51
|
El-Shafeey ESI, Ghareeb RY, Abd-Elhady MA, Abd-Elhady SH, Salem MS. Defense-related genes induced by application of silver nanoparticles, ascorbic acid and salicylic acid for enhancing the immune response system of eggplant against invasion of root–knot nematode, Meloidogyne javanica. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | - Rehab Yassin Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SARTA, City), Alexandria, Egypt
| | | | - Suhier Hamed Abd-Elhady
- Nematology Research Section, Plant Pathology Institute, Agricultural Research Center, Giza, Egypt
| | - Marwa Sameer Salem
- Nematology Research Section, Plant Pathology Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
52
|
Ali M, Tumbeh Lamin-Samu A, Muhammad I, Farghal M, Khattak AM, Jan I, ul Haq S, Khan A, Gong ZH, Lu G. Melatonin Mitigates the Infection of Colletotrichum gloeosporioides via Modulation of the Chitinase Gene and Antioxidant Activity in Capsicum annuum L. Antioxidants (Basel) 2020; 10:antiox10010007. [PMID: 33374725 PMCID: PMC7822495 DOI: 10.3390/antiox10010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most damaging pepper (Capsicum annum L.) disease. Melatonin induces transcription of defense-related genes that enhance resistance to pathogens and mediate physiological activities in plants. To study whether the melatonin-mediated pathogen resistance is associated with chitinase gene (CaChiIII2), pepper plants and Arabidopsis seeds were treated with melatonin, then CaChiIII2 activation, hydrogen peroxide (H2O2) levels, and antioxidant enzymes activity during plant–pathogen interactions were investigated. Melatonin pretreatment uncoupled the knockdown of CaChiIII2 and transiently activated its expression level in both control and CaChiIII2-silenced pepper plants and enhanced plant resistance. Suppression of CaChiIII2 in pepper plants showed a significant decreased in the induction of defense-related genes and resistance to pathogens compared with control plants. Moreover, melatonin efficiently enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhanced the activities of antioxidant enzymes, which possibly improved disease resistance. The activation of the chitinase gene CaChiIII2 in transgenic Arabidopsis lines was elevated under C. gloeosporioides infection and exhibited resistance through decreasing H2O2 biosynthesis and maintaining H2O2 at a steady-state level. Whereas melatonin primed CaChiIII2-overexpressed (OE) and wild-type (WT) Arabidopsis seedlings displayed a remarkable increase in root-length compared to the unprimed WT plants. Using an array of CaChiIII2 knockdown and OE, we found that melatonin efficiently induced CaChiIII2 and other pathogenesis-related genes expressions, responsible for the innate immunity response of pepper against anthracnose disease.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Anthony Tumbeh Lamin-Samu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
| | - Izhar Muhammad
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Mohamed Farghal
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar 25120, Pakistan; (A.M.K.); (S.u.H.)
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa 9291, Pakistan;
| | - Saeed ul Haq
- Department of Horticulture, The University of Agriculture, Peshawar 25120, Pakistan; (A.M.K.); (S.u.H.)
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Correspondence: (Z.-H.G.); (G.L.)
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.); (A.T.L.-S.); (M.F.)
- Correspondence: (Z.-H.G.); (G.L.)
| |
Collapse
|
53
|
Tu R, Wang H, Liu Q, Wang D, Zhou X, Xu P, Zhang Y, Wu W, Chen D, Cao L, Cheng S, Shen X. Characterization and genetic analysis of the oshpl3 rice lesion mimic mutant showing spontaneous cell death and enhanced bacterial blight resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:94-104. [PMID: 32535325 DOI: 10.1016/j.plaphy.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Plant lesion mimic mutants have been used as ideal materials for studying pathogen defense mechanisms due to their spontaneous activation of defense responses in plants. Here, we report the identification and characterization of a rice lesion mimic mutant, oshpl3. The oshpl3 mutant initially displayed white spots on leaves of 7-day-old seedlings, and the white spots gradually turned into large brown spots during plant development, accompanied by poor metrics of major agronomic traits. Histochemical analysis showed that spontaneous cell death and H2O2 hyperaccumulation occurred in oshpl3. Defense responses were induced in the oshpl3 mutant, such as enhanced ROS signaling activated by recognition of pathogen-associated molecular patterns, and also upregulated expression of genes involved in pathogenesis and JA metabolism. These defense responses enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae. The mutated gene was identified as OsHPL3 (LOC_Os02g02000) by map-based cloning. A G1006A mutation occurred in OsHPL3, causing a G-to-D mutation of the 295th amino acid in the transmembrane region of OsHPL3. OsHPL3 localized to the chloroplast, cytoplasm, and another unknown organelle, while the mutated protein OsHPL3G295D was not obviously observed in the chloroplast, suggesting that the G295D mutation affected its chloroplast localization. Based on our findings, the G295D mutation in OsHPL3 is most likely responsible for the phenotypes of the oshpl3 mutant. Our results provide new clues for studying the function of the OsHPL3 protein.
Collapse
Affiliation(s)
- Ranran Tu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Hong Wang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Dongfei Wang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Xingpeng Zhou
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peng Xu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yinxing Zhang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xihong Shen
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
54
|
Hajiboland R, Sadeghzadeh N, Moradtalab N, Aliasgharzad N, Schweikert K, Poschenrieder C. The arbuscular mycorrhizal mycelium from barley differentially influences various defense parameters in the non-host sugar beet under co-cultivation. MYCORRHIZA 2020; 30:647-661. [PMID: 32691151 DOI: 10.1007/s00572-020-00978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The interactions between arbuscular mycorrhizal fungi (AMF) and non-host species are poorly studied. Particularly scarce is information on members of the Amaranthaceae/Chenopodiaceae family. Sugar beet (Beta vulgaris) plants were co-cultivated with a host species (Hordeum vulgare) in the presence (+AMF) or absence of Rhizophagus intraradices to explore the hypothesis that the presence of an active, pre-established AMF mycelium induces defense responses in the non-host species. Biomass of sugar beet did not respond to the +AMF treatment, while its root exudation of organic acids and phenolic acids was drastically decreased upon co-cultivation with +AMF barley. The most conspicuous effect was observed on a wide range of potential defense parameters being differentially influenced by the +AMF treatment in this non-host species. Antioxidant defense enzymes were activated and the level of endogenous jasmonic acid was elevated accompanied by nitric oxide accumulation and lignin deposition in the roots after long-term +AMF treatment. In contrast, significant reductions in the levels of endogenous salicylic acid and tissue concentration and exudation of phenolic acids indicated that AM fungus hyphae in the substrate did not induce a hypersensitive-type response in the sugar beet roots and downregulated certain chemical defenses. Our results imply that the fitness of this non-host species is not reduced when grown in the presence of an AMF mycelium because of balanced defense costs. Further studies should address the question of whether or not such modulation of defense pattern influences the pest resistance of sugar beet plants under field conditions.
Collapse
Affiliation(s)
- Roghieh Hajiboland
- Department of Plant Science, Faculty of Natural Science, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Noushin Sadeghzadeh
- Department of Plant Science, Faculty of Natural Science, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Narges Moradtalab
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | | | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
55
|
Torun H, Novák O, Mikulík J, Pěnčík A, Strnad M, Ayaz FA. Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Sci Rep 2020; 10:13886. [PMID: 32807910 PMCID: PMC7431421 DOI: 10.1038/s41598-020-70807-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/03/2020] [Indexed: 01/19/2023] Open
Abstract
Cross-talk between exogenous salicylic acid (SA) and endogenous phytohormone pathways affects the antioxidant defense system and its response to salt stress. The study presented here investigated the effects of SA treatment before and during salt stress on the levels of endogenous plant growth regulators in three barley cultivars with different salinity tolerances: Hordeum vulgare L. cvs. Akhisar (sensitive), Erginel (moderate), and Kalaycı (tolerant). The cultivars' relative leaf water contents, growth parameters, proline contents, chlorophyll a/b ratios, and lipid peroxidation levels were measured, along with the activities of enzymes involved in detoxifying reactive oxygen species (ROS) including superoxide-dismutase, peroxidase, catalase, ascorbate-peroxidase, and glutathione-reductase. In addition, levels of several endogenous phytohormones (indole-3-acetic-acid, cytokinins, abscisic acid, jasmonic acid, and ethylene) were measured. Barley is known to be more salt tolerant than related plant species. Accordingly, none of the studied cultivars exhibited changes in membrane lipid peroxidation under salt stress. However, they responded differently to salt-stress with respect to their accumulation of phytohormones and antioxidant enzyme activity. The strongest and weakest increases in ABA and proline accumulation were observed in Kalaycı and Akhisar, respectively, suggesting that salt-stress was more effectively managed in Kalaycı. The effects of exogenous SA treatment depended on both the timing of the treatment and the cultivar to which it was applied. In general, however, where SA helped mitigate salt stress, it appeared to do so by increasing ROS scavenging capacity and antioxidant enzyme activity. SA treatment also induced changes in phytohormone levels, presumably as a consequence of SA-phytohormone salt-stress cross-talk.
Collapse
Affiliation(s)
- Hülya Torun
- Faculty of Agriculture and Natural Science, Düzce University, Düzce, Turkey.
