51
|
Lee SH, Lee S. Change of Ras and its guanosine triphosphatases (GTPases) during development and regression in bovine corpus luteum. Theriogenology 2019; 144:16-26. [PMID: 31887652 DOI: 10.1016/j.theriogenology.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the change of Ras and its guanosine triphosphatases (GTPases) proteins in the bovine corpus luteum (CL) during estrous cycle and investigate protein-protein interaction between hormone receptors and Ras proteins via angiogenetic and apoptotic factors using bioinformatics database. The bovine CLs at proliferation phase (PP), secretion phase (SP), and regression phase (RP) were dissected from abattoir ovaries (n = 4/stage), whole of the tissue samples was used to analyze two-dimensional electrophoresis (2-DE), mRNA, and protein analysis. The protein-protein interaction between the Ras GTPases proteins and hormone receptors were analyzed using Search Tool for the Retrieval of Interacting Genes (STRING) database. The Ras protein activator like 3 (RASAL3), Ras GTPase activating protein 3 (RASA3), Ras guanine nucleotide exchange factors 1 beta (RasGEF1B) were discovered by the 2-DE and mass spectrometry in bovine CLs, and the protein spots of RASA3 and RASAL3 were significantly increased in the SPCL compared to the PPCL, whereas the RasGEF1B was reduced in the PPCL (P < 0.05). The mRNA and proteins expression of progesterone receptor, estrogen receptor alpha (ERα), vascular endothelial growth factor A (VEGFA), angiopoietin 1 (Ang1), VEGF receptor2 (VEGFR2), and Tie2 were significantly increased, but intrinsic and extrinsic apoptotic factors were decreased in PPCL and SPCL compared to RPCL (P < 0.05). Based on STRING database, we determined that RasGEF1B is activated by ERα via VEGFA and VEGFR2, then RasGEF1B activates H-Ras and R-Ras. In addition, the RasGAP protein was significantly increased, however, the RasGEF, H-Ras and R-Ras proteins were reduced in SPCL compared to PPCL and RPCL (P < 0.05). In summary, the RasGEF and Ras proteins were raised during the development, whereas the RasGAP was increased when development was completed, then the Ras and its GTPases dramatically decreased at the regression in bovine CL. In conclusion, these results suggest that Ras and Ras GTPases could be changed during development and regression, activated by the ERα via angiogenetic signaling during proliferation, and may be important to understanding of the Ras and its GTPases system for estrous cycle in bovine CL.
Collapse
Affiliation(s)
- S H Lee
- Discipline of ICT, University of Tasmania, Hobart, Tasmania, Australia
| | - S Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
52
|
Lim JKM, Leprivier G. The impact of oncogenic RAS on redox balance and implications for cancer development. Cell Death Dis 2019; 10:955. [PMID: 31852884 PMCID: PMC6920345 DOI: 10.1038/s41419-019-2192-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The RAS family of proto-oncogenes comprises HRAS, KRAS, and NRAS, which are among the most mutated genes in human cancers. The RAS family genes encode small GTPases that coordinate key signaling pathways in response to growth factors. Mutations in RAS result in a constitutively active form of the protein that supports cellular transformation and tumorigenesis. The mechanisms of oncogenic RAS-mediated transformation encompass uncontrolled proliferation and inhibition of cell death through overactivation of the RAF-MEK-ERK and the PI3K-AKT pathways, respectively. In addition, the control of redox balance by RAS has also been proposed to play a role in its oncogenic properties. However, the exact role of redox balance in mediating mutant RAS transformation is still under debate. Here, we present, on one hand, the involvement of pro-oxidant components in oncogenic RAS transformation, such as NADPH oxidases and mitochondrial reactive oxygen species, and how these promote transformation. On the other hand, we describe the contribution of antioxidant components to mutant RAS transformation, including Nrf2, glutathione biosynthesis and xCT, as well as the mechanisms by which antioxidant programs drive transformation. Finally, we aim to reconcile the seemingly opposite effects of oncogenic RAS on redox balance and discuss a model for the complementary role of both pro-oxidant and antioxidant pathways in mutant RAS-driven tumor progression.
Collapse
Affiliation(s)
- Jonathan K M Lim
- Institute for Neuropathology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute for Neuropathology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
53
|
Lanfredini S, Thapa A, O'Neill E. RAS in pancreatic cancer. Biochem Soc Trans 2019; 47:961-972. [PMID: 31341034 DOI: 10.1042/bst20170521] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The pancreas is a gland composed mainly by endocrine and exocrine cells, giving rise to three main tumour types. Pancreatic neuroendocrine tumour or PNET arise from the endocrine portion of the pancreas. On the contrary, pancreatic exocrine neoplasms include pancreatic ductal adenocarcinoma (PDAC) and acinar cell carcinoma. PDAC is the most common type of pancreatic cancer and one of the leading causes of cancer-related death. It has been shown that less than 3% of PDAC patients have an overall survival of up to 5 years in the U.K. This mainly arises since the majority of patients diagnosed with PDAC present with advanced unresectable disease, which is highly resistant to all forms of chemotherapy and radiotherapy. Activating mutations of an isoform of the RAS protein, KRAS, are found in almost all PDAC cases and occur during early stages of malignant transformation. KRAS mutations play a critical role as they are involved in both initiating and maintaining PDAC development. The interaction of RAS with GDP/GTP along with its recruitment to the membrane affects transduction of its activating signals to downstream effectors. In this review, we aim to summarise different mutations of RAS and their prevalence in pancreatic cancer along with other RAS-induced tumours. In addition, we briefly discuss the genetically engineered mouse models that have been developed to study KRAS-mutated adenocarcinomas in the pancreas. These provide an opportunity to also address the importance of targeting RAS for better treatment response in PDAC patients along with the challenges incurred herein.
Collapse
Affiliation(s)
- Simone Lanfredini
- Department of Oncology, Old Road Campus Research Building Roosevelt Drive, University of Oxford, Oxford, U.K
| | - Asmita Thapa
- Department of Oncology, Old Road Campus Research Building Roosevelt Drive, University of Oxford, Oxford, U.K
| | - Eric O'Neill
- Department of Oncology, Old Road Campus Research Building Roosevelt Drive, University of Oxford, Oxford, U.K.
| |
Collapse
|
54
|
Liang H, Mu H, Jean-Francois F, Lakshman B, Sarkar-Banerjee S, Zhuang Y, Zeng Y, Gao W, Zaske AM, Nissley DV, Gorfe AA, Zhao W, Zhou Y. Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Sci Alliance 2019; 2:e201900343. [PMID: 31296567 PMCID: PMC6625090 DOI: 10.26508/lsa.201900343] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022] Open
Abstract
Plasma membrane (PM) curvature defines cell shape and intracellular organelle morphologies and is a fundamental cell property. Growth/proliferation is more stimulated in flatter cells than the same cells in elongated shapes. PM-anchored K-Ras small GTPase regulates cell growth/proliferation and plays key roles in cancer. The lipid-anchored K-Ras form nanoclusters selectively enriched with specific phospholipids, such as phosphatidylserine (PS), for efficient effector recruitment and activation. K-Ras function may, thus, be sensitive to changing lipid distribution at membranes with different curvatures. Here, we used complementary methods to manipulate membrane curvature of intact/live cells, native PM blebs, and synthetic liposomes. We show that the spatiotemporal organization and signaling of an oncogenic mutant K-Ras G12V favor flatter membranes with low curvature. Our findings are consistent with the more stimulated growth/proliferation in flatter cells. Depletion of endogenous PS abolishes K-Ras G12V PM curvature sensing. In cells and synthetic bilayers, only mixed-chain PS species, but not other PS species tested, mediate K-Ras G12V membrane curvature sensing. Thus, K-Ras nanoclusters act as relay stations to convert mechanical perturbations to mitogenic signaling.
