|
Niero EL, Rocha-Sales B, Lauand C, Cortez BA, de Souza MM, Rezende-Teixeira P, Urabayashi MS, Martens AA, Neves JH, Machado-Santelli GM. The multiple facets of drug resistance: one history, different approaches. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:37. [PMID: 24775603 PMCID: PMC4041145 DOI: 10.1186/1756-9966-33-37] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated.
Collapse
Affiliation(s)
- Evandro Luís Niero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av, Prof, Lineu Prestes, 1524, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
McGuire JL, Hammond JH, Yates SD, Chen D, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Altered serine/threonine kinase activity in schizophrenia. Brain Res 2014; 1568:42-54. [PMID: 24780530 DOI: 10.1016/j.brainres.2014.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Converging evidence implicates alterations in multiple signaling pathways in the etiology of schizophrenia. Previously, these studies were limited to the analysis of one or a few phosphoproteins at a time. Here, we use a novel kinase array platform to simultaneously investigate the convergence of multiple signaling cascades implicated in schizophrenia. This technology uses consensus peptide substrates to assess activity levels of a large number (>100) of serine/threonine protein kinases. 19 peptide substrates were differentially phosphorylated (>15% change) in the frontal cortex in schizophrenia. These peptide substrates were examined using Ingenuity Pathway Analysis to group them according to the functions and to identify processes most likely affected in schizophrenia. Pathway analysis placed 14 of the 19 peptides into cellular homeostatic pathways, 10 into pathways governing cytoskeletal organization, and 8 into pathways governing ion homeostasis. These data are the first to simultaneously investigate comprehensive changes in signaling cascades in a severe psychiatric disorder. The examination of kinase activity in signaling pathways may facilitate the identification of novel substrates for drug discovery and the development of safer and more effective pharmacological treatment for schizophrenia.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Stefani D Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Dongquan Chen
- Division of Preventative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
62
|
Kim DC, Chung WJ, Lee JH, Jang BK, Hwang JS, Kang KJ, Kwon SY. Clinicopathological characteristics of PIK3CA and HBx mutations in Korean patients with hepatocellular carcinomas. APMIS 2014; 122:1001-6. [PMID: 24673525 DOI: 10.1111/apm.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common form of cancer in the Korean population, caused primarily by infection with either the Hepatitis B or C virus. Progression of this disease is frequently associated with mutations in either phosphoinositide-3-kinase, catalytic, alpha (PIK3CA) or hepatitis B virus X (HBx) gene. Previous studies have examined the frequency of PIK3CA mutations in HCC, although the clinical significance of these mutations has not been studied in a Korean population. In addition, HBx appears to play a key role in modulating a wide range of cellular functions, leading to HCC. In this study, we examined microdissected tumor samples from 50 HCC patients who underwent hepatectomy at Keimyung University Dongsan Medical Center. These patients were screened for mutations in PIK3CA and HBx to identify the clinical outcomes associated with these mutations. Exons 9 and 20 of PIK3CA and the entirety of HBx were screened for mutations by polymerase chain reaction and direct DNA sequencing. PIK3CA mutations were detected in 7 of 50 patients (14%). Among the 42 patients who were seropositive for hepatitis B, 17 (40.5%) had HBx mutations and 4 (9.52%) had mutations in PIK3CA. PIK3CA mutations were strongly correlated with tumor size. Patients harboring HBx mutations exhibited a longer time to recurrence; this difference was statistically significant not only in comparison with the PIK3CA mutation but also compared with those without any mutations. This result suggests a role for PIK3CA and HBx mutations as prognostic markers in HCC.
Collapse
Affiliation(s)
- Dong Choon Kim
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
63
|
Moolthiya P, Tohtong R, Keeratichamroen S, Leelawat K. Role of mTOR inhibitor in cholangiocarcinoma cell progression. Oncol Lett 2014; 7:854-860. [PMID: 24527093 PMCID: PMC3919862 DOI: 10.3892/ol.2014.1799] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/29/2013] [Indexed: 12/29/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy of the biliary epithelium. CCA is resistant to currently available chemotherapy; therefore, new drugs as well as new molecular targets must be identified for the development of an effective treatment for CCA. The present study showed that RAD001 (everolimus), a derivative of rapamycin and an orally bioavailable mammalian target of rapamycin (mTOR) inhibitor, exhibits cytotoxic and antimetastatic effects in a CCA cell line, RMCCA-1. Treatment with low concentrations of RAD001 resulted in a significant reduction of in vitro invasion and migration of RMCCA-1, concomitant with a reduction of filopodia and alteration of the actin cytoskeleton. Although, matrix metalloproteinase-9 and -14 activities were unaltered. However, at high concentrations, RAD001 exhibited cytotoxic effects, reducing cell proliferation and inducing apoptotic cell death. Overall, RAD001 exhibits multiple effects mediated by the inhibition of the mTOR, which may serve as a promising agent for the treatment of CCA.
Collapse
Affiliation(s)
- Penpak Moolthiya
- Department of Biochemistry, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Siriporn Keeratichamroen
- Department of Molecular Medicine, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Kawin Leelawat
- Department of Surgery, Rajavithi Hospital, Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
64
|
Nag A, Das S, Yu MB, Deyle KM, Millward SW, Heath JR. A chemical epitope-targeting strategy for protein capture agents: the serine 474 epitope of the kinase Akt2. Angew Chem Int Ed Engl 2013; 52:13975-9. [PMID: 24254999 PMCID: PMC4059071 DOI: 10.1002/anie.201305882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/23/2013] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Mary Beth Yu
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA)
| | - Kaycie M. Deyle
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA)
| | | | - James R. Heath
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA)
| |
Collapse
|
65
|
Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, Rho SB. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 2013; 17:989-97. [PMID: 22460505 PMCID: PMC3413814 DOI: 10.1007/s10495-012-0717-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), a well-known anti-psychotic agent was found to have anti-cancer activity in cancer cells. However, the molecular mechanism of the agent in cellular signal pathways has not been well defined. Thioridazine significantly increased early- and late-stage apoptotic fraction in cervical and endometrial cancer cells, suggesting that suppression of cell growth by thioridazine was due to the induction of apoptosis. Cell cycle analysis indicated thioridazine induced the down-regulation of cyclin D1, cyclin A and CDK4, and the induction of p21 and p27, a cyclin-dependent kinase inhibitor. Additionally, we compared the influence of thioridazine with cisplatin used as a control, and similar patterns between the two drugs were observed in cervical and endometrial cancer cell lines. Furthermore, as expected, thioridazine successfully inhibited phosphorylation of Akt, phosphorylation of 4E-BP1 and phosphorylation of p70S6K, which is one of the best characterized targets of the mTOR complex cascade. These results suggest that thioridazine effectively suppresses tumor growth activity by targeting the PI3K/Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Sokbom Kang
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
- Division of Gynecologic Cancer Research, Research Institute and Hospital, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Boh-Ram Kim
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Mi Sun Park
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Barry Trink
- Division of Head and Neck Cancer Research, Department of Otolaryngology and Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Hyun-Jung Byun
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 Republic of Korea
| |
Collapse
|
66
|
Nag A, Das S, Yu MB, Deyle KM, Millward SW, Heath JR. A Chemical Epitope-Targeting Strategy for Protein Capture Agents: The Serine 474 Epitope of the Kinase Akt2. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Chew GS, Myers S, Shu-Chien AC, Muhammad TST. Interleukin-6 inhibition of peroxisome proliferator-activated receptor alpha expression is mediated by JAK2- and PI3K-induced STAT1/3 in HepG2 hepatocyte cells. Mol Cell Biochem 2013; 388:25-37. [PMID: 24242046 DOI: 10.1007/s11010-013-1896-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 01/22/2023]
Abstract
Interleukin-6 (IL-6) is the major activator of the acute phase response (APR). One important regulator of IL-6-activated APR is peroxisome proliferator-activated receptor alpha (PPARα). Currently, there is a growing interest in determining the role of PPARα in regulating APR; however, studies on the molecular mechanisms and signaling pathways implicated in mediating the effects of IL-6 on the expression of PPARα are limited. We previously revealed that IL-6 inhibits PPARα gene expression through CAAT/enhancer-binding protein transcription factors in hepatocytes. In this study, we determined that STAT1/3 was the direct downstream molecules that mediated the Janus kinase 2 (JAK2) and phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathways in IL-6-induced repression of PPARα. Treatment of cells with pharmacological inhibitors of JAK2, PI3K, AKT, and mTOR attenuated the inhibitory effect of IL-6 on PPARα protein in a dose-dependent manner. These inhibitors also decreased the IL-6-induced repression of PPARα mRNA expression and promoter activity. Overexpression of STAT1 and STAT3 in HepG2 cells cotransfected with a reporter vector containing this PPARα promoter region revealed that both the expression plasmids inhibited the IL-6-induced repression of PPARα promoter activity. In the presence of inhibitors of JAK2 and mTOR (AG490 and rapamycin, respectively), IL-6-regulated protein expression and DNA binding of STAT1 and STAT3 were either completely or partially inhibited simultaneously, and the IL-6-induced repression of PPARα protein and mRNA was also inhibited. This study has unraveled novel pathways by which IL-6 inhibits PPARα gene transcription, involving the modulation of JAK2/STAT1-3 and PI3K/AKT/mTOR by inducing the binding of STAT1 and STAT3 to STAT-binding sites on the PPARα promoter. Together, these findings represent a new model of IL-6-induced suppression of PPARα expression by inducing STAT1 and STAT3 phosphorylation and subsequent down-regulation of PPARα mRNA expression.
