51
|
Frejtag W, Zhang Y, Dai R, Anderson MG, Mivechi NF. Heat shock factor-4 (HSF-4a) represses basal transcription through interaction with TFIIF. J Biol Chem 2001; 276:14685-94. [PMID: 11278480 DOI: 10.1074/jbc.m009224200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock transcription factors (HSFs) regulate the expression of heat shock proteins (hsps), which are critical for normal cellular proliferation and differentiation. One of the HSFs, HSF-4, contains two alternative splice variants, one of which possesses transcriptional repressor properties in vivo. This repressor isoform inhibits basal transcription of hsps 27 and 90 in tissue culture cells. The molecular mechanisms of HSF-4a isoform-mediated transcriptional repression is unknown. Here, we present evidence that HSF-4a inhibits basal transcription in vivo when it is artificially targeted to basal promoters via the DNA-binding domain of the yeast transcription factor, GAL4. By using a highly purified, reconstituted in vitro transcription system, we show that HSF-4a represses basal transcription at an early step during preinitiation complex assembly, as pre-assembled preinitiation complexes are refractory to the inhibitory effect on transcription. This repression occurs by the HSF-4a isoform, but not by the HSF-4b isoform, which we show is capable of activating transcription from a heat shock element-driven promoter in vitro. The repression of basal transcription by HSF-4a occurs through interaction with the basal transcription factor TFIIF. TFIIF interacts with a segment of HSF-4a that is required for the trimerization of HSF-4a, and deletion of this segment no longer inhibits basal transcription. These studies suggest that HSF-4a inhibits basal transcription both in vivo and in vitro. Furthermore, this is the first report identifying an interaction between a transcriptional repressor with the basal transcription factor TFIIF.
Collapse
Affiliation(s)
- W Frejtag
- Institute of Molecular Medicine and Genetics and Department of Radiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
52
|
Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M. Evx1 is a postmitotic determinant of v0 interneuron identity in the spinal cord. Neuron 2001; 29:385-99. [PMID: 11239430 DOI: 10.1016/s0896-6273(01)00213-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interneurons in the ventral spinal cord are essential for coordinated locomotion in vertebrates. During embryogenesis, the V0 and V1 classes of ventral interneurons are defined by expression of the homeodomain transcription factors Evx1/2 and En1, respectively. In this study, we show that Evx1 V0 interneurons are locally projecting intersegmental commissural neurons. In Evx1 mutant embryos, the majority of V0 interneurons fail to extend commissural axons. Instead, they adopt an En1-like ipsilateral axonal projection and ectopically express En1, indicating that V0 interneurons are transfated to a V1 identity. Conversely, misexpression of Evx1 represses En1, suggesting that Evx1 may suppress the V1 interneuron differentiation program. Our findings demonstrate that Evx1 is a postmitotic determinant of V0 interneuron identity and reveal a critical postmitotic phase for neuronal determination in the developing spinal cord.
Collapse
Affiliation(s)
- L Moran-Rivard
- Biology Graduate Program University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
53
|
Guiral M, Bess K, Goodwin G, Jayaraman PS. PRH represses transcription in hematopoietic cells by at least two independent mechanisms. J Biol Chem 2001; 276:2961-70. [PMID: 11054411 DOI: 10.1074/jbc.m004948200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PRH (proline-rich homeodomain protein) is strongly expressed in the hematopoietic compartment. Here we show that PRH is a repressor of transcription in hematopoietic cells. A fragment of PRH that includes the homeodomain can bind to TATA box sequences in vitro and can also bind to the TATA box-binding protein. PRH represses transcription from TATA box-containing promoters in intact cells but does not repress transcription from a promoter lacking a TATA box. A mutation in the PRH homeodomain that blocks binding to DNA but that has little or no effect on binding to the TATA box-binding protein significantly reduces the ability of the protein to repress transcription and provides the first clear demonstration that a homeodomain can bring about transcriptional repression in vivo by binding to a TATA box. However, we also show that mutation of the PRH homeodomain does not block the ability of PRH to repress transcription when this protein is tethered upstream of the TATA box via a heterologous DNA-binding domain. PRH also contains an N-terminal proline-rich repression domain that is separate from the homeodomain. Deletion mapping suggests that this repression domain contains at least two regions that both independently contribute to transcriptional repression.
Collapse
Affiliation(s)
- M Guiral
- Department of Biochemistry, University of Bristol, University Walk, Bristol, United Kingdom
| | | | | | | |
Collapse
|
54
|
Abstract
HOX genes play a fundamental role in the development of the vertebrate central nervous system, axial skeleton, limbs, gut, urogenital tract and external genitalia, but it is only in the last 4 years that mutations in two of the 39 human HOX genes have been shown to cause congenital malformations; HOXD13, which is mutated in synpolydactyly, and HOXA13, which is mutated in Hand-Foot-Genital syndrome. Here we review the mutations already identified in these two genes, consider how these mutations may act, and discuss the possibility that further mutations remain to be discovered both in developmental disorders and in cancer.
Collapse
Affiliation(s)
- F R Goodman
- Molecular Medicine Unit, Institute of Child Health, London, UK.
| | | |
Collapse
|
55
|
Raj L, Vivekanand P, Das TK, Badam E, Fernandes M, Finley RL, Brent R, Appel LF, Hanes SD, Weir M. Targeted localized degradation of Paired protein in Drosophila development. Curr Biol 2000; 10:1265-72. [PMID: 11069107 DOI: 10.1016/s0960-9822(00)00745-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Selective spatial regulation of gene expression lies at the core of pattern formation in the embryo. In the fruit fly Drosophila, localized transcriptional regulation accounts for much of the embryonic pattern. RESULTS We identified a gene, partner of paired (ppa), whose properties suggest that localized receptors for protein degradation are integrated into regulatory networks of transcription factors to ensure robust spatial regulation of gene expression. We found that the Ppa protein interacts with the Pax transcription factor Paired (Prd) and contains an F-box, a motif found in receptors for ubiquitin-mediated protein degradation. In normal development, Prd functions only in cells in which ppa mRNA expression has been repressed by another segmentation protein, Even-skipped (Eve). When ppa was expressed ectopically in these cells, Prd protein, but not mRNA, levels diminished. When ppa function was removed from cells that express prd mRNA, Prd protein levels increased. CONCLUSIONS Ppa co-ordinates Prd degradation and is important for expression of Prd to be correctly localized. In the presence of Ppa, Prd protein is targeted for degradation at sites where its mis-expression would disrupt development. In the absence of Ppa, Prd is longer-lived and regulates downstream target genes.
Collapse
Affiliation(s)
- L Raj
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Choi T, Cho N, Oh Y, Yoo M, Matsukage A, Ryu Y, Han K, Yoon J, Baek K. The DNA replication-related element (DRE)-DRE-binding factor (DREF) system may be involved in the expression of the Drosophila melanogaster TBP gene. FEBS Lett 2000; 483:71-7. [PMID: 11033359 DOI: 10.1016/s0014-5793(00)02085-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The TATA box binding protein (TBP) is a general transcription factor required for initiation by all three eukaryotic RNA polymerases. Previously, we found that the promoter region of the Drosophila melanogaster TBP gene contains three sequences similar to the DNA replication-related element (DRE) (5'-TATCGATA). In the present study, we found that the DRE-like sequences are also present in the promoter of the Drosophila virilis TBP gene, suggesting a role for these sequences in TBP expression. Band mobility shift assays revealed that oligonucleotides containing sequences similar to the DRE of D. melanogaster TBP gene promoter form specific complexes with a factor in a Kc cell nuclear extract and with recombinant DRE-binding factor (DREF). Furthermore, these complexes were either supershifted or diminished by monoclonal antibodies to DREF. Transient luciferase assays demonstrated that induction of mutations in two DRE-related sequences at positions -223 and -63 resulted in an extensive reduction of promoter activity. Thus, the DRE-DREF system appears to be involved in the expression of the D. melanogaster TBP gene.