Collapse
Affiliation(s)
- Hong Liang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Frantz Jean-Francois
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bindu Lakshman
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Weibo Gao
- School of Physics and Mathematical Science, Nanyang Technological University, Singapore
| | - Ana Maria Zaske
- Internal Medicine, Cardiology Division, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dwight V Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
55
|
Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol 2019; 59:23-35. [PMID: 31255772 DOI: 10.1016/j.semcancer.2019.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Ras proteins play a crucial role as a central component of the cellular networks controlling a variety of signaling pathways that regulate growth, proliferation, survival, differentiation, adhesion, cytoskeletal rearrangements and motility of a cell. Almost, 4 decades passed since Ras research was started and ras genes were originally discovered as retroviral oncogenes. Later on, mutations of the human RAS genes were linked to tumorigenesis. Genetic analyses found that RAS is one of the most deregulated oncogenes in human cancers. In this review, we summarize the pioneering works which allowed the discovery of RAS oncogenes, the finding of frequent mutations of RAS in various human cancers, the role of these mutations in tumorigenesis and mutation-activated signaling networks. We further describe the importance of RAS mutations in personalized or precision medicine particularly in molecular targeted therapy, as well as their use as diagnostic and prognostic markers as therapeutic determinants in human cancers.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| | - Michele Grieco
- DiSTABiF, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, via Vivaldi 43, Caserta 81100 Italy
| | - Nobuo Tsuchida
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| |
Collapse
|
56
|
Wei X, Zhao T, Zhang Y, Ai K, Li H, Yang J. Involvement of H-Ras in the adaptive immunity of Nile tilapia by regulating lymphocyte activation. FISH & SHELLFISH IMMUNOLOGY 2019; 89:281-289. [PMID: 30953781 DOI: 10.1016/j.fsi.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
H-Ras is a guanosine triphosphatase (GTPase), which acts as a molecular switch and controls multiple important cellular processes including lymphocyte activation and function. However, regulatory mechanism of adaptive immune response by H-Ras remains unclear in non-mammalian animals. In the present study, we investigated the involvement of H-Ras in lymphocyte activation with a teleost model Oreochromis niloticus. H-Ras from O. niloticus (On-H-Ras) is highly conserved with those from other vertebrates. The mRNA of On-H-Ras showed a wide expression pattern in the lymphoid-tissues and with the highest level in liver. After Aeromonas hydrophila infection, transcription of On-H-Ras was significantly induced on day 8 but came back to basal level on day 16, suggesting that On-H-Ras potentially participated in primary response during the adaptive immunity. Furthermore, On-H-Ras mRNA was obviously up-regulated when leukocytes were activated by T lymphocyte mitogen PHA in vitro. Meanwhile, protein level of H-Ras was also augmented once leukocytes were stimulated with lymphocyte receptor signaling agonist PMA and ionomycin. More importantly, once Ras activity was inhibited by specific inhibitor, the up-regulation of lymphocyte activation marker CD122 was obviously impaired during lymphocyte activation process. Therefore, On-H-Ras regulated lymphocyte activation through both mRNA and protein level. Altogether, our results illustrated the involvement of H-Ras in teleost adaptive immunity via controlling lymphocyte activation, and thus provided a novel perspective to understand evolution of the lymphocyte-mediated adaptive immunity.
Collapse
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
57
|
Hood FE, Klinger B, Newlaczyl AU, Sieber A, Dorel M, Oliver SP, Coulson JM, Blüthgen N, Prior IA. Isoform-specific Ras signaling is growth factor dependent. Mol Biol Cell 2019; 30:1108-1117. [PMID: 30785867 PMCID: PMC6724511 DOI: 10.1091/mbc.e18-10-0676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HRAS, NRAS, and KRAS isoforms are almost identical proteins that are ubiquitously expressed and activate a common set of effectors. In vivo studies have revealed that they are not biologically redundant; however, the isoform specificity of Ras signaling remains poorly understood. Using a novel panel of isogenic SW48 cell lines endogenously expressing wild-type or G12V-mutated activated Ras isoforms, we have performed a detailed characterization of endogenous isoform-specific mutant Ras signaling. We find that despite displaying significant Ras activation, the downstream outputs of oncogenic Ras mutants are minimal in the absence of growth factor inputs. The lack of mutant KRAS-induced effector activation observed in SW48 cells appears to be representative of a broad panel of colon cancer cell lines harboring mutant KRAS. For MAP kinase pathway activation in KRAS-mutant cells, the requirement for coincident growth factor stimulation occurs at an early point in the Raf activation cycle. Finally, we find that Ras isoform-specific signaling was highly context dependent and did not conform to the dogma derived from ectopic expression studies.
Collapse
Affiliation(s)
- Fiona E Hood
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Bertram Klinger
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Anna U Newlaczyl
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Anja Sieber
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mathurin Dorel
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Simon P Oliver
- Department of Biological Sciences, University of Chester, CH1 4BJ Chester, United Kingdom
| | - Judy M Coulson
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Integrative Research Institute for the Life Sciences, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
58
|
Abstract
The three RAS genes - HRAS, NRAS and KRAS - are collectively mutated in one-third of human cancers, where they act as prototypic oncogenes. Interestingly, there are rather distinct patterns to RAS mutations; the isoform mutated as well as the position and type of substitution vary between different cancers. As RAS genes are among the earliest, if not the first, genes mutated in a variety of cancers, understanding how these mutation patterns arise could inform on not only how cancer begins but also the factors influencing this event, which has implications for cancer prevention. To this end, we suggest that there is a narrow window or 'sweet spot' by which oncogenic RAS signalling can promote tumour initiation in normal cells. As a consequence, RAS mutation patterns in each normal cell are a product of the specific RAS isoform mutated, as well as the position of the mutation and type of substitution to achieve an ideal level of signalling.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
59
|
O'Bryan JP. Pharmacological targeting of RAS: Recent success with direct inhibitors. Pharmacol Res 2018; 139:503-511. [PMID: 30366101 DOI: 10.1016/j.phrs.2018.10.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
RAS has long been viewed as undruggable due to its lack of deep pockets for binding of small molecule inhibitors. However, recent successes in the development of direct RAS inhibitors suggest that the goal of pharmacological inhibition of RAS in patients may soon be realized. This review will discuss the role of RAS in cancer, the approaches used to develop direct RAS inhibitors, and highlight recent successes in the development of novel RAS inhibitory compounds that target different aspects of RAS biochemistry. In particular, this review will discuss the different properties of RAS that have been targeted by various inhibitors including membrane localization, the different activation states of RAS, effector binding, and nucleotide exchange. In addition, this review will highlight the recent success with mutation-specific inhibitors that exploit the unique biochemistry of the RAS(G12C) mutant. Although this mutation in KRAS accounts for 11% of all KRAS mutations in cancer, it is the most prominent KRAS mutant in lung cancer suggesting that G12C-specific inhibitors may provide a new approach for treating the subset of lung cancer patients harboring this mutant allele. Finally, this review will discuss the involvement of dimerization in RAS function and highlight new approaches to inhibit RAS by specifically interfering with RAS:RAS interaction.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, United States.
| |
Collapse
|
60
|
Mo SP, Coulson JM, Prior IA. RAS variant signalling. Biochem Soc Trans 2018; 46:1325-1332. [PMID: 30287508 PMCID: PMC6195641 DOI: 10.1042/bst20180173] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
RAS proteins are small GTPases that regulate signalling networks that control cellular proliferation and survival. They are frequently mutated in cancer and a commonly occurring group of developmental disorders called RASopathies. We discuss recent findings describing how RAS isoforms and different activating mutations differentially contribute to normal and disease-associated biology and the mechanisms that have been proposed to underpin this.