Collapse
Affiliation(s)
- Guat-Siew Chew
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia,
| | | | | | | |
Collapse
|
68
|
Xiao X, Cao W, Jiang X, Zhang W, Zhang Y, Liu B, Cheng J, Huang H, Huo J, Zhang X. Glaucocalyxin A, a negative Akt regulator, specifically induces apoptosis in human brain glioblastoma U87MG cells. Acta Biochim Biophys Sin (Shanghai) 2013; 45:946-52. [PMID: 24041957 DOI: 10.1093/abbs/gmt097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Akt is becoming an attractive target in the development of anti-tumor agents. In the present study, we aimed to discover novel negative Akt regulators against malignant glioma. An Akt regulator screening platform performed in an Akt-GFP overexpression cell line was developed, and natural product library was screened and evaluated using this platform. In addition, the cytotoxic effect of the regulator was detected by MTT assay. Cell apoptosis was assayed by Hoechst 33342 staining and flow cytometry analysis. Afterwards, the apoptotic signaling pathway was investigated by western blot analysis. Glaucocalyxin A, isolated from Rabdosia japonica, was identified as a potent negative regulator of Akt. In human-derived malignant glioma U87MG cells, glaucocalyxin A inhibited Akt phosphorylation, suppressed proliferation, and promoted apoptosis in a dose-dependent manner, but not in normal glial cells. Furthermore, glaucocalyxin A activated caspase-3, decreased BAD phosphorylation, and reduced the expression of X-linked inhibitor of apoptosis protein. Taken together, these results indicated that glaucocalyxin A may become a promising candidate in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Suman S, Kurisetty V, Das TP, Vadodkar A, Ramos G, Lakshmanaswamy R, Damodaran C. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog 2013; 53 Suppl 1:E151-60. [PMID: 24000138 DOI: 10.1002/mc.22076] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Suman Suman
- Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| | - Vittal Kurisetty
- Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| | - Trinath P. Das
- Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| | - Aditi Vadodkar
- Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| | - Gabriel Ramos
- Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| | - Rajkumar Lakshmanaswamy
- Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| | - Chendil Damodaran
- Department of Biomedical Sciences; Paul L Foster School of Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| |
Collapse
|
70
|
Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. AKT-independent PI3-K signaling in cancer - emerging role for SGK3. Cancer Manag Res 2013; 5:281-92. [PMID: 24009430 PMCID: PMC3762672 DOI: 10.2147/cmar.s35178] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3-K) signaling pathway plays an important role in a wide variety of fundamental cellular processes, largely mediated via protein kinase B/v-akt murine thymoma viral oncogene homolog (PKB/AKT) signaling. Given the crucial role of PI3-K/AKT signaling in regulating processes such as cell growth, proliferation, and survival, it is not surprising that components of this pathway are frequently dysregulated in cancer, making the AKT kinase family members important therapeutic targets. The large number of clinical trials currently evaluating PI3-K pathway inhibitors as a therapeutic strategy further emphasizes this. The serum- and glucocorticoid-inducible protein kinase (SGK) family is made up of three isoforms, SGK1, 2, and 3, that are PI3-K-dependent, serine/threonine kinases, with similar substrate specificity to AKT. Consequently, the SGK family also regulates similar cell processes to the AKT kinases, including cell proliferation and survival. Importantly, there is emerging evidence demonstrating that SGK3 plays a critical role in AKT-independent oncogenic signaling. This review will focus on the role of SGK3 as a key effector of AKT-independent PI3-K oncogenic signaling.
Collapse
Affiliation(s)
- Maressa A Bruhn
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia ; School of Biological Sciences, Flinders University, Bedford Park, South Australia, Australia
| | | | | | | |
Collapse
|
71
|
Agarwal E, Brattain MG, Chowdhury S. Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal 2013; 25:1711-9. [PMID: 23603750 PMCID: PMC3686084 DOI: 10.1016/j.cellsig.2013.03.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022]
Abstract
Dissemination of cancer cells to distant organ sites is the leading cause of death due to treatment failure in different types of cancer. Mehlen and Puisieux have reviewed the importance of the development of inappropriate cell survival signaling for various steps in the metastatic process and have noted the particular importance of aberrant cell survival to successful colonization at the metastatic site. Therefore, the understanding of mechanisms that govern cell survival fate of these metastatic cells could lead to the understanding of a new paradigm for the control of metastatic potential and could provide the basis for developing novel strategies for the treatment of metastases. Numerous studies have documented the widespread role of Akt in cell survival and metastasis in colorectal cancer, as well as many other types of cancer. Akt acts as a key signaling node that bridges the link between oncogenic receptors to many essential pro-survival cellular functions, and is perhaps the most commonly activated signaling pathway in human cancer. In recent years, Akt2 and Akt3 have emerged as significant contributors to malignancy alongside the well-characterized Akt1 isoform, with distinct non-overlapping functions. This review is aimed at gaining a better understanding of the Akt-driven cell survival mechanisms that contribute to cancer progression and metastasis and the pharmacological inhibitors in clinical trials designed to counter the Akt-driven cell survival responses in cancer.
