51
|
Liu F, Romantseva T, Park YJ, Golding H, Zaitseva M. Production of fever mediator PGE 2 in human monocytes activated with MDP adjuvant is controlled by signaling from MAPK and p300 HAT: Key role of T cell derived factor. Mol Immunol 2020; 128:139-149. [PMID: 33126082 DOI: 10.1016/j.molimm.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Fever and inflammatory responses were observed in some subjects in early clinical trials of vaccines adjuvanted with muramyl dipeptide (MDP), a NOD2 agonist. Biosynthesis of Prostaglandin E2 (PGE2) that transmits febrile signals to the brain is controlled by an inducible enzyme, Cyclooxygenase 2 (COX-2). MDP alone was not sufficient to induce expression of COX-2 and PGE2 production in vitro. Conditioned medium prepared from Peripheral Blood Mononuclear Cells (PBMCs)-derived CD3-bead purified human T cells (TCM) dramatically increased COX2 gene transcription, COX-2 protein expression, and PGE2 production in MDP-treated monocytes. We explored epigenetic changes at the COX2 promoter using Chromatin Immunoprecipitation assay (ChIP). Increase in COX2 transcription correlated with increased recruitment of RNA polymerase II (Pol II) and p300 histone acetyl transferase (HAT) to the COX2 promoter in monocytes activated with MDP and TCM. The role of p300 HAT was confirmed by using C646, an inhibitor of p300, that reduced binding of acetylated H3 and H4 histones at the COX2 promoter, COX2 transcription, and PGE2 production in monocytes. Binding of p300, Nuclear Factor Kappa B (NF-κB), and Pol II to the COX2 promoter was also sensitive to inhibitors of Mitogen-Activated Protein Kinase (MAPK) pathway and to antibodies against Macrophage-1 (Mac-1) integrin in MDP/TCM-treated monocytes. Importantly, recombinant Glycoprotein Ib alfa (GPIbα), the recently identified factor in TCM, increased binding of NF-κB, p300, and of Pol II to the COX2 promoter and COX2 transcription in MDP-treated monocytes. Our findings suggest that a second signal through Mac-1 and MAPK is triggered by a T cell derived soluble GPIbα protein leading to the assembly of the transcription machinery at the COX2 promoter and production of PGE2 in human monocytes in response to MDP/NOD2 activation.
Collapse
Affiliation(s)
- Fengjie Liu
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Tatiana Romantseva
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Yun-Jong Park
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Marina Zaitseva
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.
| |
Collapse
|
52
|
Wang H, Liu Y, Huan C, Yang J, Li Z, Zheng B, Wang Y, Zhang W. NF-κB-Interacting Long Noncoding RNA Regulates HIV-1 Replication and Latency by Repressing NF-κB Signaling. J Virol 2020; 94:e01057-20. [PMID: 32581100 PMCID: PMC7431781 DOI: 10.1128/jvi.01057-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
NF-κB-interacting long noncoding RNA (NKILA) was recently identified as a negative regulator of NF-κB signaling and plays an important role in the development of various cancers. It is well known that NF-κB-mediated activation of human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR)-driven gene expression is required for HIV-1 transcription and reactivation of latency. However, whether NKILA plays essential roles in HIV-1 replication and latency is unclear. Here, by ectopic expression and silencing experiments, we demonstrate that NKILA potently inhibits HIV-1 replication in an NF-κB-dependent manner by suppressing HIV-1 LTR promoter activity. Moreover, NKILA showed broad-spectrum inhibition on the replication of HIV-1 clones with different coreceptor tropisms as well as on LTR activity of various HIV-1 clinical subtypes. Chromatin immunoprecipitation (ChIP) assays revealed that NKILA expression abolishes the recruitment of p65 to the duplicated κB binding sites in the HIV-1 LTR. NKILA mutants disrupting NF-κB inhibition also lost the ability to inhibit HIV-1 replication. Notably, HIV-1 infection or reactivation significantly downregulated NKILA expression in T cells in order to facilitate viral replication. Downregulated NKILA was mainly due to reduced acetylation of histone K27 on the promoter of NKILA by HIV-1 infection, which blocks NKILA expression. Knockdown of NKILA promoted the reactivation of latent HIV-1 upon phorbol myristate acetate (PMA) stimulation, while ectopic NKILA suppressed the reactivation in a well-established clinical model of withdrawal of azidothymidine (AZT) in vitro These findings improve our understanding of the functional suppression of HIV-1 replication and latency by NKILA through NF-κB signaling.IMPORTANCE The NF-κB pathway plays key roles in HIV-1 replication and reactivation of HIV-1 latency. A regulator inhibiting NF-κB activation may be a promising therapeutic strategy against HIV-1. Recently, NF-κB-interacting long noncoding RNA (NKILA) was identified to suppress the development of different human cancers by inhibiting IκB kinase (IKK)-induced IκB phosphorylation and NF-κB pathway activation, whereas the relationship between NKILA and HIV-1 replication is still unknown. Here, our results show that NKILA inhibits HIV-1 replication and reactivation by suppressing HIV-1 long terminal repeat (LTR)-driven transcription initiation. Moreover, NKILA inhibited the replication of HIV-1 clones with different coreceptor tropisms. This project may reveal a target for the development of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yue Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, People's Republic of China
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jing Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yingchao Wang
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
53
|
Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid Redox Signal 2020; 33:145-165. [PMID: 31856585 DOI: 10.1089/ars.2019.7975] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
54
|
Natarajan V, Moar P, Kaur US, Venkatesh V, Kumar A, Chaturvedi R, Himanshu D, Tandon R. Helicobacter pylori Reactivates Human Immunodeficiency Virus-1 in Latently Infected Monocytes with Increased Expression of IL-1β and CXCL8. Curr Genomics 2020; 20:556-568. [PMID: 32581644 PMCID: PMC7290055 DOI: 10.2174/1389202921666191226091138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background Helicobacter pylori are gram-negative bacteria, which colonize the human stomach. More than 50% of the world's population is infected by H. pylori. Based on the high prevalence of H. pylori, it is very likely that HIV and H. pylori infection may coexist. However, the molecular events that occur during HIV-H. pylori co-infection remain unclear. Latent HIV reservoirs are the major obstacle in HIV cure despite effective therapy. Here, we explored the effect of H. pylori stimulation on latently HIV-infected monocytic cell line U1. Methods High throughput RNA-Seq using Illumina platform was performed to analyse the change in transcriptome between unstimulated and H. pylori-stimulated latently HIV-infected U1 cells. Transcriptome analysis identified potential genes and pathways involved in the reversal of HIV latency using bioinformatic tools that were validated by real-time PCR. Results H. pylori stimulation increased the expression of HIV-1 Gag, both at transcription (p<0.001) and protein level. H. pylori stimulation also increased the expression of proinflammatory cytokines IL-1β, CXCL8 and CXCL10 (p<0.0001). Heat-killed H. pylori retained their ability to induce HIV transcription. RNA-Seq analysis revealed 197 significantly upregulated and 101 significantly downregulated genes in H. pylori-stimulated U1 cells. IL-1β and CXCL8 were found to be significantly upregulated using transcriptome analysis, which was consistent with real-time PCR data. Conclusion H. pylori reactivate HIV-1 in latently infected monocytes with the upregulation of IL-1β and CXCL8, which are prominent cytokines involved in the majority of inflammatory pathways. Our results warrant future in vivo studies elucidating the effect of H. pylori in HIV latency and pathogenesis.
Collapse
Affiliation(s)
- Vidhya Natarajan
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| | - Preeti Moar
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| | - Urvinder S Kaur
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| | - Vimala Venkatesh
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| | - Abhishek Kumar
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| | - Rupesh Chaturvedi
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| | - D Himanshu
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| | - Ravi Tandon
- 1Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 2Department of Microbiology, King Georges Medical University, Lucknow, India; 3Institute of Bioinformatics, International Technology Park, Bangaluru, 560066, India; 4Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India; 5Host Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; 6Department of Medicine, King Georges Medical University, Lucknow, India
| |
Collapse
|
55
|
Palermo E, Acchioni C, Di Carlo D, Zevini A, Muscolini M, Ferrari M, Castiello L, Virtuoso S, Borsetti A, Antonelli G, Turriziani O, Sgarbanti M, Hiscott J. Activation of Latent HIV-1 T Cell Reservoirs with a Combination of Innate Immune and Epigenetic Regulators. J Virol 2019; 93:e01194-19. [PMID: 31413127 PMCID: PMC6803272 DOI: 10.1128/jvi.01194-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
The presence of T cell reservoirs in which human immunodeficiency virus (HIV) establishes latency by integrating into the host genome represents a major obstacle to an HIV cure and has prompted the development of strategies aimed at the eradication of HIV from latently infected cells. The "shock-and-kill" strategy is one of the most pursued approaches to the elimination of viral reservoirs. Although several latency-reversing agents (LRAs) have shown promising reactivation activity, they have failed to eliminate the cellular reservoir. In this study, we evaluated a novel immune system-mediated approach to clearing the HIV reservoir, based on a combination of innate immune stimulation and epigenetic reprogramming. The combination of the STING agonist cGAMP (cyclic GMP-AMP) and the FDA-approved histone deacetylase inhibitor resminostat resulted in a significant increase in HIV proviral reactivation and specific apoptosis in HIV-infected cells in vitro Reductions in the proportion of HIV-harboring cells and the total amount of HIV DNA were also observed in CD4+ central memory T (TCM) cells, a primary cell model of latency, where resminostat alone or together with cGAMP induced high levels of selective cell death. Finally, high levels of cell-associated HIV RNA were detected ex vivo in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells from individuals on suppressive antiretroviral therapy (ART). Although synergism was not detected in PBMCs with the combination, viral RNA expression was significantly increased in CD4+ T cells. Collectively, these results represent a promising step toward HIV eradication by demonstrating the potential of innate immune activation and epigenetic modulation for reducing the viral reservoir and inducing specific death of HIV-infected cells.IMPORTANCE One of the challenges associated with HIV-1 infection is that despite antiretroviral therapies that reduce HIV-1 loads to undetectable levels, proviral DNA remains dormant in a subpopulation of T lymphocytes. Numerous strategies to clear residual virus by reactivating latent virus and eliminating the reservoir of HIV-1 (so-called "shock-and-kill" strategies) have been proposed. In the present study, we use a combination of small molecules that activate the cGAS-STING antiviral innate immune response (the di-cyclic nucleotide cGAMP) and epigenetic modulators (histone deacetylase inhibitors) that induce reactivation and HIV-infected T cell killing in cell lines, primary T lymphocytes, and patient samples. These studies represent a novel strategy for HIV eradication by reducing the viral reservoir and inducing specific death of HIV-infected cells.
