51
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
52
|
Andreidesz K, Koszegi B, Kovacs D, Bagone Vantus V, Gallyas F, Kovacs K. Effect of Oxaliplatin, Olaparib and LY294002 in Combination on Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22042056. [PMID: 33669671 PMCID: PMC7921931 DOI: 10.3390/ijms22042056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations.
Collapse
Affiliation(s)
- Kitti Andreidesz
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Viola Bagone Vantus
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
- Szentagothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, 1052 Budapest, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary; (K.A.); (B.K.); (D.K.); (V.B.V.); (F.G.)
- Correspondence: ; Tel.: +36-72-536-276; Fax: +36-72-535-277
| |
Collapse
|
53
|
Odame F, Schoeman R, Krause J, Hosten EC, Tshentu ZR, Frost C. Synthesis, characterization, crystal structures, and anticancer activity of some new 2,3-dihydro-1,5-benzoxazepines. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02706-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
54
|
Lambrianidou A, Sereti E, Soupsana K, Komini C, Dimas K, Trangas T. mTORC2 deploys the mRNA binding protein IGF2BP1 to regulate c-MYC expression and promote cell survival. Cell Signal 2021; 80:109912. [PMID: 33388443 DOI: 10.1016/j.cellsig.2020.109912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/15/2022]
Abstract
mTORC2 promotes cell survival by phosphorylating AKT and enhancing its activity. Inactivation of mTORC2 reduces viability through down-regulation of E2F1 caused by up-regulation of c-MYC. An additional target of mTORC2 is IGF2BP1, an oncofetal RNA binding protein expressed de novo in a wide array of malignancies. IGF2BP1 enhances c-MYC expression by protecting the coding region instability sequence (CRD) of its mRNA from endonucleolytic cleavage. Here we show that repression of mTORC2 signalling and prevention of Ser181 phosphorylation of IGF2BP1 enhanced translation and destabilization of the endogenous c-myc mRNA as well as the mRNA of reporter transcripts carrying the CRD sequence in frame. The consequent increase in c-MYC protein was accompanied by the emergence of an apoptotic c-MYC overexpressing population. On the other hand, preventing phosphorylation of IGF2BP1 on Tyr396 by Src kinase caused the accumulation of translationally silent transcripts through sequestration by IGF2BP1 into cytoplasmic granules. The apoptotic effect of mTORC2 signalling deprivation was augmented when preceded by inhibition of IGF2BP1 phosphorylation by the Src kinase in concert with further increase of c-MYC levels because of enhanced translation of the previously stored mRNA only in the presence of IGF2BP1. Furthermore, the combined administration of mTORC2 and Src inhibitors exhibited synergism in delaying xenograft growth in female NOD.CB17-Prkdcscid/J mice. The above in vitro and in vivo findings may be applied for the induction of targeted apoptosis of cells expressing de novo the oncofetal protein IGF2BP1, a feature of aggressive malignancies resulting in a more focused anticancer therapeutic approach.
Collapse
Affiliation(s)
- Andromachi Lambrianidou
- Biochemistry Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Evangelia Sereti
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Katerina Soupsana
- Laboratory of Biological Chemistry, University of Ioannina, Faculty of Medicine, Ioannina, Greece
| | - Chrysoula Komini
- Biochemistry Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Theoni Trangas
- Biochemistry Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
55
|
Khattak MNK, Shanableh A, Hussain MI, Khan AA, Abdulwahab M, Radeef W, Samreen MH. Anticancer activities of selected Emirati Date ( Phoenix dactylifera L.) varieties pits in human triple negative breast cancer MDA-MB-231 cells. Saudi J Biol Sci 2020; 27:3390-3396. [PMID: 33304147 PMCID: PMC7715048 DOI: 10.1016/j.sjbs.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
The date palm (Phoenix dactylifera L.) is an important fruit crop with significant pharmaceutical potential. Little data are available on comparative pharmaceutical importance of the date pits. We designed this study to assess the antitumorigenic effects of date palm pits extracts from different Emiratis varieties. We used MDA-MB-231 cells derived from triple negative breasts cancer tissues as a model. We found that out of the 17 date pits extracts from 6 Emiratis varieties, three (Khalas extract in water + acetone (1:1), Abu-Maan extract in MeOH + Chloroform (1:1) and Mabroom extract in water + acetone (1:1)) were found effectively cytotoxic and changed morphology of cells in dose and time dependent manner. We found the maximum effect at 2.5 mg/mL concentration at 72 h. We calculated IC50 values for these varieties at 24 h. IC50 values for Khalas, Abu-Maan and Mabroom were 0.982 mg/mL, 1.149 mg/mL and 2.213 mg/mL respectively. We treated the cells with IC50 values of extracts and observed changes in protein profile using human kinase array kit. After analyzing the results, we suggest that EGFR/ERK/FAK pathway, eNOS and src family proteins are targets of these extracts. We conclude that date pits extracts can be a possible therapeutic agent against cancer and we suggest further studies.
Collapse
Affiliation(s)
- Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics and Stem Cells Research Group, Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates
| | - Abdallah Shanableh
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates.,Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, United Arab Emirates
| | - Muhammad Iftikhar Hussain
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates.,Department of Plant Biology and Soil Science, University of Vigo, Vigo 36310, Pontevedra, Spain
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics and Stem Cells Research Group, Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammad Abdulwahab
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Wameed Radeef
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada
| | - Mohammad Harb Samreen
- College of Pharmacy, University of Sharjah, United Arab Emirates.,Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
56
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
57
|
A photoactivatable Ru (II) complex bearing 2,9-diphenyl-1,10-phenanthroline: A potent chemotherapeutic drug inducing apoptosis in triple negative human breast adenocarcinoma cells. Chem Biol Interact 2020; 336:109317. [PMID: 33197429 DOI: 10.1016/j.cbi.2020.109317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
The photoactivatable Ru (II) complex 1 [Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) has been shown to possess promising anticancer activity against triple negative adenocarcinoma MDA-MB-231 cells. The present study aims to elucidate the plausible mechanism of action of the photoactivatable complex 1 against MDA-MB-231 cells. Upon photoactivation, complex 1 exhibited time-dependent cytotoxic activity with a phototoxicity index (P Index) of >100 after 72 h. A significant increase in cell rounding and detachment, loss of membrane integrity, ROS accumulation and DNA damage was observed. Flow cytometry and a fluorescent apoptosis/necrosis assay showed an induction of cell apoptosis. Western blot analysis revealed the induction of intrinsic and extrinsic pathways and inhibition of the MAPK and PI3K pathways. The photoproduct of complex 1 showed similar effects on key apoptotic protein expression confirming that it is behind the observed cell death. In conclusion, the present study revealed that complex 1 is a potent multi-mechanistic photoactivatable chemotherapeutic drug that may serve as a potential lead molecule for targeted cancer chemotherapy.
Collapse
|
58
|
An allomaltol derivative triggers distinct death pathways in luminal a and triple-negative breast cancer subtypes. Bioorg Chem 2020; 105:104403. [PMID: 33166845 DOI: 10.1016/j.bioorg.2020.104403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer in women that shows a predisposition to metastasize to the distant organs. Kojic acid is a natural fungal metabolite exhibiting various biological activities. Compounds derived from kojic acid have been extensively studied and proved to demonstrate anti-neoplastic features on different cancer types. In the present study, allomaltol-structural analog of kojic acid and its seven derivatives including four novel compounds, have been synthesized, characterized and their possible impact on breast cancer cell viability was investigated. It was discovered that compound 5, bearing 3,4-dichlorobenzyl piperazine moiety, could decrease the viability of both MCF-7 and MDA-MB-231 cell lines distinctively. To ascertain the death mechanism, cells were subjected to different tests following the application of IC50 concentration of compound 5. Data obtained from lactate dehydrogenase activity and gene expression assays pointed out that necrosis had taken place predominantly in MDA-MB-231. On the other hand, in MCF-7 cells, the p53 apoptotic pathway was activated by overexpression of the pro-apoptotic TP53 and Bax genes and suppression of the anti-apoptotic Mdm-2 and Bcl-2 genes. Furthermore, Bax/Blc-2 ratio was escalated by 3.5 fold in the study group compared to the control. Compound 5 did not provoke drug resistance in MCF-7 cells since the Mdr-1 gene expression, drug efflux, and H2O2 content remained unaltered. As for MDA-MB-231 cells, only a 1.4 fold increase in the Mdr-1 gene expression was detected. These results indicate the advantage of the allomaltol derivative over the chemotherapeutic agents conventionally used for breast cancer treatment that can be highly toxic and mostly lead to drug resistance. Thus, this specific allomaltol derivative offers an alternative therapeutic approach for breast cancer which needs further investigation.