- Faculty of Science, Karadeniz Technical University, Trabzon, Turkey.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Jaromír Mikulík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Faik Ahmet Ayaz
- Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
56
|
Li D, Batchelor WD, Zhang D, Miao H, Li H, Song S, Li R. Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLoS One 2020; 15:e0237536. [PMID: 32790719 PMCID: PMC7425870 DOI: 10.1371/journal.pone.0237536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Melatonin is effective in enhancing various abiotic stress resistances of plants. However, its underlying mechanisms in drought-resistance in winter wheat (Triticum aestivum L.) is not clear. The goal of this work was to investigate the effect of melatonin on seed germination and to evaluate leaf antioxidant physiology for two wheat varieties. Experiments included 20% PEG, melatonin plus 20% PEG and a control using two contrasting wheat varieties (JM22– drought sensitive and HG35– drought resistant). Melatonin levels were 0, 1, 10, 100 and 300 μmol L-1. Results revealed that 300 μmol L-1 of melatonin alleviated the negative effect of water stress on germination and increased radicle length, radicle number, and plumule length of the germinated seeds. Principal component analysis showed a significant change in amino acid content during germination and this change was dependent on melatonin concentration and the variety. Lysine (Lys) content in wheat seeds under the PEG plus 300 μmol L-1 melatonin treatment increased compared with that of the seeds under PEG alone. There was a significant and positive correlation between Lys content and morphological index of germination. During seedling growth, soluble protein was involved in osmotic adjustment and superoxide dismutase (SOD) activity was increased to mitigate the damage in the cytomembrane of JM 22 leaf under 300 μmol L-1 melatonin plus PEG treatment. The effect of melatonin was dependent on SOD activity increasing significantly for HG35—a drought resistant variety. The results of this work lays a foundation for further studies to determine if melatonin can be economically used to mitigate the impact of dry planting conditions on wheat productivity in North China Plain.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - William D. Batchelor
- Biosystems Engineering Department, Auburn University, Auburn, Alabama, United States of America
| | - Di Zhang
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Hanxiao Miao
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Hongye Li
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Shijia Song
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ruiqi Li
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
- * E-mail:
| |
Collapse
|
57
|
Wang J, Ling L, Cai H, Guo C. Gene-wide identification and expression analysis of the PMEI family genes in soybean (Glycine max). 3 Biotech 2020; 10:335. [PMID: 32656068 DOI: 10.1007/s13205-020-02328-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022] Open
Abstract
Pectin Methylesterase Inhibitors (PMEI) gene family is widely spread in plants and plays crucial roles in plant development as well as biotic and abiotic stress response. However, little information was known about the function of PMEI genes in soybean. Herein, we identified 170 PMEI genes in soybean. These PMEI genes were divided into four groups (I-IV) based on phylogenetic analysis, and they were unevenly distributed in 18 soybean chromosomes. Gene structures and motif pattern analyses revealed that the PMEI genes in the same group showed the same characteristics. For the GmPMEI genes, gene duplication events occurred broadly, 52 pairs tandem duplication events and 55 pairs segmental duplication events suggested that the GmPMEI genes had high homology. Besides, the PMEI genes presented different expression patterns in different tissues, while several of these genes were expressed only in flowers. Under the biotic and abiotic stresses, PMEI genes had significant positive impact on the tolerance ability of soybean, and the ABA-responsive elements and SA-responsive elements played vital roles in responding to a variety of stresses. This study provides insights into the evolution and potential functions of GmPMEIs.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025 China
- Heilongjiang Vocational College of Biology Science and Technology, Harbin, China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025 China
| | - He Cai
- Mudanjiang Normal University, Mudanjiang, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025 China
| |
Collapse
|
58
|
Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress. Sci Rep 2020; 10:12240. [PMID: 32699288 PMCID: PMC7376168 DOI: 10.1038/s41598-020-69253-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/29/2020] [Indexed: 11/24/2022] Open
Abstract
Tea plant often suffers from low temperature induced damage during its growth. How to improve the cold resistance of tea plant is an urgent problem to be solved. Nitric oxide (NO), γ-aminobutyric acid (GABA) and proline have been proved that can improve the cold resistance of tea plants, and signal transfer and biosynthesis link between them may enhance their function. NO is an important gas signal material in plant growth, but our understanding of the effects of NO on the GABA shunt, proline and NO biosynthesis are limited. In this study, the tea roots were treated with a NO donor (SNAP), NO scavenger (PTIO), and NO synthase inhibitor (L-NNA). SNAP could improve activities of arginine decarboxylase, ornithine decarboxylase, glutamate decarboxylase, GABA transaminase and Δ1-pyrroline-5-carboxylate synthetase and the expression level of related genes during the treatments. The contents of putrescine and spermidine under SNAP treatment were 45.3% and 37.3% higher compared to control at 24 h, and the spermine content under PTIO treatment were 57.6% lower compare to control at 12 h. Accumulation of proline of SNAP and L-NNA treatments was 52.2% and 43.2% higher than control at 48 h, indicating other pathway of NO biosynthesis in tea roots. In addition, the NO accelerated the consumption of GABA during cold storage. These facts indicate that NO enhanced the cold tolerance of tea, which might regulate the metabolism of the GABA shunt and of proline, associated with NO biosynthesis.
Collapse
|
59
|
Xing Z, Wu X, Zhao J, Zhao X, Zhu X, Wang Y, Fan H, Chen L, Liu X, Duan Y. Isolation and identification of induced systemic resistance determinants from Bacillus simplex Sneb545 against Heterodera glycines. Sci Rep 2020; 10:11586. [PMID: 32665669 PMCID: PMC7360772 DOI: 10.1038/s41598-020-68548-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Heterodera glycines is one of the most destructive pathogens of soybean. Soybean seeds coated with Bacillus simplex Sneb545 have shown resistance to H. glycines as a result of induced systemic resistance (ISR) in the plants. In this study, we aimed to identify the resistance-inducing determinants from this B. simplex strain. Combining the ISR bioassay, six ISR-active compounds were isolated from a culture of B. simplex Sneb545 using organic solvent gradient extraction, silica gel column chromatography, Sephadex LH-20 column chromatography, and semi-preparative high-performance liquid chromatography (HPLC), and all systems were based on activity tracking. The compounds were determined as cyclic(Pro-Tyr), cyclic(Val-Pro), cyclic(Leu-Pro), uracil, phenylalanine, and tryptophan using 1H NMR and 13C NMR. In plants from seeds coated with Bacillus simplex Sneb545, these six ISR-active compounds delayed the development of H. glycines in soybean roots. Moreover, cyclic(Pro-Tyr), cyclic(Val-Pro), and tryptophan reduced the number of nematodes in soybean roots. The expression levels of defense-related genes with cyclic(Val-Pro), tryptophan and uracil treatment soybean analysed using Quantitative real-time PCR (qRT-PCR). The results indicate cyclic(Val-Pro), tryptophan and uracil induced the expression of defense-related genes involved in the SA- and JA-pathways to against H. glycines. Our research results provide new agents for the control of H. glycines.
Collapse
Affiliation(s)
- Zhifu Xing
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaojing Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jing Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xuebing Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuanyuan Wang
- College of Biology Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haiyan Fan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaoyu Liu
- College of Science, Shenyang Agricultural University, Shenyang, Liaoning, China.
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
60
|
Madany MMY, Zinta G, Abuelsoud W, Hozzein WN, Selim S, Asard H, Elgawad HA. Hormonal seed-priming improves tomato resistance against broomrape infection. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153184. [PMID: 32464590 DOI: 10.1016/j.jplph.2020.153184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 05/08/2023]
Abstract
Although it is well known that parasitic weeds such as Orobanche (broomrape) significantly reduce the yield of economically important crops, their infection-induced oxidative changes need more exploration in their host plants. Moreover, applying an eco-friendly approach to minimize the infection is not yet available. This study was conducted to understand the effect of Orobanche ramosa infection on oxidative and redox status of tomato plants and the impact of hormonal (indole acetic acid (IAA); 0.09 mM and salicylic acid (SA); 1.0 mM) seed-priming upon mitigating the infection threats. Although Orobanche invades tomato roots, its inhibitory effects on shoot biomass were also indicted. Orobanche infection usually induces oxidative damage i.e., high lipid peroxidation, lipoxygenase activity and H2O2 levels, particularly for roots. Interestingly, hormonal seed-priming significantly enhanced tomato shoots and roots growth under both healthy and infected conditions. Also, IAA and SA treatment significantly reduced Orobanche infection-induced oxidative damage. The protective effect of seed-priming was explained by increasing the antioxidant defense markers including the antioxidant metabolites (i.e., total antioxidant capacity, carotenoids, phenolics, flavonoids, ASC, GSH, tocopherols) and enzymes (CAT, POX, GPX, SOD, GR, APX, MDHAR, DHAR), particularly in infected tomato seedlings. Additionally, cluster analysis indicated the differential impact of IAA- and SA-seed-priming, whereas lower oxidative damage and higher antioxidant enzymes' activities in tomato root were particularly reported for IAA treatment. The principal component analysis (PCA) also proclaimed an organ specificity depending on their response to Orobanche infection. Collectively, here and for the first time, we shed the light on the potential of seed-priming with either IAA or SA to mitigate the adverse effect of O. ramosa stress in tomato plants, especially at oxidative stress levels.