Collapse
Affiliation(s)
- Enrico Palermo
- Pasteur Institute-Italy, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Chiara Acchioni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Di Carlo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zevini
- Pasteur Institute-Italy, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Michela Muscolini
- Pasteur Institute-Italy, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Matteo Ferrari
- Pasteur Institute-Italy, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Luciano Castiello
- Pasteur Institute-Italy, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Sara Virtuoso
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Marco Sgarbanti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - John Hiscott
- Pasteur Institute-Italy, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
56
|
Ha SD, Cho W, DeKoter RP, Kim SO. The transcription factor PU.1 mediates enhancer-promoter looping that is required for IL-1β eRNA and mRNA transcription in mouse melanoma and macrophage cell lines. J Biol Chem 2019; 294:17487-17500. [PMID: 31586032 DOI: 10.1074/jbc.ra119.010149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
The DNA-binding protein PU.1 is a myeloid lineage-determining and pioneering transcription factor due to its ability to bind "closed" genomic sites and maintain "open" chromatin state for myeloid lineage-specific genes. The precise mechanism of PU.1 in cell type-specific programming is yet to be elucidated. The melanoma cell line B16BL6, although it is nonmyeloid lineage, expressed Toll-like receptors and activated the transcription factor NF-κB upon stimulation by the bacterial cell wall component lipopolysaccharide. However, it did not produce cytokines, such as IL-1β mRNA. Ectopic PU.1 expression induced remodeling of a novel distal enhancer (located ∼10 kbp upstream of the IL-1β transcription start site), marked by nucleosome depletion, enhancer-promoter looping, and histone H3 lysine 27 acetylation (H3K27ac). PU.1 induced enhancer-promoter looping and H3K27ac through two distinct PU.1 regions. These PU.1-dependent events were independently required for subsequent signal-dependent and co-dependent events: NF-κB recruitment and further H3K27ac, both of which were required for enhancer RNA (eRNA) transcription. In murine macrophage RAW264.7 cells, these PU.1-dependent events were constitutively established and readily expressed eRNA and subsequently IL-1β mRNA by lipopolysaccharide stimulation. In summary, this study showed a sequence of epigenetic events in programming IL-1β transcription by the distal enhancer priming and eRNA production mediated by PU.1 and the signal-dependent transcription factor NF-κB.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Woohyun Cho
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
57
|
Barbosa Lima LE, Muxel SM, Kinker GS, Carvalho-Sousa CE, da Silveira Cruz-Machado S, Markus RP, Fernandes PACM. STAT1-NFκB crosstalk triggered by interferon gamma regulates noradrenaline-induced pineal hormonal production. J Pineal Res 2019; 67:e12599. [PMID: 31356684 DOI: 10.1111/jpi.12599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Melatonin production by pineal glands is modulated by several immune signals. The nuclear translocation of nuclear factor kappa-B (NFκB) homodimers, lacking transactivation domains, once induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF), inhibits the expression of Aanat gene and the synthesis of noradrenaline (NA)-induced melatonin. Interferon gamma (IFN-γ), on the other hand, increases melatonin synthesis. Furthermore, this cytokine activates the signal transducer as well as the activator of transcription 1 (STAT1) pathway, which was never evaluated as a melatonin synthesis modulator before. Reports demonstrated that IFN-γ might also activate NFκB. The present study evaluated the role of STAT1-NFκB crosstalk triggered by IFN-γ regarding the regulation of NA-induced pineal glands' hormonal production. Moreover, IFN-γ treatment increased NA-induced Aanat transcription, in addition to the synthesis of N-acetylserotonin (NAS) and melatonin. These effects were associated with STAT1 nuclear translocation, confirmed by the co-immunoprecipitation of STAT1 and Aanat promoter. Pharmacological STAT1 enhancement augmented NA-induced Aanat transcription as well as NAS and melatonin production. Additionally, IFN-γ induced the nuclear translocation of RelA-NFκB subunits. The blockade of this pathway prevented IFN-γ effects on the pineal function. The present data show that STAT1 and NFκB crosstalk controls melatonin production through a synergistic mechanism, disclosing a new integrative mechanism regarding pineal hormonal activity control.
Collapse
Affiliation(s)
| | - Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Kinker
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | | | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
58
|
Chao TC, Zhang Q, Li Z, Tiwari SK, Qin Y, Yau E, Sanchez A, Singh G, Chang K, Kaul M, Karris MAY, Rana TM. The Long Noncoding RNA HEAL Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. mBio 2019; 10:e02016-19. [PMID: 31551335 PMCID: PMC6759764 DOI: 10.1128/mbio.02016-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023] Open
Abstract
A major challenge in finding a cure for HIV-1/AIDS is the difficulty in identifying and eradicating persistent reservoirs of replication-competent provirus. Long noncoding RNAs (lncRNAs, >200 nucleotides) are increasingly recognized to play important roles in pathophysiology. Here, we report the first genome-wide expression analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs). We identified an lncRNA, which we named HIV-1-enhanced lncRNA (HEAL), that is upregulated by HIV-1 infection of MDMs, microglia, and T lymphocytes. Peripheral blood mononuclear cells of HIV-1-infected individuals show elevated levels of HEAL Importantly, HEAL is a broad enhancer of multiple HIV-1 strains because depletion of HEAL inhibited X4, R5, and dual-tropic HIV replications and the inhibition was rescued by HEAL overexpression. HEAL forms a complex with the RNA-binding protein FUS, which facilitates HIV replication through at least two mechanisms: (i) HEAL-FUS complex binds the HIV promoter and enhances recruitment of the histone acetyltransferase p300, which positively regulates HIV transcription by increasing histone H3K27 acetylation and P-TEFb enrichment on the HIV promoter, and (ii) HEAL-FUS complex is enriched at the promoter of the cyclin-dependent kinase 2 gene, CDK2, to enhance CDK2 expression. Notably, HEAL knockdown and knockout mediated by RNA interference (RNAi) and CRISPR-Cas9, respectively, prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment in vitro Our results suggest that silencing of HEAL or perturbation of the HEAL-FUS ribonucleoprotein complex could provide a new epigenetic silencing strategy to eradicate viral reservoirs and effect a cure for HIV-1/AIDS.IMPORTANCE Despite our increased understanding of the functions of lncRNAs, their potential to develop HIV/AIDS cure strategies remains unexplored. A genome-wide analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs) was performed, and 1,145 differentially expressed lncRNAs were identified. An lncRNA named HIV-1-enhanced lncRNA (HEAL) is upregulated by HIV-1 infection and promotes HIV replication in T cells and macrophages. HEAL forms a complex with the RNA-binding protein FUS to enhance transcriptional coactivator p300 recruitment to the HIV promoter. Furthermore, HEAL knockdown and knockout prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment, suggesting HEAL as a potential therapeutic target to cure HIV-1/AIDS.
Collapse
Affiliation(s)
- Ti-Chun Chao
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Zhonghan Li
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Yue Qin
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Edwin Yau
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Ana Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gatikrushna Singh
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Kungyen Chang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Marcus Kaul
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Maile Ann Young Karris
- Division of Infectious Diseases, UCSD Center for AIDS Research, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
59
|
Miyazaki T, Zhao Z, Ichihara Y, Yoshino D, Imamura T, Sawada K, Hayano S, Kamioka H, Mori S, Hirata H, Araki K, Kawauchi K, Shigemoto K, Tanaka S, Bonewald LF, Honda H, Shinohara M, Nagao M, Ogata T, Harada I, Sawada Y. Mechanical regulation of bone homeostasis through p130Cas-mediated alleviation of NF-κB activity. SCIENCE ADVANCES 2019; 5:eaau7802. [PMID: 31579816 PMCID: PMC6760935 DOI: 10.1126/sciadv.aau7802] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/03/2019] [Indexed: 05/07/2023]
Abstract
Mechanical loading plays an important role in bone homeostasis. However, molecular mechanisms behind the mechanical regulation of bone homeostasis are poorly understood. We previously reported p130Cas (Cas) as a key molecule in cellular mechanosensing at focal adhesions. Here, we demonstrate that Cas is distributed in the nucleus and supports mechanical loading-mediated bone homeostasis by alleviating NF-κB activity, which would otherwise prompt inflammatory processes. Mechanical unloading modulates Cas distribution and NF-κB activity in osteocytes, the mechanosensory cells in bones. Cas deficiency in osteocytes increases osteoclastic bone resorption associated with NF-κB-mediated RANKL expression, leading to osteopenia. Upon shear stress application on cultured osteocytes, Cas translocates into the nucleus and down-regulates NF-κB activity. Collectively, fluid shear stress-dependent Cas-mediated alleviation of NF-κB activity supports bone homeostasis. Given the ubiquitous expression of Cas and NF-κB together with systemic distribution of interstitial fluid, the Cas-NF-κB interplay may also underpin regulatory mechanisms in other tissues and organs.