Collapse
|
59
|
Zhang W, Veisaga ML, Barbieri MA. Role of RIN1 on telomerase activity driven by EGF-Ras mediated signaling in breast cancer. Exp Cell Res 2020; 396:112318. [PMID: 33069695 DOI: 10.1016/j.yexcr.2020.112318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/27/2022]
Abstract
Epidermal growth factor (EGF)-receptor regulates several downstream signaling pathways upon EGF stimulation that involves cell proliferation, migration and invasion. Internalized EGF-receptor is either recycled or degraded, which fate is regulated in part by Ras interference 1 (RIN1). In this study, we tested the hypothesis that RIN1, a Ras effector protein and Rab5 guanine nucleotide exchange factor, controls several signaling molecules leading to the modulation of the telomerase activity; thus, allowing proper cell proliferation. We report that expression of RIN1 completely blocked proliferation of MCF-12 A and MCF-7 cells, while partially inhibited proliferation of MDA-MB-231 cells upon EGF stimulation. Furthermore, expression of the C-terminal region of RIN1 selectively plays a critical role in the inhibition of the proliferation of MDA-MB-231 cells. However, this inhibitory effect was specifically affected by the independent expression of RIN1:Vsp9 and RIN1:RA domains. Additionally, endogenous level of expression of RIN1 was decreased in metastatic MDA-MB-231 cells as compared with non-tumorigenic MCF-12 A cells. We observed that expression of RIN1:R94A mutant blocked the proliferation of MDA-MB-231 cells, while expression of RIN1:Y561F and RIN1:R629A mutants completely reversed the inhibitory effect of RIN1:WT. Consistent with our observations, we found that expression of RIN1:WT in MDA-MB-231 cells diminished both protein kinase B (AKT) and extracellular-signal-regulated kinase 1/2 (ERK1/2) activities while p38 mitogen-activated protein kinases (p38 MAPK) and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) were unaffected, but it produced downregulation of cellular-myelocytomatosis (c-Myc), erythroblast transformation specific (Ets2) and signal transducer and activator of transcription 3 (Stat3) activities. Inversely, expression of high-mobility group box 1 (HMBG1) was inhibited whereas expression of forkhead box transcription factor 1 (FOXO1) was increased in cells expressing RIN1. Interestingly, expression of RIN1 blocked telomerase activity and human telomerase reverse transcriptase (hTERT) expression, which correlated with the downregulations of c-Myc, Ets-2 and Stat3 activation. Taken together these findings indicate that RIN1 is a critical player in the modulation of the telomerase activity as well as hTERT expression in MDA-MB-231 cells upon EGF stimulation.
Collapse
Affiliation(s)
- W Zhang
- Biochemistry PhD Program, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA
| | - M L Veisaga
- Biomolecular Sciences Institute, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA
| | - M A Barbieri
- Department of Biological Sciences, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA; Biomolecular Sciences Institute, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA; Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL, 33156, USA; International Center of Tropical Botany, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
60
|
Kohata T, Ito S, Masuda T, Furuta T, Nakada M, Ohtsuki S. Laminin Subunit Alpha-4 and Osteopontin Are Glioblastoma-Selective Secreted Proteins That Are Increased in the Cerebrospinal Fluid of Glioblastoma Patients. J Proteome Res 2020; 19:3542-3553. [PMID: 32628487 DOI: 10.1021/acs.jproteome.0c00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. The purpose of the present study was to identify GBM cell-selective secreted proteins by analyzing conditioned media (CM) from GBM, breast, and colon cancer cell lines using sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) and targeted proteomics. We identified 2371 proteins in the CM from GBM and the other cancer cell lines. Among the proteins identified, 15 showed significantly higher expression in the CM from GBM cell lines than in those from other cancer cell lines. These GBM-selective secreted proteins were further quantified in the cerebrospinal fluid (CSF) from patients with GBM. Laminin subunit alpha-4 (LAMA4) and osteopontin (OPN) had increased expression levels in the CSF from GBM patients compared to those from non-brain tumor patients. In addition, the areas under the curves in a receiver operating characteristic analysis of LAMA4 and OPN were greater than 0.9, allowing for discrimination of GBM patients from non-brain tumor patients. The CSF levels of LAMA4 and OPN were also significantly correlated with the GBM tumor volume. These results suggest that LAMA4 and OPN are secreted from GBM cells into the CSF and appear to be candidates as diagnostic markers and therapeutic targets for GBM.
Collapse
Affiliation(s)
- Tomohiro Kohata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Tokyo, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Tokyo, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.,Department of Neurosurgery, Kanazawa University, Kanazawa, Japan
| | | | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,AMED-CREST, Tokyo, Japan
| |
Collapse
|
61
|
Yang D, Guo Q, Liang Y, Zhao Y, Tian X, Ye Y, Tian J, Wu T, Lu N. Wogonin induces cellular senescence in breast cancer via suppressing TXNRD2 expression. Arch Toxicol 2020; 94:3433-3447. [PMID: 32671444 DOI: 10.1007/s00204-020-02842-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Cellular senescence contributes to tumor regression through both cell autonomous and non-autonomous mechanisms. Drugs inducing cancer cell senescence and modulating senescence-associated secretory phenotype (SASP) render advantage to the cancer treatment. Breast cancer remains the second most cause of female cancer mortality, among which triple-negative breast cancer (TNBC) has a more aggressive clinical course. Our study showed that in TNBC cell lines including MDA-MB-231 and 4T1 cells, moderate concentrations of wogonin (5, 7-dihydroxy-8-methoxy-2-phenyl-4h-1-benzopyran-4-one) (50-100 μM) not only induced permanent proliferation inhibition, but also increased P16 expression, β-galactosidase activity, senescence-associated heterochromatin foci and SASP, which are the typical characteristics of cellular senescence. Moreover, results showed that wogonin-induced senescence was partially attributed to the reactive oxygen species (ROS) accumulation upon wogonin treatment in MDA-MB-231 cells, since elimination of ROS by N-acetylcysteine (NAC) was able to repress wogonin-induced β-galactosidase activity. Mechanistically, wogonin reduced the expression of TXNRD2, an important antioxidant enzyme in controlling the levels of cellular ROS, by altering the histone acetylation at its regulatory region. In addition, senescent MDA-MB-231 cells induced by wogonin exhibited activated NF-κB and suppressed STAT3, which were recognized as regulators of SASP. SASP from these senescent cells suppressed tumor cell growth, promoted macrophage M1 polarization in vitro and increased immune cell infiltration in xenografted tumors in vivo. These results reveal another mechanism for the anti-breast cancer activity of wogonin by inducing cellular senescence, which suppresses tumor progression both autonomously and non-autonomously.
Collapse
Affiliation(s)
- Dawei Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yin Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoyu Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuchen Ye
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Jieyi Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
62
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
63
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
64
|
Guo R, Li Y, Xue Y, Chen Y, Li J, Deng X, Su J, Liu Y, Sun L. SIRT3 increases cisplatin sensitivity of small-cell lung cancer through apoptosis. Gene 2020; 745:144629. [PMID: 32229158 DOI: 10.1016/j.gene.2020.144629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/13/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Small-cell lung cancer (SCLC) is the most invasive of all lung cancer subtypes, and is characterized by its rapid response to chemotherapy resistance. Overcoming chemotherapy resistance is therefore the key to treating SCLC. P53 is mutated in most SCLCs, which has an effect of enhancing chemotherapy resistance. Regulation of p53 proteins by a variety of post-translational modifications, such as acetylation, which affects their function. Acetylation and deacetylation of p53 may be potential targets for modulating chemosensitivity. Recent studies have shown that SIRT3 acts as a deacetylase that regulates acetylation of p53. However, whether SIRT3 can regulate the post-translational modification of mutant p53 has not been studied. In the present study, we found that SIRT3 can deacetylate mutant p53, thus reducing its expression, inducing apoptosis in SCLC cells, and increasing SCLC chemosensitivity. The relationship between SIRT3 and mutant p53 could be the basis of a new SCLC treatment approach.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China; College of Basic Medical Science, Hebei North College, Zhangjiakou, Hebei 075000, PR China
| | - Yang Li
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China
| | - Yanan Xue
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China
| | - Yingying Chen
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China
| | - Jiuling Li
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China
| | - Yanan Liu
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China.
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
65
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
66
|
Nelson GL, Ronayne CT, Solano LN, Jonnalagadda SK, Jonnalagadda S, Rumbley J, Holy J, Rose-Hellekant T, Drewes LR, Mereddy VR. Development of Novel Silyl Cyanocinnamic Acid Derivatives as Metabolic Plasticity Inhibitors for Cancer Treatment. Sci Rep 2019; 9:18266. [PMID: 31797891 PMCID: PMC6892925 DOI: 10.1038/s41598-019-54709-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Novel silyl cyanocinnamic acid derivatives have been synthesized and evaluated as potential anticancer agents. In vitro studies reveal that lead derivatives 2a and 2b have enhanced cancer cell proliferation inhibition properties when compared to the parent monocarboxylate transporter (MCT) inhibitor cyano-hydroxycinnamic acid (CHC). Further, candidate compounds exhibit several-fold more potent MCT1 inhibition properties as determined by lactate-uptake studies, and these studies are supported by MCT homology modeling and computational inhibitor-docking studies. In vitro effects on glycolysis and mitochondrial metabolism also illustrate that the lead derivatives 2a and 2b lead to significant effects on both metabolic pathways. In vivo systemic toxicity and efficacy studies in colorectal cancer cell WiDr tumor xenograft demonstrate that candidate compounds are well tolerated and exhibit good single agent anticancer efficacy properties.
