51
|
Wang S, Qiu L, Liu X, Xu G, Siegert M, Lu Q, Juneau P, Yu L, Liang D, He Z, Qiu R. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol Adv 2018; 36:1194-1206. [DOI: 10.1016/j.biotechadv.2018.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
|
52
|
Pérez-de-Mora A, Lacourt A, McMaster ML, Liang X, Dworatzek SM, Edwards EA. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi ( D. mccartyi) Strains in Dechlorinating Enrichment Cultures and Groundwater Environments. Front Microbiol 2018; 9:812. [PMID: 29867784 PMCID: PMC5968391 DOI: 10.3389/fmicb.2018.00812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
Dehalococcoides mccartyi (D. mccartyi) strains differ primarily from one another by the number and identity of the reductive dehalogenase homologous catalytic subunit A (rdhA) genes within their respective genomes. While multiple rdhA genes have been sequenced, the activity of the corresponding proteins has been identified in only a few cases. Examples include the enzymes whose substrates are groundwater contaminants such as trichloroethene (TCE), cis-dichloroethene (cDCE) and vinyl chloride (VC). The associated rdhA genes, namely tceA, bvcA, and vcrA, along with the D. mccartyi 16S rRNA gene are often used as biomarkers of growth in field samples. In this study, we monitored an additional 12 uncharacterized rdhA sequences identified in the metagenome in the mixed D. mccartyi-containing culture KB-1 to monitor population shifts in more detail. Quantitative PCR (qPCR) assays were developed for 15 D. mccartyi rdhA genes and used to measure population diversity in 11 different sub-cultures of KB-1, each enriched on different chlorinated ethenes and ethanes. The proportion of rdhA gene copies relative to D. mccartyi 16S rRNA gene copies revealed the presence of multiple distinct D. mccartyi strains in each culture, many more than the two strains inferred from 16S rRNA analysis. The specific electron acceptor amended to each culture had a major influence on the distribution of D. mccartyi strains and their associated rdhA genes. We also surveyed the abundance of rdhA genes in samples from two bioaugmented field sites (Canada and United Kingdom). Growth of the dominant D. mccartyi strain in KB-1 was detected at the United Kingdom site. At both field sites, the measurement of relative rdhA abundances revealed D. mccartyi population shifts over time as dechlorination progressed from TCE through cDCE to VC and ethene. These shifts indicate a selective pressure of the most abundant chlorinated electron acceptor, as was also observed in lab cultures. These results also suggest that reductive dechlorination at contaminated sites is brought about by multiple strains of D. mccartyi whether or not the site is bioaugmented. Understanding the driving forces behind D. mccartyi population selection and activity is improving predictability of remediation performance at chlorinated solvent contaminated sites.
Collapse
Affiliation(s)
- Alfredo Pérez-de-Mora
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Lacourt
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Xiaoming Liang
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Elizabeth A Edwards
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
53
|
Němeček J, Steinová J, Špánek R, Pluhař T, Pokorný P, Najmanová P, Knytl V, Černík M. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents - A field test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:743-755. [PMID: 29223901 DOI: 10.1016/j.scitotenv.2017.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
In situ bioremediation (ISB) using reductive dechlorination is a widely accepted but relatively slow approach compared to other technologies for the treatment of groundwater contaminated by chlorinated ethenes (CVOCs). Due to the known positive kinetic effect on microbial metabolism, thermal enhancement may be a viable means of accelerating ISB. We tested thermally enhanced ISB in aquifers situated in sandy saprolite and underlying fractured granite. The system comprised pumping, heating and subsequent injection of contaminated groundwater aiming at an aquifer temperature of 20-30°C. A fermentable substrate (whey) was injected in separate batches. The test was monitored using hydrochemical and molecular tools (qPCR and NGS). The addition of the substrate and increase in temperature resulted in a rapid increase in the abundance of reductive dechlorinators (e.g., Dehalococcoides mccartyi, Dehalobacter sp. and functional genes vcrA and bvcA) and a strong increase in CVOC degradation. On day 34, the CVOC concentrations decreased by 87% to 96% in groundwater from the wells most affected by the heating and substrate. On day 103, the CVOC concentrations were below the LOQ resulting in degradation half-lives of 5 to 6days. Neither an increase in biomarkers nor a distinct decrease in the CVOC concentrations was observed in a deep well affected by the heating but not by the substrate. NGS analysis detected Chloroflexi dechlorinating genera (Dehalogenimonas and GIF9 and MSBL5 clades) and other genera capable of anaerobic metabolic degradation of CVOCs. Of these, bacteria of the genera Acetobacterium, Desulfomonile, Geobacter, Sulfurospirillum, Methanosarcina and Methanobacterium were stimulated by the substrate and heating. In contrast, groundwater from the deep well (affected by heating only) hosted representatives of aerobic metabolic and aerobic cometabolic CVOC degraders. The test results document that heating of the treated aquifer significantly accelerated the treatment process but only in the case of an abundant substrate.
Collapse
Affiliation(s)
- Jan Němeček
- ENACON s.r.o., Krčská 16, CZ-140 00 Prague 4, Czech Republic; Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic.
| | - Jana Steinová
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Roman Špánek
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Tomáš Pluhař
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Petr Pokorný
- ENACON s.r.o., Krčská 16, CZ-140 00 Prague 4, Czech Republic
| | - Petra Najmanová
- DEKONTA a.s., Volutová 2523, CZ-158 00 Prague 5, Czech Republic
| | - Vladislav Knytl
- DEKONTA a.s., Volutová 2523, CZ-158 00 Prague 5, Czech Republic
| | - Miroslav Černík
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| |
Collapse
|
54
|
Schubert T, Adrian L, Sawers RG, Diekert G. Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol Ecol 2018; 94:4923014. [DOI: 10.1093/femsec/fiy035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Torsten Schubert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
- Department of Geobiotechnology, Technische Universität Berlin, Ackerstraße 74, D-13355 Berlin, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
55
|
Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer. Front Microbiol 2018. [PMID: 29515543 PMCID: PMC5826079 DOI: 10.3389/fmicb.2018.00260] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal) and phototrophy (reaction center and bacteriochlorophyll synthesis) protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT) from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.
Collapse
Affiliation(s)
- Lewis M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - James Hemp
- Department of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Patrick M Shih
- Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Japan
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
56
|
Atashgahi S, Häggblom MM, Smidt H. Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ Microbiol 2017; 20:934-948. [PMID: 29215190 DOI: 10.1111/1462-2920.14016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022]
Abstract
Halogenated organic compounds, also termed organohalogens, were initially considered to be of almost exclusively anthropogenic origin. However, over 5000 naturally synthesized organohalogens are known today. This has also fuelled the hypothesis that the natural and ancient origin of organohalogens could have primed development of metabolic machineries for their degradation, especially in microorganisms. Among these, a special group of anaerobic microorganisms was discovered that could conserve energy by reducing organohalogens as terminal electron acceptor in a process termed organohalide respiration. Originally discovered in a quest for biodegradation of anthropogenic organohalogens, these organohalide-respiring bacteria (OHRB) were soon found to reside in pristine environments, such as the deep subseafloor and Arctic tundra soil with limited/no connections to anthropogenic activities. As such, accumulating evidence suggests an important role of OHRB in local natural halogen cycles, presumably taking advantage of natural organohalogens. In this minireview, we integrate current knowledge regarding the natural origin and occurrence of industrially important organohalogens and the evolution and spread of OHRB, and describe potential implications for natural halogen and carbon cycles.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
57
|
Leitner S, Berger H, Gorfer M, Reichenauer TG, Watzinger A. Isotopic effects of PCE induced by organohalide-respiring bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24803-24815. [PMID: 28913587 DOI: 10.1007/s11356-017-0075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Reductive dechlorination performed by organohalide-respiring bacteria (OHRB) enables the complete detoxification of certain emerging groundwater pollutants such as perchloroethene (PCE). Environmental samples from a contaminated site incubated in a lab-scale microcosm (MC) study enable documentation of such reductive dechlorination processes. As compound-specific isotope analysis is used to monitor PCE degradation processes, nucleic acid analysis-like 16S-rDNA analysis-can be used to determine the key OHRB that are present. This study applied both methods to laboratory MCs prepared from environmental samples to investigate OHRB-specific isotope enrichment at PCE dechlorination. This method linkage can enhance the understanding of isotope enrichment patterns of distinct OHRB, which further contribute to more accurate evaluation, characterisation and prospection of natural attenuation processes. Results identified three known OHRB genera (Dehalogenimonas, Desulfuromonas, Geobacter) in diverse abundance within MCs. One species of Dehalogenimonas was potentially involved in complete reductive dechlorination of PCE to ethene. Furthermore, the isotopic effects of PCE degradation were clustered and two isotope enrichment factors (ε) (- 11.6‰, - 1.7‰) were obtained. Notably, ε values were independent of degradation rates and kinetics, but did reflect the genera of the dechlorinating OHRB.