Collapse
Affiliation(s)
- T. Miyazaki
- Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
- Department of Orthopaedic Surgery, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
- Corresponding author. (T.M.); (Y.S.)
| | - Z. Zhao
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Y. Ichihara
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - D. Yoshino
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - T. Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - K. Sawada
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Laboratory for Mechanical Medicine, Nadogaya Research Institute, Nadogaya Hospital, Kashiwa, Chiba 277-0032, Japan
| | - S. Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8525, Japan
| | - H. Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8525, Japan
| | - S. Mori
- Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - H. Hirata
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - K. Araki
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - K. Kawauchi
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - K. Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - S. Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - L. F. Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - H. Honda
- Field of Human Disease Models, Institute of Laboratory Animals, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - M. Shinohara
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - M. Nagao
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - T. Ogata
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - I. Harada
- Laboratory for Mechanical Medicine, Nadogaya Research Institute, Nadogaya Hospital, Kashiwa, Chiba 277-0032, Japan
| | - Y. Sawada
- Mechanobiology Institute, National University of Singapore, Level 10, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Laboratory for Mechanical Medicine, Nadogaya Research Institute, Nadogaya Hospital, Kashiwa, Chiba 277-0032, Japan
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
- Corresponding author. (T.M.); (Y.S.)
| |
Collapse
|
60
|
Gao M, Yang J, Liu S, Su Z, Huang Y. Intrinsically Disordered Transactivation Domains Bind to TAZ1 Domain of CBP via Diverse Mechanisms. Biophys J 2019; 117:1301-1310. [PMID: 31521329 DOI: 10.1016/j.bpj.2019.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.
Collapse
Affiliation(s)
- Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jing Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
61
|
Cellular response of blood and hepatic tissue to gamma irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Lan F, Hu Y, Tang D, Cai J, Zhang Q. Transcription coactivator p300 promotes inflammation by enhancing p65 subunit activation in type 2 diabetes nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1826-1834. [PMID: 31934006 PMCID: PMC6947128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND p300, a transcription co-activator, plays an important role in multicellular organisms and inflammation. However, the mechanism of p300 in type 2 diabetes nephropathy (T2DN) remains largely unknown. Our aim is to explore the mechanism of p300 in T2DN. METHODS A T2DN mice model was induced by db/db transgenic mice or a high fat diet for 24 weeks. The levels of IL-6 and TNF-α were examined by real-time PCR (RT-PCR) in the renal cortex and by an enzyme linked immunosorbent assay (ELISA) in the serum of the T2DN mice. p300 siRNA was used to knockdown the expression of p300, and His-tagged-p300 plasmid was used to overexpress the p300 protein level in podocytes. Hematoxylin-eosin staining (H&E) and Masson trichrome analysis were used to detect the kidney pathology in T2DN. RESULTS The levels of IL-6 and TNF-α were significantly increased in T2DN. p300 was significantly increased in T2DN. Consistently, p300 silencing significantly suppressed the inflammatory response and the overexpression of p300 significantly promoted the production of IL-6 and TNF-α in T2DN. CONCLUSIONS This study demonstrated that the production of IL-6 and TNF-α, and the expression of p300, were increased in T2DN. Furthermore, P300 significantly promoted the activation of the NF-κB subunit p65 through a direct association with p65 in T2DN, subsequently enhancing the production of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Fei Lan
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Yv Hu
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Dan Tang
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Jing Cai
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| | - Qin Zhang
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital Chengdu, China
| |
Collapse
|
63
|
Carvalho TT, Mizokami SS, Ferraz CR, Manchope MF, Borghi SM, Fattori V, Calixto-Campos C, Camilios-Neto D, Casagrande R, Verri WA. The granulopoietic cytokine granulocyte colony-stimulating factor (G-CSF) induces pain: analgesia by rutin. Inflammopharmacology 2019; 27:1285-1296. [PMID: 30945072 DOI: 10.1007/s10787-019-00591-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Rutin is a glycone form of the flavonol quercetin and it reduces inflammatory pain in animal models. Therapy with granulocyte colony-stimulating factor (G-CSF) is known by the pain caused as its main side effect. The effect of rutin and its mechanisms of action were evaluated in a model of hyperalgesia induced by G-CSF in mice. The mechanical hyperalgesia induced by G-CSF was reduced by treatment with rutin in a dose-dependent manner. Treatment with both rutin + morphine or rutin + indomethacin, at doses that are ineffectual per se, significantly reduced the pain caused by G-CSF. The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)-ATP-sensitive potassium channel (KATP) signaling pathway activation is one of the analgesic mechanisms of rutin. Rutin also reduced the pro-hyperalgesic and increased anti-hyperalgesic cytokine production induced by G-CSF. Furthermore, rutin inhibited the activation of the nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), which might explain the inhibition of the cytokine production. Treatment with rutin upregulated the decreased mRNA expression of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) combined with enhancement of the mRNA expression of the Nrf2 downstream target heme oxygenase (HO-1). Intraperitoneal (i.p.) treatment with rutin did not alter the mobilization of neutrophils induced by G-CSF. The analgesia by rutin can be explained by: NO-cGMP-PKG-KATP channel signaling activation, inhibition of NFκB and triggering the Nrf2/HO-1 pathway. The present study demonstrates rutin as a promising pharmacological approach to treat the pain induced by G-CSF without impairing its primary therapeutic benefit of mobilizing hematopoietic progenitor cells into the blood.
Collapse
Affiliation(s)
- Thacyana T Carvalho
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Camila R Ferraz
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Marília F Manchope
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sergio M Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.,Center for Research in Health Science, University of Northern Paraná-UNOPAR, Rua Marselha, 591, Jardim Piza, Londrina, Paraná, CEP 86041-140, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Cassia Calixto-Campos
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, State University of Londrina, Avenida Robert Koch, 60, Hospital Universitário, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil. .,Department of Pathology, Center of Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
64
|
Nyqvist I, Andersson E, Dogan J. Role of Conformational Entropy in Molecular Recognition by TAZ1 of CBP. J Phys Chem B 2019; 123:2882-2888. [PMID: 30860376 DOI: 10.1021/acs.jpcb.9b01343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The globular transcriptional adapter zinc binding 1 (TAZ1) domain of CREB binding protein participates in protein-protein interactions that are involved in transcriptional regulation. TAZ1 binds numerous targets, of which many are intrinsically disordered proteins that undergo a disorder-to-order transition to various degrees. One such target is the disordered transactivation domain of transcription factor RelA (TAD-RelA), which with its interaction with TAZ1 is involved in transcriptional regulation of genes in NF-κB signaling. We have here performed nuclear magnetic resonance backbone and side-chain relaxation studies to investigate the influence of RelA-TA2 (residues 425-490 in TAD-RelA) binding on the subnanosecond internal motions of TAZ1. We find a considerable dynamic response on both the backbone and side-chain levels, which corresponds to a conformational entropy change that contributes significantly to the binding energetics. We further show that the microscopic origins of the dynamic response of TAZ1 vary depending on the target. This study demonstrates that folded protein domains that are able to interact with various targets are not dynamically passive but can have a significant role in the motional response upon target association.
Collapse
Affiliation(s)
- Ida Nyqvist
- Department of Biochemistry and Biophysics , Stockholm University , SE-10691 Stockholm , Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology , Uppsala University , SE-75123 Uppsala , Sweden
| | - Jakob Dogan
- Department of Biochemistry and Biophysics , Stockholm University , SE-10691 Stockholm , Sweden
| |
Collapse
|
65
|
SNW1, a Novel Transcriptional Regulator of the NF-κB Pathway. Mol Cell Biol 2019; 39:MCB.00415-18. [PMID: 30397075 DOI: 10.1128/mcb.00415-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) family of transcription factors plays a central role in coordinating the expression of genes that control inflammation, immune responses, cell proliferation, and a variety of other biological processes. In an attempt to identify novel regulators of this pathway, we performed whole-genome RNA interference (RNAi) screens in physiologically relevant human macrophages in response to lipopolysaccharide and tumor necrosis factor alpha (TNF-α). The top hit was SNW1, a splicing factor and transcriptional coactivator. SNW1 does not regulate the cytoplasmic components of the NF-κB pathway but complexes with the NF-κB heterodimer in the nucleus for transcriptional activation. We show that SNW1 detaches from its splicing complex (formed with SNRNP200 and SNRNP220) upon NF-κB activation and binds to NF-κB's transcriptional elongation partner p-TEFb. We also show that SNW1 is indispensable for the transcriptional elongation of NF-κB target genes such as the interleukin 8 (IL-8) and TNF genes. SNW1 is a unique protein previously shown to be involved in both splicing and transcription, and in this case, its role involves binding to the NF-κB-p-TEFb complex to facilitate transcriptional elongation of some NF-κB target genes.
Collapse
|
66
|
Abstract
The transcription factor NF-κB is a critical regulator of immune and inflammatory responses. In mammals, the NF-κB/Rel family comprises five members: p50, p52, p65 (Rel-A), c-Rel, and Rel-B proteins, which form homo- or heterodimers and remain as an inactive complex with the inhibitory molecules called IκB proteins in resting cells. Two distinct NF-κB signaling pathways have been described: 1) the canonical pathway primarily activated by pathogens and inflammatory mediators, and 2) the noncanonical pathway mostly activated by developmental cues. The most abundant form of NF-κB activated by pathologic stimuli via the canonical pathway is the p65:p50 heterodimer. Disproportionate increase in activated p65 and subsequent transactivation of effector molecules is integral to the pathogenesis of many chronic diseases such as the rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and even neurodegenerative pathologies. Hence, the NF-κB p65 signaling pathway has been a pivotal point for intense drug discovery and development. This review begins with an overview of p65-mediated signaling followed by discussion of strategies that directly target NF-κB p65 in the context of chronic inflammation.