Collapse
Affiliation(s)
- Grady L Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Conor T Ronayne
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Lucas N Solano
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Sravan K Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Shirisha Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Rumbley
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Teresa Rose-Hellekant
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Lester R Drewes
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA. .,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA. .,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
67
|
Lee KJ, Piett CG, Andrews JF, Mann E, Nagel ZD, Gassman NR. Defective base excision repair in the response to DNA damaging agents in triple negative breast cancer. PLoS One 2019; 14:e0223725. [PMID: 31596905 PMCID: PMC6785058 DOI: 10.1371/journal.pone.0223725] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
DNA repair defects have been increasingly focused on as therapeutic targets. In hormone-positive breast cancer, XRCC1-deficient tumors have been identified and proposed as targets for combination therapies that damage DNA and inhibit DNA repair pathways. XRCC1 is a scaffold protein that functions in base excision repair (BER) by mediating essential interactions between DNA glycosylases, AP endonuclease, poly(ADP-ribose) polymerase 1, DNA polymerase β (POL β), and DNA ligases. Loss of XRCC1 confers BER defects and hypersensitivity to DNA damaging agents. BER defects have not been evaluated in triple negative breast cancers (TNBC), for which new therapeutic targets and therapies are needed. To evaluate the potential of XRCC1 as an indicator of BER defects in TNBC, we examined XRCC1 expression in the TCGA database and its expression and localization in TNBC cell lines. The TCGA database revealed high XRCC1 expression in TNBC tumors and TNBC cell lines show variable, but mostly high expression of XRCC1. XRCC1 localized outside of the nucleus in some TNBC cell lines, altering their ability to repair base lesions and single-strand breaks. Subcellular localization of POL β also varied and did not correlate with XRCC1 localization. Basal levels of DNA damage correlated with observed changes in XRCC1 expression, localization, and measure repair capacity. The results confirmed that XRCC1 expression changes indicate DNA repair capacity changes but emphasize that basal DNA damage levels along with protein localization are better indicators of DNA repair defects. Given the observed over-expression of XRCC1 in TNBC preclinical models and tumors, XRCC1 expression levels should be assessed when evaluating treatment responses of TNBC preclinical model cells.
Collapse
Affiliation(s)
- Kevin J. Lee
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Joel F. Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Elise Mann
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Natalie R. Gassman
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
- * E-mail:
| |
Collapse
|
68
|
Li D, Wang L, Yagüe E, Dai L, Zhao X, Yang Z, Zhi S, Hu Y. Studies of proteasome inhibition and apoptosis induction in triple‐negative breast cancer cells by novel amino acid–polypyridine–copper complex. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongdong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Luyao Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Faculty of MedicineImperial College London, Hammersmith Hospital Campus London W12 0NN UK
| | - Linlin Dai
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Xiumei Zhao
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Zibo Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Shuang Zhi
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Yunhui Hu
- Third Department of Breast CancerTianjin Medical University Cancer Institute and Hospital Tianjin 300060 China
| |
Collapse
|
69
|
Shim JK, Caron MA, Weatherly LM, Gerchman LB, Sangroula S, Hattab S, Baez AY, Briana TJ, Gosse JA. Antimicrobial agent triclosan suppresses mast cell signaling via phospholipase D inhibition. J Appl Toxicol 2019; 39:1672-1690. [PMID: 31429102 DOI: 10.1002/jat.3884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
Abstract
Humans are exposed to the antimicrobial agent triclosan (TCS) through use of TCS-containing products. Exposed tissues contain mast cells, which are involved in numerous biological functions and diseases by secreting various chemical mediators through a process termed degranulation. We previously demonstrated that TCS inhibits both Ca2+ influx into antigen-stimulated mast cells and subsequent degranulation. To determine the mechanism linking the TCS cytosolic Ca2+ depression to inhibited degranulation, we investigated the effects of TCS on crucial signaling enzymes activated downstream of the Ca2+ rise: protein kinase C (PKC; activated by Ca2+ and reactive oxygen species [ROS]) and phospholipase D (PLD). We found that TCS strongly inhibits PLD activity within 15 minutes post-antigen, a key mechanism of TCS mast cell inhibition. In addition, experiments using fluorescent constructs and confocal microscopy indicate that TCS delays antigen-induced translocations of PKCβII, PKCδ and PKC substrate myristoylated alanine-rich C-kinase. Surprisingly, TCS does not inhibit PKC activity or overall ability to translocate, and TCS actually increases PKC activity by 45 minutes post-antigen; these results are explained by the timing of both TCS inhibition of cytosolic Ca2+ (~15+ minutes post-antigen) and TCS stimulation of ROS (~45 minutes post-antigen). These findings demonstrate that it is incorrect to assume that all Ca2+ -dependent processes will be synchronously inhibited when cytosolic Ca2+ is inhibited by a toxicant or drug. The results offer molecular predictions of the effects of TCS on other mammalian cell types, which share these crucial signal transduction elements and provide biochemical information that may underlie recent epidemiological findings implicating TCS in human health problems.
Collapse
Affiliation(s)
- Juyoung K Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Molly A Caron
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Lisa M Weatherly
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Logan B Gerchman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Suraj Sangroula
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Siham Hattab
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Alan Y Baez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Talya J Briana
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
70
|
Banerjee PP, Bandyopadhyay A, Mondal P, Mondal MK, Chowdhury P, Chakraborty A, Sudarshan M, Bhattacharya S, Chattopadhyay A. Cytotoxic effect of graphene oxide-functionalized gold nanoparticles in human breast cancer cell lines. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
71
|
SCF FBXO22 targets HDM2 for degradation and modulates breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A 2019; 116:11754-11763. [PMID: 31138683 DOI: 10.1073/pnas.1820990116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human homolog of mouse double minute 2 (HDM2) is an oncogene frequently overexpressed in cancers with poor prognosis, but mechanisms of controlling its abundance remain elusive. In an unbiased biochemical search, we discovered Skp1-Cullin 1-FBXO22-ROC1 (SCFFBXO22) as the most dominating HDM2 E3 ubiquitin ligase from human proteome. The results of protein decay rate analysis, ubiquitination, siRNA-mediated silencing, and coimmunoprecipitation experiments support a hypothesis that FBXO22 targets cellular HDM2 for ubiquitin-dependent degradation. In human breast cancer cells, FBXO22 knockdown (KD) increased cell invasiveness, which was driven by elevated levels of HDM2. Moreover, mouse 4T1 breast tumor model studies revealed that FBXO22 KD led to a significant increase of breast tumor cell metastasis to the lung. Finally, low FBXO22 expression is correlated with worse survival and high HDM2 expression in human breast cancer. Altogether, these findings suggest that SCFFBXO22 targets HDM2 for degradation and possesses inhibitory effects against breast cancer tumor cell invasion and metastasis.
Collapse
|
72
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
73
|
Kong Y, Wang Z, Huang M, Zhou Z, Li Y, Miao H, Wan X, Huang J, Mao X, Chen C. CUL7 promotes cancer cell survival through promoting Caspase-8 ubiquitination. Int J Cancer 2019; 145:1371-1381. [PMID: 30807646 DOI: 10.1002/ijc.32239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
The Cullin 7 (CUL7) gene encodes a member of the cullin family of E3 ubiquitin ligases. Accumulated evidence suggests that CUL7 is oncogenic. However, the mechanism by which CUL7 improves cancer cell survival has not been fully elucidated. Here, we reported that CUL7 confers anti-apoptotic functions by interacting with Caspase-8. CUL7 prevents Caspase-8 activation by promoting Caspase-8 modification with non-degradative polyubiquitin chains at K215. CUL7 knockdown sensitized cancer cells to TRAIL-induced apoptosis in vitro and in nude mice. These results suggest that CUL7 limits extrinsic apoptotic signaling by promoting Caspase-8 ubiquitination.