Collapse
Affiliation(s)
- Stephanie P Mo
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Judy M Coulson
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
61
|
Sheffels E, Sealover NE, Wang C, Kim DH, Vazirani IA, Lee E, M Terrell E, Morrison DK, Luo J, Kortum RL. Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange factor SOS2 to mediate cell transformation. Sci Signal 2018; 11:11/546/eaar8371. [PMID: 30181243 DOI: 10.1126/scisignal.aar8371] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
About a third of tumors have activating mutations in HRAS, NRAS, or KRAS, genes encoding guanosine triphosphatases (GTPases) of the RAS family. In these tumors, wild-type RAS cooperates with mutant RAS to promote downstream effector activation and cell proliferation and transformation, suggesting that upstream activators of wild-type RAS are important modulators of mutant RAS-driven oncogenesis. The guanine nucleotide exchange factor (GEF) SOS1 mediates KRAS-driven proliferation, but little is understood about the role of SOS2. We found that RAS family members have a hierarchical requirement for the expression and activity of SOS2 to drive cellular transformation. In mouse embryonic fibroblasts (MEFs), SOS2 critically mediated mutant KRAS-driven, but not HRAS-driven, transformation. Sos2 deletion reduced epidermal growth factor (EGF)-dependent activation of wild-type HRAS and phosphorylation of the kinase AKT in cells expressing mutant RAS isoforms. Assays using pharmacological inhibitors revealed a hierarchical requirement for signaling by phosphoinositide 3-kinase (PI3K) in promoting RAS-driven cellular transformation that mirrored the requirement for SOS2. KRAS-driven transformation required the GEF activity of SOS2 and was restored in Sos2-/- MEFs by expression of constitutively activated PI3K. Finally, CRISPR/Cas9-mediated deletion of SOS2 reduced EGF-stimulated AKT phosphorylation and synergized with MEK inhibition to revert the transformed phenotype of human KRAS mutant pancreatic and lung tumor cells. These results indicate that SOS2-dependent PI3K signaling mediates mutant KRAS-driven transformation, revealing therapeutic targets in KRAS-driven cancers. Our data also reveal the importance of three-dimensional culture systems in investigating the mediators of mutant KRAS.
Collapse
Affiliation(s)
- Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chenyue Wang
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Do Hyung Kim
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Isabella A Vazirani
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth Lee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI)-Frederick, Frederick, MD 21702, USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI)-Frederick, Frederick, MD 21702, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
62
|
Bery N, Cruz-Migoni A, Bataille CJ, Quevedo CE, Tulmin H, Miller A, Russell A, Phillips SE, Carr SB, Rabbitts TH. BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions. eLife 2018; 7:37122. [PMID: 29989546 PMCID: PMC6039175 DOI: 10.7554/elife.37122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
The RAS family of proteins is amongst the most highly mutated in human cancers and has so far eluded drug therapy. Currently, much effort is being made to discover mutant RAS inhibitors and in vitro screening for RAS-binding drugs must be followed by cell-based assays. Here, we have developed a robust set of bioluminescence resonance energy transfer (BRET)-based RAS biosensors that enable monitoring of RAS-effector interaction inhibition in living cells. These include KRAS, HRAS and NRAS and a variety of different mutations that mirror those found in human cancers with the major RAS effectors such as CRAF, PI3K and RALGDS. We highlighted the utility of these RAS biosensors by showing a RAS-binding compound is a potent pan-RAS-effector interactions inhibitor in cells. The RAS biosensors represent a useful tool to investigate and characterize the potency of anti-RAS inhibitors in cells and more generally any RAS protein-protein interaction (PPI) in cells. A group of proteins known as the RAS family plays a critical role in controlling animal cell growth and division. RAS proteins are normally active only some of the time, but genetic mutations can create permanently active forms of the proteins. These constantly interact with other proteins called effectors. In response, cells multiply uncontrollably and give rise to cancers. In an attempt to find new cancer treatments, researchers across the globe are trying to develop inhibitor drugs that prevent RAS and effector proteins from interacting. New drugs are often tested in laboratory experiments that directly apply the drugs to the proteins that they are designed to work on. But in some cases a drug may work wellin the laboratory but fail to work when used in cells. Unfortunately, there are few ways to judge how well inhibitor drugs work inside living cells. Bery et al. have now developed RAS biosensors – a collection of proteins that bind to RAS and produce light more brightly when RAS interacts with effector proteins in living cells. Tests on cells treated with an antibody that works inside cells and is known to prevent interactions between RAS and effector proteins confirmed that the RAS biosensors work well. Bery et al. then used the RAS biosensors to show that a new RAS inhibitor works in human cancer cells. The RAS biosensors are available upon request to researchers across the globe. They should form an important tool for testing potential treatments for cancers that contain mutated RAS proteins.
Collapse
Affiliation(s)
- Nicolas Bery
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Abimael Cruz-Migoni
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Camilo E Quevedo
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanna Tulmin
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ami Miller
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Simon Ev Phillips
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
63
|
Abstract
Ras oncoproteins can promote or suppress cellular apoptosis, but the mechanisms underlying these varied responses remain incompletely understood. Ras is linked to the Hippo tumor suppressor pathway, a highly conserved signaling cassette that regulates organ size in animals ranging from flies to humans. The proximal members of this pathway, Mammalian Ste20-like kinases (Msts) -1 and -2, self-associate in homodimers and also form heterodimers with other proteins. Formation of such complexes is known to regulate Mst kinase activity and thus, the Hippo pathway. In a manuscript that recently appeared in Current Biology, we showed that activated Hras promotes the formation of Mst1/Mst2 heterodimers, that activation of Erk was required for this event, and that these heterodimers were much less active than Mst1/Mst1 or Mst2/Mst2 homodimers. Interestingly, the formation of such heterodimers was required to deactivate the Hippo pathway and to enable transformation by Hras. In this Commentary, we discuss the background for this study and surprising implications thereof.
Collapse
|
64
|
Yang W, Redpath RE, Zhang C, Ning N. Long non-coding RNA H19 promotes the migration and invasion of colon cancer cells via MAPK signaling pathway. Oncol Lett 2018; 16:3365-3372. [PMID: 30127936 DOI: 10.3892/ol.2018.9052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA H19 has been identified to be dysregulated in a number of tumor types, and is closely associated with cancer progression. RAS/mitogen-activated protein kinase (MAPK) is an important intracellular signaling transduction pathway. Activation of the RAS-MAPK signaling pathway is one of the most frequent carcinogenic events in human cancer. However, the mechanism of H19 in promoting the migration and invasion of colorectal cancer (CRC) cells, and the association between H19 and RAS-MAPK signaling pathway is not well understood. The aim of the present study was to investigate the function of H19 on CRC metastasis and invasion, and assess the association between H19 and the RAS-MAPK signaling pathway. The migration and invasion of CRC cells were analyzed using Transwell migration and invasion assays. To elucidate the association between H19 and the RAS-MAPK signaling pathway and determine the expression level of active RAS in CRC cells, Ras activity assay and Western blotting were performed. It was indicated that the overexpression of H19 was able to increase the migration and invasion of CRC cells and this may be mediated by the regulation of RAS activation. Therefore, H19 may promote metastasis and invasion in colorectal cancer by activating the RAS-MAPK signaling pathway.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | | | - Chongyou Zhang
- Basic Medical College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ning Ning
- Department of Gastrointestinal Surgery, International Hospital of Peking University, Beijing 102206, P.R. China
| |
Collapse
|
65
|
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res 2018; 253:48-61. [PMID: 29864503 PMCID: PMC7114592 DOI: 10.1016/j.virusres.2018.05.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Viruses are known to exploit cellular signaling pathways. MAPK is a major cell signaling pathway activated by diverse group of viruses. MNK1 regulates both cap-dependent and IRES-mediated mRNA translation. This review discuss the role of MAPK, particularly the role of MNK1 in virus replication.
