51
|
Kersten J. Cardiovascular magnetic resonance imaging in COVID-19 patients: An important tool in everyday clinical practice. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:622-623. [PMID: 36706020 DOI: 10.1002/jcu.23415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Affiliation(s)
- Johannes Kersten
- Division of Sports and Rehabilitation Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
52
|
Torabizadeh C, Iloonkashkooli R, Haghshenas H, Fararouei M. Prevalence of Cardiovascular Complications in Coronavirus Disease 2019 adult Patients: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:243-267. [PMID: 37791325 PMCID: PMC10542931 DOI: 10.30476/ijms.2022.93701.2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 10/05/2023]
Abstract
Background It has been found that the new coronavirus can affect various parts of the cardiovascular system. Cardiovascular complications caused by coronavirus disease 2019 (COVID-19) are often serious and can increase the mortality rate among infected patients. This study aimed to investigate the prevalence of cardiovascular complications in COVID-19 adult patients. Methods A systematic review and meta-analysis of observational studies published in English were conducted between December 2019 and February 2021. A complete search was performed in PubMed (PubMed Central and MEDLINE), Google Scholar, Cochrane Library, Science Direct, Ovid, Embase, Scopus, CINAHL, Web of Science, and WILEY, as well as BioRXiv, MedRXiv, and gray literature. A random effect model was used to examine the prevalence of cardiovascular complications among COVID-19 patients. The I2 test was used to measure heterogeneity across the included studies. Results A total of 74 studies involving 34,379 COVID-19 patients were included for meta-analysis. The mean age of the participants was 61.30±14.75 years. The overall pooled prevalence of cardiovascular complications was 23.45%. The most prevalent complications were acute myocardial injury (AMI) (19.38%, 95% CI=13.62-26.81, test for heterogeneity I2=97.5%, P<0.001), arrhythmia (11.16%, 95% CI=8.23-14.96, test for heterogeneity I2=91.5%, P<0.001), heart failure (HF) (7.56%, 95% CI=4.50-12.45, test for heterogeneity I2=96.3%, P<0.001), and cardiomyopathy (2.78%, 95% CI=0.34-9.68). The highest pooled prevalence of cardiac enzymes was lactate dehydrogenase (61.45%), troponin (23.10%), and creatine kinase-myocardial band or creatine kinase (14.52%). Conclusion The high prevalence of serious cardiovascular complications in COVID-19 patients (AMI, arrhythmia, and HF) necessitates increased awareness by healthcare administrators.
Collapse
Affiliation(s)
- Camellia Torabizadeh
- Community Based Psychiatric Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hajar Haghshenas
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- HIV/AIDs Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
53
|
Bailey E, Frishman WH. Mild-to-Moderate COVID-19 Infection and Myocarditis: A Review. Cardiol Rev 2023; 31:173-175. [PMID: 35576368 DOI: 10.1097/crd.0000000000000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has taken a massive toll on healthcare systems internationally. Severe illness has been seen in a range of patient populations, but those living with cardiovascular disease have suffered to a greater extent, likely because of their comorbidities. In patients with diabetes, hypertension, heart failure, and other chronic illnesses, COVID-19 has manifested severe illnesses such as coagulopathies, myocarditis, and arrhythmias, complicating the disease course for those already suffering from underlying illness. There have been numerous studies done exploring the cardiovascular complications of COVID-19. Some of the more concerning findings have revealed a correlation between severe illness and the increasing likelihood for developing cardiovascular manifestations. However, what is more concerning were the studies revealing the presence of myocarditis and other cardiac sequelae in previously healthy patients with mild or asymptomatic COVID-19. The goal of this article is to review the literature to compile information available about whether there is a significant risk of myocarditis in those patients who do not develop severe initial COVID-19 disease.
Collapse
Affiliation(s)
- Eric Bailey
- From the Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
54
|
Wu L, Jiang Z, Meulendijks ER, Baylan U, Waas ISE, Bugiani M, Tuinman PR, Fronczek J, Heunks LMA, de Groot JR, van Rossum AC, Niessen HWM, Krijnen PAJ. Atrial inflammation and microvascular thrombogenicity are increased in deceased COVID-19 patients. Cardiovasc Pathol 2023; 64:107524. [PMID: 36649811 PMCID: PMC9839463 DOI: 10.1016/j.carpath.2023.107524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. METHODS Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. RESULTS The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. CONCLUSIONS Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart.
Collapse
Affiliation(s)
- Linghe Wu
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands.
| | - Zhu Jiang
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Eva R Meulendijks
- Department of Cardiology, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Umit Baylan
- Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Ingeborg S E Waas
- Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Pieter R Tuinman
- Department of Intensive Care Medicine, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Judith Fronczek
- Department of Forensic Medicine, Victorian Institute of Forensic Medicine, Monash Monash University, Southbank, Victoria, Australia
| | - Leo M A Heunks
- Department of Intensive Care Medicine, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Joris R de Groot
- Department of Cardiology, AUMC, location VUmc, Amsterdam, The Netherlands
| | | | - Hans W M Niessen
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands; Department of Cardiac Surgery, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
55
|
Sadeghi S, Nokhodian Z, Reisizadeh Mobarakeh S, Nasri E, Mirenayat MS, Ghiasi F, Naderi Z, Raofi E, Rostami S, Fakhim H, Kazemi M, Toghyani A, Ataei B. Pulmonary Function, Anxiety, Depression, and Sleep Quality after Recovery from COVID-19. TANAFFOS 2023; 22:403-410. [PMID: 39176147 PMCID: PMC11338503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/09/2023] [Indexed: 08/24/2024]
Abstract
Background The COVID-19 pandemic has affected human beings worldwide. After recovery from the disease, the pulmonary function and physiological characteristics of COVID-19 patients are not well documented. The current study aims to assess post-COVID-19 lung function, anxiety, depression, and sleep quality within three months after recovery from the disease. Materials and Methods Ninety-seven patients (21 outpatients and 76 inpatients) with COVID-19 were followed three months after recovery. They were divided into two groups according to the severity of the disease. The spirometric parameters included FEV1, FVC, and FEV1/FVC. A 6-minute walk test (6-MWT) was recorded. Besides, sleep quality using Pittsburgh Sleep Quality Index (PSQI) and mood status in two dimensions of anxiety and depression using the Hospital Anxiety and Depression Scale (HADS) were compared between the groups. Results More than 70% of the studied population presented at least one of the COVID-19 infection-related symptoms within three months after recovery. spirometric measurements revealed non-significant differences between the patients with severe versus non-severe COVID-19 in terms of FVC (P=0.805), FEV1 (P=0.948), FEV1/FVC (P=0.616), and 6MWT (P=0.409). Based on PSQI, sleep quality was significantly associated with the severity of disease (P=0.031), but HADS assessments were not significant (P>0.05). Conclusion This study demonstrated that a significant proportion of COVID-19 patients have corona symptoms and abnormal pulmonary function tests three months after recovery. Besides, sleep quality was considerably affected by the severity of the disease and was directly associated with the post-COVID-19 mood of the patients. It seems necessary to consider and control the long-term consequences of this infection regardless of the disease severity.