Collapse
Affiliation(s)
- Simon Leitner
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Harald Berger
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Andrea Watzinger
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
58
|
Song Y, Bian Y, Wang F, Herzberger A, Yang X, Gu C, Jiang X. Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil. CHEMOSPHERE 2017; 186:116-123. [PMID: 28772178 DOI: 10.1016/j.chemosphere.2017.07.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/13/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic reductive dechlorination is an important degradation pathway for chlorinated organic contaminants in paddy soil. This study investigated the effects of amending paddy soil with wheat straw biochar on both the dechlorination of hexachlorobenzene (HCB), a typical highly chlorinated contaminant, and on the structure of soil bacteria communities. Soil amendment of 0.1% biochar did not significantly affect the dechlorination of HCB in the soil. However, biochar amendment at higher application levels (5%) stimulated the dechlorination of HCB in the first month of anaerobic incubation and inhibited the dechlorination of HCB after that period. The stimulation effect may be ascribed to the graphite carbon and carbon-centered persistent radicals, which are redox active, in biochar. The inhibiting effect could be partly ascribed to the reduced bioavailability of HCB in biochar-amended soils. High-throughput sequencing revealed that the amendment of biochar changed the soil bacterial community structure but not the bacterial abundances and diversities. The relative abundance of Dehalococcoidaceae in the tested soils showed a significant relationship with the dechlorination percentages of HCB, indicating that Dehalococcoidaceae may be the main HCB-dechlorinating bacteria in the studied paddy soil. The results indicated that low application levels of biochar did not affect the dechlorination of HCB in the paddy soil, while high application levels of biochar mainly inhibited the dechlorination of HCB due to the reduced bioavailability of HCB and the reduced abundances of certain dechlorinating bacteria in the biochar-amended paddy soil.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, PR China.
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, PR China
| | - Anna Herzberger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Xinglun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, PR China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, PR China.
| |
Collapse
|
59
|
Nobre RCM, Nobre MMM, Campos TMP, Ogles D. In-situ biodegradation potential of 1,2-DCA and VC at sites with different hydrogeological settings. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:417-426. [PMID: 28743073 DOI: 10.1016/j.jhazmat.2017.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
This paper investigates the feasibility of applying in-situ Bioremediation (ISB) to three sites contaminated with vinyl chloride and/or chlorinated alkanes such as 1,2-DCA and 1,1,2-TCA, presenting distinct hydrogeological settings and history of contaminant loading. Biotransformation of these compounds is well established in laboratory studies and pure cultures. Due to confidential aspects, however, few field data are available to support real case studies to the predictability of their fate and lifetime in soil and groundwater. Bio-Trap® In Situ Microcosm (ISM) studies were performed in selected monitoring wells, and consisted of a control unit which simulated Monitored Natural Attenuation conditions and other units which were amended with either lactate, emulsified vegetable oil (EVO) or molasses as electron donors. For wells with moderate Dhc counts, the ISM study demonstrated that electron donor addition could stimulate further growth of Dhc and enhance reductive dechlorination. Conversely, for wells with high population counts, substrate addition did not alter results significantly. Site-specific determining factors that most influenced the biodegradation results were microbial activity, soil texture and presence of organic matter, site pH, redox conditions and presence of free phase.
Collapse
Affiliation(s)
- R C M Nobre
- Universidade Federal de Alagoas, IGDEMA/UFAL, BR-104, Maceio, AL, Brazil.
| | - M M M Nobre
- Universidade Federal de Alagoas, IGDEMA/UFAL, BR-104, Maceio, AL, Brazil.
| | - T M P Campos
- Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Brazil.
| | - D Ogles
- Microbial Insights, Knoxville, TN, USA.
| |
Collapse
|
60
|
Munro JE, Kimyon Ö, Rich DJ, Koenig J, Tang S, Low A, Lee M, Manefield M, Coleman NV. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater. FEMS Microbiol Ecol 2017; 93:4494361. [DOI: 10.1093/femsec/fix133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
|
61
|
Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill. Appl Environ Microbiol 2017; 83:AEM.00784-17. [PMID: 28778895 DOI: 10.1128/aem.00784-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi (Dehalococcoidia), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts.IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial communities in coastal marshes is poorly known, with limited investigation of potential changes in bacterial communities in response to various environmental stressors. The Deepwater Horizon oil spill provided an unprecedented opportunity to study the long-term effects of an oil spill on microbial systems in marshes. Compared to previous studies, the significance of our research stems from (i) a broader geographic range of studied marshes, (ii) an extended time frame of data collection that includes prespill conditions, (iii) a more accurate procedure using biomarker indices to understand oiling, and (iv) an examination of other potential stressors linked to in situ environmental changes, aside from oil exposure.
Collapse
|
62
|
Yang Y, Higgins SA, Yan J, Şimşir B, Chourey K, Iyer R, Hettich RL, Baldwin B, Ogles DM, Löffler FE. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME JOURNAL 2017; 11:2767-2780. [PMID: 28809851 DOI: 10.1038/ismej.2017.127] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Organohalide-respiring bacteria have key roles in the natural chlorine cycle; however, most of the current knowledge is based on cultures from contaminated environments. We demonstrate that grape pomace compost without prior exposure to chlorinated solvents harbors a Dehalogenimonas (Dhgm) species capable of using chlorinated ethenes, including the human carcinogen and common groundwater pollutant vinyl chloride (VC) as electron acceptors. Grape pomace microcosms and derived solid-free enrichment cultures were able to dechlorinate trichloroethene (TCE) to less chlorinated daughter products including ethene. 16S rRNA gene amplicon and qPCR analyses revealed a predominance of Dhgm sequences, but Dehalococcoides mccartyi (Dhc) biomarker genes were not detected. The enumeration of Dhgm 16S rRNA genes demonstrated VC-dependent growth, and 6.55±0.64 × 108 cells were measured per μmole of chloride released. Metagenome sequencing enabled the assembly of a Dhgm draft genome, and 52 putative reductive dehalogenase (RDase) genes were identified. Proteomic workflows identified a putative VC RDase with 49 and 56.1% amino acid similarity to the known VC RDases VcrA and BvcA, respectively. A survey of 1,173 groundwater samples collected from 111 chlorinated solvent-contaminated sites in the United States and Australia revealed that Dhgm 16S rRNA genes were frequently detected and outnumbered Dhc in 65% of the samples. Dhgm are likely greater contributors to reductive dechlorination of chlorinated solvents in contaminated aquifers than is currently recognized, and non-polluted environments represent sources of organohalide-respiring bacteria with novel RDase genes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Steven A Higgins
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Burcu Şimşir
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Robert L Hettich
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | | | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
63
|
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| | - Alfred M. Spormann
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| |
Collapse
|
64
|
Mortan SH, Martín-González L, Vicent T, Caminal G, Nijenhuis I, Adrian L, Marco-Urrea E. Detoxification of 1,1,2-trichloroethane to ethene in a bioreactor co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:218-225. [PMID: 28273571 DOI: 10.1016/j.jhazmat.2017.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/30/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
1,1,2-Trichloroethane (1,1,2-TCA) is a non-flammable organic solvent and common environmental contaminant in groundwater. Organohalide-respiring bacteria are key microorganisms to remediate 1,1,2-TCA because they can gain metabolic energy during its dechlorination under anaerobic conditions. However, all current isolates produce hazardous end products such as vinyl chloride, monochloroethane or 1,2-dichloroethane that accumulate in the medium. Here, we constructed a syntrophic co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains to achieve complete detoxification of 1,1,2-TCA to ethene. In this co-culture, Dehalogenimonas transformed 1,1,2-TCA via dihaloelimination to vinyl chloride, whereas Dehalococcoides reduced vinyl chloride via hydrogenolysis to ethene. Molasses, pyruvate, and lactate supported full dechlorination of 1,1,2-TCA in serum bottle co-cultures. Scale up of the cultivation to a 5-L bioreactor operating for 76d in fed-batch mode was successful with pyruvate as substrate. This synthetic combination of bacteria with known complementary metabolic capabilities demonstrates the potential environmental relevance of microbial cooperation to detoxify 1,1,2-TCA.