Collapse
Affiliation(s)
- Yanjie Kong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.,Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zehua Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yi Li
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xing Wan
- Department of Dermatology, Jingmen No.1 people's Hospital, Jingmen, Hubei, China
| | - Jian Huang
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.,Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
74
|
Mittal L, Raman V, Camarillo IG, Garner AL, Sundararajan R. Viability and cell cycle studies of metastatic triple negative breast cancer cells using low voltage electrical pulses and herbal curcumin. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaf2c3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
75
|
Pucci S, Polidoro C, Greggi C, Amati F, Morini E, Murdocca M, Biancolella M, Orlandi A, Sangiuolo F, Novelli G. Pro-oncogenic action of LOX-1 and its splice variant LOX-1Δ4 in breast cancer phenotypes. Cell Death Dis 2019; 10:53. [PMID: 30718451 PMCID: PMC6362207 DOI: 10.1038/s41419-018-1279-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
Abstract
The identification of new predictive biomarkers and therapeutic target for tailored therapy in breast cancer onset and progression is an interesting challenge. OLR-1 gene encodes the cell membrane receptor LOX-1 (lectin-like oxidized low-density lipoprotein receptor). We have recently identified a novel alternative OLR-1 isoform, LOX-1Δ4, whose expression and functions are still not clarified. In the present paper, we demonstrated that LOX-1 is overexpressed in 70% of human breast cancer (n = 47) and positively correlated to the tumor stage and grade (p < 0.01). Observations on LOX-1 and its splice variant Δ4 pointed out a different expression pattern correlated to breast cancer phenotypes. Overexpressing LOX-1 and LOX-1Δ4 in vitro, we obtained a strong enhancement of proliferative rate and a downregulation of cell death-related proteins. In addition, we observed a strong modulation of histone H4 acetylation and Ku70, the limiting factor of DNA double-strand breaks repair machinery implied in apoptosis inhibition and drug resistance acquisition. Moreover, LOX-1Δ4 overexpression is able to increase proliferation in a non-tumorigenic epithelial cell line, MCF12-F, acting as an oncogene. Altogether, these results suggest that LOX-1 may acts as a molecular link among metabolism, inflammation and cancer, indicating its potential role as biomarker and new molecular target, representing an attractive and concrete opportunity to improve current strategies for breast cancer tailored therapy.
Collapse
Affiliation(s)
- Sabina Pucci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Chiara Polidoro
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Chiara Greggi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Elena Morini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Michela Biancolella
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Neuromed, I.R.C.C.S, Pozzilli, Italy
| |
Collapse
|
76
|
Youness RA, Assal RA, Abdel Motaal A, Gad MZ. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide 2018; 80:12-23. [PMID: 30081213 DOI: 10.1016/j.niox.2018.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Hydrogen sulphide (H2S) gas has been recognized as an intracellular mediator influencing an array of signaling pathways. Yet, the role of H2S in cancer progression has been controversial. This study aims to unravel the role of exogenous H2S in triple negative breast cancer (TNBC) and to further investigate any possible association of H2S mediated actions with the endogenous production of nitric oxide (NO) gas. A wide concentration range of NaHS (20-2000 μM) and a variable reaction time (2-72 h) were probed. A bell-shaped impact of H2S on TNBC cellular viability, proliferation, migration, invasion and colony forming ability was repeatedly observed in the aggressive TNBC cell lines, MDA-MB-231 but not in hormone receptor positive, MCF-7 cells. This bell-shaped effect was found to be shifted towards the left upon increasing the reaction time within the range of 2-24 h. However, this was totally opposed in case of continuous exposure (72 h) to exogenous H2S. An inverted bell-shaped effect of H2S on TNBC cellular growth, migration, proliferation and colony forming ability was shown. Moreover, this study provided the first evidence of a possible involvement of NO in mediating H2S actions in TNBC. Such intricate cross-talk was found to be orchestrated by the novel lncRNA, sONE and its down-stream target NOS3 building up a novel axis, sONE/NOS3/NO, that was shown to play a pivotal role in plotting the bilateral effect of H2S on TNBC progression. Finally, this study showed that low and continuous exposure of H2S serves as a novel, selective and effective strategy in harnessing TNBC oncogenic profile through cGMP dependent and independent pathways where alterations of cell cycle regulatory proteins such as TP53 and c-Myc was observed. Moreover, NaHS could repress TNBC migration and invasion capacities through repressing the intracellular adhesion molecule, ICAM-1. In conclusion, this study provides an insight about the role of exogenous H2S in TNBC cell lines highlighting a novel crosstalk between H2S and NO orchestrated by sONE/NOS3 axis.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Department of Pharmaceutical Biology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt
| | - Reem Amr Assal
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt
| | - Amira Abdel Motaal
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohamed Zakaria Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt.
| |
Collapse
|
77
|
Sankunny M, Eng C. KLLN-mediated DNA damage-induced apoptosis is associated with regulation of p53 phosphorylation and acetylation in breast cancer cells. Cell Death Discov 2018; 4:31. [PMID: 30245854 PMCID: PMC6134104 DOI: 10.1038/s41420-018-0094-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
KLLN is a target of p53 involved in S-phase cell cycle regulation deemed necessary and sufficient for p53-mediated apoptosis. Germline promoter hypermethylation of KLLN is associated with a cancer-predisposition syndrome, Cowden syndrome. KLLN’s DNA-binding ability is associated with transcription regulation and maintenance of genomic stability. Here, we report on KLLN’s role in DNA damage response (DDR) mediated through apoptosis in breast cells with and without a cancer phenotype. KLLN expression was upregulated after doxorubicin-induced DNA damage and this upregulation can be abrogated using RNAi-mediated gene silencing. Silencing KLLN after doxorubicin treatment effected DDR shown by decreased γ-H2AX foci and expression, and apoptosis assessed by decreased frequency of apoptotic nuclei and decreased expression of definitive markers of apoptosis. Contrary to expectations, there was no change in cell cycle regulation after KLLN silencing. These results were observed in breast cells with wildtype and mutant p53. At early timepoints after doxorubicin treatment, knocking down KLLN resulted in decreased Ser15-phosphorylation of p53 but not Thr68-phosphorylation of CHK2 or the phosphorylation of upstream regulators such as ATM and ATR. Interestingly, a second pathway for p53 activation was also affected by knockdown of KLLN. After doxorubicin treatment, Thr454-phosphorylation of DBC1, required to inhibit deacetylation of p53 by SIRT1, was decreased and therefore acetylation of p53 was also decreased with KLLN knockdown. Therefore, our observations suggest that KLLN’s role in DNA damage-induced apoptosis is likely independent of p53 and is associated with a two-pronged regulation of p53 activation.
Collapse
Affiliation(s)
- Madhav Sankunny
- 1Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,2Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Charis Eng
- 1Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,2Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,3Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA.,4Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106 USA.,5Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
78
|
Motadi LR, Lekganyane MM, Moela P. RBBP6 expressional effects on cell proliferation and apoptosis in breast cancer cell lines with distinct p53 statuses. Cancer Manag Res 2018; 10:3357-3369. [PMID: 30237738 PMCID: PMC6138973 DOI: 10.2147/cmar.s169577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction Breast cancer is the most common malignancy amongst women and has a higher incidence rate than lung cancer. Its tumor progression partially results from inactivation of p53 which is caused by overexpression of ubiquitous regulatory proteins possessing p53-binding domain. RBBP6 is regarded as one of the ubiquitous proteins because of its RING finger-like domain which enables it to possess E3 ligase activity. Thus, it has become a potential target in cancer treatment as it is highly expressed in various malignancies including cancer. However, it is not clearly defined whether the effect of RBBP6 on cell growth and apoptosis is cell line-dependent, more especially in breast cancer cell lines that have distinct p53 expression profiles. This study aims at evaluating the effects of RBBP6 on cell growth and apoptosis in breast cancer cell lines with different p53 expressions. Methods Following the analysis at mRNA and protein levels in breast cancer tissue, RBBP6 expression was successfully manipulated using gene silencing and protein overexpression techniques in MCF-7 and MDA-MB-231 cell lines. The cells were co-treated with siRBBP6 and anticancer agents following apoptosis detection, which was confirmed by caspase 3/7 activity and quantification of apoptotic genes. Results RBBP6 was overexpressed in breast cancer tissues that were classified as stages 3 and 4, while in stage 1, its expression was much lower. The MCF-7 cell line which expresses wild-type p53 was more sensitive to apoptosis induction than MDA-MB-231 which is a mutant p53-expressing cell line. These data suggest that RBBP6 silencing triggers significant levels of intrinsic apoptosis, and its overexpression appears to promote cell proliferation in wild-type p53-expressing MCF-7 cell line as opposed to MDA-MB-231 cells. Conclusion The effect of RBBP6 on cell proliferation and apoptosis induction in breast cancer seems to be cell line-dependent based on p53 status.