Collapse
Affiliation(s)
- T Choi
- Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan 609-735, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Awatramani R, Beesley J, Yang H, Jiang H, Cambi F, Grinspan J, Garbern J, Kamholz J. Gtx, an oligodendrocyte-specific homeodomain protein, has repressor activity. J Neurosci Res 2000; 61:376-87. [PMID: 10931524 DOI: 10.1002/1097-4547(20000815)61:4<376::aid-jnr4>3.0.co;2-#] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myelin, a multilamellar membrane structure that facilitates nerve conduction, is synthesized in the central nervous system (CNS) by oligodendrocytes. Gtx, a member of the homeodomain family of transcriptional factors, is a candidate regulator of myelin gene expression, because it is uniquely expressed in myelinating oligodendrocytes in postnatal rodent brain. To analyze the regulatory activity of Gtx, we first identified the optimal Gtx-binding sequence using an in vitro DNA-binding assay. This sequence, (A/T)TTAATGA, contains a TAAT core and is similar, but not identical, to that of other homeodomain protein binding sites. When coexpressed in cultured cells along with a minimal promoter containing five tandem repeats of this optimal Gtx-binding sequence, Gtx demonstrated repressor activity, which was also present when Gtx was tethered to DNA by way of the strong GAL4 DNA-binding domain. Truncations of the GAL4-Gtx fusion identified a portable repressor domain within a relatively proline/alanine-rich region N-terminal to the Gtx homeodomain. Cotransfection of a Gtx expression vector into a variety of cell lines, including oligodendrocytes, along with constructs containing portions of the PLP, MBP, or Gtx promoters fused to a reporter gene, however, did not modulate transcription from any of these promoter constructs. These data support the notion that the oligodendrocyte-specific homeodomain protein Gtx can act as a transcriptional repressor. In addition, they suggest that interaction of Gtx with other, as yet undefined, transcriptional regulators modifies Gtx activity in oligodendrocytes.
Collapse
Affiliation(s)
- R Awatramani
- Graduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Pellizzari L, D'Elia A, Rustighi A, Manfioletti G, Tell G, Damante G. Expression and function of the homeodomain-containing protein Hex in thyroid cells. Nucleic Acids Res 2000; 28:2503-11. [PMID: 10871399 PMCID: PMC102703 DOI: 10.1093/nar/28.13.2503] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2000] [Revised: 05/11/2000] [Accepted: 05/11/2000] [Indexed: 02/03/2023] Open
Abstract
The homeodomain-containing protein Hex (also named Prh) is expressed in primitive endoderm (during the early phases of development), in some endoderm-derived tissues and in endothelial and hematopoietic precursors. Hex expression is exting-uished during terminal differentiation of endothelial and hematopoietic cells as well as in adult lung. Previous investigations have demonstrated that Hex is expressed during early thyroid gland development. No information has been reported on Hex expression in adult thyroid gland or on the function of this protein in follicular thyroid cells. These issues represent the focus of the present study. We demonstrate that Hex mRNA is present in rat and human adult thyroid gland as well as in differentiated follicular thyroid cell lines. In FRTL-5 cells TSH reduces Hex expression. In thyroid cell lines transformed by several oncogenes Hex expression is completely abolished. By using co-transfection assays we demonstrate that Hex is a repressor of the thyroglobulin promoter and that it is able to abolish the activating effects of both TTF-1 and Pax8. These data would suggest that Hex may play an important role in thyroid cell differentiation. Protein-DNA interaction experiments indicate that Hex is able to bind sites of the thyroglobulin promoter containing either the core sequence 5'-TAAT-3' or 5'-CAAG-3'. The DNA binding specificity of the Hex homeodomain, therefore, is more 'relaxed' than that observed in the majority of other homeo-domains.
Collapse
Affiliation(s)
- L Pellizzari
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Hemavathy K, Guru SC, Harris J, Chen JD, Ip YT. Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol 2000; 20:5087-95. [PMID: 10866665 PMCID: PMC85958 DOI: 10.1128/mcb.20.14.5087-5095.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Snail/Slug family proteins have been identified in diverse species of both vertebrates and invertebrates. The proteins contain four to six zinc fingers and function as DNA-binding transcriptional regulators. Various members of the family have been demonstrated to regulate cell movement, neural cell fate, left-right asymmetry, cell cycle, and apoptosis. However, the molecular mechanisms of how these regulators function and the target genes involved are largely unknown. In this report, we demonstrate that human Slug (hSlug) is a repressor and modulates both activator-dependent and basal transcription. The repression depends on the C-terminal DNA-binding zinc fingers and on a separable repression domain located in the N terminus. This domain may recruit histone deacetylases to modify the chromatin and effect repression. Protein localization study demonstrates that hSlug is present in discrete foci in the nucleus. This subnuclear pattern does not colocalize with the PML foci or the coiled bodies. Instead, the hSlug foci overlap extensively with areas of the SC-35 staining, some of which have been suggested to be sites of active splicing or transcription. These results lead us to postulate that hSlug localizes to target promoters, where activation occurs, to repress basal and activator-mediated transcription.
Collapse
Affiliation(s)
- K Hemavathy
- Program in Molecular Medicine, Department of Cell Biology and University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
60
|
Angelo S, Lohr J, Lee KH, Ticho BS, Breitbart RE, Hill S, Yost HJ, Srivastava D. Conservation of sequence and expression of Xenopus and zebrafish dHAND during cardiac, branchial arch and lateral mesoderm development. Mech Dev 2000; 95:231-7. [PMID: 10906469 DOI: 10.1016/s0925-4773(00)00334-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
dHAND and eHAND are related basic helix-loop-helix transcription factors that are expressed in the cardiac mesoderm and in numerous neural crest-derived cell types in chick and mouse. To better understand the evolutionary development of overlapping expression and function of the HAND genes during embryogenesis, we cloned the zebrafish and Xenopus orthologues. Comparison of dHAND sequences in zebrafish, Xenopus, chick, mouse and human demonstrated conservation throughout the protein. Expression of dHAND in zebrafish was seen in the earliest precursors of all lateral mesoderm at early gastrulation stages. At neurula and later stages, dHAND expression was observed in lateral precardiac mesoderm, branchial arch neural crest derivatives and posterior lateral mesoderm. At looping heart stages, cardiac dHAND expression remained generalized with no apparent regionalization. Interestingly, no eHAND orthologue was found in zebrafish. In Xenopus, dHAND and eHAND were co-expressed in the cardiac mesoderm without the segmental restriction seen in mice. Xenopus dHAND and eHAND were also expressed bilaterally in the lateral mesoderm without any left-right asymmetry. Within the branchial arches, XdHAND was expressed in a broader domain than XeHAND, similar to their mouse counterparts. Together, these data demonstrate conservation of HAND structure and expression across species.
Collapse
Affiliation(s)
- S Angelo
- Department of Pediatrics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75235-9148, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
In the even-numbered parasegments of the Drosophila embryo, expression of the fushi tarazu (ftz) gene is necessary for transcription of engrailed (en). Yet those cells expressing ftz+ in a stripe, only the anteriormost come to express en. One explanation is that the level of ftz+ might be graded across the stripe and in order to express en, it would be sufficient for cells to exceed a threshold concentration of Ftz protein. We use photographs and microspectrophotometry to measure differences in Ftz antigen concentration; we do not find a gradient within the Ftz stripe. Rather, the stripe appears to contain cells with similar amounts of antigen plus a few weakly staining cells that are usually at the posterior edge. Further, varying the amount of Ftz protein has no effect on en expression. Finally, embryos lacking the even-skipped gene have normal levels of Ftz but do not express en. Our observations appear to rule out the threshold hypothesis.
Collapse
Affiliation(s)
- P A Lawrence
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
62
|
Park Y, Fujioka M, Jaynes JB, Datta S. Drosophila homeobox gene eve enhances trol, an activator of neuroblast proliferation in the larval CNS. DEVELOPMENTAL GENETICS 2000; 23:247-57. [PMID: 9842718 DOI: 10.1002/(sici)1520-6408(1998)23:3<247::aid-dvg9>3.0.co;2-i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulation of stem cell division by developmental cues is critical for the assembly and function of multicellular organisms. Stem cell division in the Drosophila brain is controlled by trol, which is required for activation of proliferation by quiescent neuroblasts at the appropriate stage of larval development. We show that the transcriptional regulator eve is part of the trol activation pathway by identifying eve as a dominant enhancer of a weak trol allele, trolb22. Known eve mutations are capable of enhancing the lethality of trolb22 and uncovering a defective neuroblast proliferation phenotype. Additionally, genetic and molecular analysis reveals that an independent mutation which acts as a dominant enhancer of trol is also an allele of eve. The enhancement of trolb22 lethality can be suppressed by the presence of an eve transgene. Interestingly, extra copies of eve supplied by the eve transgene also enhance trolb22 lethality, suggesting that the level of Eve protein may be critical for neuroblast activation. Finally, activation of neuroblast proliferation is normal in eve4 heterozygotes, suggesting that the proliferation defect observed in trolb22;eve/+ animals is due to a synergistic interaction.