Collapse
Affiliation(s)
- Siti Hatijah Mortan
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Lucía Martín-González
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Barcelona, Spain
| | - Ivonne Nijenhuis
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
65
|
Key TA, Bowman KS, Lee I, Chun J, Albuquerque L, da Costa MS, Rainey FA, Moe WM. Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater. Int J Syst Evol Microbiol 2017; 67:1366-1373. [PMID: 28126048 DOI: 10.1099/ijsem.0.001819] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, Gram-stain-negative, non-spore-forming bacterium designated NSZ-14T, isolated from contaminated groundwater in Louisiana (USA), was characterized using a polyphasic approach. Strain NSZ-14T reductively dehalogenated a variety of polychlorinated aliphatic alkanes, producing ethene from 1,2-dichloroethane, propene from 1,2-dichloropropane, a mixture of cis- and trans-1,2-dichloroethene from 1,1,2,2-tetrachloroethane, vinyl chloride from 1,1,2-trichloroethane and allyl chloride (3-chloro-1-propene) from 1,2,3-trichloropropane. Formate or hydrogen could both serve as electron donors. Dechlorination occurred between pH 5.5 and 7.5 and over a temperature range of 20-37 °C. Major cellular fatty acids included C18 : 1ω9c, C14 : 0 and C16 : 0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the strain clusters within the class Dehalococcoidia of the phylum Chloroflexi, most closely related to but distinct from type strains of the species Dehalogenimonas alkenigignens (97.63 % similarity) and Dehalogenimonas lykanthroporepellens (95.05 %). A complete genome sequence determined for strain NSZ-14T revealed a DNA G+C content of 53.96 mol%, which was corroborated by HPLC (54.1±0.2 mol% G+C). Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA-DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strain NSZ-14T represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas formicexedens sp. nov. is proposed. The type strain is NSZ-14T (=HAMBI 3672T=JCM 19277T=VKM B-3058T). An emended description of Dehalogenimonas alkenigignens is also provided.
Collapse
Affiliation(s)
- Trent A Key
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kimberly S Bowman
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Imchang Lee
- School of Biological Sciences & Institute of Molecular Biology & Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jongsik Chun
- School of Biological Sciences & Institute of Molecular Biology & Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | - Milton S da Costa
- Center for Neurosciences and Cell Biology, 3004-504 Coimbra, Portugal
| | - Fred A Rainey
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - William M Moe
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
66
|
Hieke ASC, Brinkmeyer R, Yeager KM, Schindler K, Zhang S, Xu C, Louchouarn P, Santschi PH. Widespread Distribution of Dehalococcoides mccartyi in the Houston Ship Channel and Galveston Bay, Texas, Sediments and the Potential for Reductive Dechlorination of PCDD/F in an Estuarine Environment. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:630-644. [PMID: 27844293 DOI: 10.1007/s10126-016-9723-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/04/2016] [Indexed: 05/14/2023]
Abstract
Sediments in the Houston Ship Channel and upper Galveston Bay, Texas, USA, are polluted with polychlorinated dibenzo-p-dioxins/furans (PCDD/F; ≤46,000 ng/kg dry weight (wt.)) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener, contributing >50 % of the total toxic equivalents (TEQ) at most locations. We measured PCDD/F concentrations in sediments and evaluated the potential for enhanced in situ biodegradation by surveying for Dehalococcoides mccartyi, an obligate organohalide respiring bacterium. Dehalococcoides spp. (98 % similar to D. mccartyi) and 22 other members of the class Dehalococcoidia were predominant 16S ribosomal RNA (rRNA) phylotypes. Dehalococcoides spp. were also present in the active fraction of the bacterial community. Presence/absence PCR screening detected D. mccartyi in sediment cores and sediment grab samples having at least 1 ng/kg dry wt. TEQ at salinities ranging from 0.6 to 19.5 PSU, indicating that they are widespread in the estuarine environment. Organic carbon-only and organic carbon + sulfate-amended sediment microcosm experiments resulted in ∼60 % reduction of ambient 2,3,7,8-TCDD in just 24 months leading to reductions in total TEQs by 38.4 and 45.0 %, respectively, indicating that 2,3,7,8-TCDD degradation is occurring at appreciable rates.
Collapse
Affiliation(s)
- Anne-Sophie Charlotte Hieke
- Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX, 77843, USA.
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX, 77843, USA.
| | - Robin Brinkmeyer
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Kevin M Yeager
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Research Building, Lexington, KY, 40506, USA
| | - Kimberly Schindler
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Research Building, Lexington, KY, 40506, USA
| | - Saijin Zhang
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Chen Xu
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Patrick Louchouarn
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Peter H Santschi
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| |
Collapse
|
67
|
Reiss RA, Guerra P, Makhnin O. Metagenome phylogenetic profiling of microbial community evolution in a tetrachloroethene-contaminated aquifer responding to enhanced reductive dechlorination protocols. Stand Genomic Sci 2016; 11:88. [PMID: 27980706 PMCID: PMC5131427 DOI: 10.1186/s40793-016-0209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023] Open
Abstract
Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways, however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log2 fold increase in biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change abundance data and use Zipf’s power law to filter genera with low read counts. Plotting the log-rank against the log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive dechlorination protocol. Members of the Archaea domain increased 4.7 log2 fold, dominated by methanogens. Prior to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant decreases five months after biostimulation. Geobacter and Sulfurospirillum replace “Sideroxydans” and Burkholderia as the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.
Collapse
Affiliation(s)
- Rebecca A Reiss
- New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 USA
| | - Peter Guerra
- AMEC Foster Wheeler Environment & Infrastructure, Inc, 8519 Jefferson NE, Albuquerque, NM 87113 USA
| | - Oleg Makhnin
- New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 USA
| |
Collapse
|
68
|
Wang S, Chen S, Wang Y, Low A, Lu Q, Qiu R. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Biotechnol Adv 2016; 34:1384-1395. [DOI: 10.1016/j.biotechadv.2016.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/18/2016] [Accepted: 10/15/2016] [Indexed: 12/19/2022]
|
69
|
The MarR-Type Regulator Rdh2R Regulates rdh Gene Transcription in Dehalococcoides mccartyi Strain CBDB1. J Bacteriol 2016; 198:3130-3141. [PMID: 27621279 DOI: 10.1128/jb.00419-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
Abstract
Reductive dehalogenases are essential enzymes in organohalide respiration and consist of a catalytic subunit A and a membrane protein B, encoded by rdhAB genes. Thirty-two rdhAB genes exist in the genome of Dehalococcoides mccartyi strain CBDB1. To gain a first insight into the regulation of rdh operons, the control of gene expression of two rdhAB genes (cbdbA1453/cbdbA1452 and cbdbA1455/cbdbA1454) by the MarR-type regulator Rdh2R (cbdbA1456) encoded directly upstream was studied using heterologous expression and in vitro studies. Promoter-lacZ reporter fusions were generated and integrated into the genome of the Escherichia coli host. The lacZ reporter activities of both rdhA promoters decreased upon transformation of the cells with a plasmid carrying the rdh2R gene, suggesting that Rdh2R acts as repressor, whereas the lacZ reporter activity of the rdh2R promoter was not affected. The transcriptional start sites of both rdhA genes in strain CBDB1 and/or the heterologous host mapped to a conserved direct repeat with 11- to 13-bp half-sites. DNase I footprinting revealed binding of Rdh2R to a ∼30-bp sequence covering the complete direct repeat in both promoters, including the transcriptional start sites. Equilibrium sedimentation ultracentrifugation revealed that Rdh2R binds as tetramer to the direct-repeat motif of the rdhA (cbdbA1455) promoter. Using electrophoretic mobility shift assays, a similar binding affinity was found for both rdhA promoters. In the presence of only one half-site of the direct repeat, the interaction was strongly reduced, suggesting a positive cooperativity of binding, for which unusual short palindromes within the direct-repeat half-sites might play an important role. IMPORTANCE Dehalococcoides mccartyi strains are obligate anaerobes that grow by organohalide respiration. They have an important bioremediation potential because they are capable of reducing a multitude of halogenated compounds to less toxic products. We are now beginning to understand how these organisms make use of this large catabolic potential, whereby D. mccartyi expresses dehalogenases in a compound-specific fashion. MarR-type regulators are often encoded in the vicinity of reductive dehalogenase genes. In this study, we made use of heterologous expression and in vitro studies to demonstrate that the MarR-type transcription factor Rdh2R acts as a negative regulator. We identify its binding site on the DNA, which suggests a mechanism by which it controls the expression of two adjacent reductive dehalogenase operons.