Collapse
Affiliation(s)
- Somayeh Sadeghi
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunodeficiency Research Center, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zary Nokhodian
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shadi Reisizadeh Mobarakeh
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Nasri
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Sadat Mirenayat
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzin Ghiasi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Naderi
- Department of Pulmonology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Raofi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soodabeh Rostami
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Kazemi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Toghyani
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
56
|
Yang X, Lin C, Liu J, Zhang Y, Deng T, Wei M, Pan S, Lu L, Li X, Tian G, Mi J, Xu F, Yang C. Identification of the regulatory mechanism of ACE2 in COVID-19-induced kidney damage with systems genetics approach. J Mol Med (Berl) 2023; 101:449-460. [PMID: 36951969 PMCID: PMC10034233 DOI: 10.1007/s00109-023-02304-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
Studies showed that SARS-CoV-2 can directly target the kidney and induce renal damage. As the cell surface receptor for SARS-CoV-2 infection, the angiotensin-converting enzyme 2 (ACE2) plays a pivotal role for renal physiology and function. Thus, it is important to understand ACE2 through which pathway influences the pathogenesis of renal damage induced by COVID-19. In this study, we first performed an eQTL mapping for Ace2 in kidney tissues in 53 BXD mice strains. Results demonstrated that Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney, with six genes (Dnase1, Vasn, Usp7, Abat, Mgrn1, and Rbfox1) dominated as the upstream modulator, as they are highly correlated with Ace2 expression. Gene co-expression analysis showed that Ace2 co-variates are significantly involved in the renin-angiotensin system (RAS) pathway which acts as a reno-protector. Importantly, we also found that Ace2 is positively correlated with Pdgf family members, particularly Pdgfc, which showed the most association among the 76 investigated growth factors. Mammalian Phenotype Ontology enrichment indicated that the cognate transcripts for both Ace2 and Pdgfc were mainly involved in regulating renal physiology and morphology. Among which, Cd44, Egfr, Met, Smad3, and Stat3 were identified as hub genes through protein-protein interaction analysis. Finally, in aligning with our systems genetics findings, we found ACE2, pdgf family members, and RAS genes decreased significantly in the CAKI-1 kidney cancer cells treated with S protein and receptor binding domain structural protein. Collectively, our data suggested that ACE2 work with RAS, PDGFC, as well as their cognate hub genes to regulate renal function, which could guide for future clinical prevention and targeted treatment for COVID-19-induced renal damage outcomes. KEY MESSAGES: • Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney. • Ace2 co-variates are enriched in the RAS pathway. • Ace2 is strongly correlated with the growth factor Pdgfc. • Ace2 and Pdgfc co-expressed genes involved in the regulation of renal physiology and morphology. • SARS-CoV-2 spike glycoprotein induces down-regulation of Ace2, RAS, and Pdgfc.
Collapse
Affiliation(s)
- Xueling Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264008, China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | - Ya Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Tingzhi Deng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Shuijing Pan
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
| |
Collapse
|
57
|
COVID-19-Induced Myocarditis: Pathophysiological Roles of ACE2 and Toll-like Receptors. Int J Mol Sci 2023; 24:ijms24065374. [PMID: 36982447 PMCID: PMC10049267 DOI: 10.3390/ijms24065374] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The clinical manifestations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection responsible for coronavirus disease 2019 (COVID-19) commonly include dyspnoea and fatigue, and they primarily involve the lungs. However, extra-pulmonary organ dysfunctions, particularly affecting the cardiovascular system, have also been observed following COVID-19 infection. In this context, several cardiac complications have been reported, including hypertension, thromboembolism, arrythmia and heart failure, with myocardial injury and myocarditis being the most frequent. These secondary myocardial inflammatory responses appear to be associated with a poorer disease course and increased mortality in patients with severe COVID-19. In addition, numerous episodes of myocarditis have been reported as a complication of COVID-19 mRNA vaccinations, especially in young adult males. Changes in the cell surface expression of angiotensin-converting enzyme 2 (ACE2) and direct injury to cardiomyocytes resulting from exaggerated immune responses to COVID-19 are just some of the mechanisms that may explain the pathogenesis of COVID-19-induced myocarditis. Here, we review the pathophysiological mechanisms underlying myocarditis associated with COVID-19 infection, with a particular focus on the involvement of ACE2 and Toll-like receptors (TLRs).