Collapse
Affiliation(s)
- Sivagami Giridharan
- Department of Oral Medicine, Madha Dental College, Kundrathur, Chennai, TN, India
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA,
- Provaidya LLC, Indianapolis, IN, USA,
| |
Collapse
|
67
|
Higashimoto Y, Keicho N, Elliott WM, Hogg JC, Hayashi S. Effect of adenovirus E1A on ICAM-1 promoter activity in human alveolar and bronchial epithelial cells. Gene Expr 2018; 8:287-97. [PMID: 10947078 PMCID: PMC6157379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In previous studies we demonstrated that the E1A DNA and proteins of group C adenovirus are present in excess in the lungs of patients with chronic obstructive pulmonary disease (COPD). Because adenovirus EIA gene products are known to regulate the expression of many genes by interacting with cellular transcription factors, we postulated that E1A enhances the production of inflammatory mediators and exacerbates the inflammatory process in smokers' lungs. We reported that LPS-induced ICAM-1 expression in A549 cells is upregulated by E1A. In the current study we investigated whether this regulation is mediated through the ICAM-1 promoter. A549 cells and primary human bronchial epithelial (HBE) cells were transiently cotransfected with a plasmid containing the ICAM-1 enhancer-promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene (pBS-CAT-P) and either a plasmid carrying the adenovirus 5 E1A gene (pE1Aneo) or a control plasmid (pneo). To compare the effect of transient versus stable E1A expression on the activity of this promoter, we also transiently transfected stable E1A-expressing A549 cells with pBS-CAT-P. Transient cotransfection of pE1Aneo and pBS-CAT-P had no effect on basal ICAM-1 promoter activity in A549 or HBE cells. After stimulation of A549 cells with TNF-alpha, IFN-gamma, or LPS, promoter activity was increased by two- to threefold in the presence of adenovirus EIA. In HBE cells, on the other hand, E1A repressed the ICAM-1 promoter after stimulation with IFN-gamma and LPS with little change after TNF-alpha stimulation. In stable E1A transfectants, ICAM-1 promoter activity was 2 to 2.5 times higher than in control transfectants with or without stimulation with TNF-alpha or LPS. These findings suggest that EIA can modulate the activity of the ICAM-1 promoter in lung epithelial cells and this modulation is different in cells of alveolar origin compared to bronchial epithelial cells.
Collapse
Affiliation(s)
- Y. Higashimoto
- *University of British Columbia Pulmonary Research Laboratory, Vancouver, BC V6Z 1Y6Canada
| | - N. Keicho
- †Department of Respiratory Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655Japan
| | - W. M. Elliott
- *University of British Columbia Pulmonary Research Laboratory, Vancouver, BC V6Z 1Y6Canada
| | - J. C. Hogg
- *University of British Columbia Pulmonary Research Laboratory, Vancouver, BC V6Z 1Y6Canada
| | - S. Hayashi
- *University of British Columbia Pulmonary Research Laboratory, Vancouver, BC V6Z 1Y6Canada
- Address correspondence to Shizu Hayashi, U.B.C. Pulmonary Research Laboratory, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC Canada. Tel: (604) 806-8346; Fax: (604) 806-8351; E-mail:
| |
Collapse
|
68
|
Brockmann D, Pützer BM, Lipinski KS, Schmücker U, Esche H. A multiprotein complex consisting of the cellular coactivator p300, AP-1/ATF, as well as NF-kappaB is responsible for the activation of the mouse major histocompatibility class I (H-2K(b)) enhancer A. Gene Expr 2018; 8:1-18. [PMID: 10543727 PMCID: PMC6157354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Major histocompatibility complex (MHC) class I genes encode highly polymorphic antigens that play an essential role in a number of immunological processes. Their expression is activated in response to a variety of signals and is mediated through several promoter elements among which the enhancer A is one of the key control regions. It contains binding sites for several transcription factors, for example: (i) a well-characterized binding site for rel/NF-kappaB transcription factors in its 3'-end (the H2TF1 or kappaB1 element), (ii) a second kappaB site (the kappaB2 element), which is located immediately adjacent 5' to the H2TF1 element and which is recognized by p65/relA in the human HLA system, and (iii) an AP-1/ATF recognition sequence in the 5' end (EnA-TRE). Here we demonstrate that latter element is bound by at least two distinct heterodimers of the AP-1/ATF transcription factor family, namely c-Jun/ATF-2 and c-Jun/Fra2. Moreover, our data reveal that the enhancer A is simultaneously bound by AP-1/ATF and rel/NF-kappaB transcription factors and that the cellular coactivator p300, which enhances enhancer A-driven reporter gene expression if cotransfected, is recruited to the enhancer A through this multiprotein complex. In contrast to the complete enhancer A, neither the EnA-TRE nor the H2TF1 element on their own are able to confer activation on a heterologous promoter in response to the phorbol ester tumor promoter TPA or the cytokine TNFalpha. Moreover, deletion of any one of the enhancer A control elements results in a dramatic loss of its inducibility by TNFalpha, and point mutations in either the EnA-TRE or the H2TF1 element lead to the loss of AP-1/ATF or NF-kappaB binding, respectively, and to the loss of enhancer A inducibility. Therefore, we conclude that the enhancer A is synergistically activated through a multiprotein complex containing AP-1/ATF, NF-kappaB transcription factors as well as the cellular coactivator p300.
Collapse
Affiliation(s)
- D Brockmann
- Institute of Molecular Biology (Cancer Research), University of Essen Medical School, Germany.
| | | | | | | | | |
Collapse
|
69
|
Roebuck KA, Saifuddin M. Regulation of HIV-1 transcription. Gene Expr 2018; 8:67-84. [PMID: 10551796 PMCID: PMC6157391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is a highly pathogenic lentivirus that requires transcription of its provirus genome for completion of the viral life cycle and the production of progeny virions. Since the first genetic analysis of HIV-1 in 1985, much has been learned about the transcriptional regulation of the HIV-1 genome in infected cells. It has been demonstrated that HIV-1 transcription depends on a varied and complex interaction of host cell transcription factors with the viral long terminal repeat (LTR) promoter. The regulatory elements within the LTR interact with constitutive and inducible transcription factors to direct the assembly of a stable transcription complex that stimulates multiple rounds of transcription by RNA polymerase II (RNAPII). However, the majority of these transcripts terminate prematurely in the absence of the virally encoded trans-activator protein Tat, which stimulates HIV-1 transcription elongation by interacting with a stem-loop RNA element (TAR) formed at the extreme 5' end of all viral transcripts. The Tat-TAR interaction recruits a cellular kinase into the initiation-elongation complex that alters the elongation properties of RNAPII during its transit through TAR. This review summarizes our current knowledge and understanding of the regulation of HIV-1 transcription in infected cells and highlights the important contributions human lentivirus gene regulation has made to our general understanding of the transcription process.
Collapse
Affiliation(s)
- K A Roebuck
- Department of Immunology/Microbiology, Rush Presbyterian St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
70
|
Bocci M, Sjölund J, Kurzejamska E, Lindgren D, Marzouka NAD, Bartoschek M, Höglund M, Pietras K. Activin receptor-like kinase 1 is associated with immune cell infiltration and regulates CLEC14A transcription in cancer. Angiogenesis 2018; 22:117-131. [PMID: 30132150 PMCID: PMC6510886 DOI: 10.1007/s10456-018-9642-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Cancer cells sustain their metabolic needs through nutrients and oxygen supplied by the bloodstream. The requirement for tumor angiogenesis has been therapeutically exploited in the clinical setting mainly by means of inhibition of the vascular endothelial growth factor family of ligands and receptors. Despite promising results in preclinical models, the benefits for patients proved to be limited. Inadequate efficacy similarly halted the development of agents impinging on the activity of the activin receptor-like kinase (ALK)1, a member of the transforming growth factor-β superfamily. Notwithstanding its characterization as an endothelial cell marker, the full spectrum of biological processes associated with ALK1 is essentially unexplored. Here, we present data revealing the genetic network associated with ACVRL1 (the gene encoding for ALK1) expression in human cancer tissues. Computational analysis unveiled a hitherto unknown role for ACVRL1 in relation to genes modulating the functionality of the immune cell compartment. Moreover, we generated a signature of 8 genes co-expressed with ACVRL1 across different tumor types and characterized the c-type lectin domain containing protein (CLEC)14A as a potential downstream target of ACVRL1. Considering the lack of reagents for ALK1 detection that has hampered the field to date, our work provides the opportunity to validate the 8-gene signature and CLEC14A as biomarkers for ALK1 activity. Ultimately, this may help revisit the clinical development of already existing ALK1-blocking compounds as precision medicines for cancer.
Collapse
Affiliation(s)
- Matteo Bocci
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Ewa Kurzejamska
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Nour-Al-Dain Marzouka
- Unit of Urothelial Cancer Genomics, Department of Oncology and Pathology, Lund University, Scheelevägen 8, 22363, Lund, Sweden
| | - Michael Bartoschek
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden
| | - Mattias Höglund
- Unit of Urothelial Cancer Genomics, Department of Oncology and Pathology, Lund University, Scheelevägen 8, 22363, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden.
| |
Collapse
|
71
|
Jin S, Liao Q, Chen J, Zhang L, He Q, Zhu H, Zhang X, Xu J. TSC1 and DEPDC5 regulate HIV-1 latency through the mTOR signaling pathway. Emerg Microbes Infect 2018; 7:138. [PMID: 30087333 PMCID: PMC6081400 DOI: 10.1038/s41426-018-0139-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023]
Abstract
The latent reservoir of HIV-1 presents a major barrier to viral eradication. The mechanism of the establishment and maintenance of the latent viral reservoir is not yet fully understood, which hinders the development of effective curative strategies. In this study, we identified two inhibitory genes, TSC1 and DEPDC5, that maintained HIV-1 latency by suppressing the mTORC1 pathway. We first adapted a genome-wide CRISPR screening approach to identify host factors required for HIV latency in a T-cell-based latency model and discovered two inhibitory genes, TSC1 and DEPDC5, which are potentially involved in HIV-1 latency. Knockout of either TSC1 or DEPDC5 led to enhanced HIV-1 reactivation in both a T-cell line (C11) and a monocyte cell line (U1), and this enhancement could be antagonized by the mTORC1 inhibitor rapamycin. Further evaluation of the mechanism revealed that TSC1 suppresses AKT-mTORC1-S6 via downregulation of Rheb, whereas DEPDC5 inhibits AKT-mTORC1-S6 through RagA. Overall, both TSC1 and DEPDC5 negatively regulate the AKT-mTORC1 pathway, and thus their agonists could be used in the development of new therapeutic approaches for activating HIV-1 latency.