Collapse
|
70
|
Ahn JH, Lee SA, Kim JM, Kim MS, Song J, Weon HY. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. J Microbiol 2016; 54:724-731. [PMID: 27796926 DOI: 10.1007/s12275-016-6463-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Fertilization and the response of the soil microbial community to the process significantly affect crop yield and the environment. In this study, the seasonal variation in the bacterial communities in rice field soil subjected to different fertilization treatments for more than 50 years was investigated using 16S rRNA sequencing. The simultaneous application of inorganic fertilizers and rice straw compost (CAPK) maintained the species richness of the bacterial communities at levels higher than that in the case of non-fertilization (NF) and application of inorganic fertilizers only (APK) in the initial period of rice growth. The seasonal variation in the bacterial community structure in the NF and APK plots showed cyclic behavior, suggesting that the effect of season was important; however, no such trend was observed in the CAPK plot. In the CAPK plot, the relative abundances of putative copiotrophs such as Bacteroidetes, Firmicutes, and Proteobacteria were higher and those of putative oligotrophs such as Acidobacteria and Plactomycetes were lower than those in the other plots. The relative abundances of organotrophs with respiratory metabolism, such as Actinobacteria, were lower and those of chemoautotrophs that oxidize reduced iron and sulfur compounds were higher in the CAPK plot, suggesting greater carbon storage in this plot. Increased methane emission and nitrogen deficiency, which were inferred from the higher abundances of Methylocystis and Bradyrhizobium in the CAPK plot, may be a negative effect of rice straw application; thus, a solution for these should be considered to increase the use of renewable resources in agricultural lands.
Collapse
Affiliation(s)
- Jae-Hyung Ahn
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Shin Ae Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jeong Myeong Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Myung-Sook Kim
- Soil and Ferilization Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea.
| |
Collapse
|
71
|
Munro JE, Liew EF, Ly MA, Coleman NV. A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site. Appl Environ Microbiol 2016; 82:5298-308. [PMID: 27342553 PMCID: PMC4988179 DOI: 10.1128/aem.01373-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1 Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more recently isolated DCA-degrading Xanthobacter strains from Australia, in which a relatively small circular plasmid (pDCA) carries both dhlA and dhlB homologs. pDCA represents a true organochlorine-catabolic plasmid, first because its only obvious metabolic phenotype is dehalogenation of organochlorines, and second because acquisition of this plasmid provides both key enzymes required for carbon-chlorine bond cleavage. The discovery of the alternative haloacid dehalogenase dhlB2 in pDCA increases the known genetic diversity of bacterial chloroacetate-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Jacob E Munro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Elissa F Liew
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Mai-Anh Ly
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
72
|
Kocur CMD, Lomheim L, Molenda O, Weber KP, Austrins LM, Sleep BE, Boparai HK, Edwards EA, O'Carroll DM. Long-Term Field Study of Microbial Community and Dechlorinating Activity Following Carboxymethyl Cellulose-Stabilized Nanoscale Zero-Valent Iron Injection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7658-7670. [PMID: 27305345 DOI: 10.1021/acs.est.6b01745] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoscale zerovalent iron (nZVI) is an emerging technology for the remediation of contaminated sites. However, there are concerns related to the impact of nZVI on in situ microbial communities. In this study, the microbial community composition at a contaminated site was monitored over two years following the injection of nZVI stabilized with carboxymethyl cellulose (nZVI-CMC). Enhanced dechlorination of chlorinated ethenes to nontoxic ethene was observed long after the expected nZVI oxidation. The abundance of Dehalococcoides (Dhc) and vinyl chloride reductase (vcrA) genes, monitored using qPCR, increased by over an order of magnitude in nZVI-CMC-impacted wells. The entire microbial community was tracked using 16S rRNA gene amplicon pyrosequencing. Following nZVI-CMC injection, a clear shift in microbial community was observed, with most notable increases in the dechlorinating genera Dehalococcoides and Dehalogenimonas. This study suggests that coupled abiotic degradation (i.e., from reaction with nZVI) and biotic degradation fueled by CMC led to the long-term degradation of chlorinated ethenes at this field site. Furthermore, nZVI-CMC addition stimulated dehalogenator growth (e.g., Dehalococcoides) and biotic degradation of chlorinated ethenes.
Collapse
Affiliation(s)
- Chris M D Kocur
- Civil & Environmental Engineering, Western University , 1151 Richmond Street, London, Ontario, Canada , N6A 5B8
- CH2M HILL Canada Limited , 72 Victoria Street Kitchener, Ontario, Canada , N2G 4Y9
| | - Line Lomheim
- Chemical Engineering & Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario, Canada , M5S 3E5
| | - Olivia Molenda
- Chemical Engineering & Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario, Canada , M5S 3E5
| | - Kela P Weber
- Environmental Sciences Group, Chemistry and Chemical Engineering, Royal Military College of Canada , PO Box 17000, Station Forces, Kingston, Ontario, Canada , K7K 7B4
| | - Leanne M Austrins
- CH2M HILL Canada Limited , 72 Victoria Street Kitchener, Ontario, Canada , N2G 4Y9
| | - Brent E Sleep
- Civil Engineering, University of Toronto , 35 Saint George Street, Toronto, Ontario, Canada , M5S 1A4
| | - Hardiljeet K Boparai
- Civil & Environmental Engineering, Western University , 1151 Richmond Street, London, Ontario, Canada , N6A 5B8
| | - Elizabeth A Edwards
- Chemical Engineering & Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario, Canada , M5S 3E5
| | - Denis M O'Carroll
- Civil & Environmental Engineering, Western University , 1151 Richmond Street, London, Ontario, Canada , N6A 5B8
| |
Collapse
|
73
|
Bromberg R, Grishin NV, Otwinowski Z. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer. PLoS Comput Biol 2016; 12:e1004985. [PMID: 27336403 PMCID: PMC4918981 DOI: 10.1371/journal.pcbi.1004985] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/10/2016] [Indexed: 01/20/2023] Open
Abstract
Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. Due to their lack of distinct morphological features, bacteria and archaea were extremely difficult to classify until technology was developed to obtain their DNA sequences; these sequences could then be compared to estimate evolutionary relationships. Now, due to technological advances, there is a flood of available sequences from a wide variety of organisms. These advances have spurred the development of algorithms which can estimate evolutionary relationships using whole genomes, in contrast to the more traditional methods which used single genes earlier and now typically use groups of conserved genes. However, there are many challenges when attempting to infer evolutionary relationships, in particular horizontal gene transfer, where DNA is transferred from one organism to another, resulting in an organism’s genome containing DNA that does not reflect its evolution by descent. We developed a new whole-genome method for estimating evolutionary distances which identifies and corrects for horizontal transfer. We found that for SlopeTree and all other whole-genome methods we applied, horizontal transfer causes some evolutionary distances to be grossly underestimated, and that our correction corrects for this.
Collapse
Affiliation(s)
- Raquel Bromberg
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
74
|
Key TA, Richmond DP, Bowman KS, Cho YJ, Chun J, da Costa MS, Rainey FA, Moe WM. Genome sequence of the organohalide-respiring Dehalogenimonas alkenigignens type strain (IP3-3(T)). Stand Genomic Sci 2016; 11:44. [PMID: 27340512 PMCID: PMC4918011 DOI: 10.1186/s40793-016-0165-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/31/2016] [Indexed: 11/13/2022] Open
Abstract
Dehalogenimonas alkenigignens IP3-3T is a strictly anaerobic, mesophilic, Gram negative staining bacterium that grows by organohalide respiration, coupling the oxidation of H2 to the reductive dehalogenation of polychlorinated alkanes. Growth has not been observed with any non-polyhalogenated alkane electron acceptors. Here we describe the features of strain IP3-3T together with genome sequence information and its annotation. The 1,849,792 bp high-quality-draft genome contains 1936 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small unit rRNA (16S) locus. The genome contains 29 predicted reductive dehalogenase genes, a large majority of which lack cognate genes encoding membrane anchoring proteins.