Collapse
Affiliation(s)
- Ekta Agarwal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael G. Brattain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
72
|
Rho SB, Byun HJ, Kim BR, Kim IS, Lee JH, Yoo R, Park ST, Park SH. GABAA receptor-binding protein promotes sensitivity to apoptosis induced by chemotherapeutic agents. Int J Oncol 2013; 42:1807-14. [PMID: 23545901 DOI: 10.3892/ijo.2013.1866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/08/2013] [Indexed: 11/06/2022] Open
Abstract
In the present study, the expression of human γ-aminobutyrate type A (GABAA) receptor-binding protein (GABARBP) is downregulated in ovarian cancer cell lines and tissues. We also found that the specific function of GABAPBP was that of a novel pro-apoptotic protein. Both GABARBP and cisplatin suppressed cancer cell proliferation in a concentration-dependent manner. The combined treatment of GABARBP and cisplatin was more effective in inhibiting cell growth, as well as cell migration, than with either drug treatment alone. At the same time, the treatment combination is correlated with the downregulation of cyclin D1 and CDK4, arrested cell cycle progression in the G₀-G₁ phase and enhancing p53 expression, while also reducing Bcl-2 and Bcl-xL expression. The p53 and p21 promoter luciferase activities were induced by GABARBP, whereas there was no effect on the p53-/- and p21-/- system. In addition, p53 activity was validated with UV irradiation and siGABARBP. Taken together, our results indicate that GABARBP can regulate the pro-apoptotic activity of cisplatin via the upregulation of p53 expression.
Collapse
Affiliation(s)
- Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Haslinger P, Haider S, Sonderegger S, Otten JV, Pollheimer J, Whitley G, Knöfler M. AKT Isoforms 1 and 3 Regulate Basal and Epidermal Growth Factor-Stimulated SGHPL-5 Trophoblast Cell Migration in Humans1. Biol Reprod 2013; 88:54. [DOI: 10.1095/biolreprod.112.104778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
74
|
Gonadotropins activate oncogenic pathways to enhance proliferation in normal mouse ovarian surface epithelium. Int J Mol Sci 2013; 14:4762-82. [PMID: 23449028 PMCID: PMC3634497 DOI: 10.3390/ijms14034762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy affecting American women. The gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), have been implicated as growth factors in ovarian cancer. In the present study, pathways activated by FSH and LH in normal ovarian surface epithelium (OSE) grown in their microenvironment were investigated. Gonadotropins increased proliferation in both three-dimensional (3D) ovarian organ culture and in a two-dimensional (2D) normal mouse cell line. A mouse cancer pathway qPCR array using mRNA collected from 3D organ cultures identified Akt as a transcriptionally upregulated target following stimulation with FSH, LH and the combination of FSH and LH. Activation of additional pathways, such as Birc5, Cdk2, Cdk4, and Cdkn2a identified in the 3D organ cultures, were validated by western blot using the 2D cell line. Akt and epidermal growth factor receptor (EGFR) inhibitors blocked gonadotropin-induced cell proliferation in 3D organ and 2D cell culture. OSE isolated from 3D organ cultures stimulated with LH or hydrogen peroxide initiated growth in soft agar. Hydrogen peroxide stimulated colonies were further enhanced when supplemented with FSH. LH colony formation and FSH promotion were blocked by Akt and EGFR inhibitors. These data suggest that the gonadotropins stimulate some of the same proliferative pathways in normal OSE that are activated in ovarian cancers.
Collapse
|
75
|
De Marco C, Rinaldo N, Bruni P, Malzoni C, Zullo F, Fabiani F, Losito S, Scrima M, Marino FZ, Franco R, Quintiero A, Agosti V, Viglietto G. Multiple genetic alterations within the PI3K pathway are responsible for AKT activation in patients with ovarian carcinoma. PLoS One 2013; 8:e55362. [PMID: 23408974 PMCID: PMC3567053 DOI: 10.1371/journal.pone.0055362] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is activated in multiple cancers including ovarian carcinoma (OC). However, the relative contribution of the single components within the PI3K pathway to AKT activation in OC is still unclear. We examined 98 tumor samples from Italian OC patients for alterations in the members of the PI3K pathway. We report that AKT is significantly hyperactive in OC compared to normal tissue (n = 93; p<0.0001) and that AKT activation is preferentially observed in the elderly (>58 years old; n = 93; p<0.05). The most frequent alteration is the overexpression of the p110α catalytic subunit of PI3K (63/93, ∼68%); less frequent alterations comprise the loss of PTEN (24/89, 27%) and the overexpression of AKT1 (18/96, 19%) or AKT2 (11/88,12.5%). Mutations in the PIK3CA or KRAS genes were detected at lower frequency (12% and 10%, respectively) whereas mutations in AKT1 or AKT2 genes were absent. Although many tumors presented a single lesion (28/93, of which 23 overexpressed PIK3CA, 1 overexpressed AKT and 4 had lost PTEN), many OC (35/93) presented multiple alterations within the PI3K pathway. Apparently, aberrant PI3K signalling was mediated by activation of the canonical downstream AKT-dependent mTOR/S6K1/4EBP1 pathway and by regulation of expression of oncogenic transcription factors that include HMGA1, JUN-B, FOS and MYC but not by AKT-independent activation of SGK3. FISH analysis indicated that gene amplification of PIK3CA, AKT1 and AKT2 (but not of PI3KR1) and the loss of PTEN are common and may account for changes in the expression of the corresponding proteins. In conclusion, our results indicate that p110α overexpression represents the most frequent alteration within the PI3K/AKT pathway in OC. However, p110α overexpression may not be sufficient to activate AKT signalling and drive ovarian tumorigenesis since many tumors overexpressing PI3K presented at least one additional alteration.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Biogem Scarl, Institute for Genetic Research “Gaetano Salvatore”, Ariano Irpino, Avellino, Italy
| | - Nicola Rinaldo
- Biogem Scarl, Institute for Genetic Research “Gaetano Salvatore”, Ariano Irpino, Avellino, Italy
| | - Paola Bruni
- Casa di Cura “Malzoni-Villa dei Platani”, Avellino, Italy
| | | | - Fulvio Zullo
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Fernanda Fabiani
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Simona Losito
- Fondazione “G Pascale”, National Cancer Institute, Naples, Italy
| | - Marianna Scrima
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Biogem Scarl, Institute for Genetic Research “Gaetano Salvatore”, Ariano Irpino, Avellino, Italy
| | | | - Renato Franco
- Fondazione “G Pascale”, National Cancer Institute, Naples, Italy
| | - Alfina Quintiero
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Biogem Scarl, Institute for Genetic Research “Gaetano Salvatore”, Ariano Irpino, Avellino, Italy
- * E-mail:
| |
Collapse
|
76
|
Hanrahan AJ, Schultz N, Westfal ML, Sakr RA, Giri DD, Scarperi S, Janakiraman M, Janikariman M, Olvera N, Stevens EV, She QB, Aghajanian C, King TA, Stanchina ED, Spriggs DR, Heguy A, Taylor BS, Sander C, Rosen N, Levine DA, Solit DB. Genomic complexity and AKT dependence in serous ovarian cancer. Cancer Discov 2013; 2:56-67. [PMID: 22328975 DOI: 10.1158/2159-8290.cd-11-0170] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Effective oncoprotein-targeted therapies have not yet been developed for ovarian cancer. To explore the role of PI3 kinase/AKT signaling in this disease, we performed a genetic and functional analysis of ovarian cancer cell lines and tumors. PI3K pathway alterations were common in both, but the spectrum of mutational changes differed. Genetic activation of the pathway was necessary, but not sufficient, to confer sensitivity to selective inhibition of AKT and cells with RAS pathway alterations or RB1 loss were resistant to AKT inhibition, whether or not they had coexistent PI3K/AKT pathway activation. Inhibition of AKT1 caused growth arrest in a subset of ovarian cell lines, but not in those with AKT3 expression, which required pan-AKT inhibition. Thus, a subset of ovarian tumors are sensitive to AKT inhibition, but the genetic heterogeneity of the disease suggests that effective treatment with AKT pathway inhibitors will require a detailed molecular analysis of each patient's tumor. SIGNIFICANCE A subset of ovarian cancers exhibits AKT pathway activation and is sensitive to selective AKT inhibition. Ovarian tumors exhibit significant genetic heterogeneity and thus an individualized approach based on real-time, detailed genomic and proteomic characterization of individual tumors will be required for the successful application of PI3K/AKT pathway inhibitors in this disease.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10471, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Niu M, Sun Y, Liu X, Tang L, Qiu R. Tautomycetin Induces Apoptosis by Inactivating Akt Through a PP1-Independent Signaling Pathway in Human Breast Cancer Cells. J Pharmacol Sci 2013; 121:17-24. [DOI: 10.1254/jphs.12206fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
78
|
Giudice FS, Squarize CH. The determinants of head and neck cancer: Unmasking the PI3K pathway mutations. ACTA ACUST UNITED AC 2013; Suppl 5. [PMID: 25126449 DOI: 10.4172/2157-2518.s5-003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies attempting to identify and understand the function of mutated genes and deregulated molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA mutations are found 11%-33% of head and neck cancer (HNC). The hotspot mutation sites for PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9-23% of HNC, and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of heterozygosity (LOH) ranges from 41%-71% and loss of PTEN protein expression occurs in 31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR signaling pathway. In this review, we provided a comprehensive overview of mutations in the PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2, PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations may affect protein structure and function. We also highlight the latest discoveries in protein kinase and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K signaling. A better understanding of the mechanisms underlying cancer formation, progression and resistance to therapy will inform selection of novel genomic-based personalized therapies for head and neck cancer patients.