Collapse
Affiliation(s)
- Shan Jin
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China. .,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
72
|
Feng Y, Chu A, Luo Q, Wu M, Shi X, Chen Y. The Protective Effect of Astaxanthin on Cognitive Function via Inhibition of Oxidative Stress and Inflammation in the Brains of Chronic T2DM Rats. Front Pharmacol 2018; 9:748. [PMID: 30042685 PMCID: PMC6048598 DOI: 10.3389/fphar.2018.00748] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 01/21/2023] Open
Abstract
Currently, there are no effective treatments for diabetes-related cognitive dysfunction. Astaxanthin (AST), the most powerful antioxidant in nature, exhibits diverse biological functions. In this study, we tried to explore whether AST would ameliorate cognitive dysfunction in chronic type 2 diabetes mellitus (T2DM) rats. The T2DM rat model was induced via intraperitoneal injection of streptozotocin. Forty Wistar rats were divided into a normal control group, an acute T2DM group, a chronic T2DM group, and an AST group (treated with AST at a dose of 25 mg/kg three times a week). The Morris water maze test showed that the percentage of time spent in the target quadrant of the AST group was identical to that of the chronic T2DM group, while the escape latency of the AST group was decreased in comparison to that of the chronic T2DM group. Histology of the hippocampus revealed that AST ameliorated the impairment in the neurons of diabetic rats. Western blot showed that AST could upregulate nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression and inhibit nuclear transcription factor kappa B (NF-κB) p65 activation in the hippocampus. We found that AST increased the level of superoxide dismutase (SOD) and decreased the level of malondialdehyde (MDA) in the hippocampus. In addition, the levels of interleukin 1 beta (IL-1β) and interleukin 6 (IL-6) were reduced in the AST group compared with those in the chronic T2DM group. The findings of this research imply that AST might inhibit oxidative stress and inflammatory responses by activating the Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Aiqun Chu
- Department of General Medicine, Shihua Community Health Service Center, Shanghai, China
| | - Qiong Luo
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
73
|
Li J, Zuo B, Zhang L, Dai L, Zhang X. Osteoblast versus Adipocyte: Bone Marrow Microenvironment-Guided Epigenetic Control. CASE REPORTS IN ORTHOPEDIC RESEARCH 2018. [DOI: 10.1159/000489053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The commitment and differentiation of bone marrow mesenchymal stem cells (MSCs) is tightly controlled by the local environment ensuring lineage differentiation balance and bone homeostasis. However, pathological conditions linked with osteoporosis have changed the bone marrow microenvironment, shifting MSCs’ fate to favor adipocytes over osteoblasts, and consequently leading to decreased bone mass with marrow fat accumulation. Multiple questions related to the underlying mechanisms remain to be answered. As recent findings have confirmed the fundamental role of the epigenetic mechanism in connecting environmental signals with gene expression and stem cell differentiation, a regulatory network in the bone marrow microenvironment, epigenetic modulation, gene expression, and MSC differentiation begins to emerge. This review discusses how pathological environmental factors affect MSCs’ fate by epigenetic modulating lineage-specific genes. We conclude that manipulating local environments and/or the epigenetic regulatory machinery that target the adipocyte differentiation pathway might be a therapeutic implication of bone loss diseases such as osteoporosis.
Collapse
|
74
|
Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity 2018; 48:872-895. [PMID: 29768175 PMCID: PMC6196732 DOI: 10.1016/j.immuni.2018.04.030] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy can effectively block HIV-1 replication and prevent or reverse immunodeficiency in HIV-1-infected individuals. However, viral replication resumes within weeks of treatment interruption. The major barrier to a cure is a small pool of resting memory CD4+ T cells that harbor latent HIV-1 proviruses. This latent reservoir is now the focus of an intense international research effort. We describe how the reservoir is established, challenges involved in eliminating it, and pharmacologic and immunologic strategies for targeting this reservoir. The development of a successful cure strategy will most likely require understanding the mechanisms that maintain HIV-1 proviruses in a latent state and pathways that drive the proliferation of infected cells, which slows reservoir decay. In addition, a cure will require the development of effective immunologic approaches to eliminating infected cells. There is renewed optimism about the prospect of a cure, and the interventions discussed here could pave the way.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
75
|
Wang Y, Liu Y, Zhang M, Lv L, Zhang X, Zhang P, Zhou Y. LRRC15 promotes osteogenic differentiation of mesenchymal stem cells by modulating p65 cytoplasmic/nuclear translocation. Stem Cell Res Ther 2018. [PMID: 29523191 PMCID: PMC5845373 DOI: 10.1186/s13287-018-0809-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a reliable resource for bone regeneration and tissue engineering, but the molecular mechanisms of differentiation remain unclear. The tumor antigen 15-leucine-rich repeat containing membrane protein (LRRC15) is a transmembrane protein demonstrated to play important roles in cancer. However, little is known about its role in osteogenesis. This study was to evaluate the functions of LRRC15 in osteogenic differentiation of MSCs. Methods Osteogenic-induction treatment and the ovariectomized (OVX) model were performed to investigate the potential relationship between LRRC15 and MSC osteogenesis. A loss-of-function study was used to explore the functions of LRRC15 in osteogenic differentiation of MSCs in vitro and in vivo. NF-κB pathway inhibitor BAY117082, siRNA, nucleocytoplasmic separation, and ChIP assays were performed to clarify the molecular mechanism of LRRC15 in bone regulation. Results Our results first demonstrated that LRRC15 expression was upregulated upon osteogenic induction, and the level of LRRC15 was significantly decreased in OVX mice. Both in-vitro and in-vivo experiments detected that LRRC15 was required for osteogenesis of MSCs. Mechanistically, LRRC15 inhibited transcription factor NF-κB signaling by affecting the subcellular localization of p65. Further studies indicated that LRRC15 regulated osteogenic differentiation in a p65-dependent manner. Conclusions Taken together, our findings reveal that LRRC15 is an essential regulator for osteogenesis of MSCs through modulating p65 cytoplasmic/nuclear translocation, and give a novel hint for MSC-mediated bone regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-0809-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
76
|
PKCα-LSD1-NF-κB-Signaling Cascade Is Crucial for Epigenetic Control of the Inflammatory Response. Mol Cell 2018; 69:398-411.e6. [PMID: 29395062 DOI: 10.1016/j.molcel.2018.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 01/05/2023]
Abstract
The inflammatory response mediated by nuclear factor κB (NF-κB) signaling is essential for host defense against pathogens. Although the regulatory mechanism of NF-κB signaling has been well studied, the molecular basis for epigenetic regulation of the inflammatory response is poorly understood. Here we identify a new signaling axis of PKCα-LSD1-NF-κB, which is critical for activation and amplification of the inflammatory response. In response to excessive inflammatory stimuli, PKCα translocates to the nucleus and phosphorylates LSD1. LSD1 phosphorylation is required for p65 binding and facilitates p65 demethylation, leading to enhanced stability. In vivo genetic analysis using Lsd1SA/SA mice with ablation of LSD1 phosphorylation and chemical approaches in wild-type mice with inhibition of PKCα or LSD1 activity show attenuated sepsis-induced inflammatory lung injury and mortality. Together, we demonstrate that the PKCα-LSD1-NF-κB signaling cascade is crucial for epigenetic control of the inflammatory response, and targeting this signaling could be a powerful therapeutic strategy for systemic inflammatory diseases, including sepsis.
Collapse
|
77
|
Sun Y, Dai H, Chen S, Xu M, Wang X, Zhang Y, Xu S, Xu A, Weng J, Liu S, Wu L. Graphene oxide regulates cox2 in human embryonic kidney 293T cells via epigenetic mechanisms: dynamic chromosomal interactions. Nanotoxicology 2018; 12:117-137. [PMID: 29338479 DOI: 10.1080/17435390.2018.1425498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To extend the applications of engineered nanomaterials, such as graphene oxide (GO), it is necessary to minimize cytotoxicity. However, the mechanisms underlying this cytotoxicity are unclear. Dynamic chromosomal interactions have been used to illustrate the molecular bases of gene expression, which offers a more sensitive and cutting-edge technology to elucidate complex biological processes associated with epigenetic regulations. In this study, the role of GO-triggered chromatin interactions in the activation of cox2, a hallmark of inflammation, was investigated in normal human cells. Using chromosome conformation capture technology, we showed that GO triggers physical interactions between the downstream enhancer and the cox2 promoter in human embryonic kidney 293T (293T) via p65 and p300 complex-mediated dynamic chromatin looping, which was required for high cox2 expression. Moreover, tumor necrosis factor-α (TNF-α), located upstream of the p65 signaling pathway, contributed to the regulation of cox2 activation through dynamic chromatin architecture. Compared with pristine GO and aminated GO (GO-NH2), poly (acrylic acid)-functionalized GO (GO-PAA) induced a weaker inflammatory response and a weaker effect on chromatin architecture. Our results mechanistically link GO-mediated chromatin interactions with the regulation of cox2 and suggest that GO derivatives may minimize toxicity in practical applications.
Collapse
Affiliation(s)
- Yuxiang Sun
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Hui Dai
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,b University of Science and Technology of China , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Shaopeng Chen
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Ming Xu
- d State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Xuanyu Wang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Yajun Zhang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Shengmin Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - An Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| | - Jian Weng
- e Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials , Xiamen University , Xiamen , People's Republic of China
| | - Sijin Liu
- d State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Lijun Wu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , Anhui , People's Republic of China.,b University of Science and Technology of China , Hefei , Anhui , People's Republic of China.,c Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province , Hefei , Anhui , People's Republic of China
| |
Collapse
|
78
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
79
|
Huang Q, Ma C, Chen L, Luo D, Chen R, Liang F. Mechanistic Insights Into the Interaction Between Transcription Factors and Epigenetic Modifications and the Contribution to the Development of Obesity. Front Endocrinol (Lausanne) 2018; 9:370. [PMID: 30034368 PMCID: PMC6043677 DOI: 10.3389/fendo.2018.00370] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: The development of obesity is inseparable from genetic and epigenetic factors, and transcription factors (TFs) play an essential role in these two mechanisms. This review analyzes the interaction of TFs with epigenetic modifications and the epigenetic mechanisms underlying peroxisome proliferator-activated receptor (PPAR)γ, an important transcription factor, in the development of obesity. Methods: We describe the relationship between TFs and different epigenetic modifications and illustrate the several mechanisms described. Next, we summarize the epigenetic mechanisms of PPARs, an important class of transcription factors involved in obesity, that induce obesity with different triggering factors. Finally, we discuss the mechanisms of epigenetic modification of PPAR-related ligands in lipid metabolism and propose future avenues of research. Results: TFs participate in epigenetic modifications in different forms, causing changes in gene expression. The interactions between the different epigenetic modifications and PPARs are important biological developments that affect fat tissue differentiation, lipogenesis, and lipid metabolism, thereby inducing or inhibiting the development of obesity. We then highlight the need for more research to understand the role of epigenetic modifications and PPARs. Conclusions: Epigenetic mechanisms involved in the regulation of PPARs may be excellent therapeutic targets for obesity treatment. However, there is a need for a deeper understanding of how PPARs and other obesity-related transcription factors interact with epigenetic modifications.