Collapse
|
58
|
Chatterjee S, Nalla LV, Sharma M, Sharma N, Singh AA, Malim FM, Ghatage M, Mukarram M, Pawar A, Parihar N, Arya N, Khairnar A. Association of COVID-19 with Comorbidities: An Update. ACS Pharmacol Transl Sci 2023; 6:334-354. [PMID: 36923110 PMCID: PMC10000013 DOI: 10.1021/acsptsci.2c00181] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 03/03/2023]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
Collapse
Affiliation(s)
- Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Fehmina Mushtaque Malim
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Manasi Ghatage
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Mohd Mukarram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Abhijeet Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS), Bhopal, Bhopal 462020, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 602 00, Czech Republic.,ICRC-FNUSA Brno 656 91, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 62500 Brno, Czechia
| |
Collapse
|
59
|
Philip B, Mukherjee P, Khare Y, Ramesh P, Zaidi S, Sabry H, Harky A. COVID-19 and its long-term impact on the cardiovascular system. Expert Rev Cardiovasc Ther 2023; 21:211-218. [PMID: 36856339 DOI: 10.1080/14779072.2023.2184800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
INTRODUCTION TheSARS-CoV-2 virus caused a pandemic affecting healthcare deliveryglobally. Despite the presentation of COVID-19 infection beingfrequently dominated by respiratory symptoms; it is now notorious tohave potentially serious cardiovascular sequelae. This articleexplores current data to provide a comprehensive overview of thepathophysiology, cardiovascular risk factors, and implications ofCOVID-19. AREAS COVERED Inherentstructure of SARS-CoV-2, and its interaction with both ACE-2 andnon-ACE-2 mediated pathways have been implicated in the developmentof cardiovascular manifestations, progressively resulting in acuterespiratory distress syndrome, multiorgan failure, cytokine releasesyndrome, and subsequent myocardial damage. The interplay betweenexisting and de novo cardiac complications must be noted. Forindividuals taking cardiovascular medications, pharmacologicinteractions are a crucial component. Short-term cardiovascularimpacts include arrhythmia, myocarditis, pericarditis, heart failure,and thromboembolism, whereas long-term impacts include diabetes andhypertension. To identify suitable studies, a PubMed literaturesearch was performed including key words such as 'Covid 19,''Cardiovascular disease,' 'Long covid,' etc. EXPERT OPINION Moresophisticated planning and effective management for cardiologyhealthcare provision is crucial, especially for accommodatingchallenges associated with Long-COVID. With the potential applicationof AI and automated data, there are many avenues and sequelae thatcan be approached for investigation.
Collapse
Affiliation(s)
- Bejoy Philip
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| | | | - Yuti Khare
- School of Medicine, St George's University London, London, UK
| | - Pranav Ramesh
- School of Medicine, University of Leicester, Leicester, UK
| | - Sara Zaidi
- School of Medicine, King's College London, London, UK
| | - Haytham Sabry
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
60
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
61
|
Chistiakova MV, Govorin AV, Zaitsev DN, Kalinkina TV, Medvedeva NA, Kurokhtina AA, Chistyakov RO. [Cardiohemodynamic Changes and Cardiac Arrhythmias After Coronavirus Infection]. KARDIOLOGIIA 2023; 63:27-33. [PMID: 36880140 DOI: 10.18087/cardio.2023.2.n1973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/25/2022] [Indexed: 03/08/2023]
Abstract
Aim To study changes in cardiohemodynamic alterations of the myocardium and heart rhythm disorders at 3 and 6 months following the coronavirus infection.Material and methods EchoCG, ECG Holter monitoring, and Doppler ultrasonography of hepatolienal blood vessels were performed for 77 patients (mean age, 35.9 years) at 3 and 6 months after coronavirus infection. The patients were divided into the following groups: group 1, with injury of the upper respiratory tract; group 2, with bilateral pneumonia (CТ1, 2), and group 3, with severe pneumonia (CТ3, 4). Statistical analysis was performed with a SPSS Statistics Version 25.0 software package.Results At 6 months after the disease onset, the patients noted an improvement of their general condition. In patients with moderate pneumonia, early peak diastolic velocity (p=0.09), right ventricular isovolumic diastolic time (р=0.09), and pulmonary artery systolic pressure (р=0.005) where decreased, while tricuspid annular peak systolic velocity was, in contrast, increased (р=0.042). Both segmental systolic velocity of the LV mid-inferior segment (р=0.006) and the mitral annular Em / Am ratio were decreased. In patients with severe disease at 6 months, right atrial indexed volume was reduced (р=0.036), tricuspid annular Em / Am was decreased (р=0.046), portal and splenic vein flow velocities were decreased, and inferior vena cava diameter was reduced. Late diastolic transmitral flow velocity was increased (р=0.027), and LV basal inferolateral segmental systolic velocity was decreased (р=0.046). In all groups, the number of patients with heart rhythm disorders was decreased, and parasympathetic autonomic influences prevailed.Conclusion At 6 months after coronavirus infection, practically all patients noted improvement of their general condition; incidence rate of arrhythmia and cases of pericardial effusion were decreased; and autonomic nervous system activity recovered. In patients with moderate and severe disease, morpho-functional parameters of the right heart and the hepatolienal blood flow were normalized, however, occult disorders of LV diastolic function remained, and LV segmental systolic velocity was reduced.
Collapse
|
62
|
Qin R, He L, Yang Z, Jia N, Chen R, Xie J, Fu W, Chen H, Lin X, Huang R, Luo T, Liu Y, Yao S, Jiang M, Li J. Identification of Parameters Representative of Immune Dysfunction in Patients with Severe and Fatal COVID-19 Infection: a Systematic Review and Meta-analysis. Clin Rev Allergy Immunol 2023; 64:33-65. [PMID: 35040086 PMCID: PMC8763427 DOI: 10.1007/s12016-021-08908-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/26/2023]
Abstract
Abnormal immunological indicators associated with disease severity and mortality in patients with COVID-19 have been reported in several observational studies. However, there are marked heterogeneities in patient characteristics and research methodologies in these studies. We aimed to provide an updated synthesis of the association between immune-related indicators and COVID-19 prognosis. We conducted an electronic search of PubMed, Scopus, Ovid, Willey, Web of Science, Cochrane library, and CNKI for studies reporting immunological and/or immune-related parameters, including hematological, inflammatory, coagulation, and biochemical variables, tested on hospital admission of COVID-19 patients with different severities and outcomes. A total of 145 studies were included in the current meta-analysis, with 26 immunological, 11 hematological, 5 inflammatory, 4 coagulation, and 10 biochemical variables reported. Of them, levels of cytokines, including IL-1β, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, IFN-γ, IgA, IgG, and CD4+ T/CD8+ T cell ratio, WBC, neutrophil, platelet, ESR, CRP, ferritin, SAA, D-dimer, FIB, and LDH were significantly increased in severely ill patients or non-survivors. Moreover, non-severely ill patients or survivors presented significantly higher counts of lymphocytes, monocytes, lymphocyte/monocyte ratio, eosinophils, CD3+ T,CD4+T and CD8+T cells, B cells, and NK cells. The currently updated meta-analysis primarily identified a hypercytokinemia profile with the severity and mortality of COVID-19 containing IL-1β, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, and IFN-γ. Impaired innate and adaptive immune responses, reflected by decreased eosinophils, lymphocytes, monocytes, B cells, NK cells, T cells, and their subtype CD4+ and CD8+ T cells, and augmented inflammation, coagulation dysfunction, and nonpulmonary organ injury, were marked features of patients with poor prognosis. Therefore, parameters of immune response dysfunction combined with inflammatory, coagulated, or nonpulmonary organ injury indicators may be more sensitive to predict severe patients and those non-survivors.