Collapse
Affiliation(s)
- Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Centre of Excellence Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samy Selim
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hamada Abd Elgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
61
|
Signorelli S, Sainz M, Tabares-da Rosa S, Monza J. The Role of Nitric Oxide in Nitrogen Fixation by Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:521. [PMID: 32582223 PMCID: PMC7286274 DOI: 10.3389/fpls.2020.00521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 05/26/2023]
Abstract
The legume-rhizobia symbiosis is an important process in agriculture because it allows the biological nitrogen fixation (BNF) which contributes to increasing the levels of nitrogen in the soil. Nitric oxide (⋅NO) is a small free radical molecule having diverse signaling roles in plants. Here we present and discuss evidence showing the role of ⋅NO during different stages of the legume-rhizobia interaction such as recognition, infection, nodule development, and nodule senescence. Although the mechanisms by which ⋅NO modulates this interaction are not fully understood, we discuss potential mechanisms including its interaction with cytokinin, auxin, and abscisic acid signaling pathways. In matures nodules, a more active metabolism of ⋅NO has been reported and both the plant and rhizobia participate in ⋅NO production and scavenging. Although ⋅NO has been shown to induce the expression of genes coding for NITROGENASE, controlling the levels of ⋅NO in mature nodules seems to be crucial as ⋅NO was shown to be a potent inhibitor of NITROGENASE activity, to induce nodule senescence, and reduce nitrogen assimilation. In this sense, LEGHEMOGLOBINS (Lbs) were shown to play an important role in the scavenging of ⋅NO and reactive nitrogen species (RNS), potentially more relevant in senescent nodules. Even though ⋅NO can reduce NITROGENASE activity, most reports have linked ⋅NO to positive effects on BNF. This can relate mainly to the regulation of the spatiotemporal distribution of ⋅NO which favors some effects over others. Another plausible explanation for this observation is that the negative effect of ⋅NO requires its direct interaction with NITROGENASE, whereas the positive effect of ⋅NO is related to its signaling function, which results in an amplifier effect. In the near future, it would be interesting to explore the role of environmental stress-induced ⋅NO in BNF.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sofía Tabares-da Rosa
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
62
|
Chen X, Laborda P, Liu F. Exogenous Melatonin Enhances Rice Plant Resistance Against Xanthomonas oryzae pv. oryzae. PLANT DISEASE 2020; 104:1701-1708. [PMID: 32357119 DOI: 10.1094/pdis-11-19-2361-re] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae, is one of the most serious diseases of rice. In this study we found that exogenous melatonin can increase rice resistance to BB. Treatment of rice plants with exogenous melatonin (20 µg/ml) increased nitrate reductase, nitric oxide synthase, and peroxidase activity, enabling high intracellular concentrations of melatonin, nitric oxide, and H2O2. The expression of NPR1, a key regulator in the salicylic acid signaling pathway, was upregulated more than 10-fold when the plants were challenged with melatonin. Similarly, the messenger RNA level of PDF1.2, a jasmonic acid-induced defense marker, was 15 times higher in the treated plants than in the control plants. Moreover, three pathogenesis-related proteins, PR1b, PR8a, and PR9, were upregulated 20-fold in the presence of melatonin. The application of melatonin (100 µg/ml) to soil-grown rice reduced the incidence of BB by 86.21%. Taken together, these results not only provide a better understanding of melatonin-mediated innate immunity to X. oryzae pv. oryzae in rice but also represent a promising cultivation strategy to protect rice against X. oryzae pv. oryzae infection.
Collapse
Affiliation(s)
- Xian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
63
|
Yu Z, Cao J, Zhu S, Zhang L, Peng Y, Shi J. Exogenous Nitric Oxide Enhances Disease Resistance by Nitrosylation and Inhibition of S-Nitrosoglutathione Reductase in Peach Fruit. FRONTIERS IN PLANT SCIENCE 2020; 11:543. [PMID: 32670301 PMCID: PMC7326068 DOI: 10.3389/fpls.2020.00543] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO), a signaling molecule, participates in defense responses during plant-pathogen interactions. S-Nitrosoglutathione (GSNO) is found to be an active intracellular NO storage center and regulated by S-nitrosoglutathione reductase (GSNOR) in plants. However, the role of GSNOR in NO-induced disease resistance is not clear. In this research, the effects of NO and GSNOR inhibitor (N6022) on the defense response of harvested peach fruit to Monilinia fructicola infection were investigated. It was found that the disease incidence and lesion diameter of peach fruits were markedly (P < 0.05) reduced by NO and GSNOR inhibitor. However, the expression of GSNOR was significantly inhibited (P < 0.05) by NO only during 2-6 h. Analyses using iodo-TMT tags to detect the nitrosylation sites of GSNOR revealed that the sulfhydryl group of the 85-cysteine site was nitrosylated after NO treatment in peach fruit at 6 and 12 h, suggesting that exogenous NO enhances disease resistance via initial inhibition of gene expression and the S-nitrosylation of GSNOR, thereby inhibiting GSNOR activity. Moreover, NO and GSNOR inhibitor enhanced the expression of systemic acquired resistance (SAR)-related genes, such as pathogenesis-related gene 1 (PR1), nonexpressor of PR1 (NPR1), and TGACG-binding factor 1 (TGA1). These results demonstrated that S-nitrosylation of GSNOR protein and inhibition of GSNOR activity contributed to the enhanced disease resistance in fruit.
Collapse
Affiliation(s)
- Zifei Yu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jixuan Cao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Lili Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Yong Peng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
64
|
Kora D, Bhattacharjee S. The interaction of reactive oxygen species and antioxidants at the metabolic interface in salicylic acid-induced adventitious root formation in mung bean [Vigna radiata (L.) R. Wilczek]. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153152. [PMID: 32193034 DOI: 10.1016/j.jplph.2020.153152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Implications of the role of antioxidant buffering in reactive oxygen species (ROS)-antioxidant interactions and associated redox regulation during adventitious root formation (ARF) were assessed in redox-manipulated salicylic acid (SA)-treated hypocotyl explants of mung bean [Vigna radiata (L.) R. Wilczek]. Application of pro-oxidant H2O2 (500 μM) followed by SA (600 μM) was shown to stimulate ARF, whereas treatments combining 600 μM SA and 10 × 10-4 M DPI (diphenyleneiodonium, an inhibitor of NADPH-oxidase) and 600 μM and SA 10 × 10-4 M (dimethylthiourea, a free radical scavenger) were found to prevent ARF. The redox status of the experimental explants monitored under such treatment conditions (in terms of accumulation of pro-oxidants, in situ localization of O2- and H2O2, radical scavenging property and total thiol content) revealed significant changes in ROS-antioxidant interactions at the metabolic interface, causing alterations in the pattern of ARF. Further, the assessment of activities and transcript abundance of the enzymes of the H2O2 turnover pathway (mainly the ascorbate-glutathione system) supported the transcriptional regulation of genes such as vrrboh, vrAPX, vrGR, vrSOD, and vrCAT and the activities of the relevant enzymes necessary for the generation of endogenous redox cues during ARF. The present work provides an inventory in support of the importance of antioxidant buffering associated with redox regulation for the origin of the metabolic redox cue (redox signal) necessary for SA-induced ARF in mung bean.
Collapse
Affiliation(s)
- Durga Kora
- Plant Physiology and Biochemistry Research Laboratory, Centre For Advanced Study, Department of Botany, University of Burdwan, Burdwan, 713104, India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, Centre For Advanced Study, Department of Botany, University of Burdwan, Burdwan, 713104, India.
| |
Collapse
|
65
|
Lu R, Liu Z, Shao Y, Su J, Li X, Sun F, Zhang Y, Li S, Zhang Y, Cui J, Zhou Y, Shen W, Zhou T. Nitric Oxide Enhances Rice Resistance to Rice Black-Streaked Dwarf Virus Infection. RICE (NEW YORK, N.Y.) 2020; 13:24. [PMID: 32291541 PMCID: PMC7156532 DOI: 10.1186/s12284-020-00382-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rice black-streaked dwarf virus (RBSDV) causes one of the most important rice virus diseases of plants in East Asia. However, molecular mechanism(s)controlling rice resistance to infection is largely unknown. RESULTS In this paper, we showed that RBSDV infection in rice significantly induced nitric oxide (NO) production. This finding was further validated through a genetic approach using a RBSDV susceptible (Nipponbare) and a RBSDV resistant (15HPO187) cultivar. The production of endogenous NO was muchhigher in the 15HPO187 plants, leading to a much lower RBSDV disease incidence. Pharmacological studies showed that the applications of NO-releasingcompounds (i.e., sodium nitroprusside [SNP] and nitrosoglutathione [GSNO]) to rice plants reduced RBSDV disease incidence. After RBSDV infection, the levels of OsICS1, OsPR1b and OsWRKY 45 transcripts were significantly up-regulated by NO in Nipponbare. The increased salicylic acid contents were also observed. After the SNP treatment, protein S-nitrosylation in rice plants was also increased, suggesting that the NO-triggered resistance to RBSDV infection was partially mediated at the post-translational level. Although Osnia2 mutant rice produced less endogenous NO after RBSDV inoculation and showed a higher RBSDV disease incidence, its RBSDV susceptibility could be reduced by SNP treatment. CONCLUSIONS Collectively, our genetic and molecular evidence revealed that endogenous NO was a vital signal responsible for rice resistance to RBSDV infection.