Collapse
Affiliation(s)
- Lesetja Raymond Motadi
- Department of Biochemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Potchefstroom, South Africa,
| | - Mashianoke Marcia Lekganyane
- Department of Biochemistry, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Potchefstroom, South Africa,
| | - Pontsho Moela
- Department of Genetics, Faculty of Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
79
|
Baghi N, Bakhshinejad B, Keshavarz R, Babashah S, Sadeghizadeh M. Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer effects on breast cancer cells. Gene 2018; 670:55-62. [PMID: 29753810 DOI: 10.1016/j.gene.2018.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 01/07/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes an important histological subtype of breast cancer with a highly metastatic phenotype. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and exogenously delivered p53 in producing anticancer effects on a TNBC cell line. MTT assay was exploited to determine the viability of MDA-MB-231 cells against DNC and measure the impact of p53 overexpresssion on DNC-related cytotoxicity. Annexin-V/PI staining followed by flow cytometry and wound healing assay were used to evaluate the effects of DNC and exogenous p53, alone and in combination, on apoptosis induction and migratory capacity of MDA-MB-231 cells, respectively. Also, quantitative real-time PCR was applied to analyze the transcript levels of EMT- and metastasis-associated genes. Cell viability measurements demonstrated that DNC suppresses the proliferation of MDA-MB-231 cells in a time- and dose-dependent mode and exogenous p53 elevates the sensitivity of cells to DNC-mediated cytotoxic effects. Apoptosis and wound healing assays indicated that combination treatment with DNC and exogenous p53 leads to significantly increased apoptosis and decreased migration of breast cancer cells, compared with single treatment. The results of gene expression analysis highlighted the high potency of combination strategy to significantly reduce the expression of ZEB1 and BMI1 transcript levels. Altogether, our findings reveal that DNC and exogenous p53 act in a synergistic manner to elicit anticancer effects on MDA-MB-231 breast cancer cells. Therefore, our combination approach might be considered as a promising strategy for the development of new therapeutic modalities against breast cancer.
Collapse
Affiliation(s)
- Narges Baghi
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Reihaneh Keshavarz
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran.
| |
Collapse
|
80
|
Deshpande S, Patil S, Singh N. Enhancing Gene-Knockdown Efficiency of Poly( N-isopropylacrylamide) Nanogels. ACS OMEGA 2018; 3:8042-8049. [PMID: 30087933 PMCID: PMC6072245 DOI: 10.1021/acsomega.8b00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/05/2018] [Indexed: 05/29/2023]
Abstract
Polo-like-kinase 1 (PLK1), which is a serine-threonine protein kinase overexpressed in cancer cells, is known to regulate tumor growth and have recently gathered attention as a target gene for RNA interference because of the poor bioavailability and nonspecificity of the available inhibitors. However, the lower transfection efficiency of siRNA and its poor stability in biological mileu necessitate the need of efficient siRNA delivery systems. Here, we report efficacious polymeric nanoparticles for the delivery of PLK1 siRNA in mammalian cancer cells. N-Isopropylacrylamide (NIPAm) and N-isopropylmethacrylamide-co-NIPAm nanogels were synthesized and modified using poly-ε-lysine. Furthermore, their ability to induce gene silencing was investigated by flow cytometry and real-time polymerase chain reaction, and the silencing efficiency observed was related to the polymer composition and its effect on the gene loading and protection ability and the endosomal escape capability. This study attempts to leverage the understanding of the cell-material interaction, thus, addressing the bottlenecks of siRNA delivery for enhancing the efficacy of the poly(N-isopropylacrylamide)-based delivery vehicle.
Collapse
Affiliation(s)
- Sonal Deshpande
- Centre
for Biomedical Engineering, Indian Institute
of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Smita Patil
- Centre
for Biomedical Engineering, Indian Institute
of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre
for Biomedical Engineering, Indian Institute
of Technology-Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical
Engineering Unit, All India Institute of
Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
81
|
Tsvetkov P, Adler J, Myers N, Biran A, Reuven N, Shaul Y. Oncogenic addiction to high 26S proteasome level. Cell Death Dis 2018; 9:773. [PMID: 29991718 PMCID: PMC6039477 DOI: 10.1038/s41419-018-0806-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Proteasomes are large intracellular complexes responsible for the degradation of cellular proteins. The altered protein homeostasis of cancer cells results in increased dependency on proteasome function. The cellular proteasome composition comprises the 20S catalytic complex that is frequently capped with the 19S regulatory particle in forming the 26S proteasome. Proteasome inhibitors target the catalytic barrel (20S) and thus this inhibition does not allow the deconvolution of the distinct roles of 20S versus 26S proteasomes in cancer progression. We examined the degree of dependency of cancer cells specifically to the level of the 26S proteasome complex. Oncogenic transformation of human and mouse immortalized cells with mutant Ras induced a strong posttranscriptional increase of the 26S proteasome subunits, giving rise to high 26S complex levels. Depletion of a single subunit of the 19S RP was sufficient to reduce the 26S proteasome level and lower the cellular 26S/20S ratio. Under this condition the viability of the Ras-transformed MCF10A cells was severely compromised. This observation led us to hypothesize that cancer cell survival is dependent on maximal utilization of its 26S proteasomes. We validated this possibility in a large number of cancer cell lines and found that partial reduction of the 26S proteasome level impairs viability in all cancer cells examined and was not correlated with cell doubling time or reduction efficiency. Interstingly, normal human fibroblasts are refractory to the same type of 26S proteasome reduction. The suppression of 26S proteasomes in cancer cells activated the UPR and caspase-3 and cells stained positive with Annexin V. In addition, suppression of the 26S proteasome resulted in cellular proteasome redistribution, cytoplasm shrinkage, and nuclear deformation, the hallmarks of apoptosis. The observed tumor cell-specific addiction to the 26S proteasome levels sets the stage for future strategies in exploiting this dependency in cancer therapy.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.,Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA, 02142, USA
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Assaf Biran
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
82
|
Royston KJ, Paul B, Nozell S, Rajbhandari R, Tollefsbol TO. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res 2018; 368:67-74. [PMID: 29689276 PMCID: PMC6733260 DOI: 10.1016/j.yexcr.2018.04.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence.
Collapse
Affiliation(s)
- Kendra J Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
| | - Bidisha Paul
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA
| | - Susan Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233, USA
| | - Rajani Rajbhandari
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
83
|
Ji ZM, Yang LL, Ni J, Xu SP, Yang C, Duan P, Lou LP, Ruan QR. Silencing Filamin A Inhibits the Invasion and Migration of Breast Cancer Cells by Up-regulating 14-3-3σ. Curr Med Sci 2018; 38:461-466. [PMID: 30074213 DOI: 10.1007/s11596-018-1901-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/13/2018] [Indexed: 12/14/2022]
Abstract
Filamin A and 14-3-3-σ are closely associated with the development of breast cancer. However, the exact relationship between them is still unknown. The present study aimed to examine the interaction of filamin A with 14-3-3-σ in the invasion and migration of breast cancer. RNA interference technology was employed to silence filamin A in MDA-MB-231 cells. Real-time PCR and Western blotting were used to detect the expression of filamin A and 14-3-3-σ at mRNA and protein levels, respectively. Double immunofluorescence was applied to show their colocalization morphologically. Wound healing assay and Trans-well assay were used to testify the migration and invasion of MDA-MB-231 cells in filamin A-silenced cells. The results showed that silencing filamin A significantly increased the mRNA and protein levels of 14-3-3σ. In addition, double immunofluorescence displayed that filamin A and 14-3-3σ were predominantly colocalized in the cytoplasm of MDA-MB-231 cells. Silencing filamin A led to the enhanced fluorescence of 14-3-3σ. Furthermore, cell functional experiments showed that silencing filamin A inhibited the migration and invasion of MDA-MB-231 cells in vitro. In conclusion, silencing filamin A may inhibit the invasion and migration of breast cancer cells by upregulating 14-3-3σ.
Collapse
Affiliation(s)
- Zhi-Min Ji
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Li-Li Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Ni
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - San-Peng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Ping Lou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Rong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
84
|
Pidugu VR, Yarla NS, Bishayee A, Kalle AM, Satya AK. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells. Apoptosis 2018; 22:1394-1403. [PMID: 28840369 DOI: 10.1007/s10495-017-1410-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identification of isoform-specific histone deacetylase inhibitors (HDACi) is a significant advantage to overcome the adverse side effects of pan-HDACi for the treatment of various diseases, including cancer. We have designed, and synthesized novel 1,3,4 oxadiazole with glycine/alanine hybrids as HDAC8-specific inhibitors and preliminary evaluation has indicated that 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)propanamide (10b)] to be a potent HDAC8 inhibitor. In the present study, the in vitro efficacy of the molecule in inhibiting the cancer cell proliferation and the underlying molecular mechanism was studied. 10b inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells, with a lower IC50 of 230 and 1000 nM, respectively, compared to K562, COLO-205 and HepG2 cells and was not cytotoxic to normal breast epithelial cells, MCF10A. 10b was specific to HDAC8 and did not affect the expression of other class I HDACs. Further, a dose-dependent increase in H3K9 acetylation levels demonstrated the HDAC-inhibitory activity of 10b in MDA-MB-231 cells. Flow cytometric analysis indicated a dose-dependent increase and decrease in the percent apoptotic cells and mitochondrial membrane potential, respectively, when treated with 10b. Immunoblot analysis showed a modulation of Bax/Bcl2 ratio with a decrease in Bcl2 expression and no change in Bax expression. 10b treatment resulted in induction of p21 and inhibition of CDK1 proteins along with cytochrome c release from mitochondria, activation of caspases-3 and -9 and cleavage of poly ADP-ribose polymerase leading to apoptotic death of MDA-MB-231 and MCF7 cells. In conclusion, our results clearly demonstrated the efficacy of 10b as an anticancer agent against breast cancer.