Collapse
Affiliation(s)
- Qi Huang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| | - Chaoyang Ma
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong Science and Technology University, Wuhan, China
| | - Li Chen
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| | - Dan Luo
- Department of Traditional Chinese Medicine, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Rui Chen
- Department of Integrated TCM and Western Medicine, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan, China
- *Correspondence: Rui Chen
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
- Fengxia Liang
| |
Collapse
|
80
|
Gao J, Sun Y, Sun Y, Chen C, Kausar S, Tian J, Zhu B, Liu C. Identification and function of cAMP response element binding protein in Oak silkworm Antheraea pernyi. J Invertebr Pathol 2018; 151:14-20. [DOI: 10.1016/j.jip.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/23/2022]
|
81
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
82
|
Loss of HDAC-Mediated Repression and Gain of NF-κB Activation Underlie Cytokine Induction in ARID1A- and PIK3CA-Mutation-Driven Ovarian Cancer. Cell Rep 2017; 17:275-288. [PMID: 27681437 DOI: 10.1016/j.celrep.2016.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
ARID1A is frequently mutated in ovarian clear cell carcinoma (OCCC) and often co-exists with activating mutations of PIK3CA. Although induction of pro-inflammatory cytokines has been observed in this cancer, the mechanism by which the two mutations synergistically activate cytokine genes remains elusive. Here, we established an in vitro model of OCCC by introducing ARID1A knockdown and mutant PIK3CA into a normal human ovarian epithelial cell line, resulting in cell transformation and cytokine gene induction. We demonstrate that loss of ARID1A impairs the recruitment of the Sin3A-HDAC complex, while the PIK3CA mutation releases RelA from IκB, leading to cytokine gene activation. We show that an NF-κB inhibitor partly attenuates the proliferation of OCCC and improves the efficacy of carboplatin both in cell culture and in a mouse model. Our study thus reveals the mechanistic link between ARID1A/PIK3CA mutations and cytokine gene induction in OCCC and suggests that NF-κB inhibition could be a potential therapeutic option.
Collapse
|
83
|
Deng X, Zhou X, Deng Y, Liu F, Feng X, Yin Q, Gu Y, Shi S, Xu M. Thrombin Induces CCL2 Expression in Human Lung Fibroblasts via p300 Mediated Histone Acetylation and NF-KappaB Activation. J Cell Biochem 2017; 118:4012-4019. [PMID: 28407300 DOI: 10.1002/jcb.26057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023]
Abstract
Thrombin has been shown to play a key role in lung diseases such as pulmonary fibrosis via the induction of fibrotic cytokine- chemokine (CC motif) ligand-2 (CCL2) expression. We previously reported that transcription factor nuclear factor-κB (NF-κB) is responsible for thrombin-induced CCL2 expression in human lung fibroblasts (HLFs). Here, we extended our study to investigate the epigenetic regulation mechanism for thrombin-induced CCL2 expression in HLFs. HLFs were cultured in F-12 medium. CCL2 protein and mRNA levels were detected by ELISA and quantitative real-time PCR, respectively. Histone, histone acetyltransferases, and NF-κB binding to CCL2 promoter were detected by ChIP assay. NF-κB activation was detected by Western blotting. We revealed that increased binding of histone acetyltransferase p300 and acetylated histone H3 and H4 to CCL2 promoter are responsible for thrombin induced CCL2 expression in HLF cells. In addition, p300 inhibition attenuates both thrombin induced-CCL2 expression and histone H3 and H4 acetylation in HLFs, suggesting that p300 is involved in thrombin-induced CCL2 expression via hyperacetylating histone H3 and H4. Our data further showed that p300 also regulates CCL2 expression via interaction with NF-κB p65, as depletion of p300 inhibits both NF-κB p65 activation and its binding to CCL2 promoter. The findings strongly suggest that epigenetic dysregulation and the interaction between histone acetyltransferase and transcription factor may be responsible for thrombin induced-CCL2 expression in HLFs. Increased understanding of the epigenetic mechanisms of CCL2 regulation may provide opportunities for identifying novel molecular targets for therapeutic purposes. J. Cell. Biochem. 118: 4012-4019, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoling Deng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaoqiong Zhou
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yan Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Fan Liu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaofan Feng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Qi Yin
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yinzhen Gu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Songlin Shi
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Mingyan Xu
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Xiamen Medical College, Xiamen, 361000, Fujian Province, People's Republic of China
| |
Collapse
|
84
|
Liang Y, Wu Y, Chen X, Zhang S, Wang K, Guan X, Yang K, Li J, Bai Y. A novel long noncoding RNA linc00460 up-regulated by CBP/P300 promotes carcinogenesis in esophageal squamous cell carcinoma. Biosci Rep 2017; 37:BSR20171019. [PMID: 28939763 PMCID: PMC5964888 DOI: 10.1042/bsr20171019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is one of the leading causes of cancer-related mortality because of poor prognosis. Long noncoding RNAs (lncRNAs) have been gradually demonstrated to play critical roles in cancer development. We identified a novel long noncoding RNA named linc00460 by microarray analysis using esophageal squamous cell carcinoma (ESCC) clinical samples, which has not been studied before. Our research indicated that linc00460 was overexpressed in the majority of tumor tissues and ESCC cell lines. Linc00460 expression was positively correlated with ESCC TNM stage, lymph node metastasis, and predicted poor prognosis. In vitro experiments showed that linc00460 depletion suppressed ESCC cell growth through regulating cell proliferation and cell cycle; in additional, linc00460 depletion accelerated ESCC cell apoptosis. We further revealed that linc00460 overexpression was manipulated by transcriptional co-activator CBP/P300 through histone acetylation. Given the high expression and important biological functions of linc00460, we suggest that linc00460 works as an oncogene and might be a valuable prognostic biomarker for ESCC diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Liang
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Yuanyuan Wu
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Xuedan Chen
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Shixin Zhang
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Kai Wang
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Kang Yang
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Juan Li
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing, China
| |
Collapse
|
85
|
Komatsu W, Itoh K, Akutsu S, Kishi H, Ohhira S. Nasunin inhibits the lipopolysaccharide-induced pro-inflammatory mediator production in RAW264 mouse macrophages by suppressing ROS-mediated activation of PI3 K/Akt/NF-κB and p38 signaling pathways. Biosci Biotechnol Biochem 2017; 81:1956-1966. [DOI: 10.1080/09168451.2017.1362973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Nasunin is a major anthocyanin in eggplant peel. The purpose of this study was to examine the anti-inflammatory effects of nasunin in lipopolysaccharide (LPS)-stimulated RAW264 macrophages and to identify the molecular mechanisms underlying these effects. We found that nasunin reduced the LPS-induced secretion of tumor necrosis factor-α, interleukin-6 and nitric oxide, and expression of inducible nitric oxide synthase in a dose-dependent manner. Nasunin diminished LPS-induced nuclear factor-κB (NF-κB) activation by suppressing the degradation of inhibitor of κB-α and nuclear translocation of p65 subunit of NF-κB. Nasunin also attenuated the phosphorylation of Akt and p38, signaling molecules involved in pro-inflammatory mediator production. Moreover, nasunin inhibited the intracellular accumulation of ROS, leading to the suppression of NF-κB activation, Akt and p38 phosphorylation, and subsequent pro-inflammatory mediator production. These findings suggest that nasunin exerts an anti-inflammatory effect and this effect is mediated, at least in part, by its antioxidant activity.
Collapse
Affiliation(s)
- Wataru Komatsu
- Laboratory of International Environmental Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuko Itoh
- Food Technology Division, Industrial Technology Center of Tochigi Prefecture, Tochigi, Japan
| | - Satomi Akutsu
- Food Technology Division, Industrial Technology Center of Tochigi Prefecture, Tochigi, Japan
| | - Hisashi Kishi
- Laboratory of International Environmental Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Laboratory of International Environmental Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
86
|
NAP1L1 regulates NF-κB signaling pathway acting on anti-apoptotic Mcl-1 gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1759-1768. [DOI: 10.1016/j.bbamcr.2017.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023]
|
87
|
Lecoq L, Raiola L, Chabot PR, Cyr N, Arseneault G, Legault P, Omichinski JG. Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res 2017; 45:5564-5576. [PMID: 28334776 PMCID: PMC5435986 DOI: 10.1093/nar/gkx146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/25/2017] [Indexed: 01/27/2023] Open
Abstract
p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Luca Raiola
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Philippe R Chabot
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Arseneault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
88
|
Epigenetic regulation of interleukin-8 expression by class I HDAC and CBP in ovarian cancer cells. Oncotarget 2017; 8:70798-70810. [PMID: 29050320 PMCID: PMC5642595 DOI: 10.18632/oncotarget.19990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/09/2017] [Indexed: 12/11/2022] Open
Abstract
Although inhibitors of epigenetic regulators have been effective in the treatment of cutaneous T cell lymphoma (CTCL) and other hematopoietic malignancies, they have been less effective in solid tumors, including ovarian cancer (OC). We have previously shown that inhibition of histone deacetylase (HDAC) activity induces expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (CXCL8, IL-8) in OC cells, resulting in their increased survival and proliferation. Here, we show that in addition to ovarian cancer SKOV3, OVCAR3, and CAOV3 cells, HDAC inhibition induces the CXCL8 expression in HeLa cells, but not in CTCL Hut-78 cells. In OC cells, the CXCL8 expression is induced by pharmacological inhibition of class I HDACs. Interestingly, while an individual suppression of HDAC1, HDAC2, or HDAC3 by corresponding siRNAs inhibits the CXCL8 expression, their simultaneous suppression induces the CXCL8 expression. The induced CXCL8 expression in OC cells is dependent on histone acetyltransferase (HAT) activity of CREB-binding protein (CBP), but not p300, and is associated with HAT-dependent p65 recruitment to CXCL8 promoter. Together, our results show that the CXCL8 expression in OC cells is induced by combined inhibition of HDAC1, -2, and -3, and silenced by suppression of HAT activity of CBP. In addition, our data indicate that the induced CXCL8 expression may be responsible for the limited effectiveness of HDAC inhibitors in OC and perhaps other solid cancers characterized by CXCL8 overexpression, and suggest that targeting class I HDACs and CBP may provide novel combination strategies by limiting the induced CXCL8 expression.