Collapse
Affiliation(s)
- Fernanda S Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA ; International Research Center, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA
| |
Collapse
|
79
|
Transformation of human ovarian surface epithelial cells by Krüppel-like factor 8. Oncogene 2012; 33:10-8. [PMID: 23222713 PMCID: PMC3975924 DOI: 10.1038/onc.2012.545] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/07/2012] [Accepted: 10/23/2012] [Indexed: 12/30/2022]
Abstract
Previously we demonstrated that Krüppel-like factor 8 (KLF8) participates in oncogenic transformation of mouse fibroblasts and is highly overexpressed in human ovarian cancer. In this work, we first correlated KLF8 overexpression with the aggressiveness of ovarian patient tumors and then tested if KLF8 could transform human ovarian epithelial cells. Using the immortalized non-tumorigenic human ovarian surface epithelial cell line T80 and retroviral infection, we generated cell lines that constitutively overexpress KLF8 alone or its combination with the known ovarian oncogenes c-Myc, Stat3c and/or Akt and examined the cell lines for anchorage-independent growth and tumorigenesis. The soft agar clonogenic assay showed that T80/KLF8 cells formed significantly more colonies than the mock cells. Interestingly, the cells expressing both KLF8 and c-Myc formed the largest amounts of colonies greater than the sum of colonies formed by the cells expressing KLF8 and c-Myc alone. These results suggested that KLF8 might be a weak oncogene that works cooperatively with c-Myc to transform ovarian cells. Surprisingly, overexpression of KLF8 alone was sufficient to induce tumorigenesis in nude mice resulting in short life span whether the T80/KLF8 cells were injected subcutaneously, intraperitoneally or orthotopically into the ovarian bursa. Histopathological studies confirmed that the T80/KLF8 tumors were characteristic of human serous ovarian carcinomas. Comparative expression profiling and functional studies identified the cell cycle regulators cyclin D1 and USP44 as primary KLF8 targets and effectors for the T80 transformation. Overall, we identified KLF8 overexpression as an important factor in human ovarian carcinoma pathogenesis.
Collapse
|
80
|
Girouard J, Lafleur MJ, Parent S, Leblanc V, Asselin E. Involvement of Akt isoforms in chemoresistance of endometrial carcinoma cells. Gynecol Oncol 2012; 128:335-43. [PMID: 23174537 DOI: 10.1016/j.ygyno.2012.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In tumors, upstream regulation of Akt is affected by oncogenic events which lead to its constitutive activation and promote cell survival. Since studies have demonstrated that the three Akt isoforms exhibit different physiological functions, Akt isoforms may contribute differently in chemoresistance. The objective of the study was to determine the role of each Akt isoforms in chemoresistance. METHODS We stably transfected the chemoresistant KLE endometrial carcinoma cells with specific shRNAs for Akt1, Akt2 or Akt3. Alternatively, we stably transfected the chemosensitive Hec-1-A endometrial carcinoma cells, in which no Akt activity is detected, with constitutively active Akt expression vectors for each isoform. RESULTS We demonstrated that Akt1 and Akt2 downregulation by RNAi highly sensitizes KLE cells to cisplatin by inducing the activation of pro-apoptotic factors such as the cleavage of caspases-3, -6, -9 and PARP; downregulation of all Akt isoforms leads to increased sensitivity to doxorubicin while only Akt1-2 downregulation increases taxol sensitivity. Proliferation of Akt1, and mostly Akt2 deficient cells was affected by cisplatin treatment. Constitutive Akt1 or Akt2 expression led to an increased resistance to apoptosis. Akt isoforms have been shown to influence migration in other cancer cells. We showed that Akt2 blocks cell motility, while Akt1-3 had less effect on our endometrial cancer cell models. CONCLUSION Our findings highlight the contribution of Akt1 and Akt2 in the molecular mechanisms that govern chemoresistance of endometrial carcinomas. Furthermore, Akt isoform-specific transfectants will provide a strong model to determine the involvement of each Akt isoform in tumor progression and metastasis.
Collapse
Affiliation(s)
- Julie Girouard
- Canada Research Chair in Molecular Gyneco-Oncology, Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | | | |
Collapse
|
81
|
Xu HY, Chen ZW, Hou JC, Du FX, Liu JC. Jolkinolide B induces apoptosis in MCF-7 cells through inhibition of the PI3K/Akt/mTOR signaling pathway. Oncol Rep 2012; 29:212-8. [PMID: 23129237 DOI: 10.3892/or.2012.2113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/17/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to explore the molecular mechanisms of jolkinolide B (JB), which is extracted from the root of Euphorbia fischeriana Steud. In this study, we found that JB, a diterpenoid from the traditional Chinese medicinal herb, strongly inhibited the PI3K/Akt/mTOR signaling pathway. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MCF-7 human breast cancer cells. Our results showed significant induction of apoptosis in MCF-7 cells incubated with JB. The viability of the MCF-7 cells was assessed by MTT assay. Flow cytometry was used to detect apoptosis and cell cycle analysis. Transmission electron microscopy (TEM) analysis was used to observe cell morphology. MCF-7 cells were subcutaneously inoculated into nude mice to study the in vivo antitumor effects of JB. The growth of MCF-7 cells was inhibited and arrested in the S phase by JB. The data showed significantly decreased tumor volume and weight in nude mice inoculated with MCF-7 cells. In addition, treatment with JB was able to induce downregulation of cyclinD1, cyclinE, mTOR, p-PI3K and p-Akt, and upregulation of PTEN and p-eIF4E. Collectively, JB-induced apoptosis of MCF-7 cells occurs through the PI3K/Akt/mTOR signaling pathway. Furthermore, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.