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome.
Collapse
Affiliation(s)
- Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India; Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Riyesh Thachamvally
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Bhupendra Nath Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India.
| |
Collapse
|
66
|
Altshuler A, Verbuk M, Bhattacharya S, Abramovich I, Haklai R, Hanna JH, Kloog Y, Gottlieb E, Shalom-Feuerstein R. RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Reports 2018; 10:1088-1101. [PMID: 29456180 PMCID: PMC5918191 DOI: 10.1016/j.stemcr.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
The transition from naive to primed state of pluripotent stem cells is hallmarked by epithelial-mesenchymal transition, metabolic switch from oxidative phosphorylation to aerobic glycolysis, and changes in the epigenetic landscape. Since these changes are also seen as putative hallmarks of neoplastic cell transformation, we hypothesized that oncogenic pathways may be involved in this process. We report that the activity of RAS is repressed in the naive state of mouse embryonic stem cells (ESCs) and that all three RAS isoforms are significantly activated upon early differentiation induced by LIF withdrawal, embryoid body formation, or transition to the primed state. Forced expression of active RAS and RAS inhibition have shown that RAS regulates glycolysis, CADHERIN expression, and the expression of repressive epigenetic marks in pluripotent stem cells. Altogether, this study indicates that RAS is located at a key junction of early ESC differentiation controlling key processes in priming of naive cells.
Collapse
Affiliation(s)
- Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Mila Verbuk
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ifat Abramovich
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Roni Haklai
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoel Kloog
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Gottlieb
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
67
|
Li S, Jang H, Zhang J, Nussinov R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018; 26:513-525.e2. [PMID: 29429878 PMCID: PMC8183739 DOI: 10.1016/j.str.2018.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
K-Ras4B preferentially activates Raf-1. The high-affinity interaction of Ras-binding domain (RBD) of Raf with Ras was solved, but the relative position of Raf's cysteine-rich domain (CRD) in the Ras/Raf complex at the membrane and key question of exactly how it affects Raf signaling are daunting. We show that CRD stably binds anionic membranes inserting a positively charged loop into the amphipathic interface. Importantly, when in complex with Ras/RBD, covalently connected CRD presents the same membrane interaction mechanism, with CRD locating at the space between the RBD and membrane. To date, CRD's role was viewed in terms of stabilizing Raf-membrane interaction. Our observations argue for a key role in reducing Ras/RBD fluctuations at the membrane, thereby increasing Ras/RBD affinity. Even without K-Ras, via CRD, Raf-1 can recruit to the membrane; however, by reducing the Ras/RBD fluctuations and enhancing Ras/RBD affinity at the membrane, CRD promotes Raf's activation and MAPK signaling over other pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
68
|
Zhou Y, Hancock JF. Deciphering lipid codes: K-Ras as a paradigm. Traffic 2018; 19:157-165. [PMID: 29120102 PMCID: PMC5927616 DOI: 10.1111/tra.12541] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
The cell plasma membrane (PM) is a highly dynamic and heterogeneous lipid environment, driven by complex hydrophobic and electrostatic interactions among the hundreds of types of lipid species. Although the biophysical processes governing lipid lateral segregation in the cell PM have been established in vitro, biological implications of lipid heterogeneity are poorly understood. Of particular interest is how membrane proteins potentially utilize transient spatial clustering of PM lipids to regulate function. This review focuses on a lipid-anchored small GTPase K-Ras as an example to explore how its C-terminal membrane-anchoring domain, consisting of a contiguous hexa-lysine polybasic domain and an adjacent farnesyl anchor, possesses a complex coding mechanism for highly selective lipid sorting on the PM. How this lipid specificity modulates K-Ras signal transmission will also be discussed.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX
| |
Collapse
|
69
|
The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells 2018; 7:cells7020014. [PMID: 29463063 PMCID: PMC5850102 DOI: 10.3390/cells7020014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy.
Collapse
|
70
|
Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget 2018; 7:42683-42697. [PMID: 26967056 PMCID: PMC5173166 DOI: 10.18632/oncotarget.7977] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/20/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a severe problem throughout the world and requires identification of novel targets for its treatment. This multifactorial disease accounts for about 15% of the all diagnosed leukemia cases. Mitogen-activated protein kinase (MAPK) signaling pathway is crucial for the cell survival and its dysregulation is being implicated in various types of cancers. In here, we have discussed the potential role of various miRNAs that are found involved in regulating the proteins cascades of MAPK signaling pathway associated with CML. An emphasis has been paid to summarize the influence of various miRNAs in elevating or suppressing the expression level of significant proteins such as miR-203, miR-196a, miR-196b, miR-30a, miR-29b, miR-138 in BCR-ABL tyrosine kinase; miR-126, miR-221, miR-128, miR-15a, miR-188-5p, miR-17 in CRK family proteins; miR-155, miR-181a with SOS proteins; miR-155, miR-19a, with KRAS proteins; miR-19a with RAF1 protein; and miR-17, miR-19a, miR-17-92 cluster with MAPK/ERK proteins. In light of ever-increasing importance and ever-widening regulatory roles of miRNAs in cells, we have reviewed the recent progress in the field of miRNAs and have tried to suggest them as controlling targets for various protein cascades of MAPK signaling pathway. An understanding of the supervisory mechanism of MAPK by miRNAs might provide novel targets for treating CML.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| |
Collapse
|
71
|
Spencer-Smith R, Li L, Prasad S, Koide A, Koide S, O'Bryan JP. Targeting the α4-α5 interface of RAS results in multiple levels of inhibition. Small GTPases 2017; 10:378-387. [PMID: 28692342 DOI: 10.1080/21541248.2017.1333188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Generation of RAS-targeted therapeutics has long been considered a "holy grail" in cancer research. However, a lack of binding pockets on the surface of RAS and its picomolar affinity for guanine nucleotides have made isolation of inhibitors particularly challenging. We recently described a monobody, termed NS1, that blocks RAS signaling and oncogenic transformation. NS1 binds to the α4-β6-α5 interface of H-RAS and K-RAS thus preventing RAS dimerization and nanoclustering, which in turn prevents RAS-stimulated dimerization and activation of RAF. Interestingly, NS1 reduces interaction of oncogenic K-RAS, but not H-RAS, with RAF and reduces K-RAS plasma membrane localization. Here, we show that these isoform specific effects of NS1 on RAS:RAF are due to the distinct hypervariable regions of RAS isoforms. NS1 inhibited wild type RAS function by reducing RAS GTP levels. These findings reveal that NS1 disrupts RAS signaling through a mechanism that is more complex than simply inhibiting RAS dimerization and nanoclustering.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Lie Li
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Sheela Prasad
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA
| | - Akiko Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,f Department of Medicine, New York University School of Medicine , New York , NY , USA
| | - Shohei Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,g Department of Biochemistry and Molecular Pharmacology, New York University School , New York , NY , USA
| | - John P O'Bryan
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| |
Collapse
|
72
|
Desethylamiodarone-A metabolite of amiodarone-Induces apoptosis on T24 human bladder cancer cells via multiple pathways. PLoS One 2017; 12:e0189470. [PMID: 29220397 PMCID: PMC5722307 DOI: 10.1371/journal.pone.0189470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is a common malignancy of the urinary tract that has a higher frequency in men than in women. Cytostatic resistance and metastasis formation are significant risk factors in BC therapy; therefore, there is great interest in overcoming drug resistance and in initiating research for novel chemotherapeutic approaches. Here, we suggest that desethylamiodarone (DEA)–a metabolite of amiodarone—may have cytostatic potential. DEA activates the collapse of mitochondrial membrane potential (detected by JC-1 fluorescence), and induces cell death in T24 human transitional-cell bladder carcinoma cell line at physiologically achievable concentrations. DEA induces cell cycle arrest in the G0/G1 phase, which may contribute to the inhibition of cell proliferation, and shifts the Bax/Bcl-2 ratio to initiate apoptosis, induce AIF nuclear translocation, and activate PARP-1 cleavage and caspase-3 activation. The major cytoprotective kinases—ERK and Akt—are inhibited by DEA, which may contribute to its cell death-inducing effects. DEA also inhibits the expression of B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and reduces colony formation of T24 bladder carcinoma cells, indicating its possible inhibitory effect on metastatic potential. These data show that DEA is a novel anti-cancer candidate of multiple cell death-inducing effects and metastatic potential. Our findings recommend further evaluation of its effects in clinical studies.