Collapse
Affiliation(s)
- Vijaya Rao Pidugu
- GVK Biosciences Private Limited, IDA Mallapur, Hyderabad, Telangana, 500 076, India. .,Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522 510, India.
| | - Nagendra Sastry Yarla
- Department of Biochemistry/Bioinformatics, Institute of Science, GITAM University, Vishakhapatnam, Andhra Pradesh, 530 045, India.,Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.,Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Alapati Krishna Satya
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, 522 510, India.
| |
Collapse
|
85
|
Physalin B induces cell cycle arrest and triggers apoptosis in breast cancer cells through modulating p53-dependent apoptotic pathway. Biomed Pharmacother 2018; 101:334-341. [DOI: 10.1016/j.biopha.2018.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
|
86
|
Thapa RK, Choi JY, Gupta B, Ramasamy T, Poudel BK, Ku SK, Youn YS, Choi HG, Yong CS, Kim JO. Liquid crystalline nanoparticles encapsulating cisplatin and docetaxel combination for targeted therapy of breast cancer. Biomater Sci 2018; 4:1340-50. [PMID: 27412822 DOI: 10.1039/c6bm00376a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer remains a leading cause of death. A combination of anticancer agents can effectively kill cancer through multiple pathways; however, improvements to their delivery are needed. Hence, docetaxel and cisplatin-loaded liquid crystalline nanoparticles with folic acid were prepared for effective and targeted anticancer therapy. Notably, hydroxypropyl-β-cyclodextrin/cisplatin complexes in 0.9% NaCl solution were used for the prevention of possible aquation of cisplatin, which would otherwise lead to severe adverse effects. The optimized nanoparticles exhibited small particle size, high drug loading capacity (>90%), and controlled drug release profiles. In vitro cell cytotoxicity assays demonstrated that the optimized nanoparticles were taken up by folate receptor-expressing cells to a greater extent than non-folate expressing cells, which is attributable to folate-specific endocytosis of the optimized nanoparticles. Enhanced expression of apoptotic markers (Bax, p21, and cleaved caspase-3) along with enhanced anti-migration effects in MDA-MB-231 cells following treatment suggests that the optimized nanoparticles provide an effective treatment for metastatic breast cancer. These results were further supported by in vivo findings obtained for a MDA-MB-231 tumor xenograft model. Altogether, the optimized nanoparticles may potentially be developed as an effective treatment modality for folate-targeted metastatic breast cancer treatment.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, South Korea.
| | - Ju Yeon Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, South Korea.
| | - Biki Gupta
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, South Korea.
| | - Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, South Korea.
| | - Bijay Kumar Poudel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, South Korea.
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 712-702, South Korea
| | - Yu Seok Youn
- School of Pharmacy, SunKyunKwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 440-746, South Korea
| | - Han Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, South Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongsanbuk-do, 712-749, South Korea.
| |
Collapse
|
87
|
Zúñiga R, Valenzuela C, Concha G, Brown N, Zúñiga L. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19041033. [PMID: 29596383 PMCID: PMC5979529 DOI: 10.3390/ijms19041033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA)-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Rafael Zúñiga
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Claudio Valenzuela
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Guierdy Concha
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Nelson Brown
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas (CIM), Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
88
|
Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR. Mechanisms of the anti-tumor activity of Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1 H-benzo[d]imidazole-5-carboxylate against breast cancer in vitro and in vivo. Oncotarget 2018; 8:28840-28853. [PMID: 28392503 PMCID: PMC5438696 DOI: 10.18632/oncotarget.16263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Microtubule Targeting Agents (MTAs) induce cell death through mitotic arrest, preferentially affecting rapidly dividing cancer cells over slowly proliferating normal cells. Previously, we showed that Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) acts as a potential MTA. In this study, we demonstrated that MBIC exhibits greater toxicity towards non-aggressive breast cancer cell-line, MCF-7 (IC50 = 0.73 ± 0.0 μM) compared to normal fibroblast cell-line, L-cells (IC50 = 59.6 ± 2.5 μM). The IC50 of MBIC against the aggressive breast cancer cell-line, MDA-MB-231 was 20.4 ± 0.2 μM. We hypothesized that the relatively high resistance of MDA-MB-231 cells to MBIC is associated with p53 mutation. We investigated p53 and three of its downstream proteins: survivin, cyclin dependent kinase (Cdk1) and cyclin B1. Following treatment with MBIC, survivin co-immunoprecipitated with caspases with higher affinity in MDA-MB-231 compared to MCF-7 cells. Furthermore, silencing survivin caused a 4.5-fold increase in sensitivity of MDA-MB-231 cells to MBIC (IC50 = 4.4 ± 0.3). In addition, 4 weeks of MBIC administration in MDA-MB-231 cells inoculated BALB/c nude mice resulted in 79.7% reduction of tumor volume compared to the untreated group with no severe sign of toxicity. Our results demonstrated MBIC has multiple anti-tumor actions and could be a potential drug in breast cancer therapy.
Collapse
Affiliation(s)
- Mohadeseh Hasanpourghadi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 462033, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 462033, India
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
89
|
Kekulandara DN, Nagi S, Seo H, Chow CS, Ahn YH. Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling. Biochemistry 2018; 57:772-780. [PMID: 29261301 DOI: 10.1021/acs.biochem.7b01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thioredoxin 1 (Trx1) and glutaredoxin 1 (Grx1) are two ubiquitous redox enzymes that are central for redox homeostasis but also are implicated in many other processes, including stress sensing, inflammation, and apoptosis. In addition to their enzymatic redox activity, a growing body of evidence shows that Trx1 and Grx1 play regulatory roles via protein-protein interactions with specific proteins, including Ask1. The currently available inhibitors of Trx1 and Grx1 are thiol-reactive electrophiles or disulfides that may suffer from low selectivity because of their thiol reactivity. In this report, we used a phage peptide library to identify a 7-mer peptide, 2GTP1, that binds to both Trx1 and Grx1. We further showed that a cell-permeable derivative of 2GTP1, TAT-2GTP1, disrupts the Trx1-Ask1 interaction, which induces Ask1 phosphorylation with subsequent activation of JNK, stabilization of p53, and reduced viability of cancer cells. Notably, as opposed to a disulfide-derived Trx1 inhibitor (PX-12), TAT-2GTP1 was selective for activating the Ask1 pathway without affecting other stress signaling pathways, such as endoplasmic reticulum stress and AMPK activation. Overall, 2GTP1 will serve as a useful probe for investigating protein interactions of Trx1.
Collapse
Affiliation(s)
- Dilini N Kekulandara
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Shima Nagi
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Hyosuk Seo
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
90
|
Wu KH, Ho CT, Chen ZF, Chen LC, Whang-Peng J, Lin TN, Ho YS. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal 2018. [DOI: 10.1016/j.jfda.2017.03.009 pmid: 29389559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
91
|
El Gaafary M, Ezzat SM, El Sayed AM, Sabry OM, Hafner S, Lang S, Schmiech M, Syrovets T, Simmet T. Acovenoside A Induces Mitotic Catastrophe Followed by Apoptosis in Non-Small-Cell Lung Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2017; 80:3203-3210. [PMID: 29190084 DOI: 10.1021/acs.jnatprod.7b00546] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated the cytotoxic potential of the cardenolide glycoside acovenoside A against non-small-cell lung cancer cells. Lung cancer is the leading cause of cancer-related mortality and the second most common cancer diagnosed. Epidemiological studies revealed a direct correlation between the regular administration of cardiac glycosides and a lower incidence of various cancers. Acovenoside A, isolated from the pericarps of Acokanthera oppositifolia, potently inhibited proliferation and induced cytotoxicity in A549 non-small-cell lung cancer cells with an IC50 of 68 ± 3 nM after 48 h of exposure. Compared to the antineoplastic agent doxorubicin, acovenoside A was more potent in inhibiting the viability of A549 cancer cells. Moreover, acovenoside A exhibited selectivity against cancer cells, being significantly less toxic to lung fibroblasts and nontoxic for peripheral blood mononuclear cells. Analysis of the cell cycle profile in acovenoside A-treated A549 cells revealed mitotic arrest, due to accumulation of the G2/M regulators cyclin B1 and CDK1, and cytokinesis failure. Furthermore, acovenoside A affected the mitochondrial membrane integrity and induced production of radical oxygen species, which resulted in induction of canonical apoptosis, manifested by caspase 3 activation and DNA fragmentation. Based on our results, acovenoside A warrants further exploration as a potential anticancer lead.
