51
|
Oxidative dechlorination of halogenated phenols catalyzed by two distinct enzymes: Horseradish peroxidase and dehaloperoxidase. Arch Biochem Biophys 2011; 505:22-32. [DOI: 10.1016/j.abb.2010.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/15/2010] [Accepted: 09/19/2010] [Indexed: 11/21/2022]
|
52
|
Thompson MK, Franzen S, Ghiladi RA, Reeder BJ, Svistunenko DA. Compound ES of Dehaloperoxidase Decays via Two Alternative Pathways Depending on the Conformation of the Distal Histidine. J Am Chem Soc 2010; 132:17501-10. [DOI: 10.1021/ja106620q] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew K. Thompson
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Brandon J. Reeder
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Dimitri A. Svistunenko
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
53
|
Davydov R, Osborne RL, Shanmugam M, Du J, Dawson JH, Hoffman BM. Probing the oxyferrous and catalytically active ferryl states of Amphitrite ornata dehaloperoxidase by cryoreduction and EPR/ENDOR spectroscopy. Detection of compound I. J Am Chem Soc 2010; 132:14995-5004. [PMID: 20925340 PMCID: PMC2978736 DOI: 10.1021/ja1059747] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehaloperoxidase (DHP) from Amphitrite ornata is a heme protein that can function both as a hemoglobin and as a peroxidase. This report describes the use of 77 K cryoreduction EPR/ENDOR techniques to study both functions of DHP. Cryoreduced oxyferrous [Fe(II)-O(2)] DHP exhibits two EPR signals characteristic of a peroxoferric [Fe(III)-O(2)(2-)] heme species, reflecting the presence of conformational substates in the oxyferrous precursor. (1)H ENDOR spectroscopy of the cryogenerated substates shows that H-bonding interactions between His N(ε)H and heme-bound O(2) in these conformers are similar to those in the β-chain of oxyferrous hemoglobin A (HbA) and oxyferrous myoglobin, respectively. Decay of cryogenerated peroxoferric heme DHP intermediates upon annealing at temperatures above 180 K is accompanied by the appearance of a new paramagnetic species with an axial EPR signal with g(⊥) = 3.75 and g(∥) = 1.96, characteristic of an S = 3/2 spin state. This species is assigned to Compound I (Cpd I), in which a porphyrin π-cation radical is ferromagnetically coupled with an S = 1 ferryl [Fe(IV)═O] ion. This species was also trapped by rapid freeze-quench of the ambient-temperature reaction mixture of ferric [Fe(III)] DHP and H(2)O(2). However, in the latter case Cpd I is reduced very rapidly by a nearby tyrosine to form Cpd ES [(Fe(IV)═O)(porphyrin)/Tyr(•)]. Addition of the substrate analogue 2,4,6-trifluorophenol (F(3)PhOH) suppresses formation of the Cpd I intermediate during annealing of cryoreduced oxyferrous DHP at 190 K but has no effect on the spectroscopic properties of the remaining cryoreduced oxyferrous DHP intermediates and kinetics of their decay. These observations indicate that substrate (i) binds to oxyferrous DHP outside of the distal pocket and (ii) can reduce Cpd I to Cpd II [Fe(IV)═O]. These assumptions are also supported by the observation that F(3)PhOH has only a small effect on the EPR properties of radiolytically cryooxidized and cryoreduced ferrous [Fe(II)] DHP. EPR spectra of cryoreduced ferrous DHP disclose the multiconformational nature of the ferrous DHP precursor. The observation and characterization of Cpds I, II, and ES in the absence and in the presence of F(3)PhOH provides definitive evidence of a mechanism involving consecutive one-electron steps and clarifies the role of all intermediates formed during turnover.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Robert L. Osborne
- Department of Chemistry and Biochemistry University of South Carolina, Columbia, South Carolina 29208
| | | | - Jing Du
- Department of Chemistry and Biochemistry University of South Carolina, Columbia, South Carolina 29208
| | - John H. Dawson
- Department of Chemistry and Biochemistry University of South Carolina, Columbia, South Carolina 29208
- School of Medicine University of South Carolina, Columbia, South Carolina 29208
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
54
|
Ma H, Thompson MK, Gaff J, Franzen S. Kinetic Analysis of a Naturally Occurring Bioremediation Enzyme: Dehaloperoxidase-Hemoglobin from Amphitrite ornata. J Phys Chem B 2010; 114:13823-9. [DOI: 10.1021/jp1014516] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Ma
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Matthew K. Thompson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - John Gaff
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, and Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, and Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
D'Antonio J, D'Antonio EL, Thompson MK, Bowden EF, Franzen S, Smirnova T, Ghiladi RA. Spectroscopic and mechanistic investigations of dehaloperoxidase B from Amphitrite ornata. Biochemistry 2010; 49:6600-16. [PMID: 20545299 PMCID: PMC2921985 DOI: 10.1021/bi100407v] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a bifunctional enzyme that possesses both hemoglobin and peroxidase activities. Of the two DHP isoenzymes identified to date, much of the recent focus has been on DHP A, whereas very little is known pertaining to the activity, substrate specificity, mechanism of function, or spectroscopic properties of DHP B. Herein, we report the recombinant expression and purification of DHP B, as well as the details of our investigations into its catalytic cycle using biochemical assays, stopped-flow UV-visible, resonance Raman, and rapid freeze-quench electron paramagnetic resonance spectroscopies, and spectroelectrochemistry. Our experimental design reveals mechanistic insights and kinetic descriptions of the dehaloperoxidase mechanism which have not been previously reported for isoenzyme A. Namely, we demonstrate a novel reaction pathway in which the products of the oxidative dehalogenation of trihalophenols (dihaloquinones) are themselves capable of inducing formation of oxyferrous DHP B, and an updated catalytic cycle for DHP is proposed. We further demonstrate that, unlike the traditional monofunctional peroxidases, the oxyferrous state in DHP is a peroxidase-competent starting species, which suggests that the ferric oxidation state may not be an obligatory starting point for the enzyme. The data presented herein provide a link between the peroxidase and oxygen transport activities which furthers our understanding of how this bifunctional enzyme is able to unite its two inherent functions in one system.