Collapse
Affiliation(s)
- Hui-Yu Xu
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | | | | | | | | |
Collapse
|
82
|
Li W, Zhang S, Liu CC, Zhou XJ. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics 2012; 28:2458-66. [PMID: 22863767 PMCID: PMC3463121 DOI: 10.1093/bioinformatics/bts476] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Motivation: Eukaryotic gene expression (GE) is subjected to precisely coordinated multi-layer controls, across the levels of epigenetic, transcriptional and post-transcriptional regulations. Recently, the emerging multi-dimensional genomic dataset has provided unprecedented opportunities to study the cross-layer regulatory interplay. In these datasets, the same set of samples is profiled on several layers of genomic activities, e.g. copy number variation (CNV), DNA methylation (DM), GE and microRNA expression (ME). However, suitable analysis methods for such data are currently sparse. Results: In this article, we introduced a sparse Multi-Block Partial Least Squares (sMBPLS) regression method to identify multi-dimensional regulatory modules from this new type of data. A multi-dimensional regulatory module contains sets of regulatory factors from different layers that are likely to jointly contribute to a local ‘gene expression factory’. We demonstrated the performance of our method on the simulated data as well as on The Cancer Genomic Atlas Ovarian Cancer datasets including the CNV, DM, ME and GE data measured on 230 samples. We showed that majority of identified modules have significant functional and transcriptional enrichment, higher than that observed in modules identified using only a single type of genomic data. Our network analysis of the modules revealed that the CNV, DM and microRNA can have coupled impact on expression of important oncogenes and tumor suppressor genes. Availability and implementation: The source code implemented by MATLAB is freely available at: http://zhoulab.usc.edu/sMBPLS/. Contact:xjzhou@usc.edu Supplementary information:Supplementary material are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wenyuan Li
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
83
|
Vergara D, Bellomo C, Zhang X, Vergaro V, Tinelli A, Lorusso V, Rinaldi R, Lvov YM, Leporatti S, Maffia M. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:891-9. [DOI: 10.1016/j.nano.2011.10.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/18/2011] [Accepted: 10/30/2011] [Indexed: 12/17/2022]
|
84
|
Zuo Y, Huang J, Zhou B, Wang S, Shao W, Zhu C, Lin L, Wen G, Wang H, Du J, Bu X. Synthesis, cytotoxicity of new 4-arylidene curcumin analogues and their multi-functions in inhibition of both NF-κB and Akt signalling. Eur J Med Chem 2012; 55:346-57. [PMID: 22889562 DOI: 10.1016/j.ejmech.2012.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/27/2022]
Abstract
A series of new 4-arylidene curcumin analogues (4-arylidene-1,7-bisarylhepta-1,6-diene-3,5-diones) were synthesized and found to be potent antiproliferative agents against a panel of cancer cell lines at submicromolar to low micromolar concentrations by SRB assay. Their inhibitory abilities against NF-κB was evaluated by High Content Analysis (HCA) based immunofluorescence assay; and the Akt signalling inhibition was determined by fluorescence polarization assay and western blot respectively. The Structure-Activity Relationship was discussed. Our results revealed that 4-arylidene curcumin analogues may work in a multi-targets manner in cancer cell.
Collapse
Affiliation(s)
- Yinglin Zuo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ma X, Luo D, Li K, Liu R, Liu Y, Zhu T, Deng D, Zhou J, Meng L, Wang S, Ma D. Suppression of EphB4 improves the inhibitory effect of mTOR shRNA on the biological behaviors of ovarian cancer cells by down-regulating Akt phosphorylation. ACTA ACUST UNITED AC 2012; 32:358-363. [DOI: 10.1007/s11596-012-0062-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 12/12/2022]
|
86
|
Abstract
INTRODUCTION The p70 S6 kinase (p70(S6K)) is frequently active in ovarian and a wide range of cancer types, and it has a crucial role in several processes considered hallmarks of cancer. Therefore, blocking p70(S6K) expression or activity may present a promising strategy for anticancer treatment. AREAS COVERED The current understanding of the molecular mechanisms that govern p70(S6K) regulation as well as its tumorigenic effects, which are involved in the initiation and progression in ovarian cancer, in particular the emerging new role of p70(S6K) in cell migration, which is a prerequisite of tumor metastasis. The p70(S6K) cellular substrates and/or interacting proteins. The current state of drugs that target this kinase, either alone or in combination with other targeted agents. EXPERT OPINION Targeting p70(S6K) through the use of small-molecule inhibitors, microRNAs and natural compounds may represent a beneficial new avenue for cancer therapy and opens new areas of investigation in p70(S6K) biology.
Collapse
Affiliation(s)
- Carman K M Ip
- University of Hong Kong, School of Biological Sciences, 4S-14 Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | | |
Collapse
|
87
|
Oh MH, Lee HJ, Yoo SB, Xu X, Choi JS, Kim YH, Lee SY, Lee CT, Jheon S, Chung JH. Clinicopathological correlations of mTOR and pAkt expression in non-small cell lung cancer. Virchows Arch 2012; 460:601-9. [PMID: 22562131 DOI: 10.1007/s00428-012-1239-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/16/2012] [Indexed: 12/26/2022]
Abstract
The Akt/mammalian target of rapamycin (mTOR) pathway is up-regulated in many human cancers, and agents targeting the mTOR pathway are in various stages of clinical development and application. Expression of pAkt and mTOR was studied by immunohistochemical analysis of 574 surgically resected non-small cell lung cancer (NSCLC) specimens on a tissue microarray. The results were correlated with clinicopathological features. Expression of mTOR showed a strong correlation with the expression of pAkt (p < 0.001) and was significantly associated with female gender, tumor size of ≤3 cm, adenocarcinoma (ADC), non-smoker status, and lower pathological stage. Expression of pAkt was correlated with older age (≥65), ADC, non-smoker status, and lower T stage. Univariate survival analysis revealed that the mTOR- and pAkt-positive group had a significantly longer cancer-specific survival than the mTOR- and pAkt-negative group (p = 0.038 and 0.024, respectively). Coexpression of pAkt and mTOR correlated with better prognosis than either single- or double-negative pAkt and mTOR groups (p = 0.016). However, multivariate analysis proved that mTOR and pAkt expression are not independent prognostic factors for cancer-specific survival. Expression of pAkt and mTOR expression is more significantly associated with ADC than squamous cell carcinoma. Although pAkt/mTOR expression is not an independent prognostic marker, expression of these proteins is associated with better prognosis.