Collapse
|
73
|
Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol 2017; 235:R43-R61. [PMID: 28838947 DOI: 10.1530/joe-17-0266] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Whole genome sequencing approaches have provided unprecedented insights into the genetic lesions responsible for the onset, progression and dedifferentiation of various types of thyroid carcinomas. Through these efforts, the MAPK and PI3K signaling cascades have emerged as the main activation pathways implicated in thyroid tumorigenesis. The nature of these essential pathways is highly complex, with hundreds of components, multiple points of crosstalk, different subcellular localizations and with the ability to potentially regulate many cellular processes. Small-molecule inhibitors targeting key kinases of these pathways hold great promise as novel therapeutics and several have reached clinical trials. However, while some remarkable responses have been reported, the development of resistance remains a matter of concern and limits the benefit for patients. In this review, we discuss the latest findings on the major components of the MAPK and PI3K pathways, including their mechanisms of activation in physiological and pathological contexts, their genetic alterations with respect to the different types of thyroid carcinomas and the more relevant drugs designed to block their activity.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
74
|
Precise role of dermal fibroblasts on melanocyte pigmentation. J Dermatol Sci 2017; 88:159-166. [PMID: 28711237 DOI: 10.1016/j.jdermsci.2017.06.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022]
Abstract
Dermal fibroblasts are traditionally recognized as synthesizing, remodeling and depositing collagen and extracellular matrix, the structural framework for tissues, helping to bring thickness and firmness to the skin. However, the role of fibroblasts on skin pigmentation arouses concern recently. More is known about the interactions between epidermal melanocytes and keratinocytes. This review highlights the importance of fibroblast-derived melanogenic paracrine mediators in the regulation of melanocyte activities. Fibroblasts act on melanocytes directly and indirectly through neighboring cells by secreting a large number of cytokines (SCF), proteins (DKK1, sFRP, Sema7a, CCN, FAP-α) and growth factors (KGF, HGF, bFGF, NT-3, NRG-1, TGF-β) which bind to receptors and modulate intracellular signaling cascades (MAPK/ERK, cAMP/PKA, Wnt/β-catenin, PI3K/Akt) related to melanocyte functions. These factors influence the growth, the pigmentation of melanocytes via the expression of melanin-producing enzymes and melanosome transfer, as well as their dendricity, mobility and adhesive properties. Thus, fibroblasts are implicated in both skin physiological and pathological pigmentation. In order to investigate their contribution, various in vitro models have been developed, based on cellular senescence. UV exposure, a major factor implicated in pigmentary disorders, may affect the secretory crosstalk between dermal and epithelial cells. Therefore, identification of the interactions between fibroblasts and melanocytes could provide novel insights not only for the development of melanogenic agents in the clinical and cosmetic fields, but also for a better understanding of the melanocyte biology and melanogenesis regulation.
Collapse
|
75
|
Sayyed-Ahmad A, Prakash P, Gorfe AA. Distinct dynamics and interaction patterns in H- and K-Ras oncogenic P-loop mutants. Proteins 2017; 85:1618-1632. [PMID: 28498561 DOI: 10.1002/prot.25317] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022]
Abstract
Despite years of study, the structural or dynamical basis for the differential reactivity and oncogenicity of Ras isoforms and mutants remains unclear. In this study, we investigated the effects of amino acid variations on the structure and dynamics of wild type and oncogenic mutants G12D, G12V, and G13D of H- and K-Ras proteins. Based on data from µs-scale molecular dynamics simulations, we show that the overall structure of the proteins remains similar but there are important differences in dynamics and interaction networks. We identified differences in residue interaction patterns around the canonical switch and distal loop regions, and persistent sodium ion binding near the GTP particularly in the G13D mutants. Our results also suggest that different Ras variants have distinct local structural features and interactions with the GTP, variations that have the potential to affect GTP release and hydrolysis. Furthermore, we found that H-Ras proteins and particularly the G12V and G13D variants are significantly more flexible than their K-Ras counterparts. Finally, while most of the simulated proteins sampled the effector-interacting state 2 conformational state, G12V and G13D H-Ras adopted an open switch state 1 conformation that is defective in effector interaction. These differences have implications for Ras GTPase activity, effector or exchange factor binding, dimerization and membrane interaction. Proteins 2017; 85:1618-1632. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| |
Collapse
|
76
|
Watters K, Inankur B, Gardiner JC, Warrick J, Sherer NM, Yin J, Palmenberg AC. Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases. J Virol 2017; 91:e02472-16. [PMID: 28179529 PMCID: PMC5375692 DOI: 10.1128/jvi.02472-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023] Open
Abstract
The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes.IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured comparatively in transformed cells programed with fluorescent reporter systems and by quantitative cell imaging, the cellular substrates, particularly in the nuclear pore complex, used by these proteases were indeed attacked at different rates and with different affinities. The importance of this finding is that it provides a mechanistic explanation for how different types (strains) of rhinoviruses may elicit different cell responses that directly or indirectly lead to distinct disease phenotypes.
Collapse
Affiliation(s)
- Kelly Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bahar Inankur
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaye C Gardiner
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay Warrick
- Wisconsin Institutes for Medical Research and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
77
|
Takashina M, Inoue S, Tomihara K, Tomita K, Hattori K, Zhao QL, Suzuki T, Noguchi M, Ohashi W, Hattori Y. Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells. Int J Oncol 2017; 50:787-797. [DOI: 10.3892/ijo.2017.3859] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/19/2017] [Indexed: 11/06/2022] Open
|
78
|
Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, Wang B, Duong WQ, Yang Z, Williams CL, Miao QR. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene 2017; 36:3406-3416. [PMID: 28068323 PMCID: PMC5472485 DOI: 10.1038/onc.2016.484] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
The localization of prenylated Ras at the plasma membrane promotes activation of Ras by receptor tyrosine kinases and stimulates oncogenic signaling by mutant Ras. The Nogo-B receptor (NgBR) is a transmembrane receptor that contains a conserved hydrophobic pocket. Here, we demonstrate that the NgBR promotes the membrane accumulation of Ras by directly binding prenylated Ras at the plasma membrane. We show that NgBR knockdown diminishes the membrane localization of Ras in multiple cell types. NgBR overexpression in NIH-3T3 fibroblasts increases membrane-associated Ras, induces the transformed phenotype in vitro, and promotes the formation of fibrosarcoma in nude mice. NgBR knockdown in human breast cancer cells reduces Ras membrane localization, inhibits EGF-stimulated Ras signaling, and diminishes tumorigenesis of xenografts in nude mice. Our data demonstrate that NgBR is a unique receptor that promotes accumulation of prenylated Ras at the plasma membrane and promotes EGF pathways.