Collapse
Affiliation(s)
- Jennifer D'Antonio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Nienhaus K, Nienhaus GU. Ligand dynamics in heme proteins observed by Fourier transform infrared-temperature derivative spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1030-41. [PMID: 20656073 DOI: 10.1016/j.bbapap.2010.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the investigation of protein-ligand interactions in heme proteins. Nitric oxide and carbon monoxide are attractive physiologically relevant ligands because their bond stretching vibrations give rise to strong mid-infrared absorption bands that can be measured with exquisite sensitivity and precision using photolysis difference spectroscopy at cryogenic temperatures. These stretching bands are fine-tuned by electrostatic interactions with the environment and, therefore, ligands can be utilized as local probes of structure and dynamics. Bound to the heme iron, the ligand stretching bands are susceptible to changes in the iron-ligand bond and the electric field at the active site. Upon photolysis, the vibrational bands display changes due to ligand relocation to docking sites within the protein, rotational motions of the ligand in these sites and protein conformational changes. Photolysis difference spectra taken over a wide temperature range (3-300K) using specific temperature protocols for sample photodissociation can provide detailed insights into both protein and ligand dynamics. Moreover, temperature-derivative spectroscopy (TDS) has proven to be a particularly powerful technique to study protein-ligand interactions. The FTIR-TDS technique has been extensively applied to studies of carbon monoxide binding to heme proteins, whereas measurements with nitric oxide are still scarce. Here we describe infrared cryo-spectroscopy and present a variety of applications to the study of protein-ligand interactions in heme proteins. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics and Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany
| | | |
Collapse
|
57
|
Du J, Sono M, Dawson JH. Functional Switching of Amphitrite ornata Dehaloperoxidase from O2-Binding Globin to Peroxidase Enzyme Facilitated by Halophenol Substrate and H2O2. Biochemistry 2010; 49:6064-9. [DOI: 10.1021/bi100741z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Du
- Department of Chemistry and Biochemistry
| | | | - John H. Dawson
- Department of Chemistry and Biochemistry
- School of Medicine
| |
Collapse
|
58
|
de Serrano VS, Davis MF, Gaff JF, Zhang Q, Chen Z, D'Antonio EL, Bowden EF, Rose R, Franzen S. X-ray structure of the metcyano form of dehaloperoxidase fromAmphitrite ornata: evidence for photoreductive dissociation of the iron–cyanide bond. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:770-82. [DOI: 10.1107/s0907444910014605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/20/2010] [Indexed: 11/11/2022]
Abstract
X-ray crystal structures of the metcyano form of dehaloperoxidase-hemoglobin (DHP A) fromAmphitrite ornata(DHPCN) and the C73S mutant of DHP A (C73SCN) were determined using synchrotron radiation in order to further investigate the geometry of diatomic ligands coordinated to the heme iron. The DHPCN structure was also determined using a rotating-anode source. The structures show evidence of photoreduction of the iron accompanied by dissociation of bound cyanide ion (CN−) that depend on the intensity of the X-ray radiation and the exposure time. The electron density is consistent with diatomic molecules located in two sites in the distal pocket of DHPCN. However, the identities of the diatomic ligands at these two sites are not uniquely determined by the electron-density map. Consequently, density functional theory calculations were conducted in order to determine whether the bond lengths, angles and dissociation energies are consistent with bound CN−or O2in the iron-bound site. In addition, molecular-dynamics simulations were carried out in order to determine whether the dynamics are consistent with trapped CN−or O2in the second site of the distal pocket. Based on these calculations and comparison with a previously determined X-ray crystal structure of the C73S–O2form of DHP [de Serranoet al.(2007),Acta Cryst.D63, 1094–1101], it is concluded that CN−is gradually replaced by O2as crystalline DHP is photoreduced at 100 K. The ease of photoreduction of DHP A is consistent with the reduction potential, but suggests an alternative activation mechanism for DHP A compared with other peroxidases, which typically have reduction potentials that are 0.5 V more negative. The lability of CN−at 100 K suggests that the distal pocket of DHP A has greater flexibility than most other hemoglobins.