Collapse
Affiliation(s)
- Trent A Key
- Louisiana State University, Baton Rouge, LA USA
| | | | | | - Yong-Joon Cho
- ChunLab, Inc., Seoul National University, Seoul, Republic of Korea
| | - Jongsik Chun
- ChunLab, Inc., Seoul National University, Seoul, Republic of Korea
| | - Milton S da Costa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
75
|
Wong YK, Holland SI, Ertan H, Manefield M, Lee M. Isolation and characterization ofDehalobacter sp.strain UNSWDHB capable of chloroform and chlorinated ethane respiration. Environ Microbiol 2016; 18:3092-105. [DOI: 10.1111/1462-2920.13287] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Yie K. Wong
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| | - Sophie I. Holland
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
- Department of Molecular Biology and Genetics; Istanbul University; Turkey
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| |
Collapse
|
76
|
Kublik A, Deobald D, Hartwig S, Schiffmann CL, Andrades A, von Bergen M, Sawers RG, Adrian L. Identification of a multi-protein reductive dehalogenase complex inDehalococcoides mccartyistrain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ Microbiol 2016; 18:3044-56. [DOI: 10.1111/1462-2920.13200] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/03/2015] [Accepted: 12/23/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Anja Kublik
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
| | - Darja Deobald
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
| | - Stefanie Hartwig
- Institute of Microbiology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Str. 3 06120 Halle Germany
| | - Christian L. Schiffmann
- Department of Proteomics; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
| | - Adarelys Andrades
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
| | - Martin von Bergen
- Department of Proteomics; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
- Department of Metabolomics; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
- Centre for Microbial Communities; University of Aalborg; Fredrik Bajers Vej 7H 9220 Aalborg East Denmark
| | - R. Gary Sawers
- Institute of Microbiology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Str. 3 06120 Halle Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Permoserstraße 15 04318 Leipzig Germany
| |
Collapse
|
77
|
Dehalogenimonas sp. Strain WBC-2 Genome and Identification of Its trans-Dichloroethene Reductive Dehalogenase, TdrA. Appl Environ Microbiol 2015; 82:40-50. [PMID: 26452554 DOI: 10.1128/aem.02017-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 02/04/2023] Open
Abstract
The Dehalogenimonas population in a dechlorinating enrichment culture referred to as WBC-2 was previously shown to be responsible for trans-dichloroethene (tDCE) hydrogenolysis to vinyl chloride (VC). In this study, blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzymatic assays and protein identification using liquid chromatography coupled with mass spectrometry (LC-MS/MS) led to the functional characterization of a novel dehalogenase, TdrA. This new reductive dehalogenase (RDase) catalyzes the dechlorination of tDCE to VC. A metagenome of the WBC-2 culture was sequenced, and a complete Dehalogenimonas genome, only the second Dehalogenimonas genome to become publicly available, was closed. The tdrA dehalogenase found within the Dehalogenimonas genome appears to be on a genomic island similar to genomic islands found in Dehalococcoides. TdrA itself is most similar to TceA from Dehalococcoides sp. strain FL2 with 76.4% amino acid pairwise identity. It is likely that the horizontal transfer of rdhA genes is not only a feature of Dehalococcoides but also a feature of other Dehalococcoidia, including Dehalogenimonas. A set of primers was developed to track tdrA in WBC-2 subcultures maintained on different electron acceptors. This newest dehalogenase is an addition to the short list of functionally defined RDases sharing the usual characteristic motifs (including an AB operon, a TAT export sequence, two iron-sulfur clusters, and a corrinoid binding domain), substrate flexibility, and evidence for horizontal gene transfer within the Dehalococcoidia.
Collapse
|
78
|
Diverse Reductive Dehalogenases Are Associated with Clostridiales-Enriched Microcosms Dechlorinating 1,2-Dichloroethane. BIOMED RESEARCH INTERNATIONAL 2015; 2015:242856. [PMID: 26273600 PMCID: PMC4529907 DOI: 10.1155/2015/242856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/06/2015] [Indexed: 11/17/2022]
Abstract
The achievement of successful biostimulation of active microbiomes for the cleanup of a polluted site is strictly dependent on the knowledge of the key microorganisms equipped with the relevant catabolic genes responsible for the degradation process. In this work, we present the characterization of the bacterial community developed in anaerobic microcosms after biostimulation with the electron donor lactate of groundwater polluted with 1,2-dichloroethane (1,2-DCA). Through a multilevel analysis, we have assessed (i) the structural analysis of the bacterial community; (ii) the identification of putative dehalorespiring bacteria; (iii) the characterization of functional genes encoding for putative 1,2-DCA reductive dehalogenases (RDs). Following the biostimulation treatment, the structure of the bacterial community underwent a notable change of the main phylotypes, with the enrichment of representatives of the order Clostridiales. Through PCR targeting conserved regions within known RD genes, four novel variants of RDs previously associated with the reductive dechlorination of 1,2-DCA were identified in the metagenome of the Clostridiales-dominated bacterial community.
Collapse
|
79
|
Martín-González L, Mortan SH, Rosell M, Parladé E, Martínez-Alonso M, Gaju N, Caminal G, Adrian L, Marco-Urrea E. Stable Carbon Isotope Fractionation During 1,2-Dichloropropane-to-Propene Transformation by an Enrichment Culture Containing Dehalogenimonas Strains and a dcpA Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8666-8674. [PMID: 26111261 DOI: 10.1021/acs.est.5b00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A stable enrichment culture derived from Besòs river estuary sediments stoichiometrically dechlorinated 1,2-dichloropropane (1,2-DCP) to propene. Sequential transfers in defined anaerobic medium with the inhibitor bromoethanesulfonate produced a sediment-free culture dechlorinating 1,2-DCP in the absence of methanogenesis. Application of previously published genus-specific primers targeting 16S rRNA gene sequences revealed the presence of a Dehalogenimonas strain, and no amplification was obtained with Dehalococcoides-specific primers. The partial sequence of the 16S rRNA amplicon was 100% identical with Dehalogenimonas alkenigignens strain IP3-3. Also, dcpA, a gene described to encode a corrinoid-containing 1,2-DCP reductive dehalogenase was detected. Resistance of the dehalogenating activity to vancomycin, exclusive conversion of vicinally chlorinated alkanes, and tolerance to short-term oxygen exposure is consistent with the hypothesis that a Dehalogenimonas strain is responsible for 1,2-DCP conversion in the culture. Quantitative PCR showed a positive correlation between the number of Dehalogenimonas 16S rRNA genes copies in the culture and consumption of 1,2-DCP. Compound specific isotope analysis revealed that the Dehalogenimonas-catalyzed carbon isotopic fractionation (εC(bulk)) of the 1,2-DCP-to-propene reaction was -15.0 ± 0.7‰ under both methanogenic and nonmethanogenic conditions. This study demonstrates that carbon isotope fractionation is a valuable approach for monitoring in situ 1,2-DCP reductive dechlorination by Dehalogenimonas strains.
Collapse
Affiliation(s)
- L Martín-González
- †Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - S Hatijah Mortan
- †Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - M Rosell
- ‡Departament de Crystal-lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028. Barcelona, Spain
| | - E Parladé
- §Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - M Martínez-Alonso
- §Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - N Gaju
- §Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - G Caminal
- ∥Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L Adrian
- ⊥Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, Germany
| | - E Marco-Urrea
- †Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| |
Collapse
|
80
|
Zhao S, Ding C, He J. Detoxification of 1,1,2-trichloroethane to ethene by desulfitobacterium and identification of its functional reductase gene. PLoS One 2015; 10:e0119507. [PMID: 25835017 PMCID: PMC4383557 DOI: 10.1371/journal.pone.0119507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
1,1,2-trichloroethane (1,1,2-TCA) has become a common groundwater pollutant due to historically extensive utilization, improper disposal, as well as from incomplete dechlorination of 1,1,2,2-tetrachloroethane. Currently, limited information is available on microbial detoxification of 1,1,2-TCA. Desulfitobacterium sp. strain PR, which was isolated from an anaerobic bioreactor maintained to dechlorinate chloroethenes/ethanes, exhibited the capacity to dechlorinate 1,1,1-trichloroethane and chloroform. In this study, the dechlorinating ability of strain PR was further explored. Strain PR showed the capability to dechlorinate 1,1,2-TCA (~1.12 mM) predominantly to 1,2-dichloroethane (1,2-DCA) and chloroethane, and to trace amounts of vinyl chloride and ethene within 20 days. Strain PR coupled growth with dechlorination of 1,1,2-TCA to 1,2-DCA, while no cell growth was observed with dechlorination of 1,2-DCA to chloroethane. Later, through transcriptomic and enzymatic analysis, the reductive dehalogenase CtrA, which was previously reported to be responsible for 1,1,1-trichloroethane and chloroform dechlorination, was identified as the 1,1,2-TCA reductive dehalogenase. Since trichloroethene (TCE) is usually co-contaminated with 1,1,2-TCA, a co-culture containing Dehalococcoides mccartyi strain 11a capable of detoxifying TCE and 1,2-DCA and strain PR was established. Interestingly, this co-culture dechlorinated 1,1,2-TCA and TCE to the non-toxic end-product ethene within 48 days without chloroethane production. This novel pathway avoids production of the carcinogenic intermediate dechlorination product vinyl chloride, providing a more environmentally friendly strategy to treat 1,1,2-TCA.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chang Ding
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
- * E-mail:
| |
Collapse
|
81
|
Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, Altermann E. The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9. Stand Genomic Sci 2014; 9:15. [PMID: 25780506 PMCID: PMC4335013 DOI: 10.1186/1944-3277-9-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Methanobacterium formicicum BRM9 was isolated from the rumen of a New Zealand Friesan cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 2.45 Mb BRM9 chromosome has an average G + C content of 41%, and encodes 2,352 protein-coding genes. The genes involved in methanogenesis are comparable to those found in other members of the Methanobacteriaceae with the exception that there is no [Fe]-hydrogenase dehydrogenase (Hmd) which links the methenyl-H4MPT reduction directly with the oxidation of H2. Compared to the rumen Methanobrevibacter strains, BRM9 has a much larger complement of genes involved in determining oxidative stress response, signal transduction and nitrogen fixation. BRM9 also has genes for the biosynthesis of the compatible solute ectoine that has not been reported to be produced by methanogens. The BRM9 genome has a prophage and two CRISPR repeat regions. Comparison to the genomes of other Methanobacterium strains shows a core genome of ~1,350 coding sequences and 190 strain-specific genes in BRM9, most of which are hypothetical proteins or prophage related.