Collapse
Affiliation(s)
- Mee-Hye Oh
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Carden CP, Stewart A, Thavasu P, Kipps E, Pope L, Crespo M, Miranda S, Attard G, Garrett MD, Clarke PA, Workman P, de Bono JS, Gore M, Kaye SB, Banerji U. The association of PI3 kinase signaling and chemoresistance in advanced ovarian cancer. Mol Cancer Ther 2012. [PMID: 22556379 DOI: 10.1158/1535-7163.mct-11-0996] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Evidence that the phosphoinositide 3-kinase (PI3K) pathway is deregulated in ovarian cancer is largely based on the analysis of surgical specimens sampled at diagnosis and may not reflect the biology of advanced ovarian cancer. We aimed to investigate PI3K signaling in cancer cells isolated from patients with advanced ovarian cancer. Ascites samples were analyzed from 88 patients, of whom 61 received further treatment. Cancer cells were immunomagnetically separated from ascites, and the signaling output of the PI3K pathway was studied by quantifying p-AKT, p-p70S6K, and p-GSK3β by ELISA. Relevant oncogenes, such as PIK3CA and AKT, were sequenced by PCR-amplified mass spectroscopy detection methods. In addition, PIK3CA and AKT2 amplifications and PTEN deletions were analyzed by FISH. p-p70S6K levels were significantly higher in cells from 37 of 61 patients who did not respond to subsequent chemotherapy (0.7184 vs. 0.3496; P = 0.0100), and this difference was greater in patients who had not received previous chemotherapy. PIK3CA and AKT mutations were present in 5% and 0% of samples, respectively. Amplification of PIK3CA and AKT2 and deletion of PTEN was seen in 10%, 10%, and 27% of samples, respectively. Mutations of PIK3CA and amplification of PIK3CA/AKT2 or deletion of PTEN did not correlate with levels of p-AKT, p-p70S6K, and p-GSK3β. In patients with advanced ovarian cancer, there is an association between levels of p-p70S6K and response to subsequent chemotherapy. There is no clear evidence that this is driven specifically by PIK3CA or AKT mutations or by amplifications or deletion of PTEN.
Collapse
Affiliation(s)
- Craig P Carden
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutic, The Institute of Cancer Research, Sutton,United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Carden CP, Stewart A, Thavasu P, Kipps E, Pope L, Crespo M, Miranda S, Attard G, Garrett MD, Clarke PA, Workman P, de Bono JS, Gore M, Kaye SB, Banerji U. The association of PI3 kinase signaling and chemoresistance in advanced ovarian cancer. Mol Cancer Ther 2012; 11:1609-17. [PMID: 22556379 DOI: 10.1158/1535-7163.mct-11-0996] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Evidence that the phosphoinositide 3-kinase (PI3K) pathway is deregulated in ovarian cancer is largely based on the analysis of surgical specimens sampled at diagnosis and may not reflect the biology of advanced ovarian cancer. We aimed to investigate PI3K signaling in cancer cells isolated from patients with advanced ovarian cancer. Ascites samples were analyzed from 88 patients, of whom 61 received further treatment. Cancer cells were immunomagnetically separated from ascites, and the signaling output of the PI3K pathway was studied by quantifying p-AKT, p-p70S6K, and p-GSK3β by ELISA. Relevant oncogenes, such as PIK3CA and AKT, were sequenced by PCR-amplified mass spectroscopy detection methods. In addition, PIK3CA and AKT2 amplifications and PTEN deletions were analyzed by FISH. p-p70S6K levels were significantly higher in cells from 37 of 61 patients who did not respond to subsequent chemotherapy (0.7184 vs. 0.3496; P = 0.0100), and this difference was greater in patients who had not received previous chemotherapy. PIK3CA and AKT mutations were present in 5% and 0% of samples, respectively. Amplification of PIK3CA and AKT2 and deletion of PTEN was seen in 10%, 10%, and 27% of samples, respectively. Mutations of PIK3CA and amplification of PIK3CA/AKT2 or deletion of PTEN did not correlate with levels of p-AKT, p-p70S6K, and p-GSK3β. In patients with advanced ovarian cancer, there is an association between levels of p-p70S6K and response to subsequent chemotherapy. There is no clear evidence that this is driven specifically by PIK3CA or AKT mutations or by amplifications or deletion of PTEN.
Collapse
Affiliation(s)
- Craig P Carden
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutic, The Institute of Cancer Research, Sutton,United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Schiavone MB, Bashir S, Herzog TJ. Biologic therapies and personalized medicine in gynecologic malignancies. Obstet Gynecol Clin North Am 2012; 39:131-44. [PMID: 22640707 DOI: 10.1016/j.ogc.2012.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Through advances in human genomic sequencing, the unique molecular biology that predisposes certain individuals to either health or disease has now been illuminated. Although many malignancies behave similarly on a phenotypic level, biologically there exist multiple layers of interconnected molecular and cellular pathways that may make each patient’s disease significantly more unique than previously appreciated. In gynecologic oncology, the most progress in developing targeted biologics has been in the treatment of ovarian cancers. Future investigations will see further development in endometrial and cervical cancers. Technology such as whole genome sequencing can theoretically identify the individual tumor’s genetic profile; however, identifying the priority pathways for therapeutic interventions and subsequent complex interactions remains a significant challenge. New therapeutic technologies such as siRNA and immune modulators will also play a promising role in the movement toward individualized therapies. It is hoped that the identification and use of targeted agents will lead to individualized care that in turn will lead to significantly improved outcomes manifested by more cures and better quality of life through amelioration of toxicities.
Collapse
Affiliation(s)
- Maria B Schiavone
- Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY 10032, USA.
| | | | | |
Collapse
|
91
|
Hayashi Y, Morimoto J, Suga H. In vitro selection of anti-Akt2 thioether-macrocyclic peptides leading to isoform-selective inhibitors. ACS Chem Biol 2012; 7:607-13. [PMID: 22273180 DOI: 10.1021/cb200388k] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Akt kinase family, consisting of three isoforms in humans, is a well-validated class of drug target. Through various screening campaigns in academics and pharmaceutical industries, several promising inhibitors have been developed to date. However, due to the mechanistic and structural similarities of Akt kinases, it is yet a challenging task to discover selective inhibitors against a specific Akt isoform. We here report Akt-selective and also Akt2 isoform-selective inhibitors based on a thioether-macrocyclic peptide scaffold. Several anti-Akt2 peptides have been selected from a library by means of an in vitro display system, referred to as the RaPID (Random nonstandard Peptide Integrated Discovery) system. Remarkably, the majority of these "binding-active" anti-Akt2 peptides turned out to be "inhibitory active", exhibiting IC(50) values of approximately 100 nM. Moreover, these peptides are not only selective to the Akt kinase family but also isoform-selective to Akt2. Particularly, one referred to as Pakti-L1 is able to discriminate Akt2 250- and 40-fold over Akt1 and Akt3, respectively. This proof-of-concept case study suggests that the RaPID system has a tremendous potential for the discovery of unique inhibitors with high family- and isoform-selectivity.
Collapse
Affiliation(s)
- Yuuki Hayashi
- Department of Chemistry, Graduate School of Science, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
92
|
Diaz-Padilla I, Duran I, Clarke BA, Oza AM. Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer. Cancer Treat Rev 2012; 38:767-75. [PMID: 22381585 DOI: 10.1016/j.ctrv.2012.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 12/24/2022]
Abstract
Advanced recurrent gynecological malignancies have a poor prognosis despite systemic treatment, which is usually cytotoxic chemotherapy. Responses are generally short-lived and more effective treatments are needed. Rationally designed molecularly targeted therapy is an emerging and important option in this setting. The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway with a critical role in controlling cancer cellular growth, metabolism and cell cycle progression. Aberrant PI3K-dependent signaling occurs frequently in a wide range of tumor types, including ovarian, endometrial and cervical cancer. Early clinical studies of first-generation mTOR inhibitors have shown promising clinical activity in endometrial cancer. However, the molecular basis of sensitivity and resistance to these agents remains largely unknown. In this review, we will update the clinical and biological data underlying the development of first generation mTOR inhibitors in the treatment of gynecological tumors. The role of potential new combination regimens with mTOR inhibitors in gynecological cancers will also be discussed.