Collapse
|
59
|
de Serrano V, D'Antonio J, Franzen S, Ghiladi RA. Structure of dehaloperoxidase B at 1.58 A resolution and structural characterization of the AB dimer from Amphitrite ornata. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:529-38. [PMID: 20445228 PMCID: PMC2865366 DOI: 10.1107/s0907444910004580] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/08/2010] [Indexed: 11/10/2022]
Abstract
As members of the globin superfamily, dehaloperoxidase (DHP) isoenzymes A and B from the marine annelid Amphitrite ornata possess hemoglobin function, but they also exhibit a biologically relevant peroxidase activity that is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. Here, a comprehensive structural study of recombinant DHP B, both by itself and cocrystallized with isoenzyme A, using X-ray diffraction is presented. The structure of DHP B refined to 1.58 A resolution exhibits the same distal histidine (His55) conformational flexibility as that observed in isoenzyme A, as well as additional changes to the distal and proximal hydrogen-bonding networks. Furthermore, preliminary characterization of the DHP AB heterodimer is presented, which exhibits differences in the AB interface that are not observed in the A-only or B-only homodimers. These structural investigations of DHP B provide insights that may relate to the mechanistic details of the H(2)O(2)-dependent oxidative dehalogenation reaction catalyzed by dehaloperoxidase, present a clearer description of the function of specific residues in DHP at the molecular level and lead to a better understanding of the paradigms of globin structure-function relationships.
Collapse
|
60
|
Nicoletti FP, Thompson MK, Howes BD, Franzen S, Smulevich G. New Insights into the Role of Distal Histidine Flexibility in Ligand Stabilization of Dehaloperoxidase−Hemoglobin from Amphitrite ornata. Biochemistry 2010; 49:1903-12. [DOI: 10.1021/bi9020567] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco P. Nicoletti
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Matthew K. Thompson
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695
| | - Barry D. Howes
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695
| | - Giulietta Smulevich
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
61
|
Osborne RL, Coggins MK, Raner GM, Walla M, Dawson JH. The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates. Biochemistry 2009; 48:4231-8. [PMID: 19371065 DOI: 10.1021/bi900367e] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic globin, dehaloperoxidase (DHP), from the terebellid polychaete Amphitrite ornata is designed to catalyze the oxidative dehalogenation of halophenol substrates. In this study, the ability of DHP to catalyze this reaction by a mechanism involving two consecutive one-electron steps via the normal order of addition of the oxidant cosubstrate (H(2)O(2)) before organic substrate [2,4,6-trichlorophenol (TCP)] is demonstrated. Specifically, 1 equiv of H(2)O(2) will fully convert 1 equiv of TCP to 2,6-dichloro-1,4-benzoquinone, implicating the role of multiple ferryl [Fe(IV)O] species. A significant amount of heterolytic cleavage of the O-O bond of cumene hydroperoxide, consistent with transient formation of a Compound I [Fe(IV)O/porphyrin pi-cation radical] species, is observed upon its reaction with ferric DHP. In addition, a more stable high-valent Fe(IV)O-containing DHP intermediate [Compound II (Cpd II) or Compound ES] is characterized by UV-visible absorption and magnetic circular dichroism spectroscopy. Spectral similarities are seen between this intermediate and horse heart myoglobin Cpd II. It is also shown in single-turnover experiments that the DHP Fe(IV)O intermediate is an active oxidant in halophenol oxidative dehalogenation. Furthermore, reaction of DHP with 4-chlorophenol leads to a dimeric product. The results presented herein are consistent with a normal peroxidase order of addition of the oxidant cosubstrate (H(2)O(2)) followed by organic substrate (TCP) and indicate that the enzymatic mechanism of DHP-catalyzed oxidative halophenol dehalogenation involves two consecutive one-electron steps with a dissociable radical intermediate.
Collapse
Affiliation(s)
- Robert L Osborne
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
62
|
Feducia J, Dumarieh R, Gilvey LBG, Smirnova T, Franzen S, Ghiladi RA. Characterization of dehaloperoxidase compound ES and its reactivity with trihalophenols. Biochemistry 2009; 48:995-1005. [PMID: 19187035 DOI: 10.1021/bi801916j] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dehaloperoxidase (DHP), the oxygen transport hemoglobin from the terebellid polychaete Amphitrite ornata, is the first globin identified to possess a biologically relevant peroxidase activity. DHP has been shown to oxidize trihalophenols to dihaloquinones in a dehalogenation reaction that uses hydrogen peroxide as a substrate. Herein, we demonstrate that the first detectable intermediate following the addition of hydrogen peroxide to ferric DHP contains both a ferryl heme and a tyrosyl radical, analogous to Compound ES of cytochrome c peroxidase. Furthermore, we provide a detailed kinetic description for the reaction of preformed DHP Compound ES with the substrate 2,4,6-trichlorophenol and demonstrate the catalytic competency of this intermediate in generating the product 2,4-dichloroquinone. Using rapid-freeze-quench electron paramagnetic resonance spectroscopy, we detected a g approximately 2.0058 signal confirming the presence of a protein radical in DHP Compound ES. In the absence of substrate, DHP Compound ES evolves to a new species, Compound RH, which is functionally unique to dehaloperoxidase. We propose that this intermediate plays a protective role against heme bleaching. While unreactive toward further oxidation, Compound RH can be reduced and subsequently bind dioxygen, generating oxyferrous DHP, which may represent the catalytic link between peroxidase and oxygen transport activities in this bifunctional protein.