Collapse
Affiliation(s)
- Y Park
- Dept. of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA
| | | | | | | |
Collapse
|
63
|
Crémazy F, Berta P, Girard F. Sox neuro, a new Drosophila Sox gene expressed in the developing central nervous system. Mech Dev 2000; 93:215-9. [PMID: 10781960 DOI: 10.1016/s0925-4773(00)00268-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We describe the identification and detailed expression pattern of a second Drosophila Sox gene, SoxNeuro (SoxN), highly related to mammalian group B Sox1, 2, 3 genes. SoxN is expressed in a highly dynamic pattern during embyogenesis, being associated with the development of the central nervous system (CNS), from the early steps onwards. We present strong evidence that the early SoxN neuroectoderm expression is controlled by the zygotic dorso-ventral patterning genes (dpp, sog, brk, twi).
Collapse
Affiliation(s)
- F Crémazy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique UPR 1142, Montpellier, France
| | | | | |
Collapse
|
64
|
Shoichet SA, Malik TH, Rothman JH, Shivdasani RA. Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates. Proc Natl Acad Sci U S A 2000; 97:4076-81. [PMID: 10760276 PMCID: PMC18153 DOI: 10.1073/pnas.97.8.4076] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In ecdysozoan protostomes, including arthropods and nematodes, transcription factors of the GATA family specify the endoderm: Drosophila dGATAb (ABF/Serpent) and Caenorhabditis elegans END-1 play important roles in generating this primary germ layer. end-1 is the earliest expressed endoderm-specific gene known in C. elegans and appears to initiate the program of gene expression required for endoderm differentiation, including a cascade of GATA factors required for development and maintenance of the intestine. Among vertebrate GATA proteins, the GATA-4/5/6 subfamily regulates aspects of late endoderm development, but a role for GATA factors in establishing the endoderm is unknown. We show here that END-1 binds to the canonical target DNA sequence WGATAR with specificity similar to that of vertebrate GATA-1 and GATA-4, and that it functions as a transcriptional activator. We exploited this activity of END-1 to demonstrate that establishment of the vertebrate endoderm, like that of invertebrate species, also appears to involve GATA transcriptional activity. Like the known vertebrate endoderm regulators Mixer and Sox17, END-1 is a potent activator of endoderm differentiation in isolated Xenopus ectoderm. Moreover, a dominant inhibitory GATA-binding fusion protein abrogates endoderm differentiation in intact embryos. By examining these effects in conjunction with those of Mixer- and Sox17beta-activating and dominant inhibitory constructs, we further establish the likely relationships between GATA activity and these regulators in early development of the vertebrate endoderm. These results suggest that GATA factors may function sequentially to regulate endoderm differentiation in both protostomes and deuterostomes.
Collapse
Affiliation(s)
- S A Shoichet
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
65
|
Yamamoto TS, Takagi C, Ueno N. Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos. Mech Dev 2000; 91:131-41. [PMID: 10704838 DOI: 10.1016/s0925-4773(99)00290-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Signaling triggered by polypeptide growth factors leads to the activation of their target genes. Several homeobox genes are known to be induced in response to polypeptide growth factors in early Xenopus development. In particular, Xmsx-1, an amphibian homologue of vertebrate Msx-1, is well characterized as a target gene of bone morphogenetic protein (BMP). Here, using a dominant-negative form of Xmsx-1 (VP-Xmsx-1), which is a fusion protein made with the virus-derived VP16 activation domain, we have examined whether Xmsx-1 activity is required in the endogenous ventralizing pathway. VP-Xmsx-1 induced a secondary body axis, complete with muscle and neural tissues, when overexpressed in ventral blastomeres, suggesting that Xmsx-1 activity is necessary for both mesoderm and ectoderm to be ventralized. We have also examined the epistatic relationship between Xmsx-1 and another ventralizing homeobox protein, Xvent-1, and show that Xmsx-1 is likely to be acting upstream of Xvent-1. We propose that Xmsx-1 is required in the BMP-stimulated ventralization pathway that involves the downstream activation of Xvent-1.
Collapse
Affiliation(s)
- T S Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | | | | |
Collapse
|
66
|
Shapira E, Marom1 K, Levy V, Yelin R, Fainsod A. The Xvex-1 antimorph reveals the temporal competence for organizer formation and an early role for ventral homeobox genes. Mech Dev 2000; 90:77-87. [PMID: 10585564 DOI: 10.1016/s0925-4773(99)00283-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The organizer in vertebrate embryos has been shown to play a central role in their development by antagonizing ventralizing signals and promoting dorsal development. The ventral homeobox gene, Xvex-1, is capable of fulfilling some of the functions of BMP-4. By fusion to activation and repression domains, Xvex-1 was shown to function as a repressor of transcription. The activator version of Xvex-1, the antimorph, was made inducible by fusion to the ligand binding domain of the glucocorticoid receptor. The organizer genes, gsc and Otx-2, were identified as direct targets of Xvex-1. The XVEX-1 antimorph can induce the formation of secondary axes. Temporal analysis of secondary axis induction revealed that the competence to induce a secondary organizer ends with the onset of gastrulation. The same temporal competence window was exhibited by an inducible gsc construct. Partial loss of Xvex-1 activity was able to improve the efficiency of secondary axis induction by the dominant negative BMP receptor or Smad6. These observations together with the early widespread expression of Xvex-1 throughout the embryo prior to gastrulation encoding a homeodomain repressor protein, suggest that elements of the ventral signaling pathway play an important role during late blastula in restricting the formation of Spemann's organizer.
Collapse
Affiliation(s)
- E Shapira
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, P.O. Box 12272, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
67
|
He ML, Wen L, Campbell CE, Wu JY, Rao Y. Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc Natl Acad Sci U S A 1999; 96:10212-7. [PMID: 10468588 PMCID: PMC17868 DOI: 10.1073/pnas.96.18.10212] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1999] [Indexed: 11/18/2022] Open
Abstract
T box (Tbx) genes are a family of developmental regulators with more than 20 members recently identified in invertebrates and vertebrates. Mutations in Tbx genes have been found to cause several human diseases. Our understanding of functional mechanisms of Tbx products has come mainly from the prototypical T/Brachyury, which is a transcription activator. We previously discovered ET, a Tbx gene expressed in Xenopus embryos. We report here that ET is an ortholog of the human Tbx3 and that ET is a repressor of basal and activated transcription. Functional dissection of the ET protein reveals a novel transcription-repression domain highly conserved among ET, human TBX3, and TBX2. These results reveal a new transcription repressor domain, show the existence of a subfamily of transcription repressors in the Tbx superfamily, and provide a basis for understanding etiology of diseases caused by Tbx3 mutations.
Collapse
Affiliation(s)
- M l He
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Extensive studies in the past few years have begun to demonstrate that chromosome structure plays a critical role in transcriptional regulation. Two highly conserved mechanisms for altering chromosome structure have been identified: 1) post-translational modification of histones and 2) adenosine triphosphate (ATP)-dependent chromosome remodeling. Acetylation of histone lysine residues has been known for three decades to be associated with transcriptional activation. Recent discoveries, however, show that a number of transcriptional regulators are histone acetylases or histone deacetylases. Specific DNA-binding transcription factors recruit histone acetylases and deacetylases to promoters to activate or repress transcription. These results strongly support the notion that histone acetylation and deacetylation play an important role in transcriptional regulation. Recent findings have also provided insight into the molecular mechanisms by which ATP-dependent chromosome-remodeling activities participate in transcriptional regulation. Furthermore, some ATP-dependent chromosome-remodeling activities have been shown to complex with histone deacetylases. In the complexes studied to date, the ATP-dependent chromosome-remodeling activity enhances the histone deacetylase activity. Therefore, the two mechanisms appear to work in concert to achieve precise control of transcription. Disruption of chromosome remodeling has been linked to a number of diseases, and a complete understanding of the complex chromosome-remodeling machinery may lead to the development of new therapies.
