51
|
Chiu YHM, Hsu HHL, Wilson A, Coull BA, Pendo MP, Baccarelli A, Kloog I, Schwartz J, Wright RO, Taveras EM, Wright RJ. Prenatal particulate air pollution exposure and body composition in urban preschool children: Examining sensitive windows and sex-specific associations. ENVIRONMENTAL RESEARCH 2017; 158:798-805. [PMID: 28759881 PMCID: PMC5570541 DOI: 10.1016/j.envres.2017.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/14/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Evolving animal studies and limited epidemiological data show that prenatal air pollution exposure is associated with childhood obesity. Timing of exposure and child sex may play an important role in these associations. We applied an innovative method to examine sex-specific sensitive prenatal windows of exposure to PM2.5 on anthropometric measures in preschool-aged children. METHODS Analyses included 239 children born ≥ 37 weeks gestation in an ethnically-mixed lower-income urban birth cohort. Prenatal daily PM2.5 exposure was estimated using a validated satellite-based spatio-temporal model. Body mass index z-score (BMI-z), fat mass, % body fat, subscapular and triceps skinfold thickness, waist and hip circumferences and waist-to-hip ratio (WHR) were assessed at age 4.0 ± 0.7 years. Using Bayesian distributed lag interaction models (BDLIMs), we examined sex differences in sensitive windows of weekly averaged PM2.5 levels on these measures, adjusting for child age, maternal age, education, race/ethnicity, and pre-pregnancy BMI. RESULTS Mothers were primarily Hispanic (55%) or Black (26%), had ≤ 12 years of education (66%) and never smoked (80%). Increased PM2.5 exposure 8-17 and 15-22 weeks gestation was significantly associated with increased BMI z-scores and fat mass in boys, but not in girls. Higher PM2.5 exposure 10-29 weeks gestation was significantly associated with increased WHR in girls, but not in boys. Prenatal PM2.5 was not significantly associated with other measures of body composition. Estimated cumulative effects across pregnancy, accounting for sensitive windows and within-window effects, were 0.21 (95%CI = 0.01-0.37) for BMI-z and 0.36 (95%CI = 0.12-0.68) for fat mass (kg) in boys, and 0.02 (95%CI = 0.01-0.03) for WHR in girls, all per µg/m3 increase in PM2.5. CONCLUSIONS Increased prenatal PM2.5 exposure was more strongly associated with indices of increased whole body size in boys and with an indicator of body shape in girls. Methods to better characterize vulnerable windows may provide insight into underlying mechanisms contributing to sex-specific associations.
Collapse
Affiliation(s)
- Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mathew P Pendo
- Center for Medicine, Health and Society, Vanderbilt University College of Arts and Science, Nashville, TN, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Israel
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elsie M Taveras
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|