Collapse
Affiliation(s)
- Jeremiah Feducia
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
63
|
Nienhaus K, Nickel E, Davis MF, Franzen S, Nienhaus GU. Determinants of Substrate Internalization in the Distal Pocket of Dehaloperoxidase Hemoglobin of Amphitrite ornata. Biochemistry 2008; 47:12985-94. [DOI: 10.1021/bi801564r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Elena Nickel
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Michael F. Davis
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Stefan Franzen
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - G. Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| |
Collapse
|
64
|
Mikšovská J, Horsa S, Davis MF, Franzen S. Conformational Dynamics Associated with Photodissociation of CO from Dehaloperoxidase Studied Using Photoacoustic Calorimetry. Biochemistry 2008; 47:11510-7. [DOI: 10.1021/bi8012033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaroslava Mikšovská
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Simona Horsa
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael F. Davis
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Stefan Franzen
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
65
|
Wittenberg JB. On optima: The case of myoglobin-facilitated oxygen diffusion. Gene 2007; 398:156-61. [PMID: 17573206 DOI: 10.1016/j.gene.2007.02.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.
Collapse
Affiliation(s)
- Jonathan B Wittenberg
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
66
|
Trandafir F, Hoogewijs D, Altieri F, Rivetti di Val Cervo P, Ramser K, Van Doorslaer S, Vanfleteren JR, Moens L, Dewilde S. Neuroglobin and cytoglobin as potential enzyme or substrate. Gene 2007; 398:103-13. [PMID: 17555889 DOI: 10.1016/j.gene.2007.02.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 11/16/2022]
Abstract
The possible enzymatic activities of neuro- and cytoglobin as well as their potential function as substrates in enzymatic reactions were studied. Neuro- and cytoglobin are found to show no appreciable superoxide dismutase, catalase, and peroxidase activities. However, the internal disulfide bond (CD7-D5) of human neuroglobin can be reduced by thioredoxin reductase. Furthermore, our in vivo and in vitro studies show that Escherichia coli cells contain an enzymatic reducing system that keeps the heme iron atom of neuroglobin in the Fe(2+) form in the presence of dioxygen despite the high autoxidation rate of the molecule. This reducing system needs a low-molecular-weight compound as co-factor. In vitro tests show that both NADH and NADPH can play this role. Furthermore, the reducing system is not specific for neuroglobin but allows the reduction of the ferric forms of other globins such as cytoglobin and myoglobin. A similar reducing system is present in eukaryotic tissue protein extracts.
Collapse
Affiliation(s)
- F Trandafir
- Department of Physics of the University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Bailly X, Chabasse C, Hourdez S, Dewilde S, Martial S, Moens L, Zal F. Globin gene family evolution and functional diversification in annelids. FEBS J 2007; 274:2641-52. [PMID: 17451435 DOI: 10.1111/j.1742-4658.2007.05799.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Globins are the most common type of oxygen-binding protein in annelids. In this paper, we show that circulating intracellular globin (Alvinella pompejana and Glycera dibranchiata), noncirculating intracellular globin (Arenicola marina myoglobin) and extracellular globin from various annelids share a similar gene structure, with two conserved introns at canonical positions B12.2 and G7.0. Despite sequence divergence between intracellular and extracellular globins, these data strongly suggest that these three globin types are derived from a common ancestral globin-like gene and evolved by duplication events leading to diversification of globin types and derived functions. A phylogenetic analysis shows a distinct evolutionary history of annelid extracellular hemoglobins with respect to intracellular annelid hemoglobins and mollusc and arthropod extracellular hemoglobins. In addition, dehaloperoxidase (DHP) from the annelid, Amphitrite ornata, surprisingly exhibits close phylogenetic relationships to some annelid intracellular globins. We have characterized the gene structure of A. ornata DHP to confirm assumptions about its homology with globins. It appears that it has the same intron position as in globin genes, suggesting a common ancestry with globins. In A. ornata, DHP may be a derived globin with an unusual enzymatic function.
Collapse
Affiliation(s)
- Xavier Bailly
- Equipe Ecophysiologie: Adaptation et Evolution Moléculaires, UPMC, CNRS UMR 7144, Station Biologique, BP 74, Roscoff, France
| | | | | | | | | | | | | |
Collapse
|
68
|
Ouellet H, Ranguelova K, Labarre M, Wittenberg JB, Wittenberg BA, Magliozzo RS, Guertin M. Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: evidence for peroxidatic activity and formation of protein-based radicals. J Biol Chem 2007; 282:7491-503. [PMID: 17218317 DOI: 10.1074/jbc.m609155200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we investigated the reaction of ferric Mycobacterium tuberculosis truncated hemoglobin O (trHbO) with hydrogen peroxide. Stopped-flow spectrophotometric experiments under single turnover conditions showed that trHbO reacts with H(2)O(2) to give transient intermediate(s), among which is an oxyferryl heme, different from a typical peroxidase Compound I (oxyferryl heme pi-cation radical). EPR spectroscopy indicated evidence for both tryptophanyl and tyrosyl radicals, whereas redox titrations demonstrated that the peroxide-treated protein product retains 2 oxidizing eq. We propose that Compound I formed transiently is reduced with concomitant oxidation of Trp(G8) to give the detected oxoferryl heme and a radical on Trp(G8) (detected by EPR of the trHbO Tyr(CD1)Phe mutant). In the wild-type protein, the Trp(G8) radical is in turn reduced rapidly by Tyr(CD1). In a second cycle, Trp(G8) may be reoxidized by the ferryl heme to yield ferric heme and two protein radicals. In turn, these migrate to form tyrosyl radicals on Tyr(55) and Tyr(115), which lead, in the absence of a reducing substrate, to oligomerization of the protein. Steady-state kinetics in the presence of H(2)O(2) and the one-electron donor 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) indicated that trHbO has peroxidase activity, in accord with the presence of typical peroxidase intermediates. These findings suggest an oxidation/reduction function for trHbO and, by analogy, for other Group II trHbs.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Biochemistry and Microbiology, Laval University, Quebec G1K 7P4, Canada