Collapse
Affiliation(s)
- Rundong Qin
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li He
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Xie
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wanyi Fu
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinliu Lin
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renbin Huang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yukai Liu
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Jiang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
63
|
Kanaeva TV, Karoli NA. Prognostic biomarkers for cardiovascular injury in patients with COVID-19: a review. SECHENOV MEDICAL JOURNAL 2023. [DOI: 10.47093/2218-7332.2022.13.3.14-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Investigations into the causes of adverse outcomes of the novel coronavirus infection (COVID-19) have been ongoing since the beginning of the pandemic. There is evidence that coronavirus-induced cardiovascular injury is as important to a risk of adverse outcome as respiratory injury. Many studies have shown that concomitant cardiovascular disease aggravates the course of COVID-19. However, in some patients who did not have cardiovascular diseases before COVID-19, they are detected during hospitalization or after discharge from the hospital. The review examines data on the effect of serum biomarkers of cardiovascular disease determined during COVID-19 on the risk of adverse outcomes in the near and long-term follow-up periods. Among such biomarkers are considered: troponins, N-terminal pro B-type natriuretic peptide, creatine phosphokinase-MB, lactate dehydrogenase, myoglobin, growth stimulation expressed gene 2, pentraxin 3, angiotensin II, as well as D-dimer and homocysteine. Threshold values have been set for some of these biomarkers, which allow predicting the risk of an unfavorable outcome. At the same time, in most prognostic models, these markers are considered in association with cytokine storm indicators and other risk factors.
Collapse
Affiliation(s)
- T. V. Kanaeva
- Saratov State Medical University named after V.I. Razumovsky
| | - N. A. Karoli
- Saratov State Medical University named after V.I. Razumovsky
| |
Collapse
|
64
|
Santra D, Banerjee A, De SK, Thatoi H, Maiti S. Relation of ACE2 with co-morbidity factors in SARS-CoV-2 pathogenicity. COMPARATIVE CLINICAL PATHOLOGY 2023; 32:179-189. [PMID: 36687210 PMCID: PMC9843654 DOI: 10.1007/s00580-023-03434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023]
Abstract
In the last 3 years of the pandemic situation, SARS-CoV-2 caused a significant number of deaths. Infection rates for symptomatic and asymptomatic patients are higher than that for death. Eventually, researchers explored that the major deaths are attributed to several comorbidity factors. The confounding factors and gender-associated infection/death rate are observed globally. This suggests that SARS-CoV-2 selects the human system recognizing the internal comorbid environment. This article explored the influences of hypertension, diabetes, cardiovascular, and renovascular disorders in COVID-19 severity and mortality. Brief mechanistic layouts have been presented here, indicating some of the comorbidity as the critical determinant in the COVID-19 pathogenesis and related mortality.
Collapse
Affiliation(s)
- Dipannita Santra
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore, India
| | - Amrita Banerjee
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore, India
| | - Subrata Kr. De
- grid.412834.80000 0000 9152 1805Department of Zoology, Vidyasagar University, Midnapore, 721102 India ,grid.411552.60000 0004 1766 4022Mahatma Gandhi University, East Midnapore, WB India
| | - Hrudayanath Thatoi
- grid.444567.00000 0004 1801 0450Department of Biotechnology, North Orissa University, Sriram Chandra Vihar, Takatpur, Baripada India
| | - Smarajit Maiti
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore, India ,Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore, 721101 India
| |
Collapse
|
65
|
De A, Bansal M. Clinical profile and the extent of residual myocardial dysfunction among patients with previous coronavirus disease 2019. Int J Cardiovasc Imaging 2023; 39:887-894. [PMID: 36607468 PMCID: PMC9816519 DOI: 10.1007/s10554-022-02787-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Many patients who have recovered from their coronavirus disease 2019 (COVID-19) episode continue to remain symptomatic and seek medical opinion. The clinical characteristics and echocardiography findings of such subjects have not been adequately studied. METHODS The study included 472 subjects (age 54.0 ± 13.4 years, 57% men) with previous COVID-19 (median duration since COVID-19 12.0 weeks, interquartile range 9.0-26.0 weeks) and 100 controls (age 53.9 ± 13.6 years, 53% men). All subjects underwent detailed clinical assessment and echocardiography, including measurement of left ventricular (LV) ejection fraction (EF) and global longitudinal strain (GLS). RESULTS Less than third (29.2%) of the post-COVID subjects had needed hospitalization for their initial infection. Exertional dyspnea or breathing difficulty at rest were the commonest reasons for post-COVID presentation. As compared to controls, the post-COVID subjects had impaired LV systolic (LVEF 63.2 ± 2.2 vs. 61.9 ± 4.6, P = 0.007; GLS - 19.9 ± 2.6% vs. -17.6 ± 3.4%, P < 0.001) and diastolic function. Majority of those with reduced LV GLS had preserved LVEF. The patients presenting before 12 weeks were more likely to be symptomatic, but LV GLS did not differ. The patients needing hospitalization had higher burden of co-morbidities and significantly reduced LV GLS as compared to those who had received domiciliary treatment. The patients in the lowest GLS tertile were older, had higher burden of co-morbidities, and had had more severe initial infection with greater need for hospitalization, oxygen therapy and steroids. The need for hospitalization was independently associated with lower GLS at the time of current presentation. CONCLUSION This study shows that impairment of LV systolic and diastolic function is common among subjects recovering from previous COVID-19 episode. The patients with more severe initial infection have more marked impairment of LV function and this impairment persists even after several months of recovery from the initial infection. Routine measurement of GLS may be helpful since LV systolic dysfunction in these patients is mostly subclinical.