Collapse
Affiliation(s)
- B Zhao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Key Laboratory of Separation Science, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - W Hu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S Kumar
- Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - P Gonyo
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - U Rana
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Z Liu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - B Wang
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - W Q Duong
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Z Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - C L Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Q R Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
79
|
Spencer-Smith R, Koide A, Zhou Y, Eguchi RR, Sha F, Gajwani P, Santana D, Gupta A, Jacobs M, Herrero-Garcia E, Cobbert J, Lavoie H, Smith M, Rajakulendran T, Dowdell E, Okur MN, Dementieva I, Sicheri F, Therrien M, Hancock JF, Ikura M, Koide S, O'Bryan JP. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol 2016; 13:62-68. [PMID: 27820802 DOI: 10.1038/nchembio.2231] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022]
Abstract
RAS GTPases are important mediators of oncogenesis in humans. However, pharmacological inhibition of RAS has proved challenging. Here we describe a functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition. We developed NS1, a synthetic binding protein (monobody) that bound with high affinity to both GTP- and GDP-bound states of H-RAS and K-RAS but not N-RAS. NS1 potently inhibited growth factor signaling and oncogenic H-RAS- and K-RAS-mediated signaling and transformation but did not block oncogenic N-RAS, BRAF or MEK1. NS1 bound the α4-β6-α5 region of RAS, which disrupted RAS dimerization and nanoclustering and led to blocking of CRAF-BRAF heterodimerization and activation. These results establish the importance of the α4-β6-α5 interface in RAS-mediated signaling and define a previously unrecognized site in RAS for inhibiting RAS function.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA.,Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Raphael R Eguchi
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Fern Sha
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Priyanka Gajwani
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ankit Gupta
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Miranda Jacobs
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erika Herrero-Garcia
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Jacqueline Cobbert
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hugo Lavoie
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Matthew Smith
- Department of Medical Biophysics, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Thanashan Rajakulendran
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Evan Dowdell
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Mustafa Nazir Okur
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Irina Dementieva
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
80
|
SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol Cell Biol 2016; 36:2612-25. [PMID: 27503857 DOI: 10.1128/mcb.00191-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The Ras/mitogen-activated protein kinase (MAPK) signaling pathway is tightly controlled by negative feedback regulators, such as the tumor suppressor SPRED1. The SPRED1 gene also carries loss-of-function mutations in the RASopathy Legius syndrome. Growth factor stimulation translocates SPRED1 to the plasma membrane, triggering its inhibitory activity. However, it remains unclear whether SPRED1 there acts at the level of Ras or Raf. We show that pharmacological or galectin-1 (Gal-1)-mediated induction of B- and C-Raf-containing dimers translocates SPRED1 to the plasma membrane. This is facilitated in particular by SPRED1 interaction with B-Raf and, via its N terminus, with Gal-1. The physiological significance of these novel interactions is supported by two Legius syndrome-associated mutations that show diminished binding to both Gal-1 and B-Raf. On the plasma membrane, SPRED1 becomes enriched in acidic membrane domains to specifically perturb membrane organization and extracellular signal-regulated kinase (ERK) signaling of active K-ras4B (here, K-ras) but not H-ras. However, SPRED1 also blocks on the nanoscale the positive effects of Gal-1 on H-ras. Therefore, a combinatorial expression of SPRED1 and Gal-1 potentially regulates specific patterns of K-ras- and H-ras-dependent signaling output. More broadly, our results open up the possibility that related SPRED and Sprouty proteins act in a similar Ras and Raf isoform-specific manner.
Collapse
|
81
|
Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol Lett 2016; 12:3045-3050. [PMID: 27899961 PMCID: PMC5103898 DOI: 10.3892/ol.2016.5110] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common tumor worldwide and has a very poor prognosis. Its occurrence has been on the increase in recent years. Surgical resection and liver transplantation are the primary methods of treatment for HCC patients, but can only be applied to 15% of patients. The median survival time of unresectable or metastasizing HCC patients is only a few months. Existing systemic treatment methods are not effective for advanced HCC patients and a new method of treatment is needed for these patients. It has been established that the HCC occurs in multiple stages, however, the pathogenesis at a molecular level is not clear and many key factors are yet to be determined. In the past 30 years, it has become evident that the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) signaling pathway plays a significant role in the occurrence and development of HCC. This review focused on the association between the Ras/Raf/MEK/ERK signaling pathway and HCC.
Collapse
Affiliation(s)
- Lei Li
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Guo-Dong Zhao
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Zhe Shi
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Li-Li Qi
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Li-Yuan Zhou
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Ze-Xian Fu
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| |
Collapse
|
82
|
Roh MR, Eliades P, Gupta S, Tsao H. Genetics of melanocytic nevi. Pigment Cell Melanoma Res 2016; 28:661-72. [PMID: 26300491 DOI: 10.1111/pcmr.12412] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023]
Abstract
Melanocytic nevi are a benign clonal proliferation of cells expressing the melanocytic phenotype, with heterogeneous clinical and molecular characteristics. In this review, we discuss the genetics of nevi by salient nevi subtypes: congenital melanocytic nevi, acquired melanocytic nevi, blue nevi, and Spitz nevi. While the molecular etiology of nevi has been less thoroughly studied than melanoma, it is clear that nevi and melanoma share common driver mutations. Acquired melanocytic nevi harbor oncogenic mutations in BRAF, which is the predominant oncogene associated with melanoma. Congenital melanocytic nevi and blue nevi frequently harbor NRAS mutations and GNAQ mutations, respectively, while Spitz and atypical Spitz tumors often exhibit HRAS and kinase rearrangements. These initial 'driver' mutations are thought to trigger the establishment of benign nevi. After this initial phase of the cell proliferation, a senescence program is executed, causing termination of nevi growth. Only upon the emergence of additional tumorigenic alterations, which may provide an escape from oncogene-induced senescence, can malignant progression occur. Here, we review the current literature on the pathobiology and genetics of nevi in the hope that additional studies of nevi promise to inform our understanding of the transition from benign neoplasm to malignancy.
Collapse
Affiliation(s)
- Mi Ryung Roh
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Philip Eliades
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| | - Sameer Gupta
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Posada IMD, Serulla M, Zhou Y, Oetken-Lindholm C, Abankwa D, Lectez B. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold. PLoS One 2016; 11:e0159677. [PMID: 27437940 PMCID: PMC4954646 DOI: 10.1371/journal.pone.0159677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 02/02/2023] Open
Abstract
Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2’s interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2’s ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events.
Collapse
Affiliation(s)
- Itziar M. D. Posada
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| | - Marc Serulla
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| | - Yong Zhou
- University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | | | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
- * E-mail:
| | - Benoît Lectez
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| |
Collapse
|
84
|
Abstract
Cancer is driven by mutations in genes whose products participate in major signaling pathways that fuel cell proliferation and survival. It is easy to assume that the more of these so-called driver mutations a tumor accumulates, the faster it progresses. However, this does not appear to be the case: Data from large-scale genome sequencing studies indicate that mutations in driver oncogenes often are mutually exclusive. The mechanisms underlying the mutual exclusivity of oncogenes are not completely understood, but recent reports suggest that the mechanisms may depend on the tumor type, and the nature of interacting oncogenes. Here we discuss our recent findings that the oncogenes KRASG12D and BRAFV600E are mutually exclusive in lung cancer in mouse models because their coexpression leads to oncogene-induced senescence.