Collapse
Affiliation(s)
- R X Luo
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
69
|
McKay LM, Carpenter B, Roberts SG. Evolutionary conserved mechanism of transcriptional repression by even-skipped. Nucleic Acids Res 1999; 27:3064-70. [PMID: 10454601 PMCID: PMC148531 DOI: 10.1093/nar/27.15.3064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Even-skipped (Eve) is a transcriptional repressor involved in segment formation in Drosophila melano-gaster. In order to gain further insights into the mechanism of action of Eve we tested whether it would function as a transcriptional repressor in mammalian cells. We found that Eve was indeed a potent repressor in two different mammalian cell types and at several promoters. In vitro transcription assays confirmed that Eve directly represses transcription initiation when specifically targeted to a promoter. We also found that, unlike the case with transcriptional activators, Eve does not repress transcription synergistically. Analysis of the effect of Eve on preinitiation complex assembly in a crude HeLa cell nuclear extract demonstrated that the Eve repression domain functions by preventing the assembly of TFIID with the promoter. Our data support the hypothesis that Eve contains an active repression domain that functions specifically to prevent preinitiation complex formation.
Collapse
Affiliation(s)
- L M McKay
- Division of Gene Expression, Department of Biochemistry, Wellcome Trust Building, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
70
|
Izzo MW, Strachan GD, Stubbs MC, Hall DJ. Transcriptional repression from the c-myc P2 promoter by the zinc finger protein ZF87/MAZ. J Biol Chem 1999; 274:19498-506. [PMID: 10383467 DOI: 10.1074/jbc.274.27.19498] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZF87/MAZ is a zinc finger-containing transcription factor that was cloned based on its ability to bind to a site within the c-myc P2 promoter. However, its role in the control of c-myc transcription has not yet been well established. Here we have analyzed the effect of ZF87/MAZ overexpression on transcription from the murine c-myc P2 promoter. It was found that when overexpressed in COS cells, ZF87/MAZ significantly represses transcription from P2. The repression is mediated through the ME1a2 element, located at position -86 relative to the P2 transcriptional start site, and is not mediated through either the E2F or the ME1a1 sites. ZF87/MAZ functions as a true transcriptional repressor since it can repress transcription independently of the c-myc promoter, as part of a fusion with the GAL4 protein. The repressive domain within ZF87/MAZ is located in the amino-terminal half of the protein, a region rich in proline and alanine residues. ZF87/MAZ therefore shares features (i.e. a Pro/Ala-rich region) with those of known transcriptional repressor proteins.
Collapse
Affiliation(s)
- M W Izzo
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
71
|
Fujioka M, Emi-Sarker Y, Yusibova GL, Goto T, Jaynes JB. Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. Development 1999; 126:2527-38. [PMID: 10226011 PMCID: PMC2778309 DOI: 10.1242/dev.126.11.2527] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The entire functional even-skipped locus of Drosophila melanogaster is contained within a 16 kilobase region. As a transgene, this region is capable of rescuing even-skipped mutant flies to fertile adulthood. Detailed analysis of the 7.7 kb of regulatory DNA 3′ of the transcription unit revealed ten novel, independently regulated patterns. Most of these patterns are driven by non-overlapping regulatory elements, including ones for syncytial blastoderm stage stripes 1 and 5, while a single element specifies both stripes 4 and 6. Expression analysis in gap gene mutants showed that stripe 5 is restricted anteriorly by Kruppel and posteriorly by giant, the same repressors that regulate stripe 2. Consistent with the coregulation of stripes 4 and 6 by a single cis-element, both the anterior border of stripe 4 and the posterior border of stripe 6 are set by zygotic hunchback, and the region between the two stripes is ‘carved out’ by knirps. Thus the boundaries of stripes 4 and 6 are set through negative regulation by the same gap gene domains that regulate stripes 3 and 7 (Small, S., Blair, A. and Levine, M. (1996) Dev. Biol. 175, 314–24), but at different concentrations. The 3′ region also contains a single element for neurogenic expression in ganglion mother cells 4–2a and 1–1a, and neurons derived from them (RP2, a/pCC), suggesting common regulators in these lineages. In contrast, separable elements were found for expression in EL neurons, U/CQ neurons and the mesoderm. The even-skipped 3′ untranslated region is required to maintain late stage protein expression in RP2 and a/pCC neurons, and appears to affect protein levels rather than mRNA levels. Additionally, a strong pairing-sensitive repression element was localized to the 3′ end of the locus, but was not found to contribute to efficient functional rescue.
Collapse
|
72
|
Abstract
We have developed a new assay to identify factors promoting formation and outgrowth of the tail bud. A piece of animal cap filled with the test mRNAs is grafted into the posterior region of the neural plate of a host embryo. With this assay we show that expression of a constitutively active Notch (Notch ICD) in the posterior neural plate is sufficient to produce an ectopic tail consisting of neural tube and fin. The ectopic tails express the evenskipped homologue Xhox3, a marker for the distal tail tip. Xhox3 will also induce formation of an ectopic tail in our assay. We show that an antimorphic version of Xhox3, Xhox3VP16, will prevent tail formation by Notch ICD, showing that Xhox3 is downstream of Notch signalling. An inducible version of this reagent, Xhox3VP16GR, specifically blocks tail formation when induced in tailbud stage embryos, comfirming the importance of Xhox3 for tail bud outgrowth in normal development. Grafts containing Notch ICD will only form tails if placed in the posterior part of the neural plate. However, if Xwnt3a is also present in the grafts they can form tails at any anteroposterior level. Since Xwnt3a expression is localised appropriately in the posterior at the time of tail bud formation it is likely to be responsible for restricting tail forming competence to the posterior neural plate in our assay. Combined expression of Xwnt3a and active Notch in animal cap explants is sufficient to induce Xhox3, provoke elongation and form neural tubes. Conservation of gene expression in the tail bud of other vertebrates suggests that this pathway may describe a general mechanism controlling tail outgrowth and secondary neurulation.
Collapse
Affiliation(s)
- C W Beck
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | |
Collapse
|
73
|
Kirk MM, Stark K, Miller SM, Müller W, Taillon BE, Gruber H, Schmitt R, Kirk DL. regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development 1999; 126:639-47. [PMID: 9895312 DOI: 10.1242/dev.126.4.639] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Volvox has two cell types: mortal somatic cells and immortal germ cells. Here we describe the transposon-tagging, cloning and characterization of regA, which plays a central role as a master regulatory gene in Volvox germ-soma differentiation by suppressing reproductive activities in somatic cells. The 12.5 kb regA transcription unit generates a 6,725 nucleotide mRNA that appears at the beginning of somatic cell differentiation, and that encodes a 111 kDa RegA protein that localizes to the nucleus, and has an unusual abundance of alanine, glutamine and proline. This is a compositional feature shared by functional domains of many ‘active’ repressors. These findings are consistent with the hypothesis that RegA acts in somatic cells to repress transcription of genes required for growth and reproduction, including 13 genes whose products are required for chloroplast biogenesis.
Collapse
Affiliation(s)
- M M Kirk
- Department of Biology, Washington University, St. Louis, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
The Drosophila homeodomain protein Even-skipped (Eve) is a well characterized transcriptional repressor. Here, we show that Eve's ability to function in vitro is negatively regulated by phosphorylation. DNA-binding activity was unaffected by phosphorylation, but phosphorylated Eve was unable to interact with the TATA-binding protein (TBP), a known target for repression. Unexpectedly, phosphorylation of the Eve N terminus, which is dispensable for repression and TBP binding, was necessary and sufficient to inactivate Eve. LiCl, which specifically inhibits glycogen synthase kinase-3 (GSK-3), reduced Eve phosphorylation in nuclear extract and blocked inhibition of repression. In addition, Eve was phosphorylated and inactivated by purified GSK-3 beta plus casein kinase II. Our results suggest a novel mechanism of transcriptional control involving phosphorylation-induced allosteric interference with a repressive protein-protein interaction.
Collapse
Affiliation(s)
- C Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
75
|
Russell MW, Kemp P, Wang L, Brody LC, Izumo S. Molecular cloning of the human HAND2 gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:393-9. [PMID: 9878849 DOI: 10.1016/s0167-4781(98)00237-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have cloned and characterized the coding sequence of the human HAND2 basic helix-loop-helix transcription factor. The amino acid sequence includes an amino-terminal polyalanine repeat which is precisely conserved in the rat HAND2 gene. Northern analysis indicates that the HAND2 transcript is 2.3 kb in length and strongly expressed in the human heart.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Basic Helix-Loop-Helix Transcription Factors
- Chromosome Mapping
- Chromosomes, Human, Pair 4/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Gene Expression
- Genes/genetics
- Humans
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Transcription Factors/genetics
- Zebrafish Proteins
Collapse
Affiliation(s)
- M W Russell
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109,
| | | | | | | | | |
Collapse
|
76
|
McIlhatton MA, Bremner P, McMullin MF, Maxwell AP, Winter PC, Lappin TR. Sequence characterisation and expression of homeobox HOX A7 in the multi-potential erythroleukaemic cell line TF-1. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:329-33. [PMID: 9804983 DOI: 10.1016/s0167-4781(98)00170-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Homeobox gene expression was examined in the erythroleukaemic cell line TF-1. Expression of a number of HOX A, B and C genes, including HOX A7 was detected. Expression of this gene has not previously been reported in erythroleukaemic cell lines. A 2.1 kb full length cDNA of the HOX A7 gene was cloned. The predicted amino acid sequence C-terminal to the homeodomain consists of an alanine-rich region and a strongly negatively charged domain consisting entirely of aspartic and glutamic acid residues.