Collapse
Affiliation(s)
- William J Kelly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Rechelle Perry
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Suzanne C Lambie
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Graeme T Attwood
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
82
|
Mayer-Blackwell K, Azizian MF, Machak C, Vitale E, Carpani G, de Ferra F, Semprini L, Spormann AM. Nanoliter qPCR platform for highly parallel, quantitative assessment of reductive dehalogenase genes and populations of dehalogenating microorganisms in complex environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9659-9667. [PMID: 25046033 DOI: 10.1021/es500918w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Idiosyncratic combinations of reductive dehalogenase (rdh) genes are a distinguishing genomic feature of closely related organohalogen-respiring bacteria. This feature can be used to deconvolute the population structure of organohalogen-respiring bacteria in complex environments and to identify relevant subpopulations, which is important for tracking interspecies dynamics needed for successful site remediation. Here we report the development of a nanoliter qPCR platform to identify organohalogen-respiring bacteria and populations by quantifying major orthologous reductive dehalogenase gene groups. The qPCR assays can be operated in parallel within a 5184-well nanoliter qPCR (nL-qPCR) chip at a single annealing temperature and buffer condition. We developed a robust bioinformatics approach to select from thousands of computationally proposed primer pairs those that are specific to individual rdh gene groups and compatible with a single amplification condition. We validated hundreds of the most selective qPCR assays and examined their performance in a trichloroethene-degrading bioreactor, revealing population structures as well as their unexpected shifts in abundance and community dynamics.
Collapse
Affiliation(s)
- Koshlan Mayer-Blackwell
- Civil and Environmental Engineering, §Geological and Environmental Sciences, and ⊥Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Chen J, Bowman KS, Rainey FA, Moe WM. Reassessment of PCR primers targeting 16S rRNA genes of the organohalide-respiring genus Dehalogenimonas. Biodegradation 2014; 25:747-56. [PMID: 24989478 DOI: 10.1007/s10532-014-9696-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
Abstract
Representatives from the genus Dehalogenimonas have the metabolic capacity to anaerobically transform a variety of environmentally important polychlorinated aliphatic compounds. In light of the recent isolation of additional strains, description of a new species, and an expanded number of uncultured DNA sequences, PCR primers and protocols intended to uniquely target members of this organohalide-respiring genus were reevaluated. Nine of fourteen primer combinations reported previously as genus-specific failed to amplify 16S rRNA genes of recently isolated Dehalogenimonas strains. Use of alternative combinations or modified genus-specific primers, however, allowed detection of all presently known Dehalogenimonas strains. Use of a modified primer set in qPCR revealed an approximately two-order of magnitude increase in concentration of Dehalogenimonas 16S rRNA gene copies following subsurface injection of electron donors at a Louisiana Superfund site, demonstrating the utility of the newly developed protocol and suggesting that the genus Dehalogenimonas can respond to biostimulation remediation strategies in a manner similar to that previously reported for other dechlorinating genera such as Dehalococcoides.
Collapse
Affiliation(s)
- Jie Chen
- Department of Civil and Environmental Engineering, Louisiana State University, 3513B Patrick Taylor Hall, Baton Rouge, LA, 70803, USA
| | | | | | | |
Collapse
|
84
|
Wasmund K, Algora C, Müller J, Krüger M, Lloyd KG, Reinhardt R, Adrian L. Development and application of primers for the class Dehalococcoidia (phylum Chloroflexi) enables deep insights into diversity and stratification of subgroups in the marine subsurface. Environ Microbiol 2014; 17:3540-56. [PMID: 24889097 DOI: 10.1111/1462-2920.12510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
Bacteria of the class Dehalococcoidia (DEH) (phylum Chloroflexi) are widely distributed in the marine subsurface and are especially prevalent in deep marine sediments. Nevertheless, little is known about the specific distributions of DEH subgroups at different sites and depths. This study therefore specifically examined the distributions of DEH through depths of various marine sediment cores by quantitative PCR and pyrosequencing using newly designed DEH 16S rRNA gene targeting primers. Quantification of DEH showed populations may establish in shallow sediments (i.e. upper centimetres), although as low relative proportions of total Bacteria, yet often became more prevalent in deeper sediments. Pyrosequencing revealed pronounced diversity co-exists within single biogeochemical zones, and that clear and sometimes abrupt shifts in relative proportions of DEH subgroups occur with depth. These shifts indicate varying metabolic properties exist among DEH subgroups. The distributional changes in DEH subgroups with depth may be related to a combination of biogeochemical factors including the availability of electron acceptors such as sulfate, the composition of organic matter and depositional regimes. Collectively, the results suggest DEH exhibit wider metabolic and genomic diversity than previously recognized, and this contributes to their widespread occurrence in the marine subsurface.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany.,Division of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Camelia Algora
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| | - Josefine Müller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Karen G Lloyd
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| |
Collapse
|
85
|
Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS One 2014; 9:e100654. [PMID: 24950250 PMCID: PMC4065118 DOI: 10.1371/journal.pone.0100654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our study, microcosms established with garden soil and mangrove sediment also stalled at cis-DCE, albeit Dehalococcoides mccartyi containing the reductive dehalogenase genes tceA, vcrA and bvcA were detected in the soil/sediment inocula. Reductive dechlorination was not promoted beyond cis-DCE, even after multiple biostimulation events with fermentable substrates and a lengthy incubation. However, transfers from microcosms stalled at cis-DCE yielded dechlorination to ethene with subsequent enrichment cultures containing up to 109Dehalococcoides mccartyi cells mL−1. Proteobacterial classes which dominated the soil/sediment communities became undetectable in the enrichments, and methanogenic activity drastically decreased after the transfers. We hypothesized that biostimulation of Dehalococcoides in the cis-DCE-stalled microcosms was impeded by other microbes present at higher abundances than Dehalococcoides and utilizing terminal electron acceptors from the soil/sediment, hence, outcompeting Dehalococcoides for H2. In support of this hypothesis, we show that garden soil and mangrove sediment microcosms bioaugmented with their respective cultures containing Dehalococcoides in high abundance were able to compete for H2 for reductive dechlorination from one biostimulation event and produced ethene with no obvious stall. Overall, our results provide an alternate explanation to consolidate conflicting observations on the ubiquity of Dehalococcoides mccartyi and occasional stalling of dechlorination at cis-DCE; thus, bringing a new perspective to better assess biological potential of different environments and to understand microbial interactions governing bioremediation.