Collapse
Affiliation(s)
- Aniruddha De
- Suraksha Diagnostics Private Limited, Kolkata, India ,Dept. of Non-invasive Cardiology, Apollo Multispecialty Hospitals, Kolkata, India
| | - Manish Bansal
- Clinical and Preventive Cardiology, Medanta Heart Institute, Medanta- The Medicity, 122001 Gurgaon, Haryana India
| |
Collapse
|
66
|
Wang Z, Ma Y, Chen Z, Yang R, Liu Q, Pan J, Wang J, Liu Y, Zhou M, Zhang Y, Zhou Y, Yang S, Zou B, Lin J, Cai Y, Jiang Z, Zhou Z, Zhao Z. COVID-19 inhibits spermatogenesis in the testes by inducing cellular senescence. Front Genet 2023; 13:981471. [PMID: 36685935 PMCID: PMC9849386 DOI: 10.3389/fgene.2022.981471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: COVID-19 (SARS-CoV-2) has been linked to organ damage in humans since its worldwide outbreak. It can also induce severe sperm damage, according to research conducted at numerous clinical institutions. However, the exact mechanism of damage is still unknown. Methods: In this study, testicular bulk-RNA-seq Data were downloaded from three COVID-19 patients and three uninfected controls from GEO to evaluate the effect of COVID-19 infection on spermatogenesis. Relative expression of each pathway and the correlation between genes or pathways were analyzed by bioinformatic methods. Results: By detecting the relative expression of each pathway and the correlation between genes or pathways, we found that COVID-19 could induce testicular cell senescence through MAPK signaling pathway. Cellular senescence was synergistic with MAPK pathway, which further affected the normal synthesis of cholesterol and androgen, inhibited the normal synthesis of lactate and pyruvate, and ultimately affected spermatogenesis. The medications targeting MAPK signaling pathway, especially MAPK1 and MAPK14, are expected to be effective therapeutic medications for reducing COVID-19 damage to spermatogenesis. Conclusion: These results give us a new understanding of how COVID-19 inhibits spermatogenesis and provide a possible solution to alleviate this damage.
Collapse
|
67
|
Lugo GA, Nizami H, Haniff F, Su L, Marsh D, Gupta S, Jain R, Goel H. Possible Long-Term Cardiovascular Effects of COVID-19. Curr Cardiol Rev 2023; 19:e160822207545. [PMID: 35975854 PMCID: PMC10201895 DOI: 10.2174/1573403x18666220816143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Coronavirus Disease 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has become a worldwide pandemic. Since 2019, the virus has mutated into multiple variants that have made it harder to eradicate and have increased the rate of infection. This virus can affect the structure and the function of the heart and can lead to cardiovascular symptoms that can have long-lasting effects despite recovery from COVID-19. These symptoms include chest pain, palpitations, fatigue, shortness of breath, rapid heartbeat, arrhythmias, cough and hypotension. These symptoms may persist due to myocardial injury, cardiac inflammation or systemic damage that may have been caused during infection. If these symptoms persist, the patient should visit their cardiologist for diagnosis and treatment plan for any type of cardiovascular disease that may have developed Post-COVID 19.
Collapse
Affiliation(s)
- Gloria Anahi Lugo
- School of Medicine, Universidad Autonoma de Guadalajara, Jalisco, MX
| | - Hamasah Nizami
- School of Medicine, American University of Integrative Sciences, Tucker, GA, USA
| | - Fiyad Haniff
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lilly Su
- School of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | - Shefali Gupta
- All India Institute of Medical Sciences (AIIMS) Raebareli, Uttar, India
| | - Rohit Jain
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Heenam Goel
- Centra Care- St. Cloud Hospital Saint Cloud, Minnesota, USA
| |
Collapse
|
68
|
Yim J, Tsang MY, Venkataraman A, Balthazaar S, Gin K, Jue J, Nair P, Luong C, Yeung DF, Moss R, Virani SA, McKay J, Williams M, Sayre EC, Abolmaesumi P, Tsang TS. Cardiac Phenotyping of SARS-CoV-2 in British Columbia: A Prospective Echo Study With Strain Imaging. J Cardiovasc Imaging 2023. [PMID: 37488916 PMCID: PMC10374389 DOI: 10.4250/jcvi.2022.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is limited data on the residual echocardiographic findings including strain analysis among post-coronavirus disease (COVID) patients. The aim of our study is to prospectively phenotype post-COVID patients. METHODS All patients discharged following acute COVID infection were systematically followed in the post-COVID-19 Recovery Clinic at Vancouver General Hospital and St. Paul's Hospital. At 4-18 weeks post diagnosis, patients underwent comprehensive echocardiographic assessment. Left ventricular ejection fraction (LVEF) was assessed by 3D, 2D Biplane Simpson's, or visual estimate. LV global longitudinal strain (GLS) was measured using a vendor-independent 2D speckle-tracking software (TomTec). RESULTS A total of 127 patients (53% female, mean age 58 years) were included in our analyses. At baseline, cardiac conditions were present in 58% of the patients (15% coronary artery disease, 4% heart failure, 44% hypertension, 10% atrial fibrillation) while the remainder were free of cardiac conditions. COVID-19 serious complications were present in 79% of the patients (76% pneumonia, 37% intensive care unit admission, 21% intubation, 1% myocarditis). Normal LVEF was seen in 96% of the cohort and 97% had normal right ventricular systolic function. A high proportion (53%) had abnormal LV GLS defined as < 18%. Average LV GLS of septal and inferior segments were lower compared to that of other segments. Among patients without pre-existing cardiac conditions, LVEF was abnormal in only 1.9%, but LV GLS was abnormal in 46% of the patients. CONCLUSIONS Most post-COVID patients had normal LVEF at 4-18 weeks post diagnosis, but over half had abnormal LV GLS.
