51
|
Jurj A, Fontana B, Varani G, Calin GA. Small molecules targeting microRNAs: new opportunities and challenges in precision cancer therapy. Trends Cancer 2024; 10:809-824. [PMID: 39107162 PMCID: PMC11961049 DOI: 10.1016/j.trecan.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/09/2024]
Abstract
Noncoding RNAs, especially miRNAs, play a pivotal role in cancer initiation and metastasis, underscoring their susceptibility to precise modulation via small molecule inhibitors. This review examines the innovative strategy of targeting oncogenic miRNAs with small drug-like molecules, an approach that can reshape the cancer treatment landscape. We review the current understanding of the multifaceted roles of miRNAs in oncogenesis, highlighting emerging therapeutic paradigms that have the potential to expand cancer treatment options. As research on small molecule inhibitors of miRNA is still in its early stages, ongoing investigative efforts and the development of new technologies and chemical matter are essential to fulfill the significant potential of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Ancuta Jurj
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beatrice Fontana
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
52
|
Shehaj A, Khristov V, Mareboina M, Tufano E, Abdeen A, Rizk E, Connor J. Genetic Biomarkers in Astrocytoma: Diagnostic, Prognostic, and Therapeutic Potential. World Neurosurg 2024; 189:339-350.e1. [PMID: 38857866 DOI: 10.1016/j.wneu.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Astrocytoma is the most common adult brain tumor, with glioblastoma being the deadliest neuro-related malignancy. Despite advances in oncology, the prognosis for astrocytoma, especially glioblastoma, remains poor, and tracking disease progression is challenging due to a lack of robust biomarkers. Genetic biomarkers, including microRNAs, cell-free DNA, circulating tumor DNA, circular RNA, and long noncoding RNA, can serve as potential diagnostic and therapeutic targets. In this review, we examine the existing literature, analyzing the various less established liquid and tumor genetic biomarkers and their potential to act as diagnostic, prognostic, and therapeutic targets. We highlight the clinical challenges and limitations in implementing liquid biopsy strategies in clinical practice. The article discusses the potential of liquid biopsies as valuable tools for personalized astrocytoma management while emphasizing the need for standardized protocols and further advancements to establish their clinical utility and therapeutic application.
Collapse
Affiliation(s)
- Andrea Shehaj
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA.
| | - Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Manvita Mareboina
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Emily Tufano
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Ahmed Abdeen
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
53
|
da Silva Nonato N, Nunes LS, da Silveira Martins AW, Pinhal D, Domingues WB, Bellido-Quispe DK, Remião MH, Campos VF. miRNA heterologous production in bacteria: A systematic review focusing on the choice of plasmid features and bacterial/prokaryotic microfactory. Plasmid 2024; 131-132:102731. [PMID: 39349126 DOI: 10.1016/j.plasmid.2024.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Bacteria, the primary microorganisms used for industrial molecule production, do not naturally generate miRNAs. This study aims to systematically review current literature on miRNA expression systems in bacteria and address three key questions: (1) Which microorganism is most efficient for heterologous miRNA production? (2) What essential elements should be included in a plasmid construction to optimize miRNA expression? (3) Which commercial plasmid is most used for miRNA expression? Initially, 832 studies were identified across three databases, with fifteen included in this review. Three species-Escherichia coli, Salmonella typhimurium, and Rhodovulum sulfidophilum-were found as host organisms for recombinant miRNA expression. A total of 78 miRNAs were identified, out of which 75 were produced in E. coli, one in R. sulfidophilum (miR-29b), and two in S. typhimurium (mi-INHA and miRNA CCL22). Among gram-negative bacteria, R. sulfidophilum emerged as an efficient platform for heterologous production, thanks to features like nucleic acid secretion, RNase non-secretion, and seawater cultivation capability. However, E. coli remains the widely recognized model for large-scale miRNA production in biotechnology market. Regarding plasmids for miRNA expression in bacteria, those with an lpp promoter and multiple cloning sites appear to be the most suitable due to their robust expression cassette. The reengineering of recombinant constructs holds potential, as improvements in construct characteristics maximize the expression of desired molecules. The utilization of recombinant bacteria as platforms for producing new molecules is a widely used approach, with a focus on miRNAs expression for therapeutic contexts.
Collapse
Affiliation(s)
- Nyelson da Silva Nonato
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leandro Silva Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Weege da Silveira Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Instituto de Biociências de Botucatu, Departamento de Genética, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Dionet Keny Bellido-Quispe
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
54
|
Alanazi A, Barui AK, Mohieldin AM, Gupta A, Ramchandran R, Nauli SM. Identifying the roles of miR-17 in ciliogenesis and cell cycle. Front Cell Dev Biol 2024; 12:1397931. [PMID: 39268086 PMCID: PMC11390542 DOI: 10.3389/fcell.2024.1397931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Emerging evidence suggests a significant contribution of primary cilia to cell division and proliferation. MicroRNAs, especially miR-17, contribute to cell cycle regulation and proliferation. Recent investigations have highlighted the dysregulated expression of miR-17 in various malignancies, underlining its potential role in cancer. However, the correlation between primary cilia and miR-17 has yet to be fully elucidated. The present study examines the presence of miR-17 in primary cilia. The miR-17 expression is studied in selected ciliary protein knockdown cells. Using in situ hybridization (ISH), we identified the subcellular localization of miR-17 in both cilium and cell body. We confirmed the importance of miR-17, progesterone receptor membrane component-2 (PGRMC2), and monosialodihexosylganglioside (GM3S) in cilia formation, as shown by the significant reduction in cilia and cilia length in knockdown cells compared to control. We also demonstrated the involvement of PGRMC2, GM3S, polycystin-2 (PKD2), and miR-17 in cellular proliferation and cell growth. Our studies revealed a hyperproliferative effect in the knockdown cells compared to control cells, suggesting the regulatory roles of PGRMC2/GM3S/PKD2/miR-17 in promoting cell proliferation. Overall, our studies conclude that ciliary proteins are involved in cell division and proliferation. We further hypothesize that primary cilia can serve as compartments to store and control genetic materials, further implicating their complex involvement in cellular processes.
Collapse
Affiliation(s)
- Ashwaq Alanazi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ayan K Barui
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Ashraf M Mohieldin
- Department of Pharmaceutical Sciences, California Northstate University, Elk Grove, CA, United States
| | - Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| |
Collapse
|
55
|
Zhang Q, Lu B. The mRNA and microRNA Landscape of the Blastema Niche in Regenerating Newt Limbs. Int J Mol Sci 2024; 25:9225. [PMID: 39273174 PMCID: PMC11395517 DOI: 10.3390/ijms25179225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Newts are excellent vertebrate models for investigating tissue regeneration due to their remarkable regenerative capabilities. To investigate the mRNA and microRNAs (miRNAs) profiles within the blastema niche of regenerating newt limbs, we amputated the limbs of Chinese fire belly newts (Cynops orientalis) and conducted comprehensive analyses of the transcriptome and microRNA profiles at five distinct time points post-amputation (0 hours, 1 day, 5 days 10 days and 20 days). We identified 24 significantly differentially expressed (DE) genes and 20 significantly DE miRNAs. Utilizing weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) enrichment analysis, we identified four genes likely to playing crucial roles in the early stages of limb regeneration: Cemip, Rhou, Gpd2 and Pcna. Moreover, mRNA-miRNA integration analysis uncovered seven human miRNAs (miR-19b-1, miR-19b-2, miR-21-5p, miR-127-5p, miR-150-5p, miR-194-5p, and miR-210-5p) may regulate the expression of these four key genes. The temporal expression patterns of these key genes and miRNAs further validated the robustness of the identified mRNA-miRNA landscape. Our study successfully identified candidate key genes and elucidated a portion of the genetic regulatory mechanisms involved in newt limb regeneration. These findings offer valuable insights for further exploration of the intricate processes of tissue regeneration.