Collapse
Affiliation(s)
- Rongfei Lu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Liu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yudong Shao
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejuan Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yali Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Jin Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
66
|
Ting HM, Cheah BH, Chen YC, Yeh PM, Cheng CP, Yeo FKS, Vie AK, Rohloff J, Winge P, Bones AM, Kissen R. The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:257. [PMID: 32211010 PMCID: PMC7076197 DOI: 10.3389/fpls.2020.00257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 05/17/2023]
Abstract
Glucosinolates are defense-related secondary metabolites found in Brassicaceae. When Brassicaceae come under attack, glucosinolates are hydrolyzed into different forms of glucosinolate hydrolysis products (GHPs). Among the GHPs, isothiocyanates are the most comprehensively characterized defensive compounds, whereas the functional study of nitriles, another group of GHP, is still limited. Therefore, this study investigates whether 3-butenenitrile (3BN), a nitrile, can trigger the signaling pathways involved in the regulation of defense responses in Arabidopsis thaliana against biotic stresses. Briefly, the methodology is divided into three stages, (i) evaluate the physiological and biochemical effects of exogenous 3BN treatment on Arabidopsis, (ii) determine the metabolites involved in 3BN-mediated defense responses in Arabidopsis, and (iii) assess whether a 3BN treatment can enhance the disease tolerance of Arabidopsis against necrotrophic pathogens. As a result, a 2.5 mM 3BN treatment caused lesion formation in Arabidopsis Columbia (Col-0) plants, a process found to be modulated by nitric oxide (NO). Metabolite profiling revealed an increased production of soluble sugars, Krebs cycle associated carboxylic acids and amino acids in Arabidopsis upon a 2.5 mM 3BN treatment, presumably via NO action. Primary metabolites such as sugars and amino acids are known to be crucial components in modulating plant defense responses. Furthermore, exposure to 2.0 mM 3BN treatment began to increase the production of salicylic acid (SA) and jasmonic acid (JA) phytohormones in Arabidopsis Col-0 plants in the absence of lesion formation. The production of SA and JA in nitrate reductase loss-of function mutant (nia1nia2) plants was also induced by the 3BN treatments, with a greater induction for JA. The SA concentration in nia1nia2 plants was lower than in Col-0 plants, confirming the previously reported role of NO in controlling SA production in Arabidopsis. A 2.0 mM 3BN treatment prior to pathogen assays effectively alleviated the leaf lesion symptom of Arabidopsis Col-0 plants caused by Pectobacterium carotovorum ssp. carotovorum and Botrytis cinerea and reduced the pathogen growth on leaves. The findings of this study demonstrate that 3BN can elicit defense response pathways in Arabidopsis, which potentially involves a coordinated crosstalk between NO and phytohormone signaling.
Collapse
Affiliation(s)
- Hieng-Ming Ting
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Min Yeh
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Freddy Kuok San Yeo
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Ane Kjersti Vie
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jens Rohloff
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
67
|
Wei H, Movahedi A, Xu C, Sun W, Wang P, Li D, Yin T, Zhuge Q. Characterization, Expression Profiling, and Functional Analysis of PtDef, a Defensin-Encoding Gene From Populus trichocarpa. Front Microbiol 2020; 11:106. [PMID: 32117134 PMCID: PMC7018670 DOI: 10.3389/fmicb.2020.00106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023] Open
Abstract
PtDef cloned from Populus trichocarpa contained eight cysteine domains specific to defensins. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis showed that PtDef was expressed in all tissues tested, with lower expression in leaves and higher expression in petioles, stems, and roots. Purified fused PtDef inhibited Aspergillus niger, Alternaria Nees, Mucor corymbifer, Marssonina populi, Rhizopus sp., and Neurospora crassa. PtDef also inhibited the growth of Escherichia coli by triggering autolysis. PtDef overexpression in Nanlin895 poplar (Populus × euramericana cv. Nanlin895) enhanced the level of resistance to Septotinia populiperda. qRT-PCR analysis also showed that the expression of 13 genes related to salicylic acid (SA) and jasmonic acid (JA) signal transduction differed between transgenic and wild-type (WT) poplars before and after inoculation, and that PR1-1 (12–72 h), NPR1-2, TGA1, and MYC2-1 expression was higher in transgenic poplars than in WT. During the hypersensitivity response (HR), large amounts of H2O2 were produced by the poplar lines, particularly 12–24 h after inoculation; the rate and magnitude of the H2O2 concentration increase were greater in transgenic lines than in WT. Overall, our findings suggest that PtDef, a defensin-encoding gene of P. trichocarpa, could be used for genetic engineering of woody plants for enhanced disease resistance.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Ali Movahedi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chen Xu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China.,Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Weibo Sun
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Pu Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Dawei Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
68
|
Chen X, Li S, Zhao X, Zhu X, Wang Y, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Modulation of (Homo)Glutathione Metabolism and H 2O 2 Accumulation during Soybean Cyst Nematode Infections in Susceptible and Resistant Soybean Cultivars. Int J Mol Sci 2020; 21:E388. [PMID: 31936278 PMCID: PMC7013558 DOI: 10.3390/ijms21020388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
In plant immune responses, reactive oxygen species (ROS) act as signaling molecules that activate defense pathways against pathogens, especially following resistance (R) gene-mediated pathogen recognition. Glutathione (GSH), an antioxidant and redox regulator, participates in the removal of hydrogen peroxide (H2O2). However, the mechanism of GSH-mediated H2O2 generation in soybeans (Glycine max (L.) Merr.) that are resistant to the soybean cyst nematode (SCN; Heterodera glycines Ichinohe) remains unclear. To elucidate this underlying relationship, the feeding of race 3 of H. glycines with resistant cultivars, Peking and PI88788, was compared with that on a susceptible soybean cultivar, Williams 82. After 5, 10, and 15 days of SCN infection, we quantified γ-glutamylcysteine (γ-EC) and (homo)glutathione ((h)GSH), and a gene expression analysis showed that GSH metabolism in resistant cultivars differed from that in susceptible soybean roots. ROS accumulation was examined both in resistant and susceptible roots upon SCN infection. The time of intense ROS generation was related to the differences of resistance mechanisms in Peking and PI88788. ROS accumulation that was caused by the (h)GSH depletion-arrested nematode development in susceptible Williams 82. These results suggest that (h)GSH metabolism in resistant soybeans plays a key role in the regulation of ROS-generated signals, leading to resistance against nematodes.
Collapse
Affiliation(s)
- Xi Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Shuang Li
- Shaanxi key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China;
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xuebing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Sciences, Shenyang Agricultural University, Shenyang 110000, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| |
Collapse
|
69
|
Hussein NK, Sabr LJ, Lobo E, Booth J, Ariens E, Detchanamurthy S, Schenk PM. Suppression of Arabidopsis Mediator Subunit-Encoding MED18 Confers Broad Resistance Against DNA and RNA Viruses While MED25 Is Required for Virus Defense. FRONTIERS IN PLANT SCIENCE 2020; 11:162. [PMID: 32194589 PMCID: PMC7064720 DOI: 10.3389/fpls.2020.00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
Mediator subunits play key roles in numerous physiological pathways and developmental processes in plants. Arabidopsis Mediator subunits, MED18 and MED25, have previously been shown to modulate disease resistance against fungal and bacterial pathogens through their role in jasmonic acid (JA) signaling. In this study, Arabidopsis mutant plants of the two Mediator subunits, med18 and med25, were tested against three ssRNA viruses and one dsDNA virus belonging to four different families: Turnip mosaic virus (TuMV), Cauliflower mosaic virus (CaMV), Alternanthera mosaic virus (AltMV), and Cucumber mosaic virus (CMV). Although both subunits are utilized in JA signaling, they occupy different positions (Head and Tail domain, respectively) in the Mediator complex and their absence affected virus infection differently. Arabidopsis med18 plants displayed increased resistance to RNA viral infection and a trend against the DNA virus, while med25 mutants displayed increased susceptibility to all viruses tested at 2 and 14 days post inoculations. Defense marker gene expression profiling of mock- and virus-inoculated plants showed that med18 and med25 mutants exhibited an upregulated SA pathway upon virus infection at 2 dpi for all viruses tested. JA signaling was also suppressed in med18 plants after virus infection, independent of which virus infected the plants. The upregulation of SA signaling and suppression of JA signaling in med18 may have led to more targeted oxidative burst and programmed cell death to control viruses. However, the susceptibility exhibited by med25 mutants suggests that other factors, such as a weakened RNAi pathway, might play a role in the observed susceptibility. We conclude that MED18 and MED25 have clear and opposite effects on accumulation of plant viruses. MED18 is required for normal virus infection, while MED25 is important for defense against virus infection. Results from this study provide a better understanding of the role of Mediator subunits during plant-virus interactions, viral disease progression and strategies to develop virus resistant plants.
Collapse
Affiliation(s)
- Nasser K. Hussein
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
- *Correspondence: Nasser K. Hussein,
| | - Layla J. Sabr
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
| | - Edina Lobo
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - James Booth
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Emily Ariens
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Swaminathan Detchanamurthy
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
70
|
Nagai A, Torres PB, Duarte LML, Chaves ALR, Macedo AF, Floh EIS, de Oliveira LF, Zuccarelli R, Dos Santos DYAC. Signaling pathway played by salicylic acid, gentisic acid, nitric oxide, polyamines and non-enzymatic antioxidants in compatible and incompatible Solanum-tomato mottle mosaic virus interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110274. [PMID: 31779908 DOI: 10.1016/j.plantsci.2019.110274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 05/26/2023]
Abstract
Plants are exposed to a vast array of pathogens. The interaction between them may be classified in compatible and incompatible. Polyamines (PAs) are involved in defense responses, as well as salicylic acid (SA), gentisic acid (GA) and nitric oxide (NO), which can increase the content of reactive oxygen species (ROS), creating a harsh environment to the pathogen. ROS can also damage the host cell and they can be controlled by ascorbate and glutathione. Among phytopathogens, one of the major threats to tomato crops is tomato mottle mosaic virus (ToMMV). Resistance against this virus probably involves the Tm-22 gene. This work aimed to analyze signaling and antioxidant molecules in the defense response against ToMMV in Solanum pimpinellifolium and in S. lycopersicum 'VFNT'. In S. pimpinellifolium plants inoculated with ToMMV, an increase in NO, SA, GA, ascorbate and oxidized glutathione and a decrease in the content of PAs were observed. Characteristic symptoms of diseased plants and high absorbance values in PTA-ELISA indicated a compatible interaction. In VFNT-inoculated plants, less significant differences were noticed. Symptoms and viral concentration were not detected, indicating an incompatible interaction, possibly associated with the effector-triggered immunity (ETI) response.