| | | | | | | | | | | | | |
Collapse
|
69
|
Franzen S, Gilvey LB, Belyea JL. The pH dependence of the activity of dehaloperoxidase from Amphitrite ornata. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1774:121-30. [PMID: 17182294 DOI: 10.1016/j.bbapap.2006.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/18/2006] [Accepted: 09/29/2006] [Indexed: 11/17/2022]
Abstract
Dehaloperoxidase (DHP) from the terebellid polychaete, Amphitrite ornata, is the first hemoglobin that has peroxidase activity as part of its native function. The substrate 2,4,6-tribromophenol (TBP) is oxidatively debrominated by DHP to form 2,6-dibromoquinone (DBQ) in a two-electron process. There is a well-defined internal binding site for TBP above the heme, a feature not observed in other hemoglobins or peroxidases. A study of the pH dependence of the activity of DHP reveals a substantial difference in mechanism. From direct observation of the Soret band of the heme it is shown that the pKa for heme activation in protein DHP is 6.5. Below this pH the heme absorbance decreases in the presence of H2O2 with or without addition of substrate. The low pH data are consistent with significant heme degradation. Above pH 6.5 addition of H2O2 causes the heme to shift rapidly to a compound II spectrum and then slowly to an unidentified intermediate with an absorbance of 410 nm. However, the pKa of the substrate TBP is 6.8 and the greatest enzyme activity is observed above the pKa of TBP under conditions where the substrate is a phenolate anion (TPBO-). Although the mechanisms may differ, the data show that both neutral TBP and anionic TPBO- are converted to the quinone product. The mechanistic implications of the pH dependence are discussed by comparison other known peroxidases, which oxidize substrates at the heme edge.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
70
|
Franzen S, Jasaitis A, Belyea J, Brewer SH, Casey R, MacFarlane AW, Stanley RJ, Vos MH, Martin JL. Hydrophobic Distal Pocket Affects NO−Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin. J Phys Chem B 2006; 110:14483-93. [PMID: 16854160 DOI: 10.1021/jp056790m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recombination dynamics of NO with dehaloperoxidase (DHP) from Amphitrite ornata following photolysis were measured by femtosecond time-resolved absorption spectroscopy. Singular value decomposition (SVD) analysis reveals two important basis spectra. The first SVD basis spectrum reports on the population of photolyzed NO molecules and has the appearance of the equilibrium difference spectrum between the deoxy and NO forms of DHP. The first basis time course has two kinetic components with time constants of tau(11) approximately 9 ps and tau(12) approximately 50 ps that correspond to geminate recombination. The fast geminate process tau(11) arises from a contact pair with the heme iron in a bound state with S = 3/2 spin. The slow geminate process tau(12) corresponds to the recombination from a more remote docking site >3 A from the heme iron with the greater barrier corresponding to a S = 5/2 spin state. The second SVD basis spectrum represents a time-dependent Soret band shift indicative of heme photophysical processes and protein relaxation with time constants of tau(21) approximately 3 ps and tau(22) approximately 17 ps, respectively. A comparison between the more rapid rate constant of the slow geminate phase in DHP-NO and horse heart myoglobin (HHMbNO) or sperm whale myoglobin (SWMbNO) suggests that protein interactions with photolyzed NO are weaker in DHP than in the wild-type MbNOs, consistent with the hydrophobic distal pocket of DHP. The slower protein relaxation rate tau(22) in DHP-NO relative to HHMbNO implies less effective trapping in the docking site of the distal pocket and is consistent with a greater yield for the fast geminate process. The trends observed for DHP-NO also hold for the H64V mutant of SWMb (H64V MbNO), consistent with a more hydrophobic distal pocket for that protein as well. We examine the influence of solution viscosity on NO recombination by varying the glycerol content in the range from 0% to 90% (v/v). The dominant effect of increasing viscosity is the increase of the rate of the slow geminate process, tau(12), coupled with a population decrease of the slow geminate component. Both phenomena are similar to the effect of viscosity on wild-type Mb due to slowing of protein relaxation resulting from an increased solution viscosity and protein surface dehydration.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S, Moens L, Vanfleteren JR. A phylogenomic profile of globins. BMC Evol Biol 2006; 6:31. [PMID: 16600051 PMCID: PMC1457004 DOI: 10.1186/1471-2148-6-31] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 04/07/2006] [Indexed: 12/26/2022] Open
Abstract
Background Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold. Results A census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma. Conclusion Although Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals.