Collapse
Affiliation(s)
- M A McIlhatton
- Department of Haematology, Institute of Clinical Science, The Queen's University of Belfast, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | | | | | | | | | | |
Collapse
|
77
|
Wu X, Vakani R, Small S. Two distinct mechanisms for differential positioning of gene expression borders involving the Drosophila gap protein giant. Development 1998; 125:3765-74. [PMID: 9729485 DOI: 10.1242/dev.125.19.3765] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have combined genetic experiments and a targeted misexpression approach to examine the role of the gap gene giant (gt) in patterning anterior regions of the Drosophila embryo. Our results suggest that gt functions in the repression of three target genes, the gap genes Kruppel (Kr) and hunchback (hb), and the pair-rule gene even-skipped (eve). The anterior border of Kr, which lies 4–5 nucleus diameters posterior to nuclei that express gt mRNA, is set by a threshold repression mechanism involving very low levels of gt protein. In contrast, gt activity is required, but not sufficient for formation of the anterior border of eve stripe 2, which lies adjacent to nuclei that express gt mRNA. We propose that gt's role in forming this border is to potentiate repressive interaction(s) mediated by other factor(s) that are also localized to anterior regions of the early embryo. Finally, gt is required for repression of zygotic hb expression in more anterior regions of the embryo. The differential responses of these target genes to gt repression are critical for the correct positioning and maintenance of segmentation stripes, and normal anterior development.
Collapse
Affiliation(s)
- X Wu
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
78
|
Brown SA, Warburton D, Brown LY, Yu CY, Roeder ER, Stengel-Rutkowski S, Hennekam RC, Muenke M. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 1998; 20:180-3. [PMID: 9771712 DOI: 10.1038/2484] [Citation(s) in RCA: 340] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Holoprosencephaly (HPE) is the most common structural anomaly of the human brain and is one of the anomalies seen in patients with deletions and duplications of chromosome 13. On the basis of molecular analysis of a series of patients with hemizygous deletions of the long arm of chromosome 13, we have defined a discrete region in band 13q32 where deletion leads to major developmental anomalies (the 13q32 deletion syndrome). This approximately 1-Mb region lies between markers D135136 and D13S147. Patients in which this region is deleted usually have major congenital malformations, including brain anomalies such as HPE or exencephaly, and digital anomalies such as absent thumbs. We now report that human ZIC2 maps to this critical deletion region and that heterozygous mutations in ZIC2 are associated with HPE. Haploinsufficiency for ZIC2 is likely to cause the brain malformations seen in 13q deletion patients.
Collapse
Affiliation(s)
- S A Brown
- Columbia University, Department of Obstetrics and Gynecology, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Pei L. Molecular cloning of a novel transcriptional repressor protein of the rat type 1 vasoactive intestinal peptide receptor gene. J Biol Chem 1998; 273:19902-8. [PMID: 9677428 DOI: 10.1074/jbc.273.31.19902] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study demonstrates that the transcriptional repressor sequence of the rat vasoactive intestinal peptide receptor (VIPR) gene constitutes a 42-base pair core element that is the binding site for a nuclear protein. We showed that this element was able to confer transcriptional repression to a heterologous promoter and that deletion or point mutations within this element resulted in loss of transcriptional repression. Southwestern blot analysis indicated that the VIPR repressor element interacts specifically with a nuclear protein of about 72 kDa. By screening a rat lung expression library coupled with rapid amplification of cDNA ends polymerase chain reactions, we isolated a cDNA clone (designated as VIPR-RP) that contains an open reading frame of 656 amino acids. VIPR-RP is 78% identical to a previously characterized protein, differentiation-specific element-binding protein, which is a member of a family of proteins including components of the DNA replication factor C complex. However, VIPR-RP cDNA encodes for a much smaller protein than differentiation-specific element-binding protein because of a frameshift. VIPR-RP mRNA is expressed in multiple tissues, including lung, liver, brain, heart, kidney, spleen, and testis. VIPR-RP protein specifically interacts with the VIPR repressor element as demonstrated by gel shift assays. Transfection of VIP-RP expression vector into Cos cells resulted in transcriptional repression of a reporter construct containing multiple copies of the VIPR repressor element. These results indicate that VIPR-RP is a novel transcriptional repressor protein that regulates VIPR expression.
Collapse
Affiliation(s)
- L Pei
- Division of Endocrinology, Cedars-Sinai Research Institute, UCLA School of Medicine, Los Angeles, California 90048, USA
| |
Collapse
|
80
|
Li C, Manley JL. Even-skipped represses transcription by binding TATA binding protein and blocking the TFIID-TATA box interaction. Mol Cell Biol 1998; 18:3771-81. [PMID: 9632760 PMCID: PMC108960 DOI: 10.1128/mcb.18.7.3771] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 04/09/1998] [Indexed: 02/07/2023] Open
Abstract
The Drosophila homeodomain protein Even-skipped (Eve) is a transcriptional repressor, and previous studies have suggested that it functions by interfering with the basal transcription machinery. Here we describe experiments indicating that the mechanism of Eve repression involves a direct interaction with the TATA binding protein (TBP) that blocks binding of TBP-TFIID to the promoter. We first compared Eve activities in in vitro transcription systems reconstituted with either all the general transcription factors or only TBP, TFIIB, TFIIF30, and RNA polymerase II. In each case, equivalent and very efficient levels of repression were observed, indicating that no factors other than those in the minimal system are required for repression. We then show that Eve can function efficiently when its recognition sites are far from the promoter and that the same regions of Eve required for repression in vivo are necessary and sufficient for in vitro repression. This includes, in addition to an Ala-Pro-rich region, residues within the homeodomain. Using GAL4-Eve fusion proteins, we demonstrate that the homeodomain plays a role in repression in addition to DNA binding, which is to facilitate interaction with TBP. Single-round transcription experiments indicate that Eve must function prior to TBP binding to the promoter, suggesting a mechanism whereby Eve represses by competing with the TATA box for TBP binding. Consistent with this, excess TATA box-containing oligonucleotide is shown to specifically and efficiently disrupt the TBP-Eve interaction. Importantly, we show that Eve binds directly to TFIID and that this interaction can also be disrupted by the TATA oligonucleotide. We conclude that Eve represses transcription via a direct interaction with TBP that blocks TFIID binding to the promoter.
Collapse
Affiliation(s)
- C Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
81
|
Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol 1998; 18:4197-208. [PMID: 9632804 PMCID: PMC109004 DOI: 10.1128/mcb.18.7.4197] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1998] [Accepted: 04/27/1998] [Indexed: 02/07/2023] Open
Abstract
Osf2/Cbfa1, hereafter called Osf2, is a member of the Runt-related family of transcription factors that plays a critical role during osteoblast differentiation. Like all Runt-related proteins, it contains a runt domain, which is the DNA-binding domain, and a C-terminal proline-serine-threonine-rich (PST) domain thought to be the transcription activation domain. Additionally, Osf2 has two amino-terminal domains distinct from any other Runt-related protein. To understand the mechanisms of osteoblast gene regulation by Osf2, we performed an extensive structure-function analysis. After defining a short Myc-related nuclear localization signal, a deletion analysis revealed the existence of three transcription activation domains and one repression domain. AD1 (for activation domain 1) comprises the first 19 amino acids of the molecule, which form the first domain unique to Osf2, AD2 is formed by the glutamine-alanine (QA) domain, the second domain unique to Osf2, and AD3 is located in the N-terminal half of the PST domain and also contains sequences unique to Osf2. The transcription repression domain comprises the C-terminal 154 amino acids of Osf2. DNA-binding, domain-swapping, and protein interaction experiments demonstrated that full-length Osf2 does not interact with Cbfbeta, a known partner of Runt-related proteins, whereas a deletion mutant of Osf2 containing only the runt and PST domains does. The QA domain appears to be responsible for preventing this heterodimerization. Thus, our results uncover the unique functional organization of Osf2 by identifying functional domains not shared with other Runt-related proteins that largely control its transactivation and heterodimerization abilities.