Collapse
|
69
|
Osada SS, Szeghy RE, Stute NL, Province VM, Augenreich MA, Putnam A, Stickford JL, Stickford ASL, Grosicki GJ, Ratchford SM. Monthly transthoracic echocardiography in young adults for 6 months following SARS-CoV-2 infection. Physiol Rep 2023; 11:e15560. [PMID: 36597212 PMCID: PMC9810842 DOI: 10.14814/phy2.15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can elicit acute and long-term effects on the myocardium among survivors, yet effects among otherwise healthy young adults remains unclear. Young adults with mild symptoms of SARS-CoV-2 (8M/8F, age: 21 ± 1 years, BMI: 23.5 ± 3.1 kg·m-2 ) underwent monthly transthoracic echocardiography (TTE) and testing of circulating cardiac troponin-I for months 1-6 (M1-M6) following a positive polymerase chain reaction test to better understand the acute effects and post-acute sequelae of SARS-CoV-2 on cardiac structure and function. Left heart structure and ejection fraction were unaltered from M1-M6 (p > 0.05). While most parameters of septal and lateral wall velocities, mitral and tricuspid valve, and pulmonary vein (PV) were unaltered from M1-M6 (p > 0.05), lateral wall s' wave velocity increased (M1: 0.113 ± 0.019 m·s-1 , M6: 0.135 ± 0.022 m·s-1 , p = 0.013); PV S wave velocity increased (M1: 0.596 ± 0.099 m·s-1 , M6: 0.824 ± 0.118 m·s-1 , p < 0.001); the difference between PV A wave and mitral valve (MV) A wave durations decreased (M1: 39.139 ± 43.715 ms, M6: 18.037 ± 7.227 ms, p = 0.002); the ratio of PV A duration to MV A duration increased (M1: 0.844 ± 0.205, M6: 1.013 ± 0.132, p = 0.013); and cardiac troponin-I levels decreased (M1: 0.38 ± 0.20 ng·ml-1 , M3: 0.28 ± 0.34 ng·ml-1 , M6: 0.29 ± 0.16 ng·ml-1 ; p = 0.002) over time. While young adults with mild symptoms of SARS-CoV-2 lacked changes to cardiac structure, the subclinical improvements to cardiac function and reduced inflammatory marker of cardiac troponin-I over 6 months following SARS-CoV-2 infection provide physiologic guidance to post-acute sequelae and recovery from SARS-CoV-2 and its variants using conventional TTE.
Collapse
Affiliation(s)
- Sophie S. Osada
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Rachel E. Szeghy
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Nina L. Stute
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Valesha M. Province
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Marc A. Augenreich
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Andrew Putnam
- Department of Cardiovascular MedicineNorthwest Health – PorterValparaisoIndianaUSA
| | - Jonathon L. Stickford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance CenterGeorgia Southern University (Armstrong)SavannahGeorgiaUSA
| | - Stephen M. Ratchford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
70
|
Acute symptomatic COVID-19 myocarditis: Case series. IHJ CARDIOVASCULAR CASE REPORTS (CVCR) 2023; 7:53-57. [PMCID: PMC10228154 DOI: 10.1016/j.ihjccr.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/30/2023] [Indexed: 01/22/2025]
Abstract
Background Coronavirus disease 2019 COVID-19 still remains a major cause of morbidity and mortality worldwide, mainly due to Acute Respiratory Distress Syndrome (ARDS). Nevertheless, other extra-pulmonary pathological aspects of COVID-19, notably cardiovascular, were disclosed as the global understanding of the pathogen agent advanced. Objectives To detect and evaluate acute myocarditis in patients with active and symptomatic COVID-19 infection. Materials and methods In this prospective analysis, patients presented with active COVID-19 illness and meeting the inclusion criteria were identified at the University Hospital Complex of Rabat between January and September 2021. Results Fifteen patients (8 males and 7 females) aged from 17 to 52 were included during the analysis period, the average delay between the confirmation of COVID-19 and the onset of myocarditis symptomatology was 17 days. The symptomatology was dominated by chest pain, unexplained cardiogenic shock and palpitations. The ECG showed essentially diffuse repolarization disorders. The inflammatory markers were significantly disturbed with an elevation of ultra-sensitive cardiac troponin I in all patients. Cardiac MRI showed impaired global longitudinal strain (GLS) myocardial edema, early and late subepicardial Gadolinium enhancement, compared to the control group (p < 0,01). Conclusion Cardiac involvement was detected in a proportion of patients with active COVID-19. Age, gender, clinical and electrical presentations didn't seem to influence the diagnosis. Cardiac MRI played an essential role for detecting and evaluating active myocarditis. Patients who presented myocardial injury had to have a longer follow-up as current understanding of long-term prognosis is still lacking.
Collapse
|
71
|
Kamthe DD, Sarangkar SD, Dalvi MS, Gosavi NA, Nikam VS. Angiotensin converting enzyme 2 level and its significance in COVID-19 and other diseases patients. Eur J Clin Invest 2023; 53:e13891. [PMID: 36222740 PMCID: PMC9874405 DOI: 10.1111/eci.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) expressions and its modulation are of great interest as being a key receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) and the protective arm of the rennin-angiotensin axis, maintaining cardiovascular homeostasis. However, ACE2 expressions and their modulation in the healthy and disease background are yet to be explored. METHOD We performed a meta-analysis, extracting the data for ACE2 expression in human subjects with various diseases, including SARS-CoV2 infection without or with co-morbidity. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Out of 203 studies, 39 met the inclusion criteria with SARS-CoV2 patients without co-morbidity, SARS-CoV2 patients with co-morbidity, cardiovascular (CVD) patients, diabetes patients, kidney disorders patients, pulmonary disease patients, and other viral infections patients. RESULTS Angiotensin-converting enzyme 2 expression was significantly increased in all diseases. There was an elevated level of ACE2, especially membrane-bound ACE2, in COVID-19 patients compared to healthy controls. A statistically significant increase in ACE2 expression was observed in CVD patients and patients with other viral diseases compared to healthy subjects. Moreover, subgroup analysis of ACE2 expression as soluble and membrane-bound ACE2 revealed a remarkable increase in membrane-bound ACE2 in CVD patients, patients with viral infection compared to soluble ACE2 and pooled standard mean difference (SMD) with the random-effects model was 0.37 and 2.23 respectively. CONCLUSION It was observed that utilizing the ACE2 by SARS-CoV2 for its entry and its consequence leads to several complications. So there is a need to investigate the underlying mechanism along with novel therapeutic strategies.