Collapse
Affiliation(s)
- Serge N Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David Hoogewijs
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Bailly
- Station Biologique de Roscoff, 29680 Roscoff, France
| | - Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, Morelos, México
| | - Julian Gough
- RIKEN Genomic Sciences Centre, Yokohama 230-0045, Japan
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | | |
Collapse
|
72
|
Qin J, Perera R, Lovelace LL, Dawson JH, Lebioda L. Structures of thiolate- and carboxylate-ligated ferric H93G myoglobin: models for cytochrome P450 and for oxyanion-bound heme proteins. Biochemistry 2006; 45:3170-7. [PMID: 16519512 PMCID: PMC2556877 DOI: 10.1021/bi052171s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystal structures of the ferric H93G myoglobin (Mb) cavity mutant containing either an anionic proximal thiolate sulfur donor or a carboxylate oxygen donor ligand are reported at 1.7 and 1.4 A resolution, respectively. The crystal structure and magnetic circular dichroism spectra of the H93G Mb beta-mercaptoethanol (BME) thiolate adduct reveal a high-spin, five-coordinate complex. Furthermore, the bound BME appears to have an intramolecular hydrogen bond involving the alcohol proton and the ligated thiolate sulfur, mimicking one of the three proximal N-H...S hydrogen bonds in cytochrome P450. The Fe is displaced from the porphyrin plane by 0.5 A and forms a 2.41 A Fe-S bond. The Fe(3+)-S-C angle is 111 degrees , indicative of a covalent Fe-S bond with sp(3)-hybridized sulfur. Therefore, the H93G Mb.BME complex provides an excellent protein-derived structural model for high-spin ferric P450. In particular, the Fe-S bond in high-spin ferric P450-CAM has essentially the same geometry despite the constraints imposed by covalent linkage of the cysteine to the protein backbone. This suggests that evolution led to the geometric optimization of the proximal Fe-S(cysteinate) bond in P450. The crystal structure and spectral properties of the H93G Mb acetate adduct reveal a high-spin, six-coordinate complex with proximal acetate and distal water axial ligands. The distal His-64 forms a hydrogen bond with the bound water. The Fe-acetate bonding geometry is inconsistent with an electron pair along the Fe-O bond as the Fe-O-C angle is 152 degrees and the Fe is far from the plane of the acetate. Thus, the Fe-O bonding is ionic. The H93G Mb cavity mutant has already been shown to be a versatile model system for the study of ligand binding to heme proteins; this investigation affords the first structural evidence that nonimidazole exogenous ligands bind in the proximal ligation site.
Collapse
Affiliation(s)
- Jie Qin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
73
|
Osborne RL, Sumithran S, Coggins MK, Chen YP, Lincoln DE, Dawson JH. Spectroscopic characterization of the ferric states of Amphitrite ornata dehaloperoxidase and Notomastus lobatus chloroperoxidase: His-ligated peroxidases with globin-like proximal and distal properties. J Inorg Biochem 2006; 100:1100-8. [PMID: 16603247 DOI: 10.1016/j.jinorgbio.2006.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Amphitrite ornata dehaloperoxidase (DHP) and Notomastus lobatus chloroperoxidase (NCPO) catalyze the peroxide-dependent dehalogenation of halophenols and halogenation of phenols, respectively. Both enzymes have histidine (His) as their proximal heme iron ligand. Crystallographic examination of DHP revealed that it has a globin fold [M.W. LaCount, E. Zhang, Y.-P. Chen, K. Han, M.M. Whitton, D.E. Lincoln, S.A. Woodin, L. Lebioda, J. Biol. Chem. 275 (2000) 18712-18716] and kinetics studies established that ferric DHP is the active state [R.L. Osborne, L.O. Taylor, K. Han, B. Ely, J.H. Dawson, Biochem. Biophys. Res. Commun. 324 (2004) 1194-1198]. NCPO likely has these same properties. Previous work with His-ligated heme proteins has revealed characteristic spectral distinctions between dioxygen binding globins and peroxide-activating peroxidases. Since DHP, and likely NCPO, is a peroxide-activating globin, we have sought to determine in the present investigation whether the ferric resting states of these two novel heme-containing enzymes are myoglobin-like or peroxidase-like. To do so, we have examined their exogenous ligand-free ferric states as well as their azide, imidazole and NO bound ferric adducts (and ferrous-NO complexes) with UV-Visible absorption and magnetic circular dichroism spectroscopy. We have also compared each derivative to the analogous states of horse heart myoglobin (Mb) and horseradish peroxidase (HRP). The spectra observed for parallel forms of DHP and NCPO are virtually identical to each other as well as to the spectra of the same Mb states, while being less similar to the spectra of corresponding HRP derivatives. From these data, we conclude that exogenous ligand-free ferric DHP and NCPO are six-coordinate with water and neutral His as ligands. This coordination structure is distinctly different from the ferric resting state of His-ligated peroxidases and indicates that DHP and NCPO do not activate bound peroxide through a mechanism dependent on a push effect imparted by a partially ionized proximal His as proposed for typical heme peroxidases.
Collapse
Affiliation(s)
- Robert L Osborne
- Department of Chemistry and Biochemistry, 631 Sumter Street, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
74
|
Lecomte JTJ, Vuletich DA, Lesk AM. Structural divergence and distant relationships in proteins: evolution of the globins. Curr Opin Struct Biol 2005; 15:290-301. [PMID: 15922591 DOI: 10.1016/j.sbi.2005.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/29/2005] [Accepted: 05/09/2005] [Indexed: 02/02/2023]
Abstract
The globin family has long been known from studies of approximately 150-residue proteins such as vertebrate myoglobins and haemoglobins. Recently, this family has been enriched by the investigation of the sequences and structures of truncated globins, which have the same basic topology but are approximately 30 residues shorter and exhibit functions other than the familiar one of binding diatomic ligands. The divergence of protein sequences, structures and functions reveals Nature's exploration of the potential inherent in a folding pattern, that is, the topology of the native structure. The observation of what remains constant and what varies during the evolution of a protein family reveals essential features of structure and function. Study of proteins with a wide range of divergence can therefore sharpen our understanding of how different amino acid sequences can determine similar three-dimensional structures. Globins have provided, and continue to provide, interesting material for such studies.