Collapse
Affiliation(s)
- Alice Nagai
- Laboratório de Fitoquímica, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Priscila Bezerra Torres
- Laboratório de Fitoquímica, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Amanda Ferreira Macedo
- Laboratório de Biologia Celular de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Eny Iochevet Segal Floh
- Laboratório de Biologia Celular de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro Francisco de Oliveira
- Laboratório de Biologia Celular de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Zuccarelli
- Laboratório de Fisiologia do Desenvolvimento Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
71
|
Shen Q, Zhan X, Yang P, Li J, Chen J, Tang B, Wang X, Hong Y. Dual Activities of Plant cGMP-Dependent Protein Kinase and Its Roles in Gibberellin Signaling and Salt Stress. THE PLANT CELL 2019; 31:3073-3091. [PMID: 31575723 PMCID: PMC6925016 DOI: 10.1105/tpc.19.00510] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 09/28/2019] [Indexed: 05/03/2023]
Abstract
Cyclic GMP (cGMP) is an important regulator in eukaryotes, and cGMP-dependent protein kinase (PKG) plays a key role in perceiving cellular cGMP in diverse physiological processes in animals. However, the molecular identity, property, and function of PKG in plants remain elusive. In this study, we have identified PKG from plants and characterized its role in mediating the gibberellin (GA) response in rice (Oryza sativa). PKGs from plants are structurally unique with an additional type 2C protein phosphatase domain. Rice PKG possesses both protein kinase and phosphatase activities, and cGMP stimulates its kinase activity but inhibits its phosphatase activity. One of PKG's targets is GAMYB, a transcription factor in GA signaling, and the dual activities of PKG catalyze the reversible phosphorylation of GAMYB at Ser6 and modulate the nucleocytoplasmic distribution of GAMYB in response to GA. Loss of PKG impeded the nuclear localization of GAMYB and abolished GAMYB function in the GA response, leading to defects in GA-induced seed germination, internode elongation, and pollen viability. In addition to GAMYB, PKG has multiple potential targets and thus has broad effects, particularly in the salt stress response.
Collapse
Affiliation(s)
- Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
72
|
Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. 3 Biotech 2019; 9:395. [PMID: 31656733 DOI: 10.1007/s13205-019-1924-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Plants encounter a variety of adverse environmental conditions, such as high salinity, drought, extreme heat/cold and heavy metals contamination (abiotic stress) or attack of various pathogens (biotic stress). These detrimental environmental factors enhanced the ROS production such as singlet oxygen (1O2), superoxide (O2 •-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH•). ROS are highly reactive and directly target several cellular molecules and metabolites, which lead to severe cellular dysfunction. Plants respond to oxidative damages by activating antioxidant machinery to trigger signalling cascades for stress tolerance. H2O2 signalling balances the plant metabolism through cross-talk with other signals and plant hormones during growth, development and stress responses. H2O2 facilitates the regulation of different stress-responsive transcription factors (TFs) including NAC, Zinc finger, WRKY, ERF, MYB, DREB and bZIP as both upstream and downstream events during stress signalling. The present review focuses on the biological synthesis of the H2O2 and its effect on the upregulation of kinase genes and stress related TFs for imparting stress tolerance.
Collapse
|
73
|
Ali M, Gai WX, Khattak AM, Khan A, Haq SU, Ma X, Wei AM, Muhammad I, Jan I, Gong ZH. Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Mol Genet Genomics 2019. [PMID: 31175439 DOI: 10.1007/s00438-019-01583-1587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
74
|
Bawa G, Feng L, Yan L, Du Y, Shang J, Sun X, Wang X, Yu L, Liu C, Yang W, Du J. Pre-treatment of salicylic acid enhances resistance of soybean seedlings to Fusarium solani. PLANT MOLECULAR BIOLOGY 2019; 101:315-323. [PMID: 31392474 DOI: 10.1007/s11103-019-00906-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/23/2019] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Pre-treatment of soybean seedlings with 200 μM salicylic acid before fungal inoculation significantly alleviated disease resistance in soybean seedlings against Fusarium solani infection. Sudden death syndrome of soybean is largely caused by Fusarium solani (F. solani). Salicylic acid (SA) has been reported to induce resistance in plants against many pathogens. However, the effect of exogenous SA application on F. solani infection of soybean is less reported. This study investigated the effect of foliar application of SA on soybean seedlings before F. solani infection. Seedlings were sprayed with 200 µM SA and inoculated with F. solani after 24 h of last SA application. After 3 days post-inoculation, seedlings treated with 200 µM SA showed significantly fewer disease symptoms with increased endogenous SA level, SA marker genes expression and antioxidant activities in the SA-treated seedlings more than the untreated control seedlings. Furthermore, the decrease in hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels was observed in the SA-treated plants as compared to the untreated plants. Analysis of the effect of SA application on F. solani showed that the mycelia growth of F. solani was not affected by SA treatment. Further investigation in this study revealed a decreased in F. solani biomass content in the SA treated seedlings. Results from the present study show that pre-treatment of 200 µM SA can induce resistance of soybean seedlings against F. solani infection.
Collapse
Affiliation(s)
- George Bawa
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Li Yan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Yongli Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Liang Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Chunyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China.
| |
Collapse
|
75
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
76
|
Wang X, Zeng L, Liao Y, Li J, Tang J, Yang Z. Formation of α-Farnesene in Tea ( Camellia sinensis) Leaves Induced by Herbivore-Derived Wounding and Its Effect on Neighboring Tea Plants. Int J Mol Sci 2019; 20:ijms20174151. [PMID: 31450700 PMCID: PMC6747315 DOI: 10.3390/ijms20174151] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) play important ecological roles in defense against stresses. In contrast to model plants, reports on HIPV formation and function in crops are limited. Tea (Camellia sinensis) is an important crop in China. α-Farnesene is a common HIPV produced in tea plants in response to different herbivore attacks. In this study, a C. sinensis α-farnesene synthase (CsAFS) was isolated, cloned, sequenced, and functionally characterized. The CsAFS recombinant protein produced in Escherichia coli was able to transform farnesyl diphosphate (FPP) into α-farnesene and also convert geranyl diphosphate (GPP) to β-ocimene in vitro. Furthermore, transient expression analysis in Nicotiana benthamiana plants indicated that CsAFS was located in the cytoplasm and could convert FPP to α-farnesene in plants. Wounding, to simulate herbivore damage, activated jasmonic acid (JA) formation, which significantly enhanced the CsAFS expression level and α-farnesene content. This suggested that herbivore-derived wounding induced α-farnesene formation in tea leaves. Furthermore, the emitted α-farnesene might act as a signal to activate antibacterial-related factors in neighboring undamaged tea leaves. This research advances our understanding of the formation and signaling roles of common HIPVs in crops such as tea plants.
Collapse
Affiliation(s)
- Xuewen Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
77
|
Discovery of a Nitric Oxide-Responsive Protein in Arabidopsis thaliana. Molecules 2019; 24:molecules24152691. [PMID: 31344907 PMCID: PMC6696476 DOI: 10.3390/molecules24152691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
In plants, much like in animals, nitric oxide (NO) has been established as an important gaseous signaling molecule. However, contrary to animal systems, NO-sensitive or NO-responsive proteins that bind NO in the form of a sensor or participating in redox reactions have remained elusive. Here, we applied a search term constructed based on conserved and functionally annotated amino acids at the centers of Heme Nitric Oxide/Oxygen (H-NOX) domains in annotated and experimentally-tested gas-binding proteins from lower and higher eukaryotes, in order to identify candidate NO-binding proteins in Arabidopsis thaliana. The selection of candidate NO-binding proteins identified from the motif search was supported by structural modeling. This approach identified AtLRB3 (At4g01160), a member of the Light Response Bric-a-Brac/Tramtrack/Broad Complex (BTB) family, as a candidate NO-binding protein. AtLRB3 was heterologously expressed and purified, and then tested for NO-response. Spectroscopic data confirmed that AtLRB3 contains a histidine-ligated heme cofactor and importantly, the addition of NO to AtLRB3 yielded absorption characteristics reminiscent of canonical H-NOX proteins. Furthermore, substitution of the heme iron-coordinating histidine at the H-NOX center with a leucine strongly impaired the NO-response. Our finding therefore established AtLRB3 as a NO-interacting protein and future characterizations will focus on resolving the nature of this response.
Collapse
|
78
|
Meena M, Samal S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol Rep 2019; 6:745-758. [PMID: 31406682 PMCID: PMC6684332 DOI: 10.1016/j.toxrep.2019.06.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 02/05/2023] Open
Abstract
Alternaria causes pathogenic disease on various economically important crops having saprophytic to endophytic lifecycle. Pathogenic fungi of Alternaria species produce many primary and secondary metabolites (SMs). Alternaria species produce more than 70 mycotoxins. Several species of Alternaria produce various phytotoxins that are host-specific (HSTs) and non-host-specific (nHSTs). These toxins have various negative impacts on cell organelles including chloroplast, mitochondria, plasma membrane, nucleus, Golgi bodies, etc. Non-host-specific toxins such as tentoxin (TEN), Alternaric acid, alternariol (AOH), alternariol 9-monomethyl ether (AME), brefeldin A (dehydro-), Alternuene (ALT), Altertoxin-I, Altertoxin-II, Altertoxin-III, zinniol, tenuazonic acid (TeA), curvularin and alterotoxin (ATX) I, II, III are known toxins produced by Alternaria species. In other hand, Alternaria species produce numerous HSTs such as AK-, AF-, ACT-, AM-, AAL- and ACR-toxin, maculosin, destruxin A, B, etc. are host-specific and classified into different family groups. These mycotoxins are low molecular weight secondary metabolites with various chemical structures. All the HSTs have different mode of actions, biochemical reactions, and signaling mechanisms to causes diseases in the host plants. These HSTs have devastating effects on host plant tissues by affecting biochemical and genetic modifications. Host-specific mycotoxins such as AK-toxin, AF-toxin, and AC-toxin have the devastating effect on plants which causes DNA breakage, cytotoxic, apoptotic cell death, interrupting plant physiology by mitochondrial oxidative phosphorylation and affect membrane permeability. This article will elucidate an understanding of the disease mechanism caused by several Alternaria HSTs on host plants and also the pathways of the toxins and how they caused disease in plants.