Collapse
|
86
|
Krzmarzick MJ, Novak PJ. Removal of chlorinated organic compounds during wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 2014; 98:6233-42. [DOI: 10.1007/s00253-014-5800-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022]
|
87
|
Mukherjee K, Bowman KS, Rainey FA, Siddaramappa S, Challacombe JF, Moe WM. Dehalogenimonas lykanthroporepellensBL-DC-9Tsimultaneously transcribes manyrdhAgenes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. FEMS Microbiol Lett 2014; 354:111-8. [DOI: 10.1111/1574-6968.12434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kalpataru Mukherjee
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
| | - Kimberly S. Bowman
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
- Department of Civil and Environmental Engineering; Louisiana State University; Baton Rouge LA USA
| | - Fred A. Rainey
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
- Department of Biological Sciences; University of Alaska Anchorage; Anchorage AK USA
| | - Shivakumara Siddaramappa
- Bioscience Division; Los Alamos National Laboratory; Los Alamos NM USA
- Institute of Bioinformatics and Applied Biotechnology; Bengaluru India
| | | | - William M. Moe
- Department of Civil and Environmental Engineering; Louisiana State University; Baton Rouge LA USA
| |
Collapse
|
88
|
Dodsworth JA, Gevorkian J, Despujos F, Cole JK, Murugapiran SK, Ming H, Li WJ, Zhang G, Dohnalkova A, Hedlund BP. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. Int J Syst Evol Microbiol 2014; 64:2119-2127. [PMID: 24676733 DOI: 10.1099/ijs.0.055855-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, filamentous, heterotrophic bacterium, designated strain JAD2(T), a member of an as-yet uncultivated lineage that is present and sometimes abundant in some hot springs worldwide, was isolated from sediment of Great Boiling Spring in Nevada, USA. Cells had a mean diameter of 0.3 µm and length of 4.0 µm, and formed filaments that typically ranged in length from 20 to 200 µm. Filaments were negative for the Gram stain reaction, spores were not formed and motility was not observed. The optimum temperature for growth was 72.5-75 °C, with a range of 67.5-75 °C, and the optimum pH for growth was 6.75, with a range of pH 6.5-7.75. Peptone, tryptone or yeast extract were able to support growth when supplemented with vitamins, but no growth was observed using a variety of defined organic substrates. Strain JAD2(T) was microaerophilic and facultatively anaerobic, with optimal growth at 1% (v/v) O2 and an upper limit of 8% O2. The major cellular fatty acids (>5%) were C(16 : 0), C(19 : 0), C(18 : 0), C(20 : 0) and C(19 : 1). The genomic DNA G+C content was 69.3 mol%. Phylogenetic and phylogenomic analyses using sequences of the 16S rRNA gene and other conserved genes placed JAD2(T) within the phylum Chloroflexi, but not within any existing class in this phylum. These results indicate that strain JAD2(T) is the first cultivated representative of a novel lineage within the phylum Chloroflexi, for which we propose the name Thermoflexus hugenholtzii gen. nov., sp. nov., within Thermoflexia classis nov., Thermoflexales ord. nov. and Thermoflexaceae fam. nov. The type strain of Thermoflexus hugenholtzii is JAD2(T) ( = JCM 19131(T) = CCTCC AB-2014030(T)).
Collapse
Affiliation(s)
| | | | - Fairuz Despujos
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Jessica K Cole
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | | | - Hong Ming
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China.,Department of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, PR China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| | - Gengxin Zhang
- Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 10085, PR China
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, PO Box 999, Mail Stop K8-93, Richland, WA 99352, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
89
|
Ravinesan DA, Gupta RS. Molecular signatures for members of the genus Dehalococcoides and the class Dehalococcoidia. Int J Syst Evol Microbiol 2014; 64:2176-2181. [PMID: 24676731 DOI: 10.1099/ijs.0.057919-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacteria belonging to the class Dehalococcoidia, due to their ability to dehalogenate chlorinated compounds, are of much interest for bioremediation of contaminated sites. We report here comparative analyses on different genes/proteins from the genomes of members of the class Dehalococcoidia. These studies have identified numerous novel molecular markers in the forms of conserved signature indels (CSIs) in broadly distributed proteins and conserved signature genes/proteins (CSPs), which are uniquely found in members of the class Dehalococcoidia, but except for an isolated exception, they are not found in other sequenced bacterial genomes. Of these molecular markers, nine CSIs in divergent proteins and 19 CSPs are specific for members of the genera Dehalococcoides and Dehalogenimonas, providing potential molecular markers for the bacterial class Dehalococcoidia. Additionally, four CSIs in divergent proteins and 28 CSPs are only found in all members of the genus Dehalococcoides for which genome sequences are available, but they are absent in Dehalogenimonas lykanthroporepellens and in other bacteria. The gene sequences of several of these CSPs exhibiting specificity for the genus Dehalococcoides or the class Dehalococcoidia are highly conserved and PCR primers based upon them provide a novel means for identification of other related bacteria. Two other CSIs identified in this study in the SecD and aspartate carbomyltransferase proteins weakly support an affiliation of the class Dehalococcoidia with the other members of the phylum Chloroflexi.
Collapse
Affiliation(s)
- Dasha A Ravinesan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
90
|
Kaster AK, Mayer-Blackwell K, Pasarelli B, Spormann AM. Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin. ISME JOURNAL 2014; 8:1831-42. [PMID: 24599070 DOI: 10.1038/ismej.2014.24] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3 m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle.
Collapse
Affiliation(s)
| | | | - Ben Pasarelli
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alfred M Spormann
- 1] Department of Chemical Engineering, Stanford University, Stanford, CA, USA [2] Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
91
|
Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring chloroflexi. Appl Environ Microbiol 2013; 80:808-18. [PMID: 24242248 DOI: 10.1128/aem.02927-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dehalococcoides mccartyi strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic, and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated a D. mccartyi cell increase during growth with 1,2-D and suggested that both D. mccartyi strains carried a single dcpA gene copy per genome. D. mccartyi strain RC and strain KS produced 1.8 × 10(7) ± 0.1 × 10(7) and 1.4 × 10(7) ± 0.5 × 10(7) cells per μmol of propene formed, respectively. The dcpA gene was identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which were captured by the dcpA gene-targeted qPCR assay, suggesting that the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites.
Collapse
|
92
|
Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci U S A 2013; 110:15336-41. [PMID: 24003156 DOI: 10.1073/pnas.1302426110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Cedars, in coastal northern California, is an active site of peridotite serpentinization. The spring waters that emerge from this system feature very high pH, low redox potential, and low ionic concentrations, making it an exceptionally challenging environment for life. We report a multiyear, culture-independent geomicrobiological study of three springs at The Cedars that differ with respect to the nature of the groundwater feeding them. Within each spring, both geochemical properties and microbial diversity in all three domains of life remained stable over a 3-y period, with multiple samples each year. Between the three springs, however, the microbial communities showed considerable differences that were strongly correlated with the source of the serpentinizing groundwater. In the spring fed solely by deep groundwater, phylum Chloroflexi, class Clostridia, and candidate division OD1 were the major taxa with one phylotype in Euryarchaeota. Less-abundant phylotypes include several minor members from other candidate divisions and one phylotype that was an outlier of candidate division OP3. In the springs fed by the mixture of deep and shallow groundwater, organisms close to the Hydrogenophaga within Betaproteobacteria dominated and coexisted with the deep groundwater community members. The shallow groundwater community thus appears to be similar to those described in other terrestrial serpentinizing sites, whereas the deep community is distinctly different from any other previously described terrestrial serpentinizing community. These unique communities have the potential to yield important insights into the development and survival of life in these early-earth analog environments.
Collapse
|
93
|
Dillehay JL, Bowman KS, Yan J, Rainey FA, Moe WM. Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp. Biodegradation 2013; 25:301-12. [DOI: 10.1007/s10532-013-9661-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/22/2013] [Indexed: 12/01/2022]
|
94
|
Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME JOURNAL 2013; 8:383-97. [PMID: 23966099 DOI: 10.1038/ismej.2013.143] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 12/27/2022]
Abstract
Bacteria of the class Dehalococcoidia (DEH), phylum Chloroflexi, are widely distributed in the marine subsurface, yet metabolic properties of the many uncultivated lineages are completely unknown. This study therefore analysed genomic content from a single DEH cell designated 'DEH-J10' obtained from the sediments of Aarhus Bay, Denmark. Real-time PCR showed the DEH-J10 phylotype was abundant in upper sediments but was absent below 160 cm below sea floor. A 1.44 Mbp assembly was obtained and was estimated to represent up to 60.8% of the full genome. The predicted genome is much larger than genomes of cultivated DEH and appears to confer metabolic versatility. Numerous genes encoding enzymes of core and auxiliary beta-oxidation pathways were identified, suggesting that this organism is capable of oxidising various fatty acids and/or structurally related substrates. Additional substrate versatility was indicated by genes, which may enable the bacterium to oxidise aromatic compounds. Genes encoding enzymes of the reductive acetyl-CoA pathway were identified, which may also enable the fixation of CO2 or oxidation of organics completely to CO2. Genes encoding a putative dimethylsulphoxide reductase were the only evidence for a respiratory terminal reductase. No evidence for reductive dehalogenase genes was found. Genetic evidence also suggests that the organism could synthesise ATP by converting acetyl-CoA to acetate by substrate-level phosphorylation. Other encoded enzymes putatively conferring marine adaptations such as salt tolerance and organo-sulphate sulfohydrolysis were identified. Together, these analyses provide the first insights into the potential metabolic traits that may enable members of the DEH to occupy an ecological niche in marine sediments.