Collapse
|
89
|
Turner AMW, Margolis DM. Chromatin Regulation and the Histone Code in HIV Latency
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:229-243. [PMID: 28656010 PMCID: PMC5482300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,To whom all correspondence should be addressed: David Margolis, University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, CB#7042, 120 Mason Farm Road, Chapel Hill, NC, 27599-7435, Tel: (919) 966-6388, .
| |
Collapse
|
90
|
Targeted Epigenetic Remodeling of the Cdk5 Gene in Nucleus Accumbens Regulates Cocaine- and Stress-Evoked Behavior. J Neurosci 2017; 36:4690-7. [PMID: 27122028 DOI: 10.1523/jneurosci.0013-16.2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/09/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Recent studies have implicated epigenetic remodeling in brain reward regions following psychostimulant or stress exposure. It has only recently become possible to target a given type of epigenetic remodeling to a single gene of interest, and to probe the functional relevance of such regulation to neuropsychiatric disease. We sought to examine the role of histone modifications at the murine Cdk5 (cyclin-dependent kinase 5) locus, given growing evidence of Cdk5 expression in nucleus accumbens (NAc) influencing reward-related behaviors. Viral-mediated delivery of engineered zinc finger proteins (ZFP) targeted histone H3 lysine 9/14 acetylation (H3K9/14ac), a transcriptionally active mark, or histone H3 lysine 9 dimethylation (H3K9me2), which is associated with transcriptional repression, specifically to the Cdk5 locus in NAc in vivo We found that Cdk5-ZFP transcription factors are sufficient to bidirectionally regulate Cdk5 gene expression via enrichment of their respective histone modifications. We examined the behavioral consequences of this epigenetic remodeling and found that Cdk5-targeted H3K9/14ac increased cocaine-induced locomotor behavior, as well as resilience to social stress. Conversely, Cdk5-targeted H3K9me2 attenuated both cocaine-induced locomotor behavior and conditioned place preference, but had no effect on stress-induced social avoidance behavior. The current study provides evidence for the causal role of Cdk5 epigenetic remodeling in NAc in Cdk5 gene expression and in the control of reward and stress responses. Moreover, these data are especially compelling given that previous work demonstrated opposite behavioral phenotypes compared with those reported here upon Cdk5 overexpression or knockdown, demonstrating the importance of targeted epigenetic remodeling tools for studying more subtle molecular changes that contribute to neuropsychiatric disease. SIGNIFICANCE STATEMENT Addiction and depression are highly heritable diseases, yet it has been difficult to identify gene sequence variations that underlie this heritability. Gene regulation via epigenetic remodeling is an additional mechanism contributing to the neurobiological basis of drug and stress exposure. In particular, epigenetic regulation of the Cdk5 gene alters responses to cocaine and stress in mouse and rat models. In this study, we used a novel technology, zinc-finger engineered transcription factors, to remodel histone proteins specifically at the Cdk5 gene. We found that this is sufficient to regulate the expression of Cdk5 and results in altered behavioral responses to cocaine and social stress. These data provide compelling evidence of the significance of epigenetic regulation in the neurobiological basis of reward- and stress-related neuropsychiatric disease.
Collapse
|
91
|
Kobayashi Y, Gélinas C, Dougherty JP. Histone deacetylase inhibitors containing a benzamide functional group and a pyridyl cap are preferentially effective human immunodeficiency virus-1 latency-reversing agents in primary resting CD4+ T cells. J Gen Virol 2017; 98:799-809. [PMID: 28113052 PMCID: PMC5657027 DOI: 10.1099/jgv.0.000716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antiretroviral therapy (ART) can control human immunodeficiency virus-1 (HIV-1) replication in infected individuals. Unfortunately, patients remain persistently infected owing to the establishment of latent infection requiring that ART be maintained indefinitely. One strategy being pursued involves the development of latency-reversing agents (LRAs) to eliminate the latent arm of the infection. One class of molecules that has been tested for LRA activity is the epigenetic modulating compounds histone deacetylases inhibitors (HDACis). Previously, initial screening of these molecules typically commenced using established cell models of viral latency, and although certain drugs such as the HDACi suberoylanilide hydroxamic acid demonstrated strong activity in these models, it did not translate to comparable activity with patient samples. Here we developed a primary cell model of viral latency using primary resting CD4+ T cells infected with Vpx-complemented HIV-1 and found that the activation profile using previously described LRAs mimicked that obtained with patient samples. This primary cell model was used to evaluate 94 epigenetic compounds. Not surprisingly, HDACis were found to be the strongest activators. However, within the HDACi class, the most active LRAs with the least pronounced toxicity contained a benzamide functional moiety with a pyridyl cap group, as exemplified by the HDACi chidamide. The results indicate that HDACis with a benzamide moiety and pyridyl cap group should be considered for further drug development in the pursuit of a successful viral clearance strategy.
Collapse
Affiliation(s)
- Yoshifumi Kobayashi
- Department of Molecular Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Céline Gélinas
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Joseph P Dougherty
- Department of Molecular Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
92
|
Abstract
SIGNIFICANCE Monocytes and macrophages are key players in tissue homeostasis and immune responses. Epigenetic processes tightly regulate cellular functioning in health and disease. Recent Advances: Recent technical developments have allowed detailed characterizations of the transcriptional circuitry underlying monocyte and macrophage regulation. Upon differentiation and activation, enhancers are selected by lineage-determining and signal-dependent transcription factors. Enhancers are shown to be very dynamic and activation of these enhancers underlies the differences in gene transcription between monocytes and macrophages and their subtypes. CRITICAL ISSUES It has been shown that epigenetic enzymes regulate the functioning of these cells and targeting of epigenetic enzymes has been proven to be a valuable tool to dampen inflammatory responses. We give a comprehensive overview of recent developments and understanding of the epigenetic pathways that control monocyte and macrophage function and of the epigenetic enzymes involved in monocyte and macrophage differentiation and activation. FUTURE DIRECTIONS The key challenges in the upcoming years will be to study epigenetic changes in human disease and to better understand how epigenetic pathways control the inflammatory repertoire in disease. Antioxid. Redox Signal. 25, 758-774.
Collapse
Affiliation(s)
- Marten A Hoeksema
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
93
|
Gudkov AV, Komarova EA. p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026161. [PMID: 27549311 DOI: 10.1101/cshperspect.a026161] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is a major cancer predisposition factor. Constitutive activation of the inflammation-driving NF-κB pathway commonly observed in cancer or developed in normal tissues because of persistent infections or endogenous tissue irritating factors, including products of secretion by senescent cells accumulating with age, markedly represses p53 functions. In its turn, p53 acts as a suppressor of inflammation helping to keep it within safe limits. The antagonistic relationship between p53 and NF-κB is controlled by multiple mechanisms and reflects cardinal differences in organismal responses to intrinsic and extrinsic cell stresses driven by these two transcription factors, respectively. This provides an opportunity for developing drugs to treat diseases associated with inappropriate activity of either p53 or NF-κB through targeting the opposing pathway. Several drug candidates of this kind are currently in clinical testing. These include anticancer small molecules capable of simultaneous suppression of p53 and activation of NF-κB and NF-κB-activating biologics that counteract p53-mediated pathologies associated with systemic genotoxic stresses such as acute radiation syndrome and side effects of cancer treatment.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Elena A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
94
|
MTUS1 silencing promotes E-selectin production through p38 MAPK-dependent CREB ubiquitination in endothelial cells. J Mol Cell Cardiol 2016; 101:1-10. [PMID: 27789289 DOI: 10.1016/j.yjmcc.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endothelial cell activation is thought to be a key event in atherosclerosis. p38 mitogen-activated protein kinase (p38 MAPK) plays an important role in regulating pro-inflammatory cytokine production in endothelial cells (ECs), however, how p38 MAPK is controlled in EC activation remain unclear. In this study, we investigated the effect of mitochondrial tumor suppressor 1 (MTUS1) on p38 MAPK activation, cytokine induction and the underlying molecular mechanisms in ECs. METHODS AND RESULTS Using qPCR and ELISA methods, we found that knockdown of MTUS1 led to a marked increase in the mRNA and protein expression of E-selectin (SELE) and monocyte chemotactic protein-1 in ECs, which is accompanied with increased phosphorylation of p38 MAPK (Thr180/Tyr182), MKK3/6 (Ser 189) and IκBα (Ser 32). Using luciferase reporter assay, we found that MTUS1 silencing also activated NF-κB transcriptional activity. The inhibition of p38 MAPK and NF-κB pathway was shown to abrogate MTUS1 silencing-induced cytokine expression in ECs. Furthermore, MTUS1 silencing induced p38 MAPK-dependent ubiquitination of cAMP-response element binding protein (CREB) which potentiated CREB-binding protein-mediated NF-κB p65 acetylation and binding to the promoter of the SELE gene. Conversely, adenovirus-mediated overexpression of MTUS1 inhibited p38 MAPK activation in ECs in vitro and in vivo. Importantly, decreased expression of MTUS1 and CREB, accompanied with induced activation of p38 MAPK were observed in aortas of apoE-/- mice after high-fat diet challenge. CONCLUSIONS Our findings showed that MTUS1 regulates the p38 MAPK-mediated cytokine production in ECs. MTUS1 gene probably plays a protective role against pro-inflammatory response of ECs.