Collapse
Affiliation(s)
- Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
56
|
Han SB, Lee SS. Isolation and Characterization of Exosomes from Cancer Cells Using Antibody-Functionalized Paddle Screw-Type Devices and Detection of Exosomal miRNA Using Piezoelectric Biosensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:5399. [PMID: 39205093 PMCID: PMC11359151 DOI: 10.3390/s24165399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exosomes are small extracellular vesicles produced by almost all cell types in the human body, and exosomal microRNAs (miRNAs) are small non-coding RNA molecules that are known to serve as important biomarkers for diseases such as cancer. Given that the upregulation of miR-106b is closely associated with several types of malignancies, the sensitive and accurate detection of miR-106b is important but difficult. In this study, a surface acoustic wave (SAW) biosensor was developed to detect miR-106b isolated from cancer cells based on immunoaffinity separation technique using our unique paddle screw device. Our novel SAW biosensor could detect a miR-106b concentration as low as 0.0034 pM in a linear range from 0.1 pM to 1.0 μM with a correlation coefficient of 0.997. Additionally, we were able to successfully detect miR-106b in total RNA extracted from the exosomes isolated from the MCF-7 cancer cell line, a model system for human breast cancer, with performance comparable to commercial RT-qPCR methods. Therefore, the exosome isolation by the paddle screw method and the miRNA detection using the SAW biosensor has the potential to be used in basic biological research and clinical diagnosis as an alternative to RT-qPCR.
Collapse
Affiliation(s)
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
| |
Collapse
|
57
|
Zhang X, Jiang Y, Cai Y, Fu Q, Chen Y. Epigenetics research in eye diseases: a bibliometric analysis from 2000 to 2023. Clin Exp Optom 2024; 107:649-656. [PMID: 37875250 DOI: 10.1080/08164622.2023.2261929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
CLINICAL RELEVANCE A bibliometric analysis is a quantitative study that utilises methods such as citation analysis to evaluate research performance. A bibliometric analysis could provide a valuable reference for ophthalmic researchers to understand the trends in epigenetics research. BACKGROUND The number of studies on epigenetics in eye diseases has exceeded 5,000, but the progress and scope of epigenetic research on eye diseases remain unclear. The study aimed to bibliometrically analyse epigenetic research conducted in eye diseases. METHODS Studies concerning epigenetic research on eye diseases from 2000-2023 were searched using the Web of Science Core Collection. Following this, the included studies were analysed for citations, journals, keywords, authors, and countries, using the Bibliometrix package in R Studio. RESULTS In total, 3758 studies were included in the analysis, including 3099 original articles, 599 reviews, 11 editorials, and 49 early access articles. Investigative Ophthalmology & Visual Science was the most published journal with 185 articles, and Proceedings of the National Academy of Sciences of the United States of America was the most cited journal, with 8727 citations. The journal with the highest h-index was Oncogene (h-index = 38).Renu A Kowluru from the Kresge Eye Institute, Wayne State University, Detroit, USA, had the most citations with 1,690 and the highest h-index (h-index = 23). China and the USA were the countries with the highest number of publications (1739) and total citations (40533), respectively. Furthermore, from 2000-2023, the top five frequent research topics were diabetic retinopathy, 522; microribonucleic acid, 469; retinoblastoma, 370; apoptosis, 268; and epigenetics, 206. CONCLUSIONS The results of this bibliometric study provide the current status and trends of epigenetic research in eye diseases and will help researchers identify areas of current interest in the field, which should help highlight new research directions.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiangqiang Fu
- Department of General Practice, Clinical Research Center for General Practice, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
58
|
Adamowicz M, Abramczyk J, Kilanczyk E, Milkiewicz P, Łaba A, Milkiewicz M, Kempinska-Podhorodecka A. Modulation of miR-155-5p signalling via 5-ASA for the prevention of high microsatellite instability: an in vitro study using human epithelial cell lines. J Physiol Biochem 2024; 80:573-583. [PMID: 38985369 PMCID: PMC11502576 DOI: 10.1007/s13105-024-01033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
5-aminosalicylic acid (5-ASA) is a first-line treatment for maintaining colitis remission. It is a highly effective, safe, and well-tolerated drug with anti-inflammatory and chemo-preventive properties. While patients with primary sclerosing cholangitis (PSC) with concomitant ulcerative colitis are treated with 5-ASA, the molecular mechanisms underlying the drug's chemo-preventive effects are not entirely understood. We previously reported that bile acids and lipopolysaccharide-induced miR-155 expression was associated with downregulating mismatch repair (MMR) proteins in CACO-2 cell lines. Therefore, in this investigation, a set of in vitro functional studies was performed to show the possible mechanisms behind the epigenetic relationship between miR-155 and 5-ASA's prevention of high microsatellite instability (MSI-H). In transient transfection with miR-155Mimic, which behaves like endogenous miRNA, we confirmed the relationships between miR-155 and its target MMR in three human intestinal epithelial cell lines: CACO-2, NCM460D and HT-29. We have shown, for the first time, that 5-ASA modulates MLH1, MSH2, MSH6 in miR-155 transfected cells. These findings underline that chemoprotective 5-ASA therapy can effectively attenuate the expression of miR-155 and potentially prevent a development of MSI-H in a subset of colorectal cancers associated with PSC.
Collapse
Affiliation(s)
- Monika Adamowicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Joanna Abramczyk
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Ewa Kilanczyk
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warszawa, Poland
- Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Alicja Łaba
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Malgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | | |
Collapse
|
59
|
Huang M, Li S, Zeng H, Zhu Y, Zhang F, Cai J. Exosomal miR-196a-5p contributes to esophageal squamous cell carcinoma malignant progression by inhibiting ITM2B. Pathol Int 2024; 74:464-474. [PMID: 38940569 DOI: 10.1111/pin.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024]
Abstract
Exosomes from cancer cells function as carriers to spread or transport specific microRNAs (miRNAs) to distant sites to exert their effects, but the mechanism of exosomal miRNA action in esophageal squamous cell carcinoma (ESCC) has not been fully explained. Therefore, in this study, we were interested in the impact of exosomal miR-196a-5p in ESCC progression. We found that miR-196a-5p was expressed enriched in clinical tissues, ESCC cells, and exosomes. Functionally, depletion of miR-196a-5p impeded ESCC cell growth, migration, and invasion, whereas overexpression of miR-196a-5p produced the opposite results. Moreover, enhancement of exosomal miR-196a-5p in recipient ESCC cells triggered more intense proliferation and migration. Mechanistically, we identified integral membrane protein 2B (ITM2B) as a direct target of miR-196a-5p. Silencing of ITM2B partially counteracted the inhibitory effect of miR-196a-5p inhibitors on the malignant phenotype of ESCC. Furthermore, in vivo, lower miR-196a-5p levels triggered by the introduction of antagomiR-196a-5p resulted in the generation of smaller volume and weight xenograft tumors. Thus, our results demonstrated novel mechanisms of exosomal and intracellular miR-196a-5p-mediated ESCC growth and migration and identify the interaction of miR-196a-5p with ITM2B. These works might provide new targets and basis for the development of clinical treatment options for ESCC.
Collapse
Affiliation(s)
- Min Huang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shuang Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yan Zhu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Fan Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
60
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. MicroRNA-21 in urologic cancers: from molecular mechanisms to clinical implications. Front Cell Dev Biol 2024; 12:1437951. [PMID: 39114567 PMCID: PMC11304453 DOI: 10.3389/fcell.2024.1437951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
61
|
Tong J, Wang Q, Gao Z, Liu Y, Lu C. VMP1: a multifaceted regulator of cellular homeostasis with implications in disease pathology. Front Cell Dev Biol 2024; 12:1436420. [PMID: 39100095 PMCID: PMC11294092 DOI: 10.3389/fcell.2024.1436420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Vacuole membrane protein 1 (VMP1) is an integral membrane protein that plays a pivotal role in cellular processes, particularly in the regulation of autophagy. Autophagy, a self-degradative mechanism, is essential for maintaining cellular homeostasis by degradation and recycling damaged organelles and proteins. VMP1 involved in the autophagic processes include the formation of autophagosomes and the subsequent fusion with lysosomes. Moreover, VMP1 modulates endoplasmic reticulum (ER) calcium levels, which is significant for various cellular functions, including protein folding and cellular signaling. Recent studies have also linked VMP1 to the cellular response against viral infections and lipid droplet (LD). Dysregulation of VMP1 has been observed in several pathological conditions, including neurodegenerative diseases such as Parkinson's disease (PD), pancreatitis, hepatitis, and tumorogenesis, underscoring its potential as a therapeutic target. This review aims to provide an overview of VMP1's multifaceted roles and its implications in disease pathology.