Collapse
Affiliation(s)
- Dipanjali Dhananjay Kamthe
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Swapnil Dilip Sarangkar
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Manali Suresh Dalvi
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Netra Arun Gosavi
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Vandana Sandeep Nikam
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| |
Collapse
|
72
|
Association investigations between ACE1 and ACE2 polymorphisms and severity of COVID-19 disease. Mol Genet Genomics 2023; 298:27-36. [PMID: 36255490 PMCID: PMC9579601 DOI: 10.1007/s00438-022-01953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/03/2022] [Indexed: 01/11/2023]
Abstract
Due to the unique affinity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the angiotensin-converting enzyme 2 (ACE2) receptor in patients, the foremost recent evidence indicated that ACE1 and ACE2 polymorphisms could affect the susceptibility of individuals to SARS-CoV-2 infection and also the disease outcome. Here, we aimed to assess the possible association between two polymorphisms and the severity of disease in patients. In the present study, 146 patients with COVID-19 who were admitted to the Mazandaran University of Medical Sciences hospitals between March 2020 and July 2020 were enrolled in this case-control study. The patients were divided into four groups based on clinical symptoms and severity of the diseases (mild, moderate, severe, and critical). After DNA extraction, the ACE gene I/D polymorphism (rs4646994) and ACE2 gene polymorphism (rs2285666) were genotyped using Gap-PCR and PCR-RFLP techniques, respectively. Then, five samples from each obtained genotype were confirmed by Sanger sequencing technique. Data were analyzed with SAS software version 9.1 using appropriate statistical procedures. The ACE gene I/D polymorphism (rs4646994) genotypes were classified into three types: I/I, I/D, and D/D. Our finding indicated that the prevalence of ACE1 D/D genotype was significantly higher in severe and critical COVID-19 patients (P = 0.0016). Additionally, the analysis revealed a remarkable association between rs4646994 SNP and the HB and ESRI levels in patients (P < 0.05). Although the ACE2 rs2285666 SNP was not related to the severity of disease, this variant was significantly associated with ALT, ESRI, and P. These results provide preliminary evidence of a genetic association between the ACE-D/D genotype and the D allele of ACE1 genotype and the disease severity. Therefore, our findings might be useful for identifying the susceptible population groups for COVID-19 therapy.
Collapse
|
73
|
Viveiros A, Noyce RS, Gheblawi M, Colombo D, Bilawchuk LM, Clemente-Casares X, Marchant DJ, Kassiri Z, Del Nonno F, Evans DH, Oudit GY. SARS-CoV-2 infection downregulates myocardial ACE2 and potentiates cardiac inflammation in humans and hamsters. Am J Physiol Heart Circ Physiol 2022; 323:H1262-H1269. [PMID: 36367689 PMCID: PMC9705018 DOI: 10.1152/ajpheart.00578.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.
Collapse
Affiliation(s)
- Anissa Viveiros
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud Gheblawi
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - Leanne M. Bilawchuk
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Xavier Clemente-Casares
- 4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David J. Marchant
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - David H. Evans
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada,6Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
74
|
Heidecker B, Dagan N, Balicer R, Eriksson U, Rosano G, Coats A, Tschöpe C, Kelle S, Poland GA, Frustaci A, Klingel K, Martin P, Hare JM, Cooper LT, Pantazis A, Imazio M, Prasad S, Lüscher TF. Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases. Eur J Heart Fail 2022; 24:2000-2018. [PMID: 36065751 PMCID: PMC9538893 DOI: 10.1002/ejhf.2669] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023] Open
Abstract
Over 10 million doses of COVID-19 vaccines based on RNA technology, viral vectors, recombinant protein, and inactivated virus have been administered worldwide. Although generally very safe, post-vaccine myocarditis can result from adaptive humoral and cellular, cardiac-specific inflammation within days and weeks of vaccination. Rates of vaccine-associated myocarditis vary by age and sex with the highest rates in males between 12 and 39 years. The clinical course is generally mild with rare cases of left ventricular dysfunction, heart failure and arrhythmias. Mild cases are likely underdiagnosed as cardiac magnetic resonance imaging (CMR) is not commonly performed even in suspected cases and not at all in asymptomatic and mildly symptomatic patients. Hospitalization of symptomatic patients with electrocardiographic changes and increased plasma troponin levels is considered necessary in the acute phase to monitor for arrhythmias and potential decline in left ventricular function. In addition to evaluation for symptoms, electrocardiographic changes and elevated troponin levels, CMR is the best non-invasive diagnostic tool with endomyocardial biopsy being restricted to severe cases with heart failure and/or arrhythmias. The management beyond guideline-directed treatment of heart failure and arrhythmias includes non-specific measures to control pain. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs, and corticosteroids have been used in more severe cases, with only anecdotal evidence for their effectiveness. In all age groups studied, the overall risks of SARS-CoV-2 infection-related hospitalization and death are hugely greater than the risks from post-vaccine myocarditis. This consensus statement serves as a practical resource for physicians in their clinical practice, to understand, diagnose, and manage affected patients. Furthermore, it is intended to stimulate research in this area.