Collapse
|
95
|
Richardson RE. Genomic insights into organohalide respiration. Curr Opin Biotechnol 2013; 24:498-505. [DOI: 10.1016/j.copbio.2013.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/14/2022]
|
96
|
Wang S, He J. Phylogenetically distinct bacteria involve extensive dechlorination of aroclor 1260 in sediment-free cultures. PLoS One 2013; 8:e59178. [PMID: 23554991 PMCID: PMC3598663 DOI: 10.1371/journal.pone.0059178] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Microbial reductive dechlorination of the persistent polychlorinated biphenyls (PCBs) is attracting much attention in cleanup of the contaminated environment. Nevertheless, most PCB dechlorinating cultures require presence of sediment or sediment substitutes to maintain their dechlorination activities which hinders subsequent bacterial enrichment and isolation processes. The information on enriching sediment-free PCB dechlorinating cultures is still limited. In this study, 18 microcosms established with soils and sediments were screened for their dechlorination activities on a PCB mixture – Aroclor 1260. After one year of incubation, 10 out of 18 microcosms showed significant PCB dechlorination with distinct dechlorination patterns (e.g., Process H, N and T classified based on profiles of PCB congeners loss and new congeners formation). Through serial transfers in defined medium, six sediment-free PCB dechlorinating cultures (i.e., CW-4, CG-1, CG-3, CG-4, CG-5 and SG-1) were obtained without amending any sediment or sediment-substitutes. PCB dechlorination Process H was the most frequently observed dechlorination pattern, which was found in four sediment-free cultures (CW-4, CG-3, CG-4 and SG-1). Sediment-free culture CG-5 showed the most extensive PCB dechlorination among the six cultures, which was mediated by Process N, resulting in the accumulation of penta- (e.g., 236-24-CB) and tetra-chlorobiphenyls (tetra-CBs) (e.g., 24-24-CB, 24-25-CB, 24-26-CB and 25-26-CB) via dechlorinating 30.44% hepta-CBs and 59.12% hexa-CBs after three months of incubation. For culture CG-1, dechlorinators mainly attacked double flanked meta-chlorines and partially ortho-chlorines, which might represent a novel dechlorination pattern. Phylogenetic analysis showed distinct affiliation of PCB dechlorinators in the microcosms, including Dehalogenimonas and Dehalococcoides species. This study broadens our knowledge in microbial reductive dechlorination of PCBs, and provides essential information for culturing and stimulating PCB dechlorinators for in situ bioremediation applications.
Collapse
Affiliation(s)
- Shanquan Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
97
|
Yan J, Im J, Yang Y, Löffler FE. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120320. [PMID: 23479750 DOI: 10.1098/rstb.2012.0320] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dehalococcoides mccartyi strains are corrinoid-auxotrophic Bacteria and axenic cultures that require vitamin B12 (CN-Cbl) to conserve energy via organohalide respiration. Cultures of D. mccartyi strains BAV1, GT and FL2 grown with limiting amounts of 1 µg l(-1) CN-Cbl quickly depleted CN-Cbl, and reductive dechlorination of polychlorinated ethenes was incomplete leading to vinyl chloride (VC) accumulation. In contrast, the same cultures amended with 25 µg l(-1) CN-Cbl exhibited up to 2.3-fold higher dechlorination rates, 2.8-9.1-fold increased growth yields, and completely consumed growth-supporting chlorinated ethenes. To explore whether known cobamide-producing microbes supply Dehalococcoides with the required corrinoid cofactor, co-culture experiments were performed with the methanogen Methanosarcina barkeri strain Fusaro and two acetogens, Sporomusa ovata and Sporomusa sp. strain KB-1, as Dehalococcoides partner populations. During growth with H2/CO2, M. barkeri axenic cultures produced 4.2 ± 0.1 µg l(-1) extracellular cobamide (factor III), whereas the Sporomusa cultures produced phenolyl- and p-cresolyl-cobamides. Neither factor III nor the phenolic cobamides supported Dehalococcoides reductive dechlorination activity suggesting that M. barkeri and the Sporomusa sp. cannot fulfil Dehalococcoides' nutritional requirements. Dehalococcoides dechlorination activity and growth occurred in M. barkeri and Sporomusa sp. co-cultures amended with 10 µM 5',6'-dimethylbenzimidazole (DMB), indicating that a cobalamin is a preferred corrinoid cofactor of strains BAV1, GT and FL2 when grown with chlorinated ethenes as electron acceptors. Even though the methanogen and acetogen populations tested did not produce cobalamin, the addition of DMB enabled guided biosynthesis and generated a cobalamin that supported Dehalococcoides' activity and growth. Guided cobalamin biosynthesis may offer opportunities to sustain and enhance Dehalococcoides activity in contaminated subsurface environments.
Collapse
Affiliation(s)
- Jun Yan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
98
|
Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120322. [PMID: 23479752 DOI: 10.1098/rstb.2012.0322] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyla, and can be categorized as obligate and non-obligate organohalide respirers. The majority of the currently known organohalide-respiring bacteria carry multiple reductive dehalogenase genes. Analysis of a curated set of reductive dehalogenases reveals that sequence similarity and substrate specificity are generally not correlated, making functional prediction from sequence information difficult. In this article, an orthologue-based classification system for the reductive dehalogenases is proposed to aid integration of new sequencing data and to unify terminology.
Collapse
Affiliation(s)
- Laura A Hug
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
99
|
Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L. Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120321. [PMID: 23479751 DOI: 10.1098/rstb.2012.0321] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dehalococcoides mccartyi strains are strictly anaerobic organisms specialized to grow with halogenated compounds as electron acceptor via a respiratory process. Their genomes are among the smallest known for free-living organisms, and the embedded gene set reflects their strong specialization. Here, we briefly review main characteristics of published Dehalococcoides genomes and show how genome information together with cultivation and biochemical experiments have contributed to our understanding of Dehalococcoides physiology and biochemistry. We extend this approach by the detailed analysis of cofactor metabolism in Dehalococcoides strain CBDB1. Dehalococcoides genomes were screened for encoded proteins annotated to contain or interact with organic cofactors, and the expression of these proteins was analysed by shotgun proteomics to shed light on cofactor requirements. In parallel, cultivation experiments testing for vitamin requirements showed that cyanocobalamin (vitamin B12), thiamine and biotin were essential supplements and that cyanocobalamin could be substituted by dicyanocobinamide and dimethylbenzimidazole. Dehalococcoides genome analysis, detection of single enzymes by shotgun proteomics and inhibition studies confirmed the expression of the biosynthetic pathways for pyridoxal-5-phosphate, flavin nucleotides, folate, S-adenosylmethionine, pantothenate and nicotinic acids in strain CBDB1. Haem/cytochromes, quinones and lipoic acids were not necessary for cultivation or dechlorination activity and no biosynthetic pathways were identified in the genomes.
Collapse
Affiliation(s)
- Christian J Schipp
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
100
|
Kawaichi S, Ito N, Kamikawa R, Sugawara T, Yoshida T, Sako Y. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum 'Chloroflexi' isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int J Syst Evol Microbiol 2013; 63:2992-3002. [PMID: 23378114 DOI: 10.1099/ijs.0.046532-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic, chemoheterotrophic, Gram-negative-staining, multicellular filamentous bacterium, designated strain 110S(T), was isolated from an iron-rich coastal hydrothermal field in Japan. The isolate is facultatively aerobic and chemoheterotrophic. Phylogenetic analysis using 16S rRNA gene sequences nested strain 110S(T) in a novel class-level clone cluster of the phylum 'Chloroflexi'. The isolate grows by dissimilatory iron- and nitrate-reduction under anaerobic conditions, which is the first report of these abilities in the phylum 'Chloroflexi'. The organism is capable of growth with oxygen, ferric iron and nitrate as a possible electron acceptor, has a wide range of growth temperatures, and tolerates higher NaCl concentrations for growth compared to the other isolates in the phylum. Using phenotypic and phylogenetic data, strain 110S(T) (= JCM 17282(T) = NBRC 107679(T) = DSM 23922(T) = KCTC 23289(T) = ATCC BAA-2145(T)) is proposed as the type strain of a novel species in a new genus, Ardenticatena maritima gen. nov., sp. nov. In addition, as strain 110S(T) apparently constitutes a new class of the phylum 'Chloroflexi' with other related uncultivated clone sequences, we propose Ardenticatenia classis nov. and the subordinate taxa Ardenticatenales ord. nov. and Ardenticatenaceae fam. nov.
Collapse
Affiliation(s)
- Satoshi Kawaichi
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Norihiro Ito
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ryoma Kamikawa
- Laboratory of Molecular Evolution of Microbes, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tatsuya Sugawara
- Laboratory of Marine Bioproducts Technology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|