Collapse
Key Words
- 1O2, singlet oxygen
- AA, ascorbic acid
- ALT, alternuene
- AME, alternariol 9-monomethyl ether
- AOH, alternariol
- APX, ascorbate peroxidase
- ATX, alterotoxin
- Alternaria species
- CAT, catalase
- CDCs, conditionally dispensable chromosomes
- DHAR, dehydroascorbate reductase
- DHT, dihydrotentoxin
- GPX, guaiacol peroxidase
- GR, glutathione reductase
- GSH, glutathione
- H2O2, hydrogen peroxide
- HR, hypersensitive response
- HSTs, host specific toxins
- Host-specific toxins
- MDHAR, monodehydroascorbate reductase
- NO, nitric oxide
- NRPS, nonribosomal peptide synthetase
- Non-host-specific toxins
- O2˙ˉ, superoxide anion
- PCD, programmed cell death
- PKS, polyketide synthase gene
- Pathogenicity
- REMI, restriction enzyme-mediated integration
- ROS, reactive oxygen species
- SMs, secondary metabolites
- SOD, superoxide dismutase
- Secondary metabolites
- TEN, tentoxin
- TeA, tenuazonic acid
- UGT, UDP-Glucuronosyltransferases
- nHSTs, non-host specific toxins
- ˙OH, hydroxyl radical
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, 313001, India
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Swarnmala Samal
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
79
|
Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Mol Genet Genomics 2019; 294:1311-1326. [PMID: 31175439 DOI: 10.1007/s00438-019-01583-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.
Collapse
|
80
|
Giraldo JP, Wu H, Newkirk GM, Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. NATURE NANOTECHNOLOGY 2019; 14:541-553. [PMID: 31168083 DOI: 10.1038/s41565-019-0470-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/08/2019] [Indexed: 05/18/2023]
Abstract
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.
Collapse
Affiliation(s)
- Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, USA.
- Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | - Sebastian Kruss
- Institute of Physical Chemistry, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
81
|
Shi YL, Sheng YY, Cai ZY, Yang R, Li QS, Li XM, Li D, Guo XY, Lu JL, Ye JH, Wang KR, Zhang LJ, Liang YR, Zheng XQ. Involvement of Salicylic Acid in Anthracnose Infection in Tea Plants Revealed by Transcriptome Profiling. Int J Mol Sci 2019; 20:ijms20102439. [PMID: 31108845 PMCID: PMC6566613 DOI: 10.3390/ijms20102439] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022] Open
Abstract
Anthracnose is a major leaf disease in tea plant induced by Colletotrichum, which has led to substantial losses in yield and quality of tea. The molecular mechanism with regards to responses or resistance to anthracnose in tea remains unclear. A de novo transcriptome assembly dataset was generated from healthy and anthracnose-infected leaves on tea cultivars “Longjing-43” (LJ43) and “Zhenong-139” (ZN139), with 381.52 million pair-end reads, encompassing 47.78 billion bases. The unigenes were annotated versus Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Swiss-prot. The number of differential expression genes (DEGs) detected between healthy and infected leaves was 1621 in LJ43 and 3089 in ZN139. The GO and KEGG enrichment analysis revealed that the DEGs were highly enriched in catalytic activity, oxidation-reduction, cell-wall reinforcement, plant hormone signal transduction and plant-pathogen interaction. Further studies by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) showed that expression of genes involved in endogenous salicylic acid biosynthesis and also accumulation of foliar salicylic acid are involved in the response of tea plant to anthracnose infection. This study firstly provided novel insight in salicylic acid acting as a key compound in the responses of tea plant to anthracnose disease. The transcriptome dataset in this study will facilitate to profile gene expression and metabolic networks associated with tea plant immunity against anthracnose.
Collapse
Affiliation(s)
- Yun-Long Shi
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Yue Sheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Da Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiao-Yuan Guo
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Kai-Rong Wang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Long-Jie Zhang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
82
|
Nawrocka J, Gromek A, Małolepsza U. Nitric Oxide as a Beneficial Signaling Molecule in Trichoderma atroviride TRS25-Induced Systemic Defense Responses of Cucumber Plants Against Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2019; 10:421. [PMID: 31057564 PMCID: PMC6478799 DOI: 10.3389/fpls.2019.00421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 05/12/2023]
Abstract
In the present study, Trichoderma atroviride TRS25 is presented as a biological control agent, which significantly limits the development of infection and reduces the disease caused by the pathogenic fungus Rhizoctonia solani in cucumber plants (Cucumis sativus L.). The systemic disease suppression is related to oxidative, signaling, and biochemical changes, that are triggered in response to a pathogen. Induction of systemic defense in cucumber by TRS25 greatly depends on the accumulation of signaling molecules including hydrogen peroxide (H2O2) and nitric oxide (NO) as well as salicylic acid (SA) and its derivatives including methyl salicylate (MeSA) and octyl salicylate (OSA). The study established that NO was accumulated in leaves and shoots of the cucumber plants, especially those pretreated with Trichoderma and inoculated with R. solani, where the compound was accumulated mainly in the cells localized in the vascular bundles and in epidermal tissues. We suggest, for the first time, that in the plants pretreated with TRS25, the accumulation of H2O2 and NO may be related to catalase (CAT) and S-nitrosoglutathione reductase (GSNOR) activity decrease. On the other hand, excessive accumulation of NO and SA may be controlled by forming their inactive forms, S-nitrosothiols (SNO) and salicylic acid glucosylated conjugates (SAGC), respectively. The obtained results suggest that the mentioned molecules may be an important component of the complex signaling network activated by TRS25, which is positively involved in systemic defense responses of cucumber plants against R. solani.
Collapse
Affiliation(s)
- Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
83
|
Torun H. Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. PHYSIOLOGIA PLANTARUM 2019; 165:169-182. [PMID: 29984429 DOI: 10.1111/ppl.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 05/21/2023]
Abstract
Greater crop losses can result from simultaneous exposure to a combination of drought, heat and salinity in the field. Salicylic acid (SA), a phenolic phytohormone, can affect a range of physiological and biochemical processes in plants and significantly impacts their resistance to these abiotic stresses. Despite numerous reports involving the positive effects of SA by applying each abiotic stress separately, the mechanism of SA-mediated adaptation to combined stresses remains elusive. This study, via a time-course analysis, investigated the role of SA on the roots of hulled and hulless (naked) barley (Hordeum vulgare L. 'Tarm' and 'Özen', respectively), which differed in salt tolerance, under the combined stress of drought, heat and salt. The combined stress caused marked reductions in root length and increases in proline content in both genotypes; however, Tarm exhibited better adaptation to the triple stress. Under the first 24 h of stress, superoxide dismutase (SOD; EC.1.15.1.1) and peroxidase (POX; EC.1.11.1.7) activity in the Tarm roots increased remarkably, while decreasing in the Özen roots. Furthermore, the Tarm roots showed higher catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) activity than the Özen during the combined stresses. The sensitivity of hulless barley roots may be related to decreasing SOD, POX, CAT and GR activity under stress. Over 72 h of stress, the SA pretreatment improved the APX and GR activity in Tarm and that of POX and CAT in Özen, demonstrating that exogenously applied SA regulates antioxidant defense enzymes in order to detoxify reactive oxygen species. The results of this study suggest that SA treatment may improve the triple-stress combination tolerance in hulled and hulless barley cultivars by increasing the level of antioxidant enzyme activity and promoting the accumulation of proline. Thus, SA alleviated the damaging effects of the triple stress by improving the antioxidant system, although these effects differed depending on characteristic of the hull of the grain.