Collapse
Affiliation(s)
- Jia Tong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry (Xinxiang Medical University), The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqian Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ziyan Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
62
|
Tili E, Otsu H, Commisso TL, Palamarchuk A, Balatti V, Michaille JJ, Nuovo GJ, Croce CM. MiR-155-targeted IcosL controls tumor rejection. Proc Natl Acad Sci U S A 2024; 121:e2408649121. [PMID: 38980909 PMCID: PMC11260163 DOI: 10.1073/pnas.2408649121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Elevated levels of miR-155 in solid and liquid malignancies correlate with aggressiveness of the disease. In this manuscript, we show that miR-155 targets transcripts encoding IcosL, the ligand for Inducible T-cell costimulator (Icos), thus impairing the ability of T cells to recognize and eliminate malignant cells. We specifically found that overexpression of miR-155 in B cells of Eµ-miR-155 mice causes loss of IcosL expression as they progress toward malignancy. Similarly, in mice where miR-155 expression is controlled by a Cre-Tet-OFF system, miR-155 induction led to malignant infiltrates lacking IcosL expression. Conversely, turning miR-155 OFF led to tumor regression and emergence of infiltrates composed of IcosL-positive B cells and Icos-positive T cells forming immunological synapses. Therefore, we next engineered malignant cells to express IcosL, in order to determine whether IcosL expression would increase tumor infiltration by cytotoxic T cells and reduce tumor progression. Indeed, overexpressing an IcosL-encoding cDNA in MC38 murine colon cancer cells before injection into syngeneic C57BL6 mice reduced tumor size and increased intratumor CD8+ T cell infiltration, that formed synapses with IcosL-expressing MC38 cells. Our results underscore the fact that by targeting IcosL transcripts, miR-155 impairs the infiltration of tumors by cytotoxic T cells, as well as the importance of IcosL on enhancing the immune response against malignant cells. These findings should lead to the development of more effective anticancer treatments based on maintaining, increasing, or restoring IcosL expression by malignant cells, along with impairing miR-155 activity.
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH43210
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Hajime Otsu
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Teresa L. Commisso
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Alexey Palamarchuk
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Veronica Balatti
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Jean-Jacques Michaille
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | | | - Carlo M. Croce
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| |
Collapse
|
63
|
Park A, Lee JY. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J Microbiol 2024; 62:491-509. [PMID: 39037484 DOI: 10.1007/s12275-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
64
|
Singh VK, Rajak N, Singh Y, Singh AK, Giri R, Garg N. Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic Targets. Ann Surg Oncol 2024; 31:4795-4808. [PMID: 38758485 DOI: 10.1245/s10434-024-15453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
The role of noncoding RNA has made remarkable progress in understanding progression, metastasis, and metastatic castration-resistant prostate cancer (mCRPC). A better understanding of the miRNAs has enhanced our knowledge of their targeting mainly at the therapy level in solid tumors, such as prostate cancer (PCa). microRNAs (miRNAs) belong to a class of endogenous RNA that deficit encoded proteins. Therefore, the role of miRNAs has been well-coined in the progression and development of PCa. miR-21 has a dual nature in its work both as a tumor suppressor and oncogenic role, but most of the recent studies showed that miR-21 is a tumor promoter and also is involved in castration-resistant prostate cancer (CRPC). Upregulation of miR-21 suppresses programmed cell death and inducing metastasis and castration resistant in PCa. miR-21 is involved in the different stages, such as proliferation, angiogenesis, migration, and invasion, and plays an important role in the progression, metastasis, and advanced stages of PCa. Recently, various studies directly linked the role of high levels of miR-21 with a poor therapeutic response in the patient of PCa. In the present review, we have explained the molecular mechanisms/pathways of miR-21 in PCa progression, metastasis, and castration resistant and summarized the role of miR-21 in diagnosis and therapeutic levels in PCa. In addition, we have spotlighted the recent therapeutic strategies for targeting different stages of PCa.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D.C., DC, USA
| | - Naina Rajak
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Yashasvi Singh
- Department of Urology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Ankit Kumar Singh
- University Department of Botany Lalit Narayan Mithila University, Darbhanga, Bihar, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
65
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
66
|
Turgambayeva A, Duisekova S, Tashenova G, Tulebayeva A, Kapanova G, Akhenbekova A, Farooqi AA. Role of TRP channels in carcinogenesis and metastasis: Pathophysiology and regulation by non-coding RNAs. Noncoding RNA Res 2024; 9:359-366. [PMID: 38511066 PMCID: PMC10950581 DOI: 10.1016/j.ncrna.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024] Open
Abstract
In 2021, David Julius and Ardem Patapoutian received Nobel Prize in Physiology or Medicine for their ground-breaking discoveries in the functional characterization of receptors for temperature and touch. Transient receptor potential (TRP) channels have captivated tremendous appreciation as promising drug targets over the past few years because of central involvement in different cancers. Based on the insights gleaned from decades of high-quality research, basic and clinical scientists have unveiled how Transient receptor potential channels regulated cancer onset and progression. Pioneering studies have sparked renewed interest and researchers have started to scratch the surface of mechanistic role of these channels in wide variety of cancers. In this review we have attempted to provide a summary of most recent updates and advancements made in the biology of these channels in context of cancers. We have partitioned this review into different subsections on the basis of emerging evidence about characteristically distinct role of TRPV (TRPV1, TRPV5), TRPM (TRPM3, TRPM7) and TRPC in cancers. Regulation of TRP channels by non-coding RNAs is also a very exciting area of research which will be helpful in developing a sharper understanding of the multi-step aspects of cancers.
Collapse
Affiliation(s)
- Assiya Turgambayeva
- Department Public Health and Management, NJSC, Astana Medical University, Astana, Kazakhstan
| | - Samal Duisekova
- Department Public Health and Management, NJSC, Astana Medical University, Astana, Kazakhstan
| | - Gulnara Tashenova
- Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Aigul Tulebayeva
- Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Gulnara Kapanova
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Aida Akhenbekova
- Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | | |
Collapse
|
67
|
Xia W, Huang J, Sun C, Shen F, Yang K. MicroRNA‑1224 inhibits cell proliferation by downregulating CBX3 expression in chordoma. Oncol Lett 2024; 27:262. [PMID: 38646496 PMCID: PMC11027112 DOI: 10.3892/ol.2024.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
MicroRNAs (miRNAs/miRs) have abnormal expression in numerous tumors and are closely related to tumor development and resistance to radiotherapy and chemotherapy. However, there are few studies assessing the role and mechanism of miRNA in chordoma. The sequencing data of three pairs of chordoma and notochord tissues from the GSE56183 dataset were analyzed in the present study. Cell proliferation was assessed in vitro using Cell Counting Kit-8. Bioinformatics analysis and the dual luciferase reporter assay were used to evaluate the regulatory relationship between miR-1224 and chromobox 3 (CBX3) in chordoma. The results demonstrated that miR-1224 had a significantly lower expression level in chordoma tissues and cell lines. Overexpression of miR-1224 inhibited proliferation in the chordoma cells, while the knockdown of miR-1224 promoted proliferation of the chordoma cells. Bioinformatics analysis and the dual luciferase reporter assay confirmed that CBX3 was a direct target gene of miR-1224 and that miR-1224 induced the proliferation of chordoma cells through the inhibition of CBX3. In summary, miR-1224 reduced the proliferation of chordoma cells through inhibition of CBX3, which provides a theoretical basis for selecting a novel therapeutic target for chordoma.
Collapse
Affiliation(s)
- Wei Xia
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jihe Huang
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Chunhua Sun
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Fei Shen
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Kejia Yang
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| |
Collapse
|
68
|
ELfieky MMM, Abd El Rahman M, Fayed AM, Haleem Al-Qaim Z, Khalid Aldhalmi A, Ae Badr E, Abdel Aziz A, Ibrahim GMA. Relapse and Survival in Bladder Cancer Patients Undergoing microRNA-129 and microRNA-145 Assays. Asian Pac J Cancer Prev 2024; 25:2113-2121. [PMID: 38918674 PMCID: PMC11382840 DOI: 10.31557/apjcp.2024.25.6.2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE The lack of indicators to measure tumor's invasive biological behavior is an important issue. The aim of this study was to examine the effect of miRNAs 129 and 145 on tumor progression as well as patient survival. METHOD Seventy five breast cancer (BC) patients and 75 controls were included in this research. Two miRNA expressions were estimated using real-time PCR. Biomarkers for BC detection was tested using ROC curves and AUC. RESULT miR-129 and miR-145 expressions were significant. miR-129 and miR-145 classifiers (AUC = 0.943 and 0.748, respectively) help diagnose BC. Unlike miR-145, miR-129 did not affect the Kaplan-Meier survival curve analysis for progression-free survival at the end of the trial. The development of transitional cell carcinoma disease was found to have a strong correlation with miR-145 in both univariate and multivariate Cox regression analyses. Additionally, infiltrating + invasive urothelial carcinoma was also found to be correlated with miR-145. Conversely, elevated miR-129 expression in BC patients did not lead to an increase in cancer-specific recurrence or mortality, as observed in both univariate and multivariate Cox regression studies. CONCLUSION The miRNA signature can help detect survival-associated miRNAs and develop BC miRNA therapeutics.