Collapse
|
95
|
Sandoval J, Pereda J, Pérez S, Finamor I, Vallet-Sánchez A, Rodríguez JL, Franco L, Sastre J, López-Rodas G. Epigenetic Regulation of Early- and Late-Response Genes in Acute Pancreatitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4137-4150. [PMID: 27798150 DOI: 10.4049/jimmunol.1502378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
Chromatin remodeling seems to regulate the patterns of proinflammatory genes. Our aim was to provide new insights into the epigenetic mechanisms that control transcriptional activation of early- and late-response genes in initiation and development of severe acute pancreatitis as a model of acute inflammation. Chromatin changes were studied by chromatin immunoprecipitation analysis, nucleosome positioning, and determination of histone modifications in promoters of proinflammatory genes in vivo in the course of taurocholate-induced necrotizing pancreatitis in rats and in vitro in rat pancreatic AR42J acinar cells stimulated with taurocholate or TNF-α. Here we show that the upregulation of early and late inflammatory genes rely on histone acetylation associated with recruitment of histone acetyltransferase CBP. Chromatin remodeling of early genes during the inflammatory response in vivo is characterized by a rapid and transient increase in H3K14ac, H3K27ac, and H4K5ac as well as by recruitment of chromatin-remodeling complex containing BRG-1. Chromatin remodeling in late genes is characterized by a late and marked increase in histone methylation, particularly in H3K4. JNK and p38 MAPK drive the recruitment of transcription factors and the subsequent upregulation of early and late inflammatory genes, which is associated with nuclear translocation of the early gene Egr-1 In conclusion, specific and strictly ordered epigenetic markers such as histone acetylation and methylation, as well as recruitment of BRG-1-containing remodeling complex are associated with the upregulation of both early and late proinflammatory genes in acute pancreatitis. Our findings highlight the importance of epigenetic regulatory mechanisms in the control of the inflammatory cascade.
Collapse
Affiliation(s)
- Juan Sandoval
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Azahara Vallet-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain.,Institute of Health Research INCLIVA (Foundation for Research of the Clinic Hospital of the "Comunidad Valenciana"), 46010 Valencia, Spain
| | - José Luis Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain.,Institute of Health Research INCLIVA (Foundation for Research of the Clinic Hospital of the "Comunidad Valenciana"), 46010 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; and
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Valencia, 46100 Valencia, Spain.,Institute of Health Research INCLIVA (Foundation for Research of the Clinic Hospital of the "Comunidad Valenciana"), 46010 Valencia, Spain
| |
Collapse
|
96
|
Bravo Cruz AG, Shisler JL. Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation. J Gen Virol 2016; 97:2691-2702. [DOI: 10.1099/jgv.0.000576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ariana G. Bravo Cruz
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Joanna L. Shisler
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
97
|
Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol 2016; 7:378. [PMID: 27713747 PMCID: PMC5031610 DOI: 10.3389/fimmu.2016.00378] [Citation(s) in RCA: 463] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Besides its important role in embryonic development and homeostatic self-renewal in adult tissues, Wnt/β-catenin signaling exerts both anti-inflammatory and proinflammatory functions. This is, at least partially, due to either repressing or enhancing the NF-κB pathway. Similarly, the NF-κB pathway either positively or negatively regulates Wnt/β-catenin signaling. Different components of the two pathways are involved in this crosstalk, forming a complex regulatory network. This review summarizes our current understanding of the molecular mechanisms underlying the cross-regulation between the two pathways and discusses their involvement in inflammation and inflammation-associated diseases such as cancer.
Collapse
Affiliation(s)
- Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital Clinical Stem Cell Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich , Zurich , Switzerland
| |
Collapse
|
98
|
Yoza BK, Hu JYQ, McCall CE. Inhibition of histone deacetylation enhances endotoxin-stimulated transcription but does not reverse endotoxin tolerance. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080020401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Covalent modification of histones and the subsequent remodeling of chromatin have emerged as important mechanisms in regulating gene expression. In particular, recent identification of the enzyme families responsible for the steady-state balance of histone acetylation has served to redefine our understanding of these modifications as fundamental biochemical processes regulating transcription. Current evidence suggests that histone acetylation correlates positively with gene activation, while histone deacetylation acts to repress transcription. In this study, we examined the role of histone modification in the inflammatory response to endotoxin. We focused on the endotoxin-stimulated expression of the interleukin-1β promoter and tested the hypotheses that persistent histone deacetylation was responsible for the decreased expression of this promoter observed after prolonged exposure to endotoxin, a manifestation of a phenomenon known as endotoxin tolerance. We found that histone deacetylase inhibitors enhanced endotoxin-stimulated transcription; however, deacetylation inhibitors could neither block the development of tolerance nor restore endotoxin sensitivity in a tolerant cell. Deacetylase inhibitors could not restore LPS-mediated transcription in tolerant cells. These results show that histone acetylation/deacetylation regulates, at least in part, the endotoxin-induced expression of inflammatory genes and that repressed transcription observed in endotoxin tolerance is not caused by enhanced activity of histone deacetylases.
Collapse
Affiliation(s)
- Barbara K. Yoza
- Department of Medicine, Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA,
| | - Jean Y.-Q. Hu
- Department of Medicine, Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Charles E. McCall
- Department of Medicine, Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
99
|
Zhang C, Su ZY, Wang L, Shu L, Yang Y, Guo Y, Pung D, Bountra C, Kong AN. Epigenetic blockade of neoplastic transformation by bromodomain and extra-terminal (BET) domain protein inhibitor JQ-1. Biochem Pharmacol 2016; 117:35-45. [PMID: 27520485 DOI: 10.1016/j.bcp.2016.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
Abstract
The neoplastic transformation of cells and inflammation are processes that contribute to tumor initiation. Recently, emerging evidence has suggested that epigenetic alterations are also implicated in the early stages of carcinogenesis. Therefore, potent small molecules targeting epigenetic regulators have been developed as novel cancer therapeutic and preventive strategies. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that play key roles at the interface between chromatin modification and transcriptional regulation. In this study, we investigated the effect of the BET inhibitor JQ-1 on malignant transformation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse skin epidermal JB6 P+ cells. Treatment with JQ-1 effectively impaired TPA-induced colony formation in vitro. At the molecular level, the expression of several key TPA-induced pro-survival and pro-proliferative genes (Bcl2, Cyclin D1, and c-Myc) decreased rapidly after BET inhibition. In addition, JQ-1 treatment attenuated the activation of inflammatory NF-κB signaling triggered by TPA. Luciferase reporter assays using plasmids carrying different elements from the COX2 or IL6 promoters demonstrated that JQ-1 does not directly inhibit interactions between NF-κB and its binding sequence; rather, it affects CRE-element-associated transcriptional enhancement. Through siRNA gene silencing, we found that JQ-1 inhibits the p300-dependent transcriptional activation of COX2, which correlates with the results of the luciferase assay. Chromatin immunoprecipitation assays showed that TPA elevated H3K27Ac enrichment in the COX2 promoter region, which is mediated by p300, and Brd4. JQ-1 treatment did not change H3K27Ac levels but decreased the recruitment of Brd4 and RNA Polymerase II. Collectively, our study reveals that the BET inhibitor JQ-1 exerts potent anti-cancer and anti-inflammatory effects by interfering with the core transcriptional program of neoplastic transformation.
Collapse
Affiliation(s)
- Chengyue Zhang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Zheng-Yuan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, China
| | - Limin Shu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Douglas Pung
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Chas Bountra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, UK
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA.
| |
Collapse
|
100
|
Jayaraman S, Doucet M, Lau WM, Kominsky SL. CITED2 Modulates Breast Cancer Metastatic Ability through Effects on IKKα. Mol Cancer Res 2016; 14:730-9. [PMID: 27216153 PMCID: PMC4987170 DOI: 10.1158/1541-7786.mcr-16-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Previously, we identified the transcriptional coactivator CITED2 as a potential facilitator of bone metastasis using a murine mammary cancer model. Extending these studies to human breast cancer, it was observed that CITED2 mRNA expression was significantly elevated in patient specimens of metastatic breast cancer relative to primary tumors, with highest levels in metastasis to bone relative to non-bone sites. To further evaluate CITED2 functions in breast cancer metastasis, CITED2 expression was stably reduced in the human breast cancer cell lines MDA-MB-231 and MDA-MB-468, which are metastatic in animal models. While CITED2 knockdown had no effect on cell proliferation, cell migration and invasion were significantly reduced, as was the establishment of metastasis following intracardiac administration in athymic nude mice. To explore the mechanism behind these effects, gene expression following CITED2 knockdown in MDA-MB-231 cells by cDNA microarray was performed. As confirmed at the mRNA and protein levels in both MDA-MB-231 and MDA-MB-468 cells, expression of the NF-κB regulator IKKα was significantly reduced, along with several NF-κB targets with known roles in metastasis (OPN, MMP9, uPA, SPARC, IL11, and IL1β). Furthermore, ChIP assay revealed recruitment of CITED2 to the promoter of IKKα, indicating a direct role in regulating its expression. Consistent with reduced IKKα expression, CITED2 knockdown inhibited both canonical and noncanonical NF-κB signaling. Finally, restoration of IKKα expression following CITED2 knockdown in MDA-MB-231 and MDA-MB-468 cells rescued their invasive ability. Collectively, these data demonstrate that CITED2 modulates metastatic ability in human breast cancer cells, at least in part, through the regulation of IKKα. IMPLICATIONS The current study highlights the role of CITED2 in facilitating breast cancer metastasis, partly via regulation of IKKα. Mol Cancer Res; 14(8); 730-9. ©2016 AACR.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michele Doucet
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wen Min Lau
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Scott L Kominsky
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|