Collapse
Affiliation(s)
- Jaroslaw Cisowski
- a Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine , University of Gothenburg , Gothenburg , Sweden
| | - Martin O Bergo
- a Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine , University of Gothenburg , Gothenburg , Sweden.,b Department of Biosciences and Nutrition , Karolinska Institutet , Huddinge , Sweden
| |
Collapse
|
85
|
Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol 2016; 58:60-9. [PMID: 27422332 DOI: 10.1016/j.semcdb.2016.07.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/03/2023]
Abstract
Mutationally activated RAS proteins are critical oncogenic drivers in nearly 30% of all human cancers. As with mutant RAS, the role of wild type RAS proteins in oncogenesis, tumour maintenance and metastasis is context-dependent. Complexity is introduced by the existence of multiple RAS genes (HRAS, KRAS, NRAS) and protein "isoforms" (KRAS4A, KRAS4B), by the ever more complicated network of RAS signaling, and by the increasing identification of numerous genetic aberrations in cancers that do and do not harbour mutant RAS. Numerous mouse model carcinogenesis studies and examination of patient tumours reveal that, in RAS-mutant cancers, wild type RAS proteins are likely to serve as tumour suppressors when the mutant RAS is of the same isoform. This evidence is particularly robust in KRAS mutant cancers, which often display suppression or loss of wild type KRAS, but is not as strong for NRAS. In contrast, although not yet fully elucidated, the preponderance of evidence indicates that wild type RAS proteins play a tumour promoting role when the mutant RAS is of a different isoform. In non-RAS mutant cancers, wild type RAS is recognized as a mediator of oncogenic signaling due to chronic activation of upstream receptor tyrosine kinases that feed through RAS. Additionally, in the absence of mutant RAS, activation of wild type RAS may drive cancer upon the loss of negative RAS regulators such as NF1 GAP or SPRY proteins. Here we explore the current state of knowledge with respect to the roles of wild type RAS proteins in human cancers.
Collapse
Affiliation(s)
- Bingying Zhou
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | - Channing J Der
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | - Adrienne D Cox
- Department of Pharmacology, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
86
|
Fey D, Matallanas D, Rauch J, Rukhlenko OS, Kholodenko BN. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol 2016; 58:96-107. [PMID: 27350026 DOI: 10.1016/j.semcdb.2016.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens Rauch
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
87
|
Marks V, Munoz A, Rai P, Walls JD. (1)H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells. PeerJ 2016; 4:e2104. [PMID: 27330862 PMCID: PMC4906648 DOI: 10.7717/peerj.2104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use (1)H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells.
Collapse
Affiliation(s)
- Vered Marks
- Department of Chemistry, University of Miami Coral Gables , FL , USA
| | - Anisleidys Munoz
- Department of Chemistry, University of MiamiCoral Gables, FL, USA; Department of Medicine, Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Priyamvada Rai
- Department of Medicine, Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jamie D Walls
- Department of Chemistry, University of Miami Coral Gables , FL , USA
| |
Collapse
|
88
|
Abstract
The formation and maintenance of an organism are highly dependent on the orderly control of cell growth, differentiation, death, and migration. These processes are tightly regulated by signaling cascades in which a limited number of molecules dictate these cellular events. While these signaling pathways are highly conserved across species and cell types, the functional outcomes that result from their engagement are specified by the context in which they are activated. Using the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome as an illustrative platform, we discuss how NF1/RAS signaling can create functional diversity at multiple levels (molecular, cellular, tissue, and genetic/genomic). As such, the ability of related molecules (e.g., K-RAS, H-RAS) to activate distinct effectors, as well as cell type- and tissue-specific differences in molecular composition and effector engagement, generate numerous unique functional effects. These variations, coupled with a multitude of extracellular cues and genomic/genetic changes that each modify the innate signaling properties of the cell, enable precise control of cellular physiology in both health and disease. Understanding these contextual influences is important when trying to dissect the underlying pathogenic mechanisms of cancer relevant to molecularly-targeted therapeutics.
Collapse
|
89
|
Tashiro E, Imoto M. Screening and target identification of bioactive compounds that modulate cell migration and autophagy. Bioorg Med Chem 2016; 24:3283-90. [PMID: 27094149 DOI: 10.1016/j.bmc.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. It is well known that protrusive structures, namely filopodia and lamellipodia, can be observed at the leading edge of migrating cells. The formation of these structures is necessary for cell migration; however, the molecular mechanisms behind the formation of these structures remain largely unclear. Therefore, bioactive compounds that modulate protrusive structures are extremely powerful tools for studying the mechanisms behind the formation of these structures and subsequent cell migration. Therefore, we have screened for bioactive compounds that inhibit the formation of filopodia, lamellipodia, or cell migration from natural products, and attempted to identify the target molecules of our isolated compounds. Additionally, autophagy is a bulk, non-specific protein degradation system that is involved in the pathogenesis of cancer and neurodegenerative disorders. Recent extensive studies have revealed the molecular mechanisms of autophagy, however, they also remain largely unclear. Thus, we also have screened for bioactive compounds that modulate autophagy, and identified the target molecules. In the present article, we introduce the phenotypic screening system and target identification of four bioactive compounds.
Collapse
Affiliation(s)
- Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama City 223-8522, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama City 223-8522, Japan.
| |
Collapse
|
90
|
Bender RHF, Haigis KM, Gutmann DH. Activated k-ras, but not h-ras or N-ras, regulates brain neural stem cell proliferation in a raf/rb-dependent manner. Stem Cells 2016; 33:1998-2010. [PMID: 25788415 DOI: 10.1002/stem.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/08/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
Neural stem cells (NSCs) give rise to all the major cell types in the brain, including neurons, oligodendrocytes, and astrocytes. However, the intracellular signaling pathways that govern brain NSC proliferation and differentiation have been incompletely characterized to date. Since some neurodevelopmental brain disorders (Costello syndrome and Noonan syndrome) are caused by germline activating mutations in the RAS genes, Ras small GTPases are likely critical regulators of brain NSC function. In the mammalian brain, Ras exists as three distinct molecules (H-Ras, K-Ras, and N-Ras), each with different subcellular localizations, downstream signaling effectors, and biological effects. Leveraging a novel series of conditional-activated Ras molecule-expressing genetically engineered mouse strains, we demonstrate that activated K-Ras, but not H-Ras or N-Ras, expression increases brain NSC growth in a Raf-dependent, but Mek-independent, manner. Moreover, we show that activated K-Ras regulation of brain NSC proliferation requires Raf binding and suppression of retinoblastoma (Rb) function. Collectively, these observations establish tissue-specific differences in activated Ras molecule regulation of brain cell growth that operate through a noncanonical mechanism.
Collapse
Affiliation(s)
- R Hugh F Bender
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kevin M Haigis
- Department of Medicine, Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
91
|
Muñoz-Félix JM, Fuentes-Calvo I, Cuesta C, Eleno N, Crespo P, López-Novoa JM, Martínez-Salgado C. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts. J Cell Physiol 2016; 231:2224-35. [PMID: 26873620 DOI: 10.1002/jcp.25340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Isabel Fuentes-Calvo
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Cuesta
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Nélida Eleno
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Piero Crespo
- Facultad de Medicina, Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-IDICAN-Universidad de Cantabria, Santander, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Instituto "Reina Sofía" de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
92
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. K-Ras4B/calmodulin/PI3Kα: A promising new adenocarcinoma-specific drug target? Expert Opin Ther Targets 2016; 20:831-42. [DOI: 10.1517/14728222.2016.1135131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
93
|
Wiesner T, Kutzner H, Cerroni L, Mihm MC, Busam KJ, Murali R. Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology 2016; 48:113-31. [PMID: 27020384 DOI: 10.1016/j.pathol.2015.12.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023]
Abstract
Histopathological evaluation of melanocytic tumours usually allows reliable distinction of benign melanocytic naevi from melanoma. More difficult is the histopathological classification of Spitz tumours, a heterogeneous group of tumours composed of large epithelioid or spindle-shaped melanocytes. Spitz tumours are biologically distinct from conventional melanocytic naevi and melanoma, as exemplified by their distinct patterns of genetic aberrations. Whereas common acquired naevi and melanoma often harbour BRAF mutations, NRAS mutations, or inactivation of NF1, Spitz tumours show HRAS mutations, inactivation of BAP1 (often combined with BRAF mutations), or genomic rearrangements involving the kinases ALK, ROS1, NTRK1, BRAF, RET, and MET. In Spitz naevi, which lack significant histological atypia, all of these mitogenic driver aberrations trigger rapid cell proliferation, but after an initial growth phase, various tumour suppressive mechanisms stably block further growth. In some tumours, additional genomic aberrations may abrogate various tumour suppressive mechanisms, such as cell-cycle arrest, telomere shortening, or DNA damage response. The melanocytes then start to grow in a less organised fashion and may spread to regional lymph nodes, and are termed atypical Spitz tumours. Upon acquisition of even more aberrations, which often activate additional oncogenic pathways or alter cell differentiation, the neoplastic cells become entirely malignant and may colonise and take over distant organs (spitzoid melanoma). The sequential acquisition of genomic aberrations suggests that Spitz tumours represent a continuous biological spectrum, rather than a dichotomy of benign versus malignant, and that tumours with ambiguous histological features (atypical Spitz tumours) might be best classified as low-grade melanocytic tumours. The number of genetic aberrations usually correlates with the degree of histological atypia and explains why existing ancillary genetic techniques, such as array comparative genomic hybridisation (CGH) or fluorescence in situ hybridisation (FISH), are usually capable of accurately classifying histologically benign and malignant Spitz tumours, but are not very helpful in the diagnosis of ambiguous melanocytic lesions. Nevertheless, we expect that progress in our understanding of tumour progression will refine the classification of spitzoid melanocytic tumours in the near future. By integrating clinical, pathological, and genetic criteria, distinct tumour subsets will be defined within the heterogeneous group of Spitz tumours, which will eventually lead to improvements in diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Thomas Wiesner
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States; Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria.