Collapse
Affiliation(s)
- Mostafa M M ELfieky
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | - Mohamed Abd El Rahman
- College of Pharmacy, Al-Mustaqbal University, Babylon, 51001, Iraq
- Clinical Pharmacy Department, Badr University Hospital, Faculty of Medicine, Helwan University, Egypt
| | - Aysam M Fayed
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
- Medical Laboratory Techniques Department, College of Health and Medical Technique, Al-Mustaqbal University, Babylon,51001, Iraq
| | | | | | - Eman Ae Badr
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Egypt
| | - Amal Abdel Aziz
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | - Gehan M A Ibrahim
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| |
Collapse
|
69
|
Almanza G, Searles S, Zanetti M. Delivery of miR-214 via extracellular vesicles downregulates Xbp1 expression and pro-inflammatory cytokine genes in macrophages. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:249-258. [PMID: 39118980 PMCID: PMC11308798 DOI: 10.20517/evcna.2023.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Aim Tumor-infiltrating macrophages are tumor-promoting and show activation of the unfolded protein response (UPR). The transcription factor X-box binding protein 1 (XBP1) is a conserved element of the UPR. Upon activation, the UPR mediates the transcriptional activation of pro-inflammatory cytokines and immune suppressive factors, hence contributing to immune dysregulation in the tumor microenvironment (TME). miR-214 is a short non-coding miRNA that targets the 3'-UTR of the Xbp1 transcript. Here, we tested a new method to efficiently deliver miR-214 to macrophages as a potential new therapeutic approach. Methods We generated miR-214-laden extracellular vesicles (iEV-214) in a murine B cell and demonstrated that iEV-214 were enriched in miR-214 between 1,500 - 2,000 fold relative to control iEVs. Results Bone marrow-derived macrophages (BMDM) treated with iEV-214 for 24 h underwent a specific enrichment in miR-214, suggesting transfer of the miR-214 payload from the iEVs to macrophages. iEV-214 treatment of BMDM markedly reduced (> 50%) Xbp1 transcription under endoplasmic reticulum stress conditions compared to controls. Immune-related genes downstream of XBP1s (Il-6, Il-23p19, and Arg1) were also reduced by 69%, 51%, and 34%, respectively. Conclusions Together, these data permit to conclude that iEV-214 are an efficient strategy to downregulate the expression of Xbp1 mRNA and downstream genes in macrophages. We propose miRNA-laden iEVs are a new approach to target macrophages and control immune dysregulation in the TME.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
70
|
Amiri-Dashatan N, Koushki M, Ahmadi NA, Ahmadi H, Rezaei Tavirani M. Diagnostic and Prognostic Value of miR-451 Expression in Colorectal Cancer: A Meta-Analysis. Asian Pac J Cancer Prev 2024; 25:1903-1910. [PMID: 38918650 PMCID: PMC11382842 DOI: 10.31557/apjcp.2024.25.6.1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The miR-451 has been reported to play an important role in colorectal cancer (CRC) pathogenesis and can be a pivotal diagnosis biomarker of CRC. Given the contradictions in the diagnosis value of the miR-451 in patients with CRC, deciphering the diagnostic/prognostic role of this miRNA in CRC will support the identification of a novel therapeutic target for CRC. Therefore, in the present meta-analysis, we evaluated the diagnostic value of miR-451 in CRC patients. MATERIALS AND METHODS The electronic databases of Embase, PubMed, ISI Web of Science, and Scopus systematically searched for relevant studies. The odds ratio (OR) with a 95% confidence interval (CI) was calculated to evaluate the association between miR-451 family expression and diagnosis of colorectal cancer. The parameters including sensitivity, specificity, and area under the curve (AUC) were obtained. The quality of evidence was evaluated using the Newcastle-Ottava Scale (NOS). RESULTS This study involved 510 patients (45% female and 55% male) with CRC. The pooled analysis of the studies showed a significant association between low expression levels of miR-451 in patients with CRC (OR = 7.59; 95% CI 2.39 - 24.07; p = 0.001). The overall sensitivity and specificity were 0.95 (0.61 - 1) and 0.83 (0.43 - 0.99), respectively. The pooled AUC was 0.97 (0.88 - 1; p < 0.006). Results showed if the pre-test probability is 50% for a patient, the post-test probability will be 85%. The indices demonstrated the high potency of miR-451 as a diagnostic biomarker in patients with CRC. No publication bias was observed using the Begg's (p=0.85) and Egger's tests (p=0.45). CONCLUSION A strong relationship between the low expression levels of miR-451 and CRC progression was observed. This finding suggests the miR-451 family may be helpful as a potential biomarker for the earlier diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nayeb Ali Ahmadi
- Proteomics Research Center, and Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesameddin Ahmadi
- Micro Nano System Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Lin X, Qureshi MZ, Tahir F, Yilmaz S, Romero MA, Attar R, Farooqi AA. Role of melatonin in carcinogenesis and metastasis: From mechanistic insights to intermeshed networks of noncoding RNAs. Cell Biochem Funct 2024; 42:e3995. [PMID: 38751103 DOI: 10.1002/cbf.3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 05/26/2024]
Abstract
In recent years, seminal studies have been devoted to unraveling the puzzling mysteries associated with the cancer preventive/inhibitory role of melatonin. Our current knowledge of the translational mechanisms and the detailed structural insights have highlighted the characteristically exclusive role of melatonin in the inhibition of carcinogenesis and metastatic dissemination. This mini-review outlines recent discoveries related to mechanistic role of melatonin in prevention of carcinogenesis and metastasis. Moreover, another exciting facet of this mini-review is related to phenomenal breakthroughs linked with regulation of noncoding RNAs by melatonin in wide variety of cancers.
Collapse
Affiliation(s)
- Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Muhammad Zahid Qureshi
- Department of Environment and Natural Resources, College of Agriculture and Food, Qassim University, Buraidah, Saudi Arabia
| | - Fatima Tahir
- Rashid Latif Medical University, Lahore, Pakistan
| | - Seher Yilmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Mirna Azalea Romero
- Facultad de Medicina, Universidad Autónoma de Guerrero, Laboratorio de Investigación Clínica, Acapulco, Guerrero, México
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, Istanbul, Turkey
| | - Ammad A Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
72
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
73
|
Guo C, Lv X, Zhang Q, Yi L, Ren Y, Li Z, Yan J, Zheng S, Sun M, Liu S. CRKL but not CRKII contributes to hemin-induced erythroid differentiation of CML. J Cell Mol Med 2024; 28:e18308. [PMID: 38683131 PMCID: PMC11057422 DOI: 10.1111/jcmm.18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.