Collapse
Affiliation(s)
- Menna El Gaafary
- Department of Pharmacognosy, College of Pharmacy, Cairo University , Giza 11562, Egypt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University , Ulm D-89081, Germany
| | - Shahira M Ezzat
- Department of Pharmacognosy, College of Pharmacy, Cairo University , Giza 11562, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) , Cairo 11562, Egypt
| | - Abeer M El Sayed
- Department of Pharmacognosy, College of Pharmacy, Cairo University , Giza 11562, Egypt
| | - Omar M Sabry
- Department of Pharmacognosy, College of Pharmacy, Cairo University , Giza 11562, Egypt
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University , Ulm D-89081, Germany
| | - Sophia Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University , Ulm D-89081, Germany
| | - Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University , Ulm D-89081, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University , Ulm D-89081, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University , Ulm D-89081, Germany
| |
Collapse
|
92
|
Schütze A, Vogeley C, Gorges T, Twarock S, Butschan J, Babayan A, Klein D, Knauer SK, Metzen E, Müller V, Jendrossek V, Pantel K, Milde-Langosch K, Fischer JW, Röck K. RHAMM splice variants confer radiosensitivity in human breast cancer cell lines. Oncotarget 2017; 7:21428-40. [PMID: 26870892 PMCID: PMC5008296 DOI: 10.18632/oncotarget.7258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Biomarkers for prognosis in radiotherapy-treated breast cancer patients are urgently needed and important to stratify patients for adjuvant therapies. Recently, a role of the receptor of hyaluronan-mediated motility (RHAMM) has been suggested for tumor progression. Our aim was (i) to investigate the prognostic value of RHAMM in breast cancer and (ii) to unravel its potential function in the radiosusceptibility of breast cancer cells. We demonstrate that RHAMM mRNA expression in breast cancer biopsies is inversely correlated with tumor grade and overall survival. Radiosusceptibility in vitro was evaluated by sub-G1 analysis (apoptosis) and determination of the proliferation rate. The potential role of RHAMM was addressed by short interfering RNAs against RHAMM and its splice variants. High expression of RHAMMv1/v2 in p53 wild type cells (MCF-7) induced cellular apoptosis in response to ionizing radiation. In comparison, in p53 mutated cells (MDA-MB-231) RHAMMv1/v2 was expressed sparsely resulting in resistance towards irradiation induced apoptosis. Proliferation capacity was not altered by ionizing radiation in both cell lines. Importantly, pharmacological inhibition of the major ligand of RHAMM, hyaluronan, sensitized both cell lines towards radiation induced cell death. Based on the present data, we conclude that the detection of RHAMM splice variants in correlation with the p53 mutation status could help to predict the susceptibility of breast cancer cells to radiotherapy. Additionally, our studies raise the possibility that the response to radiotherapy in selected cohorts may be improved by pharmaceutical strategies against RHAMM and its ligand hyaluronan.
Collapse
Affiliation(s)
- Alexandra Schütze
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christian Vogeley
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Tobias Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jonas Butschan
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anna Babayan
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Shirley K Knauer
- Institute for Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Eric Metzen
- Institute of Physiology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Volkmar Müller
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Katharina Röck
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
93
|
Schultze E, Buss J, Coradini K, Begnini KR, Guterres SS, Collares T, Beck RCR, Pohlmann AR, Seixas FK. Tretinoin-loaded lipid-core nanocapsules overcome the triple-negative breast cancer cell resistance to tretinoin and show synergistic effect on cytotoxicity induced by doxorubicin and 5-fluororacil. Biomed Pharmacother 2017; 96:404-409. [PMID: 29031198 DOI: 10.1016/j.biopha.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 01/14/2023] Open
Abstract
Nanostructured drug delivery systems have been extensively studied, mainly for applications in cancer therapy. The advantages of these materials include protection against drug degradation and improvement in both the relative solubility of poorly water soluble drugs as in targeting of therapy, due to the enhanced permeability and retention effect on tumor sites. In this work, we evaluate the antitumor activity of tretinoin-loaded lipid core nanocapsules (TT-LNC) in a tretinoin-resistant breast cancer cell-line, MDA-MB- 231, as well as the synergistic effect of combination of this treatment with 5-FU or DOXO. The inhibition of cell growth was assayed by MTT reduction. Live/Dead assay and DAPI staining evaluated cytotoxicity. Apoptosis was evaluated by Annexin V-PE/7AAD and the effect of chronic exposure was evaluated by colony formation assay. TT-LNC reduced the cell viability even at lower concentrations (1μM) and displayed synergistic effect with 5-FU or DOXO on cytotoxicity and colony formation inhibition. Our work shows a possibility of using nanocapsules to improve the antitumoral activity of TT for its use either alone or in combination with other chemotherapeutic drugs, especially considering the chronic effect.
Collapse
Affiliation(s)
- Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Julieti Buss
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karine Coradini
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Karine Rech Begnini
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Silvia S Guterres
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, 90610-000, RS, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, PBox 15003, Porto Alegre, 91501-970, RS, Brazil
| | - Fabiana Kömmling Seixas
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
94
|
Costantini S, Guerriero E, Teta R, Capone F, Caso A, Sorice A, Romano G, Ianora A, Ruocco N, Budillon A, Costantino V, Costantini M. Evaluating the Effects of an Organic Extract from the Mediterranean Sponge Geodia cydonium on Human Breast Cancer Cell Lines. Int J Mol Sci 2017; 18:ijms18102112. [PMID: 28991212 PMCID: PMC5666794 DOI: 10.3390/ijms18102112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022] Open
Abstract
Marine sponges are an excellent source of bioactive secondary metabolites for pharmacological applications. In the present study, we evaluated the chemistry, cytotoxicity and metabolomics of an organic extract from the Mediterranean marine sponge Geodia cydonium, collected in coastal waters of the Gulf of Naples. We identified an active fraction able to block proliferation of breast cancer cell lines MCF-7, MDA-MB231, and MDA-MB468 and to induce cellular apoptosis, whereas it was inactive on normal breast cells (MCF-10A). Metabolomic studies showed that this active fraction was able to interfere with amino acid metabolism, as well as to modulate glycolysis and glycosphingolipid metabolic pathways. In addition, the evaluation of the cytokinome profile on the polar fractions of three treated breast cancer cell lines (compared to untreated cells) demonstrated that this fraction induced a slight anti-inflammatory effect. Finally, the chemical entities present in this fraction were analyzed by liquid chromatography high resolution mass spectrometry combined with molecular networking.
Collapse
Affiliation(s)
- Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Eliana Guerriero
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Roberta Teta
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesca Capone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Alessia Caso
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Angela Sorice
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, 80131 Napoli, Italy.
| | - Valeria Costantino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
95
|
Maroni P, Puglisi R, Mattia G, Carè A, Matteucci E, Bendinelli P, Desiderio MA. In bone metastasis miR-34a-5p absence inversely correlates with Met expression, while Met oncogene is unaffected by miR-34a-5p in non-metastatic and metastatic breast carcinomas. Carcinogenesis 2017; 38:492-503. [PMID: 28334277 DOI: 10.1093/carcin/bgx027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
The highlight of the molecular basis and therapeutic targets of the bone-metastatic process requires the identification of biomarkers of metastasis colonization. Here, we studied miR-34a-5p expression, and Met-receptor expression and localization in bone metastases from ductal breast carcinomas, and in ductal carcinomas without history of metastasis (20 cases). miR-34a-5p was elevated in non-metastatic breast carcinoma, intermediate in the adjacent tissue and practically absent in bone metastases, opposite to pair-matched carcinoma. Met-receptor biomarker was highly expressed and inversely correlated with miR-34a-5p using the same set of bone-metastasis tissues. The miR-34a-5p silencing might depend on aberrant-epigenetic mechanisms of plastic-bone metastases, since in 1833 cells under methyltransferase blockade miR-34a-5p augmented. In fact, 1833 cells showed very low endogenous miR-34a-5p, in respect to parental MDA-MB231 breast carcinoma cells, and the restoration of miR-34a-5p with the mimic reduced Met and invasiveness. Notably, hepatocyte growth factor (HGF)-dependent Met stabilization was observed in bone-metastatic 1833 cells, consistent with Met co-distribution with the ligand HGF at plasma membrane and at nuclear levels in bone metastases. Met-protein level was higher in non-metastatic (low grade) than in metastatic (high grade) breast carcinomas, notwithstanding miR-34a-5p-elevated expression in both the specimens. Thus, mostly in non-metastatic carcinomas the elevated miR-34a-5p unaffected Met, important for invasive/mesenchymal phenotype, while possibly targeting some stemness biomarkers related to metastatic phenotype. In personalized therapies against bone metastasis, we suggest miR-34a-5p as a suitable target of epigenetic reprogramming leading to the accumulation of miR-34a-5p and the down-regulation of Met-tyrosine kinase, a key player of the bone-metastatic process.