Collapse
Affiliation(s)
- K Thirunavukkarasu
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
82
|
Yokoro K, Yanagidani A, Obata T, Yamamoto S, Numoto M. Genomic cloning and characterization of the mouse POZ/zinc-finger protein ZF5. Biochem Biophys Res Commun 1998; 246:668-74. [PMID: 9618270 DOI: 10.1006/bbrc.1998.8675] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated genomic DNA containing the entire sequence of ZF5, which was originally identified by its ability to repress the mouse c-myc promoter and which was characterized as one of the POZ (Poxvirus and zinc finger) proteins. The POZ motif is a protein-protein interaction interface found at the N-terminal region of zinc finger proteins. Sequence analysis demonstrated that the ATG translation initiation codon was separately located from the remainder of the coding sequence. Using both RNase protection and primer extension assay, a single major transcription start site was determined. Promoter analysis by transient transfection assay suggested positive autoregulation by ZF5 itself. The ZF5 N-terminal region, including the POZ domain, was required for this regulation. Sp1 also activated the ZF5 promoter and this activity was repressed by addition of ZF5. ZF5 expression was stronger in mouse ovary, lung and brain than in other organs.
Collapse
Affiliation(s)
- K Yokoro
- Department of Dermatology, Hiroshima University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
83
|
Liu YZ, Lee IK, Locke I, Dawson SJ, Latchman DS. Adjacent proline residues in the inhibitory domain of the Oct-2 transcription factor play distinct functional roles. Nucleic Acids Res 1998; 26:2464-72. [PMID: 9580701 PMCID: PMC147571 DOI: 10.1093/nar/26.10.2464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A 40 amino acid region of Oct-2 from amino acids 142 to 181 functions as an active repressor domain capable of inhibiting both basal activity and activation of promoters containing a TATA box, but not of those that contain an initiator element. Based on our observation that the equivalent region of the closely related Oct-1 factor does not act as an inhibitory domain, we have mutated specific residues in the Oct-2 domain in an attempt to probe their importance in repressor domain function. Although mutations of several residues have no or minimal effect, mutation of proline 175 to arginine abolishes the ability to inhibit both basal and activated transcription. In contrast, mutation of proline 174 to arginine confers upon the domain the ability to repress activation of an initiator-containing promoter by acidic activation domains, and also suppresses the effect of the proline 175 mutation. Hence, adjacent proline residues play key roles in the functioning of the inhibitory domain and in limiting its specificity to TATA-box-containing promoters.
Collapse
Affiliation(s)
- Y Z Liu
- Department of Molecular Pathology, Windeyer Institute of Medical Sciences, University College London Medical School, The Windeyer Building, Cleveland Street, London W1P 6DB, UK
| | | | | | | | | |
Collapse
|
84
|
Tolkunova EN, Fujioka M, Kobayashi M, Deka D, Jaynes JB. Two distinct types of repression domain in engrailed: one interacts with the groucho corepressor and is preferentially active on integrated target genes. Mol Cell Biol 1998; 18:2804-14. [PMID: 9566899 PMCID: PMC110659 DOI: 10.1128/mcb.18.5.2804] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Active transcriptional repression has been characterized as a function of many regulatory factors. It facilitates combinatorial regulation of gene expression by allowing repressors to be dominant over activators under certain conditions. Here, we show that the Engrailed protein uses two distinct mechanisms to repress transcription. One activity is predominant under normal transient transfection assay conditions in cultured cells. A second activity is predominant in an in vivo active repression assay. The domain mediating the in vivo activity (eh1) is highly conserved throughout several classes of homeoproteins and interacts specifically with the Groucho corepressor. While eh1 shows only weak activity in transient transfections, much stronger activity is seen in culture when an integrated target gene is used. In this assay, the relative activities of different repression domains closely parallel those seen in vivo, with eh1 showing the predominant activity. Reducing the amounts of repressor and target gene in a transient transfection assay also increases the sensitivity of the assay to the Groucho interaction domain, albeit to a lesser extent. This suggests that it utilizes rate-limiting components that are relatively low in abundance. Since Groucho itself is abundant in these cells, the results suggest that a limiting component is recruited effectively by the repressor-corepressor complex only on integrated target genes.
Collapse
Affiliation(s)
- E N Tolkunova
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
85
|
Abstract
goosecoid (gsc) is a homeobox gene expressed in the Spemann organizer that has been implicated in vertebrate axis formation. Here antimorphic gscs are described. One antimorphic gsc (MTgsc) was fortuitously created by adding 5 myc epitopes to the N terminus of gsc. The other antimorph (VP16gsc) contains the transcriptional activation domain of VP16. mRNA injection of either antimorph inhibits dorsal gastrulation movements and leads to embryos with severe axial defects. They upregulate ventral gene expression in the dorsal marginal zone and inhibit dorsal mesoderm differentiation. Like the VP16 domain, the N-terminal myc tags act by converting wild-type gsc from a transcriptional repressor into an activator. However, unlike MTgsc, VP16gsc is able at low dose to uncouple head from trunk formation, indicating that different antimorphs may elicit distinct phenotypes. The experiments reveal that gsc and/or gsc-related genes function in axis formation and gastrulation. Moreover, this work warns against using myc tags indiscriminately for labeling DNA-binding proteins.
Collapse
Affiliation(s)
- B Ferreiro
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
86
|
Onichtchouk D, Glinka A, Niehrs C. Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development 1998; 125:1447-56. [PMID: 9502725 DOI: 10.1242/dev.125.8.1447] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xvent-1 and Xvent-2 are members of a novel homeobox subfamily that have been implicated in dorsoventral patterning in Xenopus mesoderm and are thought to function in BMP signalling. Here we investigate the requirement for Xvent function by employing two dominant-negative strategies. Loss of Xvent function dorsalizes ventral mesoderm, induces secondary embryonic axes and directly neuralizes ectoderm. We further find that (1) Xvents act as transcriptional repressors, (2) Xvents function in an additive fashion and (3) a surprising number of genes are able to rescue dominant-negative Xvent phenotypes including Bmp-4, Smad-1 and wild-type Xvents and Xhox3, but not Xwnt-8. The results show that Xvent-1 and Xvent-2 are essential for ventral mesoderm formation and for preventing neural differentiation. A model is suggested to explain how Bmp-4 positional information is converted into distinct cellular responses.
Collapse
Affiliation(s)
- D Onichtchouk
- Division of Molecular Embryology, Deutsches Krebforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
87
|
Ogbourne S, Antalis TM. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 1998; 331 ( Pt 1):1-14. [PMID: 9512455 PMCID: PMC1219314 DOI: 10.1042/bj3310001] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanisms controlling transcription and its regulation are fundamental to our understanding of molecular biology and, ultimately, cellular biology. Our knowledge of transcription initiation and integral factors such as RNA polymerase is considerable, and more recently our understanding of the involvement of enhancers and complexes such as holoenzyme and mediator has increased dramatically. However, an understanding of transcriptional repression is also essential for a complete understanding of promoter structure and the regulation of gene expression. Transcriptional repression in eukaryotes is achieved through 'silencers', of which there are two types, namely 'silencer elements' and 'negative regulatory elements' (NREs). Silencer elements are classical, position-independent elements that direct an active repression mechanism, and NREs are position-dependent elements that direct a passive repression mechanism. In addition, 'repressors' are DNA-binding trasncription factors that interact directly with silencers. A review of the recent literature reveals that it is the silencer itself and its context within a given promoter, rather than the interacting repressor, that determines the mechanism of repression. Silencers form an intrinsic part of many eukaryotic promoters and, consequently, knowledge of their interactive role with enchancers and other transcriptional elements is essential for our understanding of gene regulation in eukaryotes.