Collapse
MESH Headings
- Humans
- 3' Untranslated Regions
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cell Differentiation/drug effects
- Erythroid Cells/metabolism
- Erythroid Cells/drug effects
- Erythroid Cells/pathology
- Erythroid Cells/cytology
- Erythropoiesis/genetics
- Erythropoiesis/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Hemin/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Proto-Oncogene Proteins c-crk/metabolism
- Proto-Oncogene Proteins c-crk/genetics
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Xinxin Lv
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Qiuling Zhang
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Lina Yi
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Yingying Ren
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Zhaopeng Li
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical UniversityInstitute of Stem Cell Transplantation of Dalian Medical UniversityDalianLiaoningChina
| | - Shanliang Zheng
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Ming‐Zhong Sun
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
74
|
Kim S, Lee KW, Yoo Y, Park SH, Lee JW, Jeon S, Illia S, Joshi P, Park HW, Lo HE, Seo J, Kim Y, Chang M, Lee TJ, Seo JB, Kim SH, Croce CM, Kim I, Suh SS, Jeon YJ. MiR-29 and MiR-140 regulate TRAIL-induced drug tolerance in lung cancer. Anim Cells Syst (Seoul) 2024; 28:184-197. [PMID: 38693921 PMCID: PMC11062278 DOI: 10.1080/19768354.2024.2345644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has chemotherapeutic potential as a regulator of an extrinsic apoptotic ligand, but its effect as a drug is limited by innate and acquired resistance. Recent findings suggest that an intermediate drug tolerance could mediate acquired resistance, which has made the main obstacle for limited utility of TRAIL as an anti-cancer therapeutics. We propose miRNA-dependent epigenetic modification drives the drug tolerant state in TRAIL-induced drug tolerant (TDT). Transcriptomic analysis revealed miR-29 target gene activation in TDT cells, showing oncogenic signature in lung cancer. Also, the restored TRAIL-sensitivity was associated with miR-29ac and 140-5p expressions, which is known as tumor suppressor by suppressing oncogenic protein RSK2 (p90 ribosomal S6 kinase), further confirmed in patient samples. Moreover, we extended this finding into 119 lung cancer cell lines from public data set, suggesting a significant correlation between TRAIL-sensitivity and RSK2 mRNA expression. Finally, we found that increased RSK2 mRNA is responsible for NF-κB activation, which we previously showed as a key determinant in both innate and acquired TRAIL-resistance. Our findings support further investigation of miR-29ac and -140-5p inhibition to maintain TRAIL-sensitivity and improve the durability of response to TRAIL in lung cancer.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yongjin Yoo
- Department of Stem Cell Biology and Regenerative Medicine Institute, Stanford University, Stanford, CA, USA
| | - Sang Hee Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Won Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Suhyun Jeon
- Department of Biosciences, Mokpo National University, Muan, Republic of Korea
| | - Shaginyan Illia
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Pooja Joshi
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hyun Woo Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Han-En Lo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jimin Seo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeonwoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Chang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Muan, Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, Gwangju, Republic of Korea
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Inki Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - Sung-Suk Suh
- Department of Biosciences, Mokpo National University, Muan, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
75
|
Kouchaki H, Kamyab P, Darbeheshti F, Gharezade A, Fouladseresht H, Tabrizi R. miR-939, as an important regulator in various cancers pathogenesis, has diagnostic, prognostic, and therapeutic values: a review. J Egypt Natl Canc Inst 2024; 36:16. [PMID: 38679648 DOI: 10.1186/s43046-024-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs or miRs) are highly conserved non-coding RNAs with a short length (18-24 nucleotides) that directly bind to a complementary sequence within 3'-untranslated regions of their target mRNAs and regulate gene expression, post-transcriptionally. They play crucial roles in diverse biological processes, including cell proliferation, apoptosis, and differentiation. In the context of cancer, miRNAs are key regulators of growth, angiogenesis, metastasis, and drug resistance. MAIN BODY This review primarily focuses on miR-939 and its expanding roles and target genes in cancer pathogenesis. It compiles findings from various investigations. MiRNAs, due to their dysregulated expression in tumor environments, hold potential as cancer biomarkers. Several studies have highlighted the dysregulation of miR-939 expression in human cancers. CONCLUSION Our study highlights the potential of miR-939 as a valuable target in cancer diagnosis, prognosis, and treatment. The aberrant expression of miR-939, along with other miRNAs, underscores their significance in advancing our understanding of cancer biology and their promise in personalized cancer care.
Collapse
Affiliation(s)
- Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parnia Kamyab
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Tabrizi
- Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa, Iran.
| |
Collapse
|
76
|
Naddeo M, Broseghini E, Venturi F, Vaccari S, Corti B, Lambertini M, Ricci C, Fontana B, Durante G, Pariali M, Scotti B, Milani G, Campione E, Ferracin M, Dika E. Association of miR-146a-5p and miR-21-5p with Prognostic Features in Melanomas. Cancers (Basel) 2024; 16:1688. [PMID: 38730639 PMCID: PMC11083009 DOI: 10.3390/cancers16091688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) is one of the most lethal tumors among skin cancers and its incidence is rising worldwide. Recent data support the role of microRNAs (miRNAs) in melanoma carcinogenesis and their potential use as disease biomarkers. METHODS We quantified the expression of miR-146a-5p and miR-21-5p in 170 formalin-fixed paraffin embedded (FFPE) samples of CM, namely 116 superficial spreading melanoma (SSM), 26 nodular melanoma (NM), and 28 lentigo maligna melanoma (LMM). We correlated miRNA expression with specific histopathologic features including Breslow thickness (BT), histological subtype, ulceration and regression status, and mitotic index. RESULTS miR-146a-5p and miR-21-5p were significantly higher in NM compared to SSM and LMM. The positive correlation between miR-146a-5p and miR-21-5p expression and BT was confirmed for both miRNAs in SSM. Considering the ulceration status, we assessed that individual miR-21-5p expression was significantly higher in ulcerated CMs. The increased combined expression of the two miRNAs was strongly associated with ulceration (p = 0.0093) and higher mitotic rate (≥1/mm2) (p = 0.0005). We demonstrated that the combination of two-miRNA expression and prognostic features (BT and ulceration) can better differentiate cutaneous melanoma prognostic groups, considering overall survival and time-to-relapse clinical outcomes. Specifically, miRNA expression can further stratify prognostic groups among patients with BT ≥ 0.8 mm but without ulceration. Our findings provide further insights into the characterization of CM with specific prognostic features. The graphical abstract was created with BioRender.com.
Collapse
Affiliation(s)
- Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
| | - Elisabetta Broseghini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
| | - Federico Venturi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Sabina Vaccari
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Barbara Corti
- Division of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy;
| | - Martina Lambertini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Costantino Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Pathology Unit, Ospedale Maggiore, 40133 Bologna, Italy
| | - Beatrice Fontana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Giorgio Durante
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Milena Pariali
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40126 Bologna, Italy;
| | - Biagio Scotti
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Giulia Milani
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Emi Dika
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| |
Collapse
|
77
|
Elsakka EGE, Elshafei A, Elkady MA, Yehia AM, Abulsoud AI, Shahin RK, Abdelmaksoud NM, Elkhawaga SY, Ismail A, Mokhtar MM, Elrebehy MA, Hegazy M, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, El-Mahdy HA, Doghish AS. From diagnosis to resistance: a symphony of miRNAs in pheochromocytoma progression and treatment response. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1957-1969. [PMID: 37801146 DOI: 10.1007/s00210-023-02759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Pheochromocytoma (PCC) is a neuroendocrine tumor that produces and secretes catecholamine from either the adrenal medulla or extra-adrenal locations. MicroRNAs (miRNAs, miR) can be used as biomarkers to detect cancer or the return of a previously treated disease. Blood-borne miRNAs might be envisioned as noninvasive markers of malignancy or prognosis, and new studies demonstrate that microRNAs are released in body fluids as well as tissues. MiRNAs have the potential to be therapeutic targets, which would greatly increase the restricted therapy options for adrenal tumors. This article aims to consolidate and synthesize the most recent studies on miRNAs in PCC, discussing their potential clinical utility as diagnostic and prognostic biomarkers while also addressing their limitations.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
78
|
Miao PD, Li Y, Jiang YD. Celestial Insights: Unraveling the Role of miR-3682-3p in Hepatocellular Carcinoma. Clin Transl Gastroenterol 2024; 15:e00690. [PMID: 38334941 PMCID: PMC11042776 DOI: 10.14309/ctg.0000000000000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) remains a formidable oncological challenge, calling for innovative therapeutic strategies to improve patient outcomes. MicroRNAs have emerged as key regulators in cancer, and miR-3682-3p shows potential as a diagnostic and prognostic biomarker in HCC. We conducted a comprehensive study to uncover its role in HCC biology, revealing dysregulation and clinical associations. Target gene analysis provided insights into potential molecular mechanisms. Moreover, we explored its impact on the tumor microenvironment, immune cell infiltration, and therapy responses. Our findings highlight miR-3682-3p as a promising candidate for further investigations and potential therapeutic strategies in HCC management.
Collapse
Affiliation(s)
- Pei-Dong Miao
- Dalian No.3 People's Hospital, Department of Interventional Radiology, Dalian, People's Republic of China
| | - Ying Li
- Dalian 7th People's Hospital, Dalian, Liaoning Province, China.
| | - Yu-Dong Jiang
- Dalian No.3 People's Hospital, Department of Interventional Radiology, Dalian, People's Republic of China
| |
Collapse
|
79
|
Renna FJ, Gonzalez CD, Vaccaro MI. Decoding the Versatile Landscape of Autophagic Protein VMP1 in Cancer: A Comprehensive Review across Tissue Types and Regulatory Mechanisms. Int J Mol Sci 2024; 25:3758. [PMID: 38612567 PMCID: PMC11011780 DOI: 10.3390/ijms25073758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.