Collapse
Affiliation(s)
- Juliette T J Lecomte
- Department of Chemistry, The Huck Institutes of the Life Sciences: Genomics, Proteomics and Bioinformatics Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
75
|
Lupyan D, Leo-Macias A, Ortiz AR. A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 2005; 21:3255-63. [PMID: 15941743 DOI: 10.1093/bioinformatics/bti527] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Multiple structure alignments are becoming important tools in many aspects of structural bioinformatics. The current explosion in the number of available protein structures demands multiple structural alignment algorithms with an adequate balance of accuracy and speed, for large scale applications in structural genomics, protein structure prediction and protein classification. RESULTS A new multiple structural alignment program, MAMMOTH-mult, is described. It is demonstrated that the alignments obtained with the new method are an improvement over previous manual or automatic alignments available in several widely used databases at all structural levels. Detailed analysis of the structural alignments for a few representative cases indicates that MAMMOTH-mult delivers biologically meaningful trees and conservation at the sequence and structural levels of functional motifs in the alignments. An important improvement over previous methods is the reduction in computational cost. Typical alignments take only a median time of 5 CPU seconds in a single R12000 processor. MAMMOTH-mult is particularly useful for large scale applications. AVAILABILITY http://ub.cbm.uam.es/mammoth/mult.
Collapse
Affiliation(s)
- Dmitry Lupyan
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
76
|
Osborne RL, Taylor LO, Han KP, Ely B, Dawson JH. Amphitrite ornata dehaloperoxidase: enhanced activity for the catalytically active globin using MCPBA. Biochem Biophys Res Commun 2004; 324:1194-8. [PMID: 15504340 DOI: 10.1016/j.bbrc.2004.09.174] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Indexed: 11/19/2022]
Abstract
Dehaloperoxidase (DHP) from Amphitrite ornata is the only heme-containing, hydrogen peroxide-dependent globin capable of oxidatively dehalogenating halophenols to yield the corresponding quinones. To ascertain that this enzymatic activity is intrinsic to DHP, we have cloned and expressed the enzyme in Escherichia coli. We also find that an alternate oxygen atom donor, meta-chloroperbenzoic acid, gives appreciably higher activity than hydrogen peroxide. Under optimal turnover conditions (large peroxide/peracid excess), after an initial burst of activity, DHP appears to become trapped in a non-catalytic state (possibly Compound II) and is unable to fully convert all halophenol to product. However, full substrate conversion can be achieved under more physiological conditions involving a much smaller excess of oxygen atom donor. Parallel studies have been carried out using horseradish peroxidase and myoglobin to calibrate the activity of DHP versus typical peroxidase and globin proteins, respectively.
Collapse
Affiliation(s)
- Robert L Osborne
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
77
|
Valverde C, Orozco A, Becerra A, Jeziorski MC, Villalobos P, Solís JC. Halometabolites and cellular dehalogenase systems: an evolutionary perspective. ACTA ACUST UNITED AC 2004; 234:143-99. [PMID: 15066375 DOI: 10.1016/s0074-7696(04)34004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
We review the role of iodothyronine deiodinases (IDs) in the evolution of vertebrate thyroidal systems within the larger context of biological metabolism of halogens. Since the beginning of life, the ubiquity of organohalogens in the biosphere has provided a major selective pressure for the evolution and conservation of cellular mechanisms specialized in halogen metabolism. Among naturally available halogens, iodine emerged as a critical component of unique developmental and metabolic messengers. Metabolism of iodinated compounds occurs in the three major domains of life, and invertebrate deuterostomes possess several biochemical traits and molecular homologs of vertebrate thyroidal systems, including ancestral homologs of IDs identified in urochordates. The finely tuned cellular regulation of iodometabolite uptake and disposal is a remarkable event in evolution and might have been decisive for the explosive diversification of ontogenetic strategies in vertebrates.