Collapse
Affiliation(s)
- S Ogbourne
- Queensland Cancer Fund Experimental Oncology Program, The Queensland Institute of Medical Research, Brisbane, 4029 Queensland, Australia
| | | |
Collapse
|
88
|
Ben-Shushan E, Thompson JR, Gudas LJ, Bergman Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol 1998; 18:1866-78. [PMID: 9528758 PMCID: PMC121416 DOI: 10.1128/mcb.18.4.1866] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1997] [Accepted: 01/06/1998] [Indexed: 02/07/2023] Open
Abstract
The Rex-1 (Zfp-42) gene, which encodes an acidic zinc finger protein, is expressed at high levels in embryonic stem (ES) and F9 teratocarcinoma cells. Prior analysis identified an octamer motif in the Rex-1 promoter which is required for promoter activity in undifferentiated F9 cells and is involved in retinoic acid (RA)-associated reduction in expression. We show here that the Oct-3/4 transcription factor, but not Oct-1, can either activate or repress the Rex-1 promoter, depending on the cellular environment. Rex-1 repression is enhanced by E1A. The protein domain required for Oct-3/4 activation was mapped to amino acids 1 to 35, whereas the domain required for Oct-3/4 repression was mapped to amino acids 61 to 126, suggesting that the molecular mechanisms underlying transcriptional activation and repression differ. Like Oct-3/4, Oct-6 can also lower the expression of the Rex-1 promoter via the octamer site, and the amino-terminal portion of Oct-6 mediates this repression. In addition to the octamer motif, a novel positive regulatory element, located immediately 5' of the octamer motif, was identified in the Rex-1 promoter. Mutations in this element greatly reduce Rex-1 promoter activity in F9 cells. High levels of a binding protein(s), designated Rox-1, recognize this novel DNA element in F9 cells, and this binding activity is reduced following RA treatment. Taken together, these results indicate that the Rex-1 promoter is regulated by specific octamer family members in early embryonic cells and that a novel element also contributes to Rex-1 expression.
Collapse
Affiliation(s)
- E Ben-Shushan
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
89
|
Abstract
Adenovirus E1B 55K protein cooperates with E1A gene products to induce cell transformation. E1B 55K mediates its effects by binding to and inhibiting the transcriptional activation and growth-suppression functions of the tumor suppressor p53. Previous studies in vivo have suggested that E1B 55K has an active role in repressing p53 transcriptional activation and that this repression function is directed to specific promoters through E1B 55K's interaction with DNA-bound p53. Flag-tagged E1B 55K (e55K) was expressed with the baculovirus expression system and immunopurified. Gel filtration, velocity sedimentation centrifugation, and glutaraldehyde cross-linking indicated that e55K is a dimer with a nonglobular conformation. e55K bound directly to purified p53, causing an approximately 10-fold increase in p53 affinity for tandem binding sites. Using in vitro transcription assays reconstituted with purified p53, e55K, and HeLa cell nuclear extracts, we found that e55K specifically repressed p53 activation. These results demonstrate that as postulated from earlier transient expression experiments, E1B 55K is a specific repressor of transcription from a promoter with bound p53. Since HeLa nuclear extracts contain little detectable histone protein, E1B 55K probably represses transcription through direct or indirect interactions with the RNA polymerase II transcription machinery.
Collapse
Affiliation(s)
- M E Martin
- Molecular Biology Institute, Department of Microbiology and Molecular Genetics, University of California at Los Angeles, 90095-1570, USA
| | | |
Collapse
|
90
|
Nagao T, Leuzinger S, Acampora D, Simeone A, Finkelstein R, Reichert H, Furukubo-Tokunaga K. Developmental rescue of Drosophila cephalic defects by the human Otx genes. Proc Natl Acad Sci U S A 1998; 95:3737-42. [PMID: 9520436 PMCID: PMC19906 DOI: 10.1073/pnas.95.7.3737] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanisms of head development are a central question in vertebrate and invertebrate developmental biology. The anteriorly expressed homeobox gene otd in Drosophila and its homolog Otx in mouse are required for the early development of the most anterior part of the body, suggesting that a fundamental genetic program of cephalic development might be conserved between vertebrates and invertebrates. We have examined this hypothesis by introducing the human Otx genes into flies. By inducing expression of the human Otx homologs with a heat shock promoter, we found that both Otx1 and Otx2 functionally complement the cephalic defects of a fly otd mutant through specific activation and inactivation of downstream genes. Combined with previous morphological studies, these results are consistent with the view that a common molecular ground plan of cephalization was invented before the diversification of the protostome and the deuterostome in the course of metazoan evolution.
Collapse
Affiliation(s)
- T Nagao
- Institute of Biological Sciences, University of Tsukuba, Tsukuba 305, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Mailhos C, André S, Mollereau B, Goriely A, Hemmati-Brivanlou A, Desplan C. Drosophila Goosecoid requires a conserved heptapeptide for repression of paired-class homeoprotein activators. Development 1998; 125:937-47. [PMID: 9449676 DOI: 10.1242/dev.125.5.937] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Goosecoid (Gsc) is a homeodomain protein expressed in the organizer region of vertebrate embryos. Its Drosophila homologue, D-Gsc, has been implicated in the formation of the Stomatogastric Nervous System. Although there are no apparent similarities between the phenotypes of mutations in the gsc gene in flies and mice, all known Gsc proteins can rescue dorsoanterior structures in ventralized Xenopus embryos. We describe how D-Gsc behaves as a transcriptional repressor in Drosophila cells, acting through specific palindromic HD binding sites (P3K). D-Gsc is a ‘passive repressor’ of activator homeoproteins binding to the same sites and an ‘active repressor’ of activators binding to distinct sites. In addition, D-Gsc is able to strongly repress transcription activated by Paired-class homeoproteins through P3K, via specific protein-protein interactions in what we define as ‘interactive repression’. This form of repression requires the short conserved GEH/eh-1 domain, also present in the Engrailed repressor. Although the GEH/eh-1 domain is necessary for rescue of UV-ventralized Xenopus embryos, it is dispensable for ectopic induction of Xlim-1 expression, demonstrating that this domain is not required for all Gsc functions in vivo. Interactive repression may represent specific interactions among Prd-class homeoproteins, several of which act early during development of invertebrate and vertebrate embryos.
Collapse
Affiliation(s)
- C Mailhos
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, USA
| | | | | | | | | | | |
Collapse
|
92
|
|
93
|
Brott BK, Pinsky BA, Erikson RL. Nlk is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc Natl Acad Sci U S A 1998; 95:963-8. [PMID: 9448268 PMCID: PMC18639 DOI: 10.1073/pnas.95.3.963] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular-signal regulated kinases/microtubule-associated protein kinases (Erk/MAPKs) and cyclin-directed kinases (Cdks) are key regulators of many aspects of cell growth and division, as well as apoptosis. We have cloned a kinase, Nlk, that is a murine homolog of the Drosophila nemo (nmo) gene. The Nlk amino acid sequence is 54. 5% similar and 41.7% identical to murine Erk-2, and 49.6% similar and 38.4% identical to human Cdc2. It possesses an extended amino-terminal domain that is very rich in glutamine, alanine, proline, and histidine. This region bears similarity to repetitive regions found in many transcription factors. Nlk is expressed as a 4. 0-kb transcript at high levels in adult mouse brain tissue, with low levels in other tissues examined, including lung, where two smaller transcripts of 1.0 and 1.5 kb are expressed as well. A 4.0-kb Nlk message is also present during embryogenesis, detectable at day E10. 5, reaching maximal steady state levels at day E12.5, and then decreasing. Nlk transiently expressed in COS7 cells is a 60-kDa kinase detectable by its ability to autophosphorylate. Mutation of the ATP-binding Lys-155 to methionine abolishes its ability to autophosphorylate, as does mutation of a putative activating threonine in kinase domain VIII, to valine, aspartic, or glutamic acid. Subcellular fractionation indicates that 60-70% of Nlk is localized to the nucleus, whereas 30-40% of Nlk is cytoplasmic. Immunofluorescence microscopy confirms that Nlk resides predominantly in the nucleus. Nlk and Nmo may be the first members of a family of kinases with homology to both Erk/MAPKs and Cdks.
Collapse
Affiliation(s)
- B K Brott
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
94
|
Emami KH, Burke TW, Smale ST. Sp1 activation of a TATA-less promoter requires a species-specific interaction involving transcription factor IID. Nucleic Acids Res 1998; 26:839-46. [PMID: 9443978 PMCID: PMC147315 DOI: 10.1093/nar/26.3.839] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sp1 is a ubiquitous activator of numerous TATA-containing and TATA-less promoters within the human genome. This transcription factor is distinct from several other mammalian activators because it cannot stimulate transcription of reporter genes when ectopically expressed in Saccharomyces cerevisiae . Here we report that in cultured cells from Drosophila melanogaster human Sp1 efficiently activates transcription from synthetic promoters containing TATA boxes, but not from promoters that contain an initiator instead of a TATA box. The inability of Sp1 to activate initiator-mediated transcription did not result from inactivity of the consensus initiator element used for the experiments, as other initiator functions were conserved in Drosophila cells. Interestingly, a difference between the Drosophila and human TFIID complexes was found to be responsible for the selective inability of Sp1 to activate initiator-mediated transcription in Drosophila; in a complementation assay with a TFIID-depleted HeLa cell extract both the Drosophila and human TFIID complexes supported TATA-mediated transcription, but only the human complex supported initiator-mediated transcription. These results suggest that a species-specific interaction is required for activation of TATA-less promoters by Sp1, revealing a difference in transcriptional activation mechanisms between vertebrates and invertebrates.