Collapse
Affiliation(s)
- Felipe J. Renna
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
| | - Claudio D. Gonzalez
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| |
Collapse
|
80
|
Chen J, He F, Peng H, Guo J. The underlying mechanism and targeted therapy strategy of miRNAs cross-regulating EMT process through multiple signaling pathways in hepatocellular carcinoma. Front Mol Biosci 2024; 11:1378386. [PMID: 38584703 PMCID: PMC10995332 DOI: 10.3389/fmolb.2024.1378386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
The consistent notion holds that hepatocellular carcinoma (HCC) initiation, progression, and clinical treatment failure treatment failure are affected by the accumulation of various genetic and epigenetic alterations. MicroRNAs (miRNAs) play an irreplaceable role in a variety of physiological and pathological states. meanwhile, epithelial-mesenchymal transition (EMT) is a crucial biological process that controls the development of HCC. miRNAs regulate the intermediation state of EMTor mesenchymal-epithelial transition (MTE)thereby regulating HCC progression. Notably, miRNAs regulate key HCC-related molecular pathways, including the Wnt/β-catenin pathway, PTEN/PI3K/AKT pathway, TGF-β pathway, and RAS/MAPK pathway. Therefore, we comprehensively reviewed how miRNAs produce EMT effects by multiple signaling pathways and their potential significance in the pathogenesis and treatment response of HCC. emphasizing their molecular pathways and progression in HCC initiation. Additionally, we also pay attention to regulatory mechanisms that are partially independent of signaling pathways. Finally, we summarize and propose miRNA-targeted therapy and diagnosis and defense strategies forHCC. The identification of the mechanism leading to the activation of EMT programs during HCC disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Consequently, we summarize the latest progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Fuguo He
- Department of Pathology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
81
|
Yu S, Lei X, Qu C. MicroRNA Sensors Based on CRISPR/Cas12a Technologies: Evolution From Indirect to Direct Detection. Crit Rev Anal Chem 2024:1-17. [PMID: 38489095 DOI: 10.1080/10408347.2024.2329229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
MicroRNA (miRNA) has emerged as a promising biomarker for disease diagnosis and a potential therapeutic targets for drug development. The detection of miRNA can serve as a noninvasive tool in diseases diagnosis and predicting diseases prognosis. CRISPR/Cas12a system has great potential in nucleic acid detection due to its high sensitivity and specificity, which has been developed to be a versatile tool for nucleic acid-based detection of targets in various fields. However, conversion from RNA to DNA with or without amplification operation is necessary for miRNA detection based on CRISPR/Cas12a system, because dsDNA containing PAM sequence or ssDNA is traditionally considered as the activator of Cas12a. Until recently, direct detection of miRNA by CRISPR/Cas12a system has been reported. In this review, we provide an overview of the evolution of biosensors based on CRISPR/Cas12a for miRNA detection from indirect to direct, which would be beneficial to the development of CRISPR/Cas12a-based sensors with better performance for direct detection of miRNA.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
82
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
83
|
Boewe AS, Wrublewsky S, Hoppstädter J, Götz C, Kiemer AK, Menger MD, Laschke MW, Ampofo E. C-Myc/H19/miR-29b axis downregulates nerve/glial (NG)2 expression in glioblastoma multiforme. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102120. [PMID: 38318212 PMCID: PMC10839451 DOI: 10.1016/j.omtn.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Nerve/glial antigen (NG)2 is highly expressed in glioblastoma multiforme (GBM). However, the underlying mechanisms of its upregulated expression are largely unknown. In silico analyses reveal that the tumor-suppressive miR-29b targets NG2. We used GBM-based data from The Cancer Genome Atals databases to analyze the expression pattern of miR-29b and different target genes, including NG2. Moreover, we investigated the regulatory function of miR-29b on NG2 expression and NG2-related signaling pathways. We further studied upstream mechanisms affecting miR-29b-dependent NG2 expression. We found that miR-29b downregulates NG2 expression directly and indirectly via the transcription factor Sp1. Furthermore, we identified the NG2 coreceptor platelet-derived growth factor receptor (PDGFR)α as an additional miR-29b target. As shown by a panel of functional cell assays, a reduced miR-29b-dependent NG2 expression suppresses tumor cell proliferation and migration. Signaling pathway analyses revealed that this is associated with a decreased ERK1/2 activity. In addition, we found that the long noncoding RNA H19 and c-Myc act as upstream repressors of miR-29b in GBM cells, resulting in an increased NG2 expression. These findings indicate that the c-Myc/H19/miR-29b axis crucially regulates NG2 expression in GBM and, thus, represents a target for the development of future GBM therapies.
Collapse
Affiliation(s)
- Anne S. Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
84
|
Babadag S, Altundag-Erdogan Ö, Akkaya-Ulum YZ, Çelebi-Saltik B. The role of telocytes and miR-21-5p in tumorigenicity and metastasis of breast cancer stem cells. Mol Biol Rep 2024; 51:395. [PMID: 38446251 DOI: 10.1007/s11033-024-09352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND This study aims to investigate the roles of telocytes on the metastatic properties of breast cancer stem cells (CSCs), and to re-evaluate the effect of miR-21-5p expression on CSCs following the addition of telocytes. METHODS AND RESULTS Telocytes from human bone marrow mononuclear cells were isolated/characterised. This was followed by the isolation/characterisation of CSCs from the MDA-MB-231. miR-21-5p was both overexpressed/inhibited in CSCs. Through co-culture studies, EMT transition and oncogenic properties of CSCs were investigated by analysing changes in ALDH1 and vimentin protein levels as well as changes in the ABCC11, SNAI1, LZTFL1, Oct 3/4, E- and N-cadherin gene expression levels. With the inhibition of miR-21-5p, significant increases in LZTFL and ABCC11 were observed with the addition of telocytes. The expression of the LZTFL gene, which decreased with the overexpression of miR-21-5p, increased in CSCs after co-culture with telocytes. While an increase expression of ABCC11, SNAI1, N-Cadherin, vimentin and ALDH was observed in CSCs after overexpression of miR-21-5p, significant decreases in these expressions were observed after co-culture with telocyte. CONCLUSIONS In our study, by gene/protein level analysis we demonstrated that telocytes may have the potential to reduce cancer metastasis through miR-21-5p in breast cancer progression and reduce EMT transition.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Özlem Altundag-Erdogan
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Ankara, 06100, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| |
Collapse
|
85
|
Sarfraz M, Abida, Eltaib L, Asdaq SMB, Guetat A, Alzahrani AK, Alanazi SS, Aaghaz S, Singla N, Imran M. Overcoming chemoresistance and radio resistance in prostate cancer: The emergent role of non-coding RNAs. Pathol Res Pract 2024; 255:155179. [PMID: 38320439 DOI: 10.1016/j.prp.2024.155179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
86
|
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy. Front Mol Biosci 2024; 11:1356780. [PMID: 38449696 PMCID: PMC10916008 DOI: 10.3389/fmolb.2024.1356780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy. Because almost all types of cells release EVs, cancer cell-derived EVs might constitute only a minor fraction of EVs in body fluids of cancer patients with low volume disease. Furthermore, a given cell type can release several subpopulations of EVs that vary in their cargo, and there is evidence that the majority of EVs contain low copy numbers of miRNAs. In this mini-review, we discuss the potential of several candidate EV membrane proteins such as CD147 to define cancer cell-derived EVs, and approaches by which subpopulations of miRNA-rich EVs in body fluids might be identified. By integrating these insights, we discuss strategies by which EVs that are both cancer cell-derived and miRNA-rich could be isolated to enhance the diagnostic performance of extracellular miRNAs.
Collapse
Affiliation(s)
| | | | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
87
|
Han SB, Lee SS. Simultaneous Detection of Exosomal microRNAs Isolated from Cancer Cells Using Surface Acoustic Wave Sensor Array with High Sensitivity and Reproducibility. MICROMACHINES 2024; 15:249. [PMID: 38398977 PMCID: PMC10892992 DOI: 10.3390/mi15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
We present a surface acoustic wave (SAW) sensor array for microRNA (miRNA) detection that utilizes photocatalytic silver staining on titanium dioxide (TiO2) nanoparticles as a signal enhancement technique for high sensitivity with an internal reference sensor for high reproducibility. A sandwich hybridization was performed on working sensors of the SAW sensor array that could simultaneously capture and detect three miRNAs (miRNA-21, miRNA-106b, and miRNA-155) known to be upregulated in cancer. Sensor responses due to signal amplification varied depending on the concentration of synthetic miRNAs. It was confirmed that normalization (a ratio of working sensor response to reference sensor response) screened out background interferences by manipulating data and minimized non-uniformity in the photocatalytic silver staining step by suppressing disturbances to both working sensor signal and reference sensor signal. Finally, we were able to successfully detect target miRNAs in cancer cell-derived exosomal miRNAs with performance comparable to the detection of synthetic miRNAs.