Collapse
Affiliation(s)
- Ivan Diaz-Padilla
- Division of Medical Oncology, Princess Margaret Hospital, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
93
|
Wahner Hendrickson AE, Oberg AL, Glaser G, Camoriano JK, Peethambaram PP, Colon-Otero G, Erlichman C, Ivy P, Kaufmann SH, Karnitz LM, Haluska P. A phase II study of gemcitabine in combination with tanespimycin in advanced epithelial ovarian and primary peritoneal carcinoma. Gynecol Oncol 2012; 124:210-5. [PMID: 22047770 PMCID: PMC3265019 DOI: 10.1016/j.ygyno.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the efficacy and biological effects of the gemcitabine/tanespimycin combination in patients with advanced ovarian and peritoneal cancer. To assess the effect of tanespimycin on tumor cells, levels of the chaperone proteins HSP90 and HSP70 were examined in peripheral blood mononuclear cells (PBMC) and paired tumor biopsy lysates. METHODS Two-cohort phase II clinical trial. Patients were grouped according to prior gemcitabine therapy. All participants received tanespimycin 154 mg/m(2) on days 1 and 9 of cycle 1 and days 2 and 9 of subsequent cycles. Patients also received gemcitabine 750 mg/m(2) on day 8 of the first treatment cycle and days 1 and 8 of subsequent cycles. RESULTS The tanespimycin/gemcitabine combination induced a partial response in 1 gemcitabine naïve patient and no partial responses in gemcitabine resistant patients. Stable disease was seen in 6 patients (2 gemcitabine naïve and 4 gemcitabine resistant). The most common toxicities were hematologic (anemia and neutropenia) as well as nausea and vomiting. Immunoblotting demonstrated limited upregulation of HSP70 but little or no change in levels of most client proteins in PBMC and paired tumor samples. CONCLUSIONS Although well tolerated, the tanespimycin/gemcitabine combination exhibited limited anticancer activity in patients with advanced epithelial ovarian and primary peritoneal carcinoma, perhaps because of failure to significantly downregulate the client proteins at clinically achievable exposures.
Collapse
Affiliation(s)
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics within the Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905
| | - Gretchen Glaser
- Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN 55905
| | | | | | | | | | - Percy Ivy
- National Cancer Institute, Rockville MD 20852
| | - Scott H. Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Larry M. Karnitz
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Paul Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
94
|
Kang UB, Yeom J, Kim HJ, Kim H, Lee C. Expression profiling of more than 3500 proteins of MSS-type colorectal cancer by stable isotope labeling and mass spectrometry. J Proteomics 2011; 75:3050-62. [PMID: 22154799 DOI: 10.1016/j.jprot.2011.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/26/2022]
Abstract
An efficient means of identifying protein biomarkers is essential to proper cancer management. A well-characterized proteome resource holds special promise for the discovery of novel biomarkers. However, quantification of the differences between physiological conditions together with deep down profiling has become increasingly challenging in proteomics. Here, we perform expression profiling of the colorectal cancer (CRC) proteome by stable isotope labeling and mass spectrometry. Quantitative analysis included performing mTRAQ and cICAT labeling in a pooled sample of three microsatellite stable (MSS) type CRC tissues and a pooled sample of their matched normal tissues. We identified and quantified a total of 3688 proteins. Among them, 1487 proteins were expressed differentially between normal and cancer tissues by higher than 2-fold; 1009 proteins showed increased expression in cancer tissue, whereas 478 proteins showed decreased expression. Bioinformatic analysis revealed that our data were largely consistent with known CRC relevant signaling pathways, such as the Wnt/β-catenin, caveolar-mediated endocytosis, and RAN signaling pathways. Mitochondrial dysfunction, known as the Waburg hypothesis, was also confirmed. Therefore, our data showing alterations in the proteomic profile of CRC constitutes a useful resource that may provide insights into tumor progression with later goal of identifying biologically and clinically relevant marker proteins. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Un-Beom Kang
- BRI, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | | | | | | | | |
Collapse
|
95
|
Lee KB, Byun HJ, Park SH, Park CY, Lee SH, Rho SB. CYR61 controls p53 and NF-κB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett 2011; 315:86-95. [PMID: 22078465 DOI: 10.1016/j.canlet.2011.10.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 12/27/2022]
Abstract
CYR61 over-expression promotes cell proliferation by inhibiting carboplatin-induced apoptosis, decreasing Bax expression, and increasing Bcl-xL, Mcl-1, and Bcl-2. At the same time, down-regulating p53 expression, while up-regulated NF-κB expression. Additionally, p21 and p53 promoter activities were reduced, while NF-κB and Bcl-2 activities increased. In parallel, CYR61-expressing cells, during carboplatin-induced apoptosis, resulted in an increase of Akt phosphorylation, while rapamycin-treated cells were not affected. Carboplatin effectively inhibited the activation of mTOR signaling cascade, which includes mTOR, 4E-BP1, p70S6K, HIF-1α, and VEGF. These results provide evidence that CYR61 promotes cell proliferation and inhibits apoptosis.
Collapse
Affiliation(s)
- Kwang-Beom Lee
- Department of Obstetrics and Gynecology, Gachon University Gil Hospital, Guwol-Dong, Namdong-Gu, Inchen, Republic of Korea
| | | | | | | | | | | |
Collapse
|
96
|
Xia X, Ma Q, Li X, Ji T, Chen P, Xu H, Li K, Fang Y, Weng D, Weng Y, Liao S, Han Z, Liu R, Zhu T, Wang S, Xu G, Meng L, Zhou J, Ma D. Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer 2011; 11:399. [PMID: 21933447 PMCID: PMC3184122 DOI: 10.1186/1471-2407-11-399] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022] Open
Abstract
Background P21(WAF1/Cip1) binds to cyclin-dependent kinase complexes and inhibits their activities. It was originally described as an inhibitor of cancer cell proliferation. However, many recent studies have shown that p21 promotes tumor progression when accumulated in the cell cytoplasm. So far, little is known about the correlation between cytoplasmic p21 and drug resistance. This study was aimed to investigate the role of p21 in the cisplatin resistance of ovarian cancer. Methods RT-PCR, western blot and immunofluorescence were used to detect p21 expression and location in cisplatin-resistant ovarian cancer cell line C13* and its parental line OV2008. Regulation of cytoplasmic p21 was performed through transfection of p21 siRNA, Akt2 shRNA and Akt2 constitutively active vector in the two cell lines; their effects on cisplatin-induced apoptosis were evaluated by flow cytometry. Tumor tissue sections of clinical samples were analyzed by immunohistochemistry. Results p21 predominantly localizes to the cytoplasm in C13* compared to OV2008. Persistent exposure to low dose cisplatin in OV2008 leads to p21 translocation from nuclear to cytoplasm, while it had not impact on p21 localization in C13*. Knockdown of cytoplasmic p21 by p21 siRNA transfection in C13* notably increased cisplatin-induced apoptosis through activation of caspase 3. Inhibition of p21 translocation into the cytoplasm by transfection of Akt2 shRNA into C13* cells significantly increased cisplatin-induced apoptosis, while induction of p21 translocation into the cytoplasm by transfection of constitutively active Akt2 in OV2008 enhanced the resistance to cisplatin. Immunohistochemical analysis of clinical ovarian tumor tissues demonstrated that cytoplasmic p21 was negatively correlated with the response to cisplatin based treatment. Conclusions Cytoplasmic p21 is a novel biomarker of cisplatin resistance and it may represent a potential therapeutic target for ovarian tumors that are refractory to conventional treatment.