Collapse
Affiliation(s)
- Hülya Torun
- Faculty of Agriculture and Natural Science, Düzce University, 81620, Düzce, Turkey
| |
Collapse
|
84
|
Park CJ, Park JM. Endoplasmic Reticulum Plays a Critical Role in Integrating Signals Generated by Both Biotic and Abiotic Stress in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:399. [PMID: 31019523 PMCID: PMC6458287 DOI: 10.3389/fpls.2019.00399] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
Most studies of environmental adaptations in plants have focused on either biotic or abiotic stress factors in an attempt to understand the defense mechanisms of plants against individual stresses. However, in the natural ecosystem, plants are simultaneously exposed to multiple stresses. Stress-tolerant crops developed in translational studies based on a single stress often fail to exhibit the expected traits in the field. To adapt to abiotic stress, recent studies have identified the need for interactions of plants with various microorganisms. These findings highlight the need to understand the multifaceted interactions of plants with biotic and abiotic stress factors. The endoplasmic reticulum (ER) is an organelle that links various stress responses. To gain insight into the molecular integration of biotic and abiotic stress responses in the ER, we focused on the interactions of plants with RNA viruses. This interaction points toward the relevance of ER in viral pathogenicity as well as plant responses. In this mini review, we explore the molecular crosstalk between biotic and abiotic stress signaling through the ER by elaborating ER-mediated signaling in response to RNA viruses and abiotic stresses. Additionally, we summarize the results of a recent study on phytohormones that induce ER-mediated stress response. These studies will facilitate the development of multi-stress-tolerant transgenic crops in the future.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
- *Correspondence: Chang-Jin Park,
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, South Korea
- Jeong Mee Park,
| |
Collapse
|
85
|
Gong C, Wang L, Li X, Wang H, Jiang Y, Wang W. Responses of seed germination and shoot metabolic profiles of maize (Zea maysL.) to Y2O3nanoparticle stress. RSC Adv 2019; 9:27720-27731. [PMID: 35529220 PMCID: PMC9070862 DOI: 10.1039/c9ra04672k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/15/2019] [Indexed: 11/28/2022] Open
Abstract
The potential risks of rare-earth nanoparticles (RENPs) to plants in the environment are attracting increasing attention due to their wide-spread application. In this regard, little is known about the effects of Y2O3 NPs as an important member of RENPs on crop plants. Seed germination is vulnerable to environmental stress, which determines the growth and yield of crops. Here, maize seeds were exposed to a Y2O3 NP suspension (0–500 mg L−1) in the dark for 6 days. It was found that the Y2O3 NPs had no significant effect on the germination rates (>93%) in all treatments, but they could reduce seed vitality, delay germination, and inhibit seedling growth in a dose-dependent manner. Further, the inhibition effect of Y2O3 NPs on root elongation was much stronger than that on shoot elongation. Meanwhile, the activities of peroxidase (POD) and catalase (CAT) in shoots were enhanced with the increase in the Y2O3 NP concentration. A high-concentration (≥300 mg L−1) of Y2O3 NPs induced a significant increase in the malondialdehyde (MDA) level in shoots compared to the control, indicating that the membrane lipid peroxidation and permeability were enhanced. 1H NMR-based analysis showed that the polar metabolic profiles were altered significantly after treatment with 0, 10, and 500 mg L−1 of Y2O3 NPs, but there was no marked alteration observed for the non-polar metabolic profiles. The polar metabolites (e.g., sugars, amino acids, and most organic acids) showed a dose-dependent increase to Y2O3 NP stress, indicating that the metabolic pathways of carbohydrate metabolism, the tricarboxylic acid cycle (TCA), and amino acid synthesis were disturbed. There were significantly positive correlations found among the metabolites related with the antioxidant response and osmotic adjustment. The simultaneous accumulation of these metabolites possibly indicated the adaptation of the seedlings to stress at the cost of retarding glycolysis, TCA, and protein synthesis. The retarded effects finally inhibited the apparent growth of the seedlings. These findings reveal the phytotoxicity of Y2O3 NPs and provide physiological and biochemical and molecular-scale perspectives on the response of seedlings to stress. A hypothetic model for the adaptation of maize to Y2O3 NPs stress during seed germination.![]()
Collapse
Affiliation(s)
- Chenchen Gong
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Linghao Wang
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Xiaolu Li
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Hongsen Wang
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Yuxin Jiang
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Wenxing Wang
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- China
| |
Collapse
|
86
|
|
87
|
Botero K, Restrepo S, Pinzón A. A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism. BMC Genomics 2018; 19:863. [PMID: 30537923 PMCID: PMC6288859 DOI: 10.1186/s12864-018-5192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phytophthora infestans is a plant pathogen that causes an important plant disease known as late blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms underlying the compatibility between the pathogen and its hosts are still unknown. RESULTS To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization of the model for biomass synthesis maximization in three infection time points suggested a suppression of the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P. infestans and S. tuberosum. CONCLUSIONS In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first genome-scale metabolic model of the compatible interaction of a plant with P. infestans.
Collapse
Affiliation(s)
- Kelly Botero
- Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia.,Centro de Bioinformática y Biología Computacional, Manizales, Colombia
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia
| | - Andres Pinzón
- Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia.
| |
Collapse
|
88
|
Boro P, Sultana A, Mandal K, Chattopadhyay S. Transcriptomic changes under stress conditions with special reference to glutathione contents. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0256-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
89
|
Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM. Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:224-234. [PMID: 30014926 DOI: 10.1016/j.plaphy.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/08/2018] [Indexed: 05/10/2023]
Abstract
Cotton leaf worm (Spodoptera littoralis) is considered one of the most destructive agricultural pests in Egypt. Six soybean cultivars (Giza-21, Giza-22, Giza-35, Giza-82, Giza-83 and Giza-111) were grown under natural infection with cotton leaf worm. The effect of two elicitors, methyl jasmonate and sodium nitroprusside on enhancing the ability of susceptible cultivars to tolerate (Spodoptera littoralis) was studied. Giza-35 and Giza-111 showed tolerance performance under natural infection compared to Giza-22 and Giza-82 as sensitive ones, while Giza-83 and Giza-21 showed moderate tolerance. Both treatments positively affected seed yield and its components and fatty acid composition. Extracted fatty acids showed variable changes in treated plants compared with the untreated controls. Plants treated with the two elicitors showed an increase in Linoleic acid and Linolenic acid fatty acids and decrease in Palmitic acid and Palmitolic acid content. Treatment with methyl jasmonate was found to be more effective than sodium nitroprusside and enhanced resistance of the susceptible cultivars. Eight IRAP and iPBS retrotransposon-based markers were used to detect genetic differences among studied soybean cultivars and to develop molecular genetic markers for cotton leaf worm infestation. The technique successfully identified soybean genotypes in addition to nineteen molecular markers related to soybean tolerance.
Collapse
Affiliation(s)
- Naglaa A Ashry
- Field Crops Research Inst., Agricultural Research Center, Giza, Egypt
| | - Marwa M Ghonaim
- Field Crops Research Inst., Agricultural Research Center, Giza, Egypt
| | - Heba I Mohamed
- Faculty of Education, Biological and Geological Sciences Department, Ain Shams University, Cairo, Egypt.
| | - Asmaa M Mogazy
- Faculty of Education, Biological and Geological Sciences Department, Ain Shams University, Cairo, Egypt
| |
Collapse
|
90
|
Kolupaev YE, Karpets YV, Yastreb TO, Lugovaya AA. Combined Effect of Salicylic Acid and Nitrogen Oxide Donor on Stress-Protective System of Wheat Plants under Drought Conditions. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
91
|
Chen J, Li K, Le XC, Zhu L. Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:308-317. [PMID: 29499574 DOI: 10.1016/j.envpol.2018.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography-mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 μg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7-12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%-67.1%) and 19 organic acids (by 7.8%-70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
92
|
Zou LJ, Deng XG, Zhang LE, Zhu T, Tan WR, Muhammad A, Zhu LJ, Zhang C, Zhang DW, Lin HH. Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2018; 163:196-210. [PMID: 29215737 DOI: 10.1111/ppl.12677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Brassinosteroids (BRs) are growth-promoting plant hormones that play a crucial role in biotic stress responses. Here, we found that BR treatment increased nitric oxide (NO) accumulation, and a significant reduction of virus accumulation in Arabidopsis thaliana. However, the plants pre-treated with NO scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-1-oxyl-3-oxide (PTIO)] or nitrate reductase (NR) inhibitor (tungstate) hardly had any NO generation and appeared to have the highest viral replication and suffer more damages. Furthermore, the antioxidant system and photosystem parameters were up-regulated in brassinolide (BL)-treated plants but down regulated in PTIO- or tungstate-treated plants, suggesting NO may be involved in BRs-induced virus resistance in Arabidopsis. Further evidence showed that NIA1 pathway was responsible for BR-induced NO accumulation in Arabidopsis. These results indicated that NO participated in the BRs-induced systemic resistance in Arabidopsis. As BL treatment could not increase NO levels in nia1 plants in comparison to nia2 plants. And nia1 mutant exhibited decreased virus resistance relative to Col-0 or nia2 plants after BL treatment. Taken together, our study addressed that NIA1-mediated NO biosynthesis is involved in BRs-mediated virus resistance in A. thaliana.
Collapse
Affiliation(s)
- Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
- Ecological Security and Protection Key Laboratory of Sichuan Province and Life Science and Technology College, Mianyang Normal University, Mianyang, 621000, China
| | - Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Li-E Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Wen-Rong Tan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Arfan Muhammad
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Li-Jun Zhu
- Ecological Security and Protection Key Laboratory of Sichuan Province and Life Science and Technology College, Mianyang Normal University, Mianyang, 621000, China
| | - Chao Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
93
|
Bison JV, Cardoso-Gustavson P, de Moraes RM, da Silva Pedrosa G, Cruz LS, Freschi L, de Souza SR. Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3840-3848. [PMID: 29178001 DOI: 10.1007/s11356-017-0744-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/14/2017] [Indexed: 05/03/2023]
Abstract
The emission profile of volatile organic compounds (VOCs) and nitric oxide (NO) in young and mature leaves of Croton floribundus was assessed in plants exposed to filtered air (FA) and ozone-enriched filtered air (FA+O3). After the period of exposure, leaves were enclosed in polyethylene terephthalate bags and VOCs were collected in young and mature leaves. Both young and mature leaves constitutively emitted the same VOC, but the concentrations were higher in young leaves. O3 exposure induced the emission of sesquiterpenes (mainly β-caryophyllene) known as antioxidant compounds that may scavenge O3. Young leaves were the highest emitters of sesquiterpenes. O3 induced a rapid accumulation of NO in different tissues and leaf developmental stages; this accumulation was marked in palisade and spongy parenchyma cells in young and mature leaves, respectively. O3 altered the levels of the signaling compound methyl salicylate (MeSA). Moreover, our data showed that NO together with VOC emissions, such as geranyl acetate, α-cadiene, trans-farnesol, cis-β-farnesene, and MeSA, participate of plant defense mechanisms against the oxidative damage caused by O3.
Collapse
Affiliation(s)
- Josiane Valéria Bison
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Poliana Cardoso-Gustavson
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Regina Maria de Moraes
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Giselle da Silva Pedrosa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
- Programa de Pós-Graduação em Biotecnociências, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Luciano Soares Cruz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociência, Universidade de São Paulo, Rua do Matão 277, Butantã, SP, 05508-090, Brazil
| | - Silvia Ribeiro de Souza
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
94
|
Hael-Conrad V, Perato SM, Arias ME, Martínez-Zamora MG, Di Peto PDLÁ, Martos GG, Castagnaro AP, Díaz-Ricci JC, Chalfoun NR. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:46-60. [PMID: 28635519 DOI: 10.1094/mpmi-05-17-0121-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.