Collapse
Affiliation(s)
- K H Emami
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, UCLA School of Medicine, 675 Circle Drive South, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
95
|
Yet SF, McA'Nulty MM, Folta SC, Yen HW, Yoshizumi M, Hsieh CM, Layne MD, Chin MT, Wang H, Perrella MA, Jain MK, Lee ME. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 1998; 273:1026-31. [PMID: 9422764 DOI: 10.1074/jbc.273.2.1026] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Members of the erythroid Krüppel-like factor (EKLF) multigene family contain three C-terminal zinc fingers, and they are typically expressed in a limited number of tissues. EKLF, the founding member, transactivates the beta-globin promoter by binding to the CACCC motif. EKLF is essential for expression of the beta-globin gene as demonstrated by gene deletion experiments in mice. Using a DNA probe from the zinc finger region of EKLF, we cloned a cDNA encoding a member of this family from a human vascular endothelial cell cDNA library. Sequence analysis indicated that our clone, hEZF, is the human homologue of the recently reported mouse EZF and GKLF. hEZF is a single-copy gene that maps to chromosome 9q31. By gel mobility shift analysis, purified recombinant hEZF protein bound specifically to a probe containing the CACCC core sequence. In co-transfection experiments, we found that sense but not antisense hEZF decreased the activity of a reporter plasmid containing the CACCC sequence upstream of the thymidine kinase promoter by 6-fold. In contrast, EKLF increased the activity of the reporter plasmid by 3-fold. By fusing hEZF to the DNA-binding domain of GAL4, we mapped a repression domain in hEZF to amino acids 181-388. We also found that amino acids 91-117 of hEZF confer an activation function on the GAL4 DNA-binding domain.
Collapse
Affiliation(s)
- S F Yet
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Ikeda K, Halle JP, Stelzer G, Meisterernst M, Kawakami K. Involvement of negative cofactor NC2 in active repression by zinc finger-homeodomain transcription factor AREB6. Mol Cell Biol 1998; 18:10-8. [PMID: 9418848 PMCID: PMC121442 DOI: 10.1128/mcb.18.1.10] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor AREB6 contains a homeodomain flanked by two clusters of Krüppel type C2H2 zinc fingers. AREB6 binds to the E-box consensus sequence, CACCTGT, through either the N- or the C-terminal zinc finger cluster. To gain insights into the molecular mechanism by which AREB6 activates and represses gene expression, we analyzed the domain structure of AREB6 in the context of a heterologous DNA-binding domain by transient-transfection assays. The C-terminal region spanning amino acids 1011 to 1124 was identified as a conventional acidic activation domain. The region containing amino acids 754 to 901, which was identified as a repression domain, consists of 40% hydrophobic amino acids displaying no sequence similarities to other known repression domains. This region repressed transcription in vitro in a HeLa nuclear extract but not in reconstituted transcription systems consisting of transcription factor IID (TFIID), TFIIB, TFIIE, TFIIH/F, and RNA polymerase II. The addition of recombinant negative cofactor NC2 (NC2alpha/DRAP1 and NC2beta/Dr1) to the reconstituted transcription system restored the activity of the AREB6 repression domain. We further demonstrated interactions between the AREB6 repression domain and NC2alpha in yeast two-hybrid assay. Our findings suggest a mechanism of transcriptional repression that is mediated by the general cofactor NC2.
Collapse
Affiliation(s)
- K Ikeda
- Department of Biology, Jichi Medical School, Kawachi, Tochigi, Japan
| | | | | | | | | |
Collapse
|
97
|
Yin Z, Xu XL, Frasch M. Regulation of the twist target gene tinman by modular cis-regulatory elements during early mesoderm development. Development 1997; 124:4971-82. [PMID: 9362473 DOI: 10.1242/dev.124.24.4971] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila tinman homeobox gene has a major role in early mesoderm patterning and determines the formation of visceral mesoderm, heart progenitors, specific somatic muscle precursors and glia-like mesodermal cells. These functions of tinman are reflected in its dynamic pattern of expression, which is characterized by initial widespread expression in the trunk mesoderm, then refinement to a broad dorsal mesodermal domain, and finally restricted expression in heart progenitors. Here we show that each of these phases of expression is driven by a discrete enhancer element, the first being active in the early mesoderm, the second in the dorsal mesoderm and the third in cardioblasts. We provide evidence that the early-active enhancer element is a direct target of twist, a gene encoding a basic helix-loop-helix (bHLH) protein, which is necessary for tinman activation. This 180 bp enhancer includes three E-box sequences which bind Twist protein in vitro and are essential for enhancer activity in vivo. Ectodermal misexpression of twist causes ectopic activation of this enhancer in ectodermal cells, indicating that twist is the only mesoderm-specific activator of early tinman expression. We further show that the 180 bp enhancer also includes negatively acting sequences. Binding of Even-skipped to these sequences appears to reduce twist-dependent activation in a periodic fashion, thus producing a striped tinman pattern in the early mesoderm. In addition, these sequences prevent activation of tinman by twist in a defined portion of the head mesoderm that gives rise to hemocytes. We find that this repression requires the function of buttonhead, a head-patterning gene, and that buttonhead is necessary for normal activation of the hematopoietic differentiation gene serpent in the same area. Together, our results show that tinman is controlled by an array of discrete enhancer elements that are activated successively by differential genetic inputs, as well as by closely linked activator and repressor binding sites within an early-acting enhancer, which restrict twist activity to specific areas within the twist expression domain.
Collapse
Affiliation(s)
- Z Yin
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
98
|
Jiménez G, Paroush Z, Ish-Horowicz D. Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev 1997; 11:3072-82. [PMID: 9367988 PMCID: PMC316696 DOI: 10.1101/gad.11.22.3072] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Relatively little is known about the molecular mechanisms involved in transcriptional repression, despite its importance in development and differentiation. Recent evidence suggests that some transcriptional repressors act by way of adaptor molecules known as corepressors. Here, we use in vivo functional assays to test whether different repressor activities are mediated by the Groucho (Gro) corepressor in the Drosophila embryo. Previously, Gro was proposed to mediate repression by the Hairy-related family of basic helix-loop-helix proteins. Our results indicate not only that repression by Hairy requires Gro, but that a repressor domain from the Engrailed (En) homeodomain protein is also Gro dependent. The latter result correlates with an ability of this En domain to bind to Gro in vitro. In contrast, repressor regions from the Even-skipped, Snail, Krüppel, and Knirps transcription factors are effective in the absence of Gro. These results show that Gro is not generally required for repression, but acts as a specific corepressor for a fraction of negative regulators, including Hairy and En.
Collapse
Affiliation(s)
- G Jiménez
- Imperial Cancer Research Fund (ICRF), London WC2A 3PX, England
| | | | | |
Collapse
|
99
|
Vogt PK, Li J, Freyaldenhoven BS. Revelations of a captive: retroviral Qin and the oncogenicity of winged helix proteins. Virology 1997; 238:1-7. [PMID: 9375002 DOI: 10.1006/viro.1997.8846] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P K Vogt
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
100
|
Hudson C, Clements D, Friday RV, Stott D, Woodland HR. Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 1997; 91:397-405. [PMID: 9363948 DOI: 10.1016/s0092-8674(00)80423-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated two Xenopus relatives of murine Sox17 expressed in gastrula presumptive endoderm. Xsox17alpha and -beta expression can be induced in animal caps by activin, but not by FGF. Ectopic expression of these genes in animal caps induces the expression of endoderm markers; this induction is blocked by overexpression of a fusion of the Xsox17beta HMG domain to the Drosophila Engrailed repressor domain, as is induction of endoderm markers by activin and the expression of endodermal markers in whole embryos and isolated vegetal poles. These experiments, as well as the effects of the mRNAs on embryo phenotypes, suggest that the Xsox17 genes mediate an activin-induced endoderm differentiation pathway in animal caps and are involved in normal endoderm differentiation in embryos.
Collapse
Affiliation(s)
- C Hudson
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | |
Collapse
|