Collapse
Affiliation(s)
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
88
|
Verma VK, Beevi SS, Nair RA, Kumar A, Kiran R, Alexander LE, Dinesh Kumar L. MicroRNA signatures differentiate types, grades, and stages of breast invasive ductal carcinoma (IDC): miRNA-target interacting signaling pathways. Cell Commun Signal 2024; 22:100. [PMID: 38326829 PMCID: PMC10851529 DOI: 10.1186/s12964-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is the most common form of breast cancer which accounts for 85% of all breast cancer diagnoses. Non-invasive and early stages have a better prognosis than late-stage invasive cancer that has spread to lymph nodes. The involvement of microRNAs (miRNAs) in the initiation and progression of breast cancer holds great promise for the development of molecular tools for early diagnosis and prognosis. Therefore, developing a cost effective, quick and robust early detection protocol using miRNAs for breast cancer diagnosis is an imminent need that could strengthen the health care system to tackle this disease around the world. METHODS We have analyzed putative miRNAs signatures in 100 breast cancer samples using two independent high fidelity array systems. Unique and common miRNA signatures from both array systems were validated using stringent double-blind individual TaqMan assays and their expression pattern was confirmed with tissue microarrays and northern analysis. In silico analysis were carried out to find miRNA targets and were validated with q-PCR and immunoblotting. In addition, functional validation using antibody arrays was also carried out to confirm the oncotargets and their networking in different pathways. Similar profiling was carried out in Brca2/p53 double knock out mice models using rodent miRNA microarrays that revealed common signatures with human arrays which could be used for future in vivo functional validation. RESULTS Expression profile revealed 85% downregulated and 15% upregulated microRNAs in the patient samples of IDC. Among them, 439 miRNAs were associated with breast cancer, out of which 107 miRNAs qualified to be potential biomarkers for the stratification of different types, grades and stages of IDC after stringent validation. Functional validation of their putative targets revealed extensive miRNA network in different oncogenic pathways thus contributing to epithelial-mesenchymal transition (EMT) and cellular plasticity. CONCLUSION This study revealed potential biomarkers for the robust classification as well as rapid, cost effective and early detection of IDC of breast cancer. It not only confirmed the role of these miRNAs in cancer development but also revealed the oncogenic pathways involved in different progressive grades and stages thus suggesting a role in EMT and cellular plasticity during breast tumorigenesis per se and IDC in particular. Thus, our findings have provided newer insights into the miRNA signatures for the classification and early detection of IDC.
Collapse
Affiliation(s)
- Vinod Kumar Verma
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Syed Sultan Beevi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Rekha A Nair
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ravi Kiran
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Liza Esther Alexander
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
89
|
Chen W, Sun J, Mao Y, Tang Y, Wang J, Liu Z. Endogenously Gated DNA Walking Machine for Prescreened MicroRNA Detection in Extracellular Vesicles. Anal Chem 2024; 96:2244-2252. [PMID: 38253329 DOI: 10.1021/acs.analchem.3c05595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tumor-derived extracellular vesicle (T-EV) microRNAs have been investigated as promising biomarkers in clinical diagnosis as well as disease progression monitoring. However, the expression profiles of microRNA in different tissues vary widely, the precise monitoring of microRNA levels in EVs originating from diseased tissues is susceptible to background interference, thus remains a challenge. Conventional assays require extensive processing, such as EV isolation and even sample lysis, which is both slow and laborious, and the cumbersome pretreatment could spoil the downstream analysis. To address this issue, we developed a generalizable strategy for T-EVs-selective activation and therefore specific amplified microRNA imaging. The conditional signal amplification is established by integrating a traditional DNA walker system with endogenously activated motif to achieve sensitized microRNA imaging in T-EVs. The preorganized endogenous activation with additional sensing criteria narrowed the scope against the complex specimens, and the amplified sensing with reduced off-target signals was supposed to be sensitive to monitor the tiny changes of microRNA expression during the disease course, which holds great potential for accurate diagnosis and prognosis.
Collapse
Affiliation(s)
- Weiming Chen
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Jiale Sun
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Yuqing Mao
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Yuhao Tang
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Jing Wang
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Zhihong Liu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
90
|
Li X, Wen Z, Li R, Lu C, Chen W, Chen X, Huang G, Ni L, Lai Y, Tao L. Profiling of Serum miRNAs Constructs a Diagnostic 3-miRNA Panel for Clear-Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2024; 22:23-32. [PMID: 37574436 DOI: 10.1016/j.clgc.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) carries significant morbidity and mortality globally with an increasing incidence per year predominantly represented by clear-cell renal cell carcinoma (ccRCC) which accounts for 70-80% of all RCC cases. MicroRNAs(miRNAs) implicate tumor development and progression in epigenetic mechanisms and available profiling of serum miRNAs potentiate them as diagnostic markers for various cancers. MATERIALS AND METHODS A total of 108 ccRCC patients and 112 normal controls were enrolled. A 3-stage experiment was conducted to identify differentially expressed serum miRNAs in ccRCC and establish a diagnostic miRNAs panel. Additionally, bioinformatic analysis was employed to predict selected miRNAs' target genes, preform functional annotation and explore the roles in ccRCC. RESULTS MiR-429, miR-10a-5p, miR-154-5p were found to be up-regulated miRNAs. Inversely, miR-27a-3p and miR-221-3p were found to be down-regulated miRNAs. These 5 miRNAs were selected to construct diagnostic panel by backward stepwise logistic regression analysis and ultimately a 3-miRNA panel (miR-429, miR-10a-5p and miR-27a-3p) was established [area under the curve (AUC) = 0.897, sensitivity = 85.0%, specificity = 83.3%]. CONCLUSION The panel of 3-miRNA holds promise as a novel, convenient, and noninvasive diagnostic method for early detection of ccRCC.
Collapse
Affiliation(s)
- Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenkang Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Liangchao Ni
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Lingzhi Tao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
91
|
Kong D, Zhang S, Guo M, Li S, Wang Q, Gou J, Wu Y, Chen Y, Yang Y, Dai C, Tian Z, Wee ATS, Liu Y, Wei D. Ultra-Fast Single-Nucleotide-Variation Detection Enabled by Argonaute-Mediated Transistor Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307366. [PMID: 37805919 DOI: 10.1002/adma.202307366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/03/2023] [Indexed: 10/09/2023]
Abstract
"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.
Collapse
Affiliation(s)
- Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, P. R. China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Qiang Wang
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
92
|
Isa AI. Exploring signaling pathway crosstalk in glioma by mapping miRNA and WNT pathways: A review. Int J Biol Macromol 2024; 257:128722. [PMID: 38092099 DOI: 10.1016/j.ijbiomac.2023.128722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Glioma is a significant healthcare burden; nevertheless, the particular genetic regulatory mechanism underpinning its onset and progression is still unknown. Recent research has focused in large part on trying to determine the underlying molecular pathways that contribute to the malignancy of this disease because of the difficulties in treating it. Many tumors have been linked to changes in the expression of microRNAs (miRNAs). miRNAs play a critical role in cancer development by controlling a wide variety of targets and signaling cascades. A rising body of evidence emphasizes WNT pathway dysregulation in glioma, despite the fact that it is dysregulated in many malignancies. Here, we give a detailed analysis of the roles played by miRNAs in the WNT pathway by glioma. We also demonstrate how the WNT pathway cooperates with miRNAs to control a variety of functions, including cell proliferation, invasion, migration, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Adamu Imam Isa
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
93
|
Khosravi M, Behboudi E, Razavi-Nikoo H, Tabarraei A. Hepatitis B Virus X Protein Induces Expression Changes of miR-21, miR-22, miR-122, miR-132, and miR-222 in Huh-7 Cell Line. ARCHIVES OF RAZI INSTITUTE 2024; 79:111-119. [PMID: 39192965 PMCID: PMC11345482 DOI: 10.32592/ari.2024.79.1.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2024]
Abstract
Hepatitis B virus (HBV) X protein (HBx) plays a key role in hepatocellular carcinoma (HCC). HBx may alter the expression of multiple microRNAs (miRs), which are important in hepatocarcinogenesis. This study aimed to investigate the importance of HBx protein in the expression of miR-21, miR-22, miR-122, miR-132, and miR-222. A recombinant vector expressing HBx was developed. The Huh-7 cell line was transfected with the HBx-pcDNA3.1+ recombinant plasmid. A Real-Time Polymerase Chain Reaction was used to evaluate the expression of miR-21, miR-22, miR-122, miR-132, and miR-222 in the cell line. It was found that the expression of miR-21 and miR-222 was upregulated at all points of time after HBx transfection. The expression of miR-21 was 4.24-fold 72 h after transfection. The miR-22 had a 7.69-fold downregulation after 24 h, and the miR-122 had a significant downregulation after 48 h (10-fold). The miR-132 expression reached its lowest rate 12 h after HBx transfection (8.33-fold), and the miR-222 expression was upregulated in transfected cells but was not significantly different (1.18- to 2.45-fold). The significant downregulation of miR-22, miR-122, and miR-132 implicates their inhibitory roles in the progression of HBV-associated HCC. The expression of these microRNAs could be used as a prognostic marker for the progression of HBV-associated liver disease.