Collapse
Affiliation(s)
- Verónica Hael-Conrad
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Silvia Marisa Perato
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Marta Eugenia Arias
- 2 Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina, and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca. Av. Belgrano 300, 4700, San Fernando del Valle de Catamarca, Catamarca, Argentina; and
| | - Martín Gustavo Martínez-Zamora
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Pía de Los Ángeles Di Peto
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Gustavo Gabriel Martos
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Atilio Pedro Castagnaro
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Juan Carlos Díaz-Ricci
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Nadia Regina Chalfoun
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| |
Collapse
|
95
|
Wei W, Mesquita ACO, Figueiró ADA, Wu X, Manjunatha S, Wickland DP, Hudson ME, Juliatti FC, Clough SJ. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics 2017; 18:849. [PMID: 29115920 PMCID: PMC5674791 DOI: 10.1186/s12864-017-4160-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sclerotinia Stem Rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is ubiquitous in cooler climates where soybean crops are grown. Breeding for resistance to SSR remains challenging in crops like soybean, where no single gene provides strong resistance, but instead, multiple genes work together to provide partial resistance. In this study, a genome-wide association study (GWAS) was performed to dissect the complex genetic architecture of soybean quantitative resistance to SSR and to provide effective molecular markers that could be used in breeding programs. A collection of 420 soybean genotypes were selected based on either reports of resistance, or from one of three different breeding programs in Brazil, two commercial, one public. Plant genotype sensitivity to SSR was evaluated by the cut stem inoculation method, and lesion lengths were measured at 4 days post inoculation. RESULTS Genotyping-by-sequencing was conducted to genotype the 420 soybean lines. The TASSEL 5 GBSv2 pipeline was used to call SNPs under optimized parameters, and with the extra step of trimming adapter sequences. After filtering missing data, heterozygosity, and minor allele frequency, a total of 11,811 SNPs and 275 soybean genotypes were obtained for association analyses. Using a threshold of FDR-adjusted p-values <0.1, the Compressed Mixed Linear Model (CMLM) with Genome Association and Prediction Integrated Tool (GAPIT), and the Fixed and Random Model Circulating Probability Unification (FarmCPU) methods, both approaches identified SNPs with significant association to disease response on chromosomes 1, 11, and 18. The CMLM also found significance on chromosome 19, whereas FarmCPU also identified significance on chromosomes 4, 9, and 16. CONCLUSIONS These similar and yet different results show that the computational methods used can impact SNP associations in soybean, a plant with a high degree of linkage disequilibrium, and in SSR resistance, a trait that has a complex genetic basis. A total of 125 genes were located within linkage disequilibrium of the three loci shared between the two models. Their annotations and gene expressions in previous studies of soybean infected with S. sclerotiorum were examined to narrow down the candidates.
Collapse
Affiliation(s)
- Wei Wei
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | | | | | - Xing Wu
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Shilpa Manjunatha
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Daniel P. Wickland
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Matthew E. Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | | | - Steven J. Clough
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- United States Department of Agriculture, Agricultural Research Service, Urbana, IL 61801 USA
| |
Collapse
|
96
|
Shin H, Min K, Arora R. Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology 2017; 81:192-200. [PMID: 29061524 DOI: 10.1016/j.cryobiol.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/07/2023]
Abstract
Salicylic acid (SA)-treatment has been reported to improve plant tolerance to various abiotic stresses. However, its effect on freezing tolerance has not been well investigated. We investigated the effect of exogenous SA on freezing tolerance of spinach (Spinacia oleracea L.) leaves. We also explored if nitric oxide (NO) and/or hydrogen peroxide (H2O2)-mediation was involved in this response, since these are known as primary signaling molecules involved in many physiological processes. A micro-centrifuge tube-based system used to apply SA to petiolate spinach leaves (0.5 mM over 4-d) was effective, as evident by SA content of leaf tissues. SA-treatment did not hamper leaf growth (fresh and dry weight; equatorial and longitudinal length) and was also not significantly different from 25% Hoagland controls vis-à-vis growth. SA application significantly improved freezing tolerance as evidenced by reduced ion-leakage and alleviated oxidative stress (lower accumulation of O2·- and H2O2) following freeze-thaw stress treatments (-6.5, -7.5, and -8.5 °C). Improved freezing tolerance of SA-treated leaves was paralleled by increased proline and ascorbic acid (AsA) accumulation. A 9-d cold acclimation (CA) treatment also improved leaf freezing tolerance (compared to non-acclimated control) and was accompanied by accumulation of SA and proline. Our results indicate that increased freezing tolerance may be associated with accumulation of compatible solutes (proline) and antioxidants (AsA). Notably, the beneficial effect of SA on freezing tolerance was abolished when either H2O2- or NO-scavenger (1 μM N-acetylneuraminic acid, NANA or 100 μM hemoglobin, HB, respectively) was added to SA as pretreatment. Our data suggest that SA-induced freezing tolerance in spinach may be mediated by NO and H2O2 signaling.
Collapse
Affiliation(s)
- Hyunsuk Shin
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States
| | - Kyungwon Min
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
97
|
Marondedze C, Wong A, Thomas L, Irving H, Gehring C. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling. Handb Exp Pharmacol 2017; 238:87-103. [PMID: 26721677 DOI: 10.1007/164_2015_35] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic nucleotide monophosphates (cNMPs) and the enzymes that can generate them are of increasing interest in the plant sciences. Arguably, the major recent advance came with the release of the complete Arabidopsis thaliana genome that has enabled the systematic search for adenylate (ACs) or guanylate cyclases (GCs) and did eventually lead to the discovery of a number of GCs in higher plants. Many of these proteins have complex domain architectures with AC or GC centers moonlighting within cytosolic kinase domains. Recent reports indicated the presence of not just the canonical cNMPs (i.e., cAMP and cGMP), but also the noncanonical cCMP, cUMP, cIMP, and cdTMP in plant tissues, and this raises several questions. Firstly, what are the functions of these cNMPs, and, secondly, which enzymes can convert the substrate triphosphates into the respective noncanonical cNMPs? The first question is addressed here by comparing the reactive oxygen species (ROS) response of cAMP and cGMP to that elicited by the noncanonical cCMP or cIMP. The results show that particularly cIMP can induce significant ROS production. To answer, at least in part, the second question, we have evaluated homology models of experimentally confirmed plant GCs probing the substrate specificity by molecular docking simulations to determine if they can conceivably catalytically convert substrates other than ATP or GTP. In summary, molecular modeling and substrate docking simulations can contribute to the evaluation of cyclases for noncanonical cyclic mononucleotides and thereby further our understanding of the molecular mechanism that underlie cNMP-dependent signaling in planta.
Collapse
Affiliation(s)
- Claudius Marondedze
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ludivine Thomas
- Proteomics Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Helen Irving
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
98
|
Gehring C, Turek IS. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1704. [PMID: 29046682 PMCID: PMC5632652 DOI: 10.3389/fpls.2017.01704] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
Collapse
Affiliation(s)
- Chris Gehring
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ilona S. Turek
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
99
|
Cheng W, Xiao Z, Cai H, Wang C, Hu Y, Xiao Y, Zheng Y, Shen L, Yang S, Liu Z, Mou S, Qiu A, Guan D, He S. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. MOLECULAR PLANT PATHOLOGY 2017; 18:1089-1100. [PMID: 27438958 PMCID: PMC6638248 DOI: 10.1111/mpp.12462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
The leucine-rich repeat (LRR) proteins play important roles in the recognition of corresponding ligands and signal transduction networks in plant defence responses. Herein, a novel LRR protein from Capsicum annuum, CaLRR51, was identified and characterized. It was localized to the plasma membrane and transcriptionally up-regulated by Ralstonia solanacearum infection (RSI), as well as the exogenous application of salicylic acid (SA), jasmonic acid (JA) and ethephon (ETH). Virus-induced gene silencing of CaLRR51 significantly increased the susceptibility of pepper to RSI. By contrast, transient overexpression of CaLRR51 in pepper plants activated hypersensitive response (HR)-like cell death, and up-regulated the defence-related marker genes, including PO2, HIR1, PR1, DEF1 and ACO1. Moreover, ectopic overexpression of CaLRR51 in transgenic tobacco plants significantly enhanced the resistance to RSI. Transcriptional expression of the corresponding defence-related marker genes in transgenic tobacco plants was also found to be enhanced by the overexpression of CaLRR51, which was potentiated by RSI. These loss- and gain-of-function assays suggest that CaLRR51 acts as a positive regulator in the response of pepper to RSI. In addition, the putative signal peptide and transmembrane region were found to be required for plasma membrane targeting of CaLRR51, which is indispensable for the role of CaLRR51 in plant immunity.
Collapse
Affiliation(s)
- Wei Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Chuanqing Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yang Hu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yueping Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yuxing Zheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhiqin Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| |
Collapse
|
100
|
Vera-Ponce de León A, Ormeño-Orrillo E, Ramírez-Puebla ST, Rosenblueth M, Degli Esposti M, Martínez-Romero J, Martínez-Romero E. Candidatus Dactylopiibacterium carminicum, a Nitrogen-Fixing Symbiont of Dactylopius Cochineal Insects (Hemiptera: Coccoidea: Dactylopiidae). Genome Biol Evol 2017; 9:2237-2250. [PMID: 30605507 PMCID: PMC5604089 DOI: 10.1093/gbe/evx156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6 Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.
Collapse
Affiliation(s)
- Arturo Vera-Ponce de León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ernesto Ormeño-Orrillo
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de
Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Shamayim T Ramírez-Puebla
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mauro Degli Esposti
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Julio Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|