| | - Heinz Kutzner
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria; Dermatopathologie Friedrichshafen, Friedrichshafen, Germany
| | - Lorenzo Cerroni
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Martin C Mihm
- Melanoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
94
|
Chavan TS, Jang H, Khavrutskii L, Abraham SJ, Banerjee A, Freed BC, Johannessen L, Tarasov SG, Gaponenko V, Nussinov R, Tarasova NI. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site. Biophys J 2015; 109:2602-2613. [PMID: 26682817 PMCID: PMC4699860 DOI: 10.1016/j.bpj.2015.09.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Medicinal Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunbum Jang
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Lyuba Khavrutskii
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sherwin J Abraham
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois
| | - Avik Banerjee
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Benjamin C Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Liv Johannessen
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Sergey G Tarasov
- Chemistry Department, University of Illinois at Chicago, Chicago, Illinois; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, Maryland
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics Department, University of Illinois at Chicago, Chicago, Illinois.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland.
| |
Collapse
|
95
|
Hernandez-Valladares M, Prior IA. Comparative proteomic analysis of compartmentalised Ras signalling. Sci Rep 2015; 5:17307. [PMID: 26620772 PMCID: PMC4664896 DOI: 10.1038/srep17307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022] Open
Abstract
Ras proteins are membrane bound signalling hubs that operate from both the cell surface and endomembrane compartments. However, the extent to which intracellular pools of Ras can contribute to cell signalling is debated. To address this, we have performed a global screen of compartmentalised Ras signalling. We find that whilst ER/Golgi- and endosomal-Ras only generate weak outputs, Ras localised to the mitochondria or Golgi significantly and distinctly influence both the abundance and phosphorylation of a wide range of proteins analysed. Our data reveal that ~80% of phosphosites exhibiting large (≥1.5-fold) changes compared to control can be modulated by organellar Ras signalling. The majority of compartmentalised Ras-specific responses are predicted to influence gene expression, RNA splicing and cell proliferation. Our analysis reinforces the concept that compartmentalisation influences Ras signalling and provides detailed insight into the widespread modulation of responses downstream of endomembranous Ras signalling.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | - Ian A Prior
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
96
|
Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V. Plasma membrane regulates Ras signaling networks. CELLULAR LOGISTICS 2015; 5:e1136374. [PMID: 27054048 PMCID: PMC4820813 DOI: 10.1080/21592799.2015.1136374] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.
Collapse
Affiliation(s)
- Tanmay Sanjeev Chavan
- Department of Medicinal Chemistry; University of Illinois at Chicago; Chicago, IL USA
| | - Serena Muratcioglu
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Richard Marszalek
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| | - Hyunbum Jang
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
97
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Mol Cancer Res 2015; 13:1265-73. [PMID: 26085527 PMCID: PMC4572916 DOI: 10.1158/1541-7786.mcr-15-0165] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
KRAS4B is a highly oncogenic splice variant of the KRAS isoform. It is the only isoform associated with initiation of adenocarcinomas. Insight into why and how KRAS4B can mediate ductal adenocarcinomas, particularly of the pancreas, is vastly important for its therapeutics. Here we point out the overlooked critical role of calmodulin (CaM). Calmodulin selectively binds to GTP-bound K-Ras4B; but not to other Ras isoforms. Cell proliferation and growth require the MAPK (Raf/MEK/ERK) and PI3K/Akt pathways. We propose that Ca(2+)/calmodulin promote PI3Kα/Akt signaling, and suggest how. The elevated calcium levels clinically observed in adenocarcinomas may explain calmodulin's involvement in recruiting and stimulating PI3Kα through interaction with its n/cSH2 domains as well as K-Ras4B; importantly, it also explains why K-Ras4B specifically is a key player in ductal carcinomas, such as pancreatic (PDAC), colorectal (CRC), and lung cancers. We hypothesize that calmodulin recruits and helps activate PI3Kα at the membrane, and that this is the likely reason for Ca(2+)/calmodulin dependence in adenocarcinomas. Calmodulin can contribute to initiation/progression of ductal cancers via both PI3Kα/Akt and Raf/MEK/ERK pathways. Blocking the K-Ras4B/MAPK pathway and calmodulin/PI3Kα binding in a K-Ras4B/calmodulin/PI3Kα trimer could be a promising adenocarcinoma-specific therapeutic strategy.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland. Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
98
|
Luke JJ, Ott PA, Shapiro GI. The biology and clinical development of MEK inhibitors for cancer. Drugs 2015; 74:2111-28. [PMID: 25414119 DOI: 10.1007/s40265-014-0315-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinase kinases (MAPKK) MEK1 and MEK2 are integral members of the MAPK/ERK signaling pathway and are of interest in the development of anti-cancer therapeutics. The MAPK/ERK pathway is dysregulated in more than 30 % of cancers, predominately by mutations in RAS and BRAF proteins, and MEK serves as a potential downstream target for both of these. The biology of MEK inhibition is complex, as the molecule is differentially regulated by upstream RAS or RAF. This has impacted on the past development of MEK inhibitors as treatments for cancer and may be exploited in more rational, molecularly selected drug development plans in the future. The role of MEK in cancer and the mechanism of action of MEK inhibitors is reviewed. Furthermore, MEK inhibitors that are available in standard practice, as well as those most advanced in clinical development, are discussed. Finally, next steps in the development of MEK inhibitors are considered.
Collapse
Affiliation(s)
- Jason J Luke
- Melanoma and Developmental Therapeutics Clinics, University of Chicago Cancer Center, University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL, 60637, USA,
| | | | | |
Collapse
|
99
|
Chemistry and biology of the compounds that modulate cell migration. J Ind Microbiol Biotechnol 2015; 43:213-9. [PMID: 26173498 DOI: 10.1007/s10295-015-1654-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.
Collapse
|
100
|
HU JIALIANG, CHENG TAO, ZHANG LIJUN, SUN BEICHENG, DENG LEI, XU HANMEI. Anti-tumor peptide AP25 decreases cyclin D1 expression and inhibits MGC-803 proliferation via phospho-extracellular signal-regulated kinase-, Src-, c-Jun N-terminal kinase-and phosphoinositide 3-kinase-associated pathways. Mol Med Rep 2015; 12:4396-4402. [DOI: 10.3892/mmr.2015.3912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/24/2015] [Indexed: 11/05/2022] Open
|