Collapse
Affiliation(s)
- Carlos Valverde
- Instituto de Neurobiologia, Campus UNAM-UAQ Juriquilla, Querétaro 76230 Mexico
| | | | | | | | | | | |
Collapse
|
78
|
Gupta K, Selinsky BS, Kaub CJ, Katz AK, Loll PJ. The 2.0 A resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase. J Mol Biol 2004; 335:503-18. [PMID: 14672659 DOI: 10.1016/j.jmb.2003.10.073] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostaglandin H2 synthase (EC 1.14.99.1) is an integral membrane enzyme containing a cyclooxygenase site, which is the target for the non-steroidal anti-inflammatory drugs, and a spatially distinct peroxidase site. Previous crystallographic studies of this clinically important drug target have been hindered by low resolution. We present here the 2.0 A resolution X-ray crystal structure of ovine prostaglandin H2 synthase-1 in complex with alpha-methyl-4-biphenylacetic acid, a defluorinated analog of the non-steroidal anti-inflammatory drug flurbiprofen. Detergent molecules are seen to bind to the protein's membrane-binding domain, and their positions suggest the depth to which this domain is likely to penetrate into the lipid bilayer. The relation of the enzyme's proximal heme ligand His388 to the heme iron is atypical for a peroxidase; the iron-histidine bond is unusually long and a substantial tilt angle is observed between the heme and imidazole planes. A molecule of glycerol, used as a cryoprotectant during diffraction experiments, is seen to bind in the peroxidase site, offering the first view of any ligand in this active site. Insights gained from glycerol binding may prove useful in the design of a peroxidase-specific ligand.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry, Drexel University College of Medicine, 245 N 15th Street, Mailstop 497, Philadelphia, PA 19102-1192, USA
| | | | | | | | | |
Collapse
|
79
|
Yeh SR. A Novel Intersubunit Communication Mechanism in a Truncated Hemoglobin from Mycobacterium tuberculosis. J Phys Chem B 2003. [DOI: 10.1021/jp037054q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
80
|
Burmester T, Ebner B, Weich B, Hankeln T. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 2002; 19:416-21. [PMID: 11919282 DOI: 10.1093/oxfordjournals.molbev.a004096] [Citation(s) in RCA: 367] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vertebrates possess multiple respiratory globins that differ in terms of structure, function, and tissue distribution. Three types of globins have been described so far: hemoglobin facilitates the transport of oxygen in the blood, myoglobin serves oxygen transport and storage in the muscle, and neuroglobin has a yet unidentified function in nerve cells. Here we report the identification of a fourth and novel type of globin in mouse, man, and zebrafish. It is expressed in apparently all types of human tissue and therefore has been called cytoglobin (CYGB). Mouse and human CYGBs comprise 190 amino acids; the zebrafish CYGB, 174 amino acids. The human CYGB gene is located on chromosome 17q25. The mammalian genes display a unique exon-intron pattern with an additional exon resulting in a C-terminal extension of the protein, which is absent in the fish CYGB. Phylogenetic analyses suggest that the CYGBs had a common ancestor with vertebrate myoglobins. This indicates that the vertebrate myoglobins are in fact a specialized intracellular globin that evolved in adaptation to the special needs of muscle cells.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology, Biosafety Research and Consulting, Johannes Gutenberg University Mainz, Becherweg 32, D-55099 Mainz, Germany.
| | | | | | | |
Collapse
|
81
|
Abstract
Hemoglobin (Hb) occurs in all the kingdoms of living organisms. Its distribution is episodic among the nonvertebrate groups in contrast to vertebrates. Nonvertebrate Hbs range from single-chain globins found in bacteria, algae, protozoa, and plants to large, multisubunit, multidomain Hbs found in nematodes, molluscs and crustaceans, and the giant annelid and vestimentiferan Hbs comprised of globin and nonglobin subunits. Chimeric hemoglobins have been found recently in bacteria and fungi. Hb occurs intracellularly in specific tissues and in circulating red blood cells (RBCs) and freely dissolved in various body fluids. In addition to transporting and storing O(2) and facilitating its diffusion, several novel Hb functions have emerged, including control of nitric oxide (NO) levels in microorganisms, use of NO to control the level of O(2) in nematodes, binding and transport of sulfide in endosymbiont-harboring species and protection against sulfide, scavenging of O(2 )in symbiotic leguminous plants, O(2 )sensing in bacteria and archaebacteria, and dehaloperoxidase activity useful in detoxification of chlorinated materials. This review focuses on the extensive variation in the functional properties of nonvertebrate Hbs, their O(2 )binding affinities, their homotropic interactions (cooperativity), and the sensitivities of these parameters to temperature and heterotropic effectors such as protons and cations. Whenever possible, it attempts to relate the ligand binding properties to the known molecular structures. The divergent and convergent evolutionary trends evident in the structures and functions of nonvertebrate Hbs appear to be adaptive in extending the inhabitable environment available to Hb-containing organisms.
Collapse
Affiliation(s)
- R E Weber
- Danish Centre for Respiratory Adaptation, Department of Zoophysiology, Institute of Biology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
82
|
Mukai M, Mills CE, Poole RK, Yeh SR. Flavohemoglobin, a globin with a peroxidase-like catalytic site. J Biol Chem 2001; 276:7272-7. [PMID: 11092893 DOI: 10.1074/jbc.m009280200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biochemical studies of flavohemoglobin (Hmp) from Escherichia coli suggest that instead of aerobic oxygen delivery, a dioxygenase converts NO to NO3(-) and anaerobically, an NO reductase converts NO to N(2)O. To investigate the structural features underlying the chemical reactivity of Hmp, we have measured the resonance Raman spectra of the ligand-free ferric and ferrous protein and the CO derivatives of the ferrous protein. At neutral pH, the ferric protein has a five-coordinate high-spin heme, similar to peroxidases. In the ferrous protein, a strong iron-histidine stretching mode is present at 244 cm(-1). This frequency is much higher than that of any other globin discovered to date, although it is comparable to those of peroxidases, suggesting that the proximal histidine has imidazolate character. In the CO derivative, an open and a closed conformation were detected. The distal environment of the closed conformation is very polar, where the heme-bound CO strongly interacts with the B10 Tyr and/or the E7 Gln. These data demonstrate that the active site structure of Hmp is very similar to that of peroxidases and is tailored to perform oxygen chemistry.
Collapse
Affiliation(s)
- M Mukai
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|