Collapse
Affiliation(s)
- Paola Maroni
- Istituto Ortopedico Galeazzi, IRCCS, Milano 20161, Italy
| | - Rossella Puglisi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Gianfranco Mattia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Alessandra Carè
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma 00161, Italy and
| | - Emanuela Matteucci
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| | - Paola Bendinelli
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| | - Maria Alfonsina Desiderio
- Dipartimento di Scienze Biomediche per la Salute, Molecular Pathology Laboratory, Università degli Studi di Milano, Milano 20133, Italy
| |
Collapse
|
96
|
Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM, Zhu H. UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 2017. [PMID: 28636190 DOI: 10.1002/jcb.26232] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a de-ubiquitin enzyme, ubiquitin C-terminal hydrolase (UCH)-L1 has been shown to be overexpressed in several human cancers. However, the function of UCH-L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH-L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH-L1 expression failed to alter cell proliferation in MCF-7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH-L1 led to suppression of invasion in UCH-L1 overexpressing MCF-7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity-dependent biotin identification method was developed by fusing UCH-L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH-L1 can interact with Akt in MCF-7 cells. Pulldown assay with His tagged recombinant UCH-L1 protein and cell lysate from MCF-7 cells further demonstrated that UCH-L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH-L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH-L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.
Collapse
Affiliation(s)
- Yanhong Luo
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Jianfeng He
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, Connecticut
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Nick Blair
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
97
|
Zhao GS, Liu Y, Zhang Q, Li C, Zhang YW, Ren ZZ, Zhou J, Zhang M. Transarterial chemoembolization combined with Huaier granule for the treatment of primary hepatic carcinoma: Safety and efficacy. Medicine (Baltimore) 2017; 96:e7589. [PMID: 28723799 PMCID: PMC5521939 DOI: 10.1097/md.0000000000007589] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To evaluate the safety and efficacy of transarterial arterial chemoembolization (TACE) with gelatin sponge particles (GSPs-TACE) and Huaier granule to treat primary hepatic carcinoma (PHC).A series of 62 patients with PHC were included between June 2009 and December 2011, and randomly assigned to a control (n = 31) or an experimental group (n = 31). The control patients received TACE with 350 to 560 μm GSPs plus lobaplatin chemotherapy. Patients in the experimental group received TACE plus Huaier granule. Treatment safety and mid-to-long-term efficacy were evaluated.Follow-up ranged from 12 to 24 months with a mean of 28.7 months. The 6- and 12-month overall survivals were 100% and 93.5% in the experimental group and 90.3% and 80.6% in control group, respectively. The difference in overall survival at 12 months was significant (χ = 5.213, P < .05), but the difference in median survival in the experimental group (20.6 months) and control group (17.1 months) patients was not significant (χ = 0.745, P > .05). The number of TACE procedures in the experimental group (2.9 ± 8.7) and control group (4.1 ± 7.3) patients was significantly different (χ = 7.262, P < .05). The 6-month (87.1% vs. 73.3%, χ = 5.945) and 12-month (72.4% vs. 64.3%, χ = 6.384) tumor objective response rates in the experimental and control groups were significantly different (P < .05). There were no statistically significant differences in the occurrence of treatment-related adverse reactions in the 2 groups.Transarterial chemoembolization with GSPs and Huaier granule was safe and effective for treating PHC patients.
Collapse
Affiliation(s)
- Guang Sheng Zhao
- Department of Interventional Therapy, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi
| | - Ying Liu
- Department of Interventional Therapy, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning
| | - Qing Zhang
- Central Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning
| | - Chuang Li
- Department of Interventional Therapy, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning
| | - Yue Wei Zhang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, Changping, Beijing, China
| | - Zhi Zhong Ren
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, Changping, Beijing, China
| | - Jun Zhou
- Department of Interventional Therapy, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning
| | - Ming Zhang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi
| |
Collapse
|
98
|
Wang X, Tao C, Yuan C, Ren J, Yang M, Ying H. AQP3 small interfering RNA and PLD2 small interfering RNA inhibit the proliferation and promote the apoptosis of squamous cell carcinoma. Mol Med Rep 2017; 16:1964-1972. [PMID: 28656282 PMCID: PMC5561784 DOI: 10.3892/mmr.2017.6847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/19/2017] [Indexed: 01/15/2023] Open
Abstract
Aquaporin 3 (AQP3) and phospholipase D2 (PLD2) are abnormally expressed and/or localized in squamous cell carcinoma (SCC). AQP3 transports glycerol to PLD2 for the synthesis of lipid second messenger, which can mediate the effect of the AQP3/PLD2 signaling module in the regulation of keratinocyte proliferation and differentiation. However, the role of the AQP3/PLD2 signaling module in the pathogenesis of SCC remains to be fully elucidated. In the present study, the expression levels of AQP3 and PLD2 in tissue samples were examined using immunohistochemistry, it was found that the expression levels of AQP3 and PLD2 in tissue samples of actinic keratosis (AK), Bowen's disease (BD) and SCC were significantly increased. AQP3 small interfering RNA (siRNA) and PLD2 siRNA were constructed and used for transfection into the human A431 SCC cell line, and their anticancer effect on SCC was examined. The mRNA expression and protein expression levels of AQP3 and PLD2 were significantly downregulated following siRNA transfection. AQP3 siRNA and PLD2 siRNA inhibited the proliferation and promoted the apoptosis of A431 cells. Taken together, the findings of the present study suggested that increased levels of AQP3 and PLD2 were correlated with tumor progression and development in SCC. AQP3 siRNA and PLD2 siRNA significantly downregulated the mRNA and protein levels of AQP3 and PLD2 in the A431 cells; inhibiting proliferation and promoting apoptosis in vitro. The concomitant effects of AQP3/PLD2 signaling by inhibiting the expression of siRNA may be important for the treatment of SCC in the future.
Collapse
Affiliation(s)
- Xiaoyong Wang
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Chengjun Tao
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Chengda Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Jinping Ren
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Ming Yang
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Hangyu Ying
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| |
Collapse
|
99
|
Krokidis MG, Terzidis MA, Efthimiadou E, Zervou SK, Kordas G, Papadopoulos K, Hiskia A, Kletsas D, Chatgilialoglu C. Purine 5′,8-cyclo-2′-deoxynucleoside lesions: formation by radical stress and repair in human breast epithelial cancer cells. Free Radic Res 2017; 51:470-482. [DOI: 10.1080/10715762.2017.1325485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - Eleni Efthimiadou
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - George Kordas
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | - Dimitris Kletsas
- Institute of Biosciences and Applications, NCSR “Demokritos”, Athens, Greece
| | - Chryssostomos Chatgilialoglu
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
100
|
Wu KH, Ho CT, Chen ZF, Chen LC, Whang-Peng J, Lin TN, Ho YS. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal 2017; 26:221-231. [PMID: 29389559 PMCID: PMC9332637 DOI: 10.1016/j.jfda.2017.03.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023] Open
Abstract
Human triple-negative breast cancer (TNBC) is the most aggressive and poorly understood subclass of breast cancer. Glucose transporters (GLUTs) are required for glucose uptake in malignant cancer cells and are ideal targets for cancer therapy. To determine whether the inhibition of GLUTs could be used in TNBC cell therapy, the apple polyphenol phloretin (Ph) was used as a specific antagonist of GLUT2 protein function in human TNBC cells. Interestingly, we found that Ph (10–150 μM, for 24 h) inhibited cell growth and arrested the cell cycle in MDA-MB-231 cells in a p53 mutant-dependent manner, which was confirmed by pre-treatment of the cells with a p53-specific dominant-negative expression vector. We also found that Ph treatment (10–150 μM, for 24 h) significantly decreased the migratory activity of the MDA-MB-231 cells through the inhibition of paxillin/FAK, Src, and alpha smooth muscle actin (α-sMA) and through the activation of E-cadherin. Furthermore, the anti-tumorigenic effect of Ph (10, 50 mg/kg or DMSO twice a week for six weeks) was demonstrated in vivo using BALB/c nude mice bearing MDA-MB-231 tumor xenografts. A decrease in N-cadherin, vimentin and an increase in p53, p21 and E-cadherin were detected in the tumor tissues. In conclusion, inhibition of GLUT2 by the apple polyphenol Ph could potentially suppress TNBC tumor cell growth and metastasis.
Collapse
Affiliation(s)
- Kuan-Hsun Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zhao-Feng Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Ching Chen
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan; Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Jacqueline Whang-Peng
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taiwan.
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|