Collapse
Affiliation(s)
- Xi Xia
- Department of Gynecology & Obstetrics, Nanshan People's Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kim WK, Kim JH, Jeong DH, Chun YH, Kim SH, Cho KJ, Chang MJ. Radish (Raphanus sativus L. leaf) ethanol extract inhibits protein and mRNA expression of ErbB(2) and ErbB(3) in MDA-MB-231 human breast cancer cells. Nutr Res Pract 2011; 5:288-93. [PMID: 21994522 PMCID: PMC3180678 DOI: 10.4162/nrp.2011.5.4.288] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/02/2011] [Accepted: 06/13/2011] [Indexed: 01/11/2023] Open
Abstract
In this study, we investigated the effects of the ethanol extract of aerial parts of Raphanus sativus L. (ERL) on breast cancer cell proliferation and gene expression associated with cell proliferation and apoptosis in MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were cultured in the presence or absence of various concentrations (100, 200, or 300 µg/mL) of ERL. ERL significantly decreased cell proliferation after 48 h of incubation (P < 0.05). The protein and mRNA expression of ErbB(2) were decreased significantly in a dose-dependent manner (P < 0.05). The protein expression of ErbB(3) was decreased significantly at an ERL concentration of 300 µg/mL (P < 0.05), and mRNA expression of ErbB(3) was decreased significantly in a dose-dependent manner (P < 0.05). The protein expression of Akt was decreased significantly at the ERL concentration of 200 µg/mL (P < 0.05), and the protein expression of pAkt was decreased significantly in a dose-dependent manner (P < 0.05). The mRNA expression of Akt was decreased significantly at the ERL concentration of 200 µg/mL ERL (P < 0.05). The protein and mRNA expression of Bax were increased significantly at ERL concentrations of 200 µg/mL or higher (P < 0.05). The protein expression of Bcl(2) was increased significantly at ERL concentrations of 100 µg/mL or higher (P < 0.05), and mRNA expression of Bcl(2) was increased significantly at an ERL concentration of 300 µg/mL (P < 0.05). In conclusion, we suggest that Raphanus sativus, L. inhibits cell proliferation via the ErbB-Akt pathway in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Woo Kyoung Kim
- Department of Food Science and Nutrition, Dankook University, Gyeonggi 448-701, Korea
| | | | | | | | | | | | | |
Collapse
|
98
|
Lee RS, House CM, Cristiano BE, Hannan RD, Pearson RB, Hannan KM. Relative Expression Levels Rather Than Specific Activity Plays the Major Role in Determining In Vivo AKT Isoform Substrate Specificity. Enzyme Res 2011; 2011:720985. [PMID: 21869924 PMCID: PMC3160084 DOI: 10.4061/2011/720985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/18/2022] Open
Abstract
The AKT protooncogene mediates many cellular processes involved in normal development and disease states such as cancer. The three structurally similar isoforms: AKT1, AKT2, and AKT3 exhibit both functional redundancy and isoform-specific functions; however the basis for their differential signalling remains unclear. Here we show that in vitro, purified AKT3 is ∼47-fold more active than AKT1 at phosphorylating peptide and protein substrates. Despite these marked variations in specific activity between the individual isoforms, a comprehensive analysis of phosphorylation of validated AKT substrates indicated only subtle differences in signalling via individual isoforms in vivo. Therefore, we hypothesise, at least in this model system, that relative tissue/cellular abundance, rather than specific activity, plays the dominant role in determining AKT substrate specificity in situ.
Collapse
Affiliation(s)
- Rachel S Lee
- Growth Control and Differentiation Program, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
| | | | | | | | | | | |
Collapse
|
99
|
Wu D, Tao J, Xu B, Qing W, Li P, Lu Q, Zhang W. Phosphatidylinositol 3-kinase inhibitor LY294002 suppresses proliferation and sensitizes doxorubicin chemotherapy in bladder cancer cells. Urol Int 2011; 87:105-13. [PMID: 21597260 DOI: 10.1159/000322849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/14/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K)-AKT signaling is a well-characterized pathway involved in the control of cell proliferation, apoptosis and oncogenesis. LY294002 is a commonly used pharmacologic inhibitor which acts at the ATP-binding site of the PI3K enzyme, thus selectively inhibiting the PI3K-AKT nexus. The purpose of the present study was to examine whether PI3K inhibited by LY294002 had an effect on human bladder cancer cells. METHODS After treatment with LY294002, MTT assay, chemosensitivity test, colony formation assay, apoptosis assay and Western blot analysis were conducted in EJ cells. RESULT EJ cells treated with LY294002 showed significant AKT phosphorylation suppression in a dose-response manner. Also, PI3K/AKT signaling inhibitor LY294002 suppressed cell proliferation and enhanced the chemosensitivity of doxorubicin in human bladder cancer EJ cells. Furthermore, LY294002 increased cell apoptosis to doxorubicin. CONCLUSION The augmentation of doxorubicin with PI3K inhibitor LY294002 may resolve the multidrug resistance of bladder cancer, and this may be a new strategy for achieving tolerance for chemotherapeutic agents in bladder cancer therapy.
Collapse
Affiliation(s)
- Deyao Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
100
|
Santiskulvong C, Konecny GE, Fekete M, Chen KYM, Karam A, Mulholland D, Eng C, Wu H, Song M, Dorigo O. Dual targeting of phosphoinositide 3-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach in human ovarian carcinoma. Clin Cancer Res 2011; 17:2373-84. [PMID: 21372221 PMCID: PMC3078990 DOI: 10.1158/1078-0432.ccr-10-2289] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE This study evaluates the effect of dual PI3K and mTOR inhibition using NVP-BEZ235 in preclinical models of ovarian cancer as a potential novel therapeutic strategy. EXPERIMENTAL DESIGN Inhibition of PI3K/Akt/mTOR signaling by NVP-BEZ235 was demonstrated by immunoblotting. The effect on cell proliferation was assessed in 18 ovarian cancer cell lines, including four pairs of syngeneic cisplatin-sensitive and cisplatin-resistant cell lines. The in vivo effects of NVP-BEZ235 on established tumor growth were evaluated using an immunocompetent, transgenic murine ovarian cancer model (LSL-K-ras(G12D/+)Pten(loxP/loxP)). RESULTS NVP-BEZ235 decreased cell proliferation in all ovarian cancer cell lines assayed and sensitized cisplatin-resistant cells to the cytotoxic effects of cisplatin. Cell lines with PI3K-activating mutations or Pten deletions were significantly more sensitive to the effect of NVP-BEZ235 than cell lines without these mutations (P < 0.05). A statistically significant correlation was found between relative levels of p4E-BP1 and the IC(50) for NVP-BEZ235. In LSL-K-ras(G12D/+)Pten(loxP/loxP) mice with established intraperitoneal tumor disease, oral administration of NVP-BEZ235 decreased pAkt, p4E-BP1 and Ki67 in tumor tissue, and resulted in significantly longer survival compared to control animals (P < 0.05). NVP-BEZ235 also induced cell cycle arrest, caspase 3 activity, and reduced cell migration. CONCLUSIONS Targeting PI3K and mTOR simultaneously using NVP-BEZ235 effectively inhibits ovarian cancer cell growth even in the presence of platinum resistance and prolongs survival of mice with intra-abdominal ovarian tumor disease. We propose that dual PI3K and mTOR inhibition using NVP-BEZ235 may be an effective novel therapeutic approach in patients with ovarian cancer.
Collapse
Affiliation(s)
- Chintda Santiskulvong
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Gottfried E. Konecny
- Department of Hematology/Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Mirela Fekete
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Kuang-Yui Michael Chen
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Amer Karam
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - David Mulholland
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Carol Eng
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Min Song
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Oliver Dorigo
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|