Collapse
Affiliation(s)
- M Khosravi
- Infectious diseases research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - E Behboudi
- Department of Basic Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - H Razavi-Nikoo
- Infectious diseases research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - A Tabarraei
- Infectious diseases research center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
94
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
95
|
Attachaipanich T, Chattipakorn SC, Chattipakorn N. Current evidence regarding the cellular mechanisms associated with cancer progression due to cardiovascular diseases. J Transl Med 2024; 22:105. [PMID: 38279150 PMCID: PMC10811855 DOI: 10.1186/s12967-023-04803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024] Open
Abstract
Several large cohort studies in cardiovascular disease (CVD) patients have shown an increased incidence of cancer. Previous studies in a myocardial infarction (MI) mouse model reported increased colon, breast, and lung cancer growth. The potential mechanisms could be due to secreted cardiokines and micro-RNAs from pathological hearts and immune cell reprogramming. A study in a MI-induced heart failure (HF) mouse demonstrated an increase in cardiac expression of SerpinA3, resulting in an enhanced proliferation of colon cancer cells. In MI-induced HF mice with lung cancer, the attenuation of tumor sensitivity to ferroptosis via the secretion of miR-22-3p from cardiomyocytes was demonstrated. In MI mice with breast cancer, immune cell reprogramming toward the immunosuppressive state was shown. However, a study in mice with renal cancer reported no impact of MI on tumor growth. In addition to MI, cardiac hypertrophy was shown to promote the growth of breast and lung cancer. The cardiokine potentially involved, periostin, was increased in the cardiac tissue and serum of a cardiac hypertrophy model, and was reported to increase breast cancer cell proliferation. Since the concept that CVD could influence the initiation and progression of several types of cancer is quite new and challenging regarding future therapeutic and preventive strategies, further studies are needed to elucidate the potential underlying mechanisms which will enable more effective risk stratification and development of potential therapeutic interventions to prevent cancer in CVD patients.
Collapse
Affiliation(s)
- Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
96
|
Atwan QS, Al-Ogaidi I. Enhancing the therapeutic potential of curcumin: a novel nanoformulation for targeted anticancer therapy to colorectal cancer with reduced miR20a and miR21 expression. Biomed Mater 2024; 19:025020. [PMID: 38215475 DOI: 10.1088/1748-605x/ad1dfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established method features three aspects that, to our knowledge, have not been formally verified: (1) use of a novel formula to incorporate curcumin, (2) use of all biocompatible biodegradable materials to produce this formula without leaving harmful residues, and (3) an incorporation process at temperatures of approximately 50 °C. The formula was prepared from lecithin (LE), and chitosan (CH) with an eco-friendly emulsifying agent and olive oil as the curcumin solvent. The formula was converted to nanoscale through ultrasonication and probe sonication at a frequency of 20 kHz. Transmission electron microscopy showed that the nano formula was spherical in shape with sizes ranging between 49.7 nm in diameter and negative zeta potentials ranging from 28 to 34 mV. Primers miR20a and miR21 were designed for molecular studies. Nearly complete curcumin with an encapsulation efficiency of 91.1% was established using a straight-line equation. The nano formula incorporated with curcumin was used to prepare formulations that exhibited anticancer activities. The apoptosis pathway in cancer cells was activated by the minimum inhibitory concentration of the nano formula. These findings suggest the potential of this nanoformulation as an effective and selective cancer treatment that does not affect the normal cells.
Collapse
Affiliation(s)
- Qusay S Atwan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Al-Ogaidi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
97
|
Ding T, Li W, Li F, Ren M, Wang W. microRNAs: Key Regulators in Plant Responses to Abiotic and Biotic Stresses via Endogenous and Cross-Kingdom Mechanisms. Int J Mol Sci 2024; 25:1154. [PMID: 38256227 PMCID: PMC10816238 DOI: 10.3390/ijms25021154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.
Collapse
Affiliation(s)
- Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
98
|
Zhong Y, Li Z, Li Z, Li B, Xin H, Wang C. Remotely Activated DNA Probe System for the Detection and Imaging of Dual miRNAs. ACS APPLIED BIO MATERIALS 2024; 7:462-471. [PMID: 38151236 DOI: 10.1021/acsabm.3c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Cancers remain the leading cause of mortality worldwide. It is crucial to detect cancer at an early stage for improving survival rates. Biomarkers have precise implications for cancer progression. Here, we built a straightforward DNA probe system that could be activated by near-infrared light to detect dual miRNAs with a high specificity. This probe is built on the basis of upconversion nanoparticles, which could emit ultraviolet light and activate DNA probes adsorbed on the outer layer. The DNA probe system is remotely controlled through manipulation of the near-infrared (NIR) light, enabling simultaneous detection of dual miRNAs. The DNA nanosystem could be effectively endocytosed by cancer cells and reflect expression levels of dual miRNAs. Overall, this study demonstrates a promising remote-controlled DNA nanoplatform for the simultaneous detection of dual miRNAs, which has tremendous potential for precise cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhihao Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zheng Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Hui Xin
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
99
|
Li F, Yu H, Qi A, Zhang T, Huo Y, Tu Q, Qi C, Wu H, Wang X, Zhou J, Hu L, Ouyang H, Pang D, Xie Z. Regulatory Non-Coding RNAs during Porcine Viral Infections: Potential Targets for Antiviral Therapy. Viruses 2024; 16:118. [PMID: 38257818 PMCID: PMC10818342 DOI: 10.3390/v16010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Pigs play important roles in agriculture and bio-medicine; however, porcine viral infections have caused huge losses to the pig industry and severely affected the animal welfare and social public safety. During viral infections, many non-coding RNAs are induced or repressed by viruses and regulate viral infection. Many viruses have, therefore, developed a number of mechanisms that use ncRNAs to evade the host immune system. Understanding how ncRNAs regulate host immunity during porcine viral infections is critical for the development of antiviral therapies. In this review, we provide a summary of the classification, production and function of ncRNAs involved in regulating porcine viral infections. Additionally, we outline pathways and modes of action by which ncRNAs regulate viral infections and highlight the therapeutic potential of artificial microRNA. Our hope is that this information will aid in the development of antiviral therapies based on ncRNAs for the pig industry.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hao Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
100
|
Atwan QS, Al-Ogaidi I. Improving the targeted delivery of curcumin to esophageal cancer cells via a novel formulation of biodegradable lecithin/chitosan nanoparticles with downregulated miR-20a and miR-21 expression. NANOTECHNOLOGY 2024; 35:135103. [PMID: 38096580 DOI: 10.1088/1361-6528/ad15b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds' delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring the absence of detrimental residues or undesirable reactions under varying conditions. (3) Low-temperature incorporation: Curcumin is incorporated into the formulation at temperatures approximating 50 °C. The formulation comprises lecithin (LE), chitosan (CH), an eco-friendly emulsifying agent, and olive oil as the solvent for curcumin. Nanoscale conversion is achieved through ultrasonication and probe sonication (20 kHz). Transmission electron microscopy (TEM) reveals spherical nanoparticles with diameters ranging from 29.33 nm and negative zeta potentials within the -28 to -34 mV range. Molecular studies involve the design of primers for miR20a and miR21. Our findings showcase a remarkable encapsulation efficiency of 91.1% for curcumin, as determined through a linear equation. The curcumin-loaded nanoformulation demonstrates potent anticancer activity, effectively activating the apoptosis pathway in cancer cells at the minimum inhibitory concentration. These results underscore the potential of our nanoformulation as a compelling, cancer-selective treatment strategy, preserving the integrity of normal cells, and thus, warranting further exploration in the field of cancer therapy.
Collapse
Affiliation(s)
- Qusay S Atwan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Al-Ogaidi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|