Collapse
Affiliation(s)
- Bettina Heidecker
- Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt, Universität zu Berlin, Berlin, Germany
| | - Noa Dagan
- Clalit Health Services, Clalit Research Institute, Ramat Gan, Israel
| | - Ran Balicer
- Clalit Health Services, Clalit Research Institute, Ramat Gan, Israel
| | - Urs Eriksson
- Department of Internal Medicine, Division of Cardiology, GZO - Zurich Regional Health Center, Wetzikon & University of Zurich, Zurich, Switzerland
| | | | - Andrew Coats
- Monash University, Melbourne, Victoria, Australia.,University of Warwick, Warwick, UK
| | - Carsten Tschöpe
- Cardiology, German Heart Center, Charité - University Medicine, Berlin, Germany
| | - Sebastian Kelle
- Cardiology, German Heart Center, Charité - University Medicine, Berlin, Germany
| | | | - Andrea Frustaci
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, La Sapienza University, Rome, Italy.,IRCCS L. Spallanzani, Rome, Italy
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Pilar Martin
- Cientro Nacional de Investigationes Cardiovasculares, Madrid, Spain
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Leslie T Cooper
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA, and Cardiology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Antonis Pantazis
- Royal Brompton and Harefield Hospitals and Imperial College London, London, UK
| | - Massimo Imazio
- Cardiothoracic Department, Cardiology, Udine University Health Integrated Agency, Udine, Italy
| | - Sanjay Prasad
- Royal Brompton and Harefield Hospitals and Imperial College London, London, UK
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals and Imperial College London, London, UK.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
75
|
Axelerad A, Stuparu AZ, Muja LF, Docu Axelerad S, Petrov SG, Gogu AE, Jianu DC. Narrative Review of New Insight into the Influence of the COVID-19 Pandemic on Cardiovascular Care. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1554. [PMID: 36363511 PMCID: PMC9694465 DOI: 10.3390/medicina58111554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024]
Abstract
Background and Objectives: The purpose of this paper was to perform a literature review on the effects of the COVID-19 pandemic on cardiothoracic and vascular surgery care and departments. Materials and Methods: To conduct this evaluation, an electronic search of many databases was conducted, and the resulting papers were chosen and evaluated. Results: Firstly, we have addressed the impact of COVID-19 infection on the cardiovascular system from the pathophysiological and treatment points of view. Afterwards, we analyzed every cardiovascular disease that seemed to appear after a COVID-19 infection, emphasizing the treatment. In addition, we have analyzed the impact of the pandemic on the cardiothoracic and vascular departments in different countries and the transitions that appeared. Finally, we discussed the implications of the cardiothoracic and vascular specialists' and residents' work and studies on the pandemic. Conclusions: The global pandemic caused by SARS-CoV-2 compelled the vascular profession to review the treatment of certain vascular illnesses and find solutions to address the vascular consequences of COVID-19 infection. The collaboration between vascular surgeons, public health specialists, and epidemiologists must continue to investigate the impact of the pandemic and the response to the public health issue.
Collapse
Affiliation(s)
- Any Axelerad
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Alina Zorina Stuparu
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Lavinia Florenta Muja
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Department of Neurology, ‘Sf. Ap. Andrei’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Silvia Georgeta Petrov
- Doctoral School of the Faculty of Psychology and Educational Sciences within the University of Bucharest, 050663 Bucharest, Romania
| | - Anca Elena Gogu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dragos Catalin Jianu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
76
|
Wrona M, Skrypnik D. New-Onset Diabetes Mellitus, Hypertension, Dyslipidaemia as Sequelae of COVID-19 Infection-Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013280. [PMID: 36293857 PMCID: PMC9602450 DOI: 10.3390/ijerph192013280] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/05/2023]
Abstract
As the population recovers from the coronavirus disease 2019 (COVID-19) pandemic, a subset of individuals is emerging as post-coronavirus disease (post-COVID) patients who experience multifactorial long-term symptoms several weeks after the initial recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The aim of this systematic review is to present the latest scientific reports that evaluate changes in glucose levels, blood pressure readings and lipid profiles after recovery from COVID-19 to verify the hypothesis that new-onset diabetes mellitus, arterial hypertension and dyslipidaemia are a possible sequela of a COVID-19 infection. The open access databases PubMed and Google Scholar were searched. Articles investigating patients with residual clinical signs and biochemical alteration indicating diabetes, hypertension and dyslipidaemia at least a month after recovering from COVID-19 were included. It has been shown that a select number of patients were diagnosed with new-onset diabetes, arterial hypertension and dyslipidaemia after COVID-19 infection. Alterations in glucose levels, blood pressure and lipid profiles months after initial infection shows the importance of considering diabetes mellitus, arterial hypertension and dyslipidaemia as part of the multifactorial diagnostic criteria post-COVID to better provide evidence-based clinical care.
Collapse
Affiliation(s)
- Marysia Wrona
- Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| |
Collapse
|
77
|
Lennol MP, García-Ayllón MS, Esteban M, García-Arriaza J, Sáez-Valero J. Serum angiotensin-converting enzyme 2 as a potential biomarker for SARS-CoV-2 infection and vaccine efficacy. Front Immunol 2022; 13:1001951. [PMID: 36311758 PMCID: PMC9597869 DOI: 10.3389/fimmu.2022.1001951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Various species of the SARS-CoV-2 host cell receptor, the angiotensin-converting enzyme 2 (ACE2), are present in serum, which may result from virus entry and subsequent proteolytic processing of the membrane receptor. We have recently demonstrated changes of particular ACE2 species in virus infected humans, either cleaved fragments or circulating full-length species. Here, we further explore the potential of serum ACE2 as a biomarker to test SARS-CoV-2 infection and vaccine efficacy in virus susceptible transgenic K18-hACE2 mice expressing human ACE2. First, in serum samples derived from K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2, we observed an increase in the levels of cleaved ACE2 fragment at day 2 post-challenge, which may represent the subsequent proteolytic processing through virus entry. These elevated levels were maintained until the death of the animals at day 6 post-challenge. The circulating full-length ACE2 form displayed a sizable peak at day 4, which declined at day 6 post-challenge. Noticeably, immunization with two doses of the MVA-CoV2-S vaccine candidate prevented ACE2 cleaved changes in serum of animals challenged with a lethal dose of SARS-CoV-2. The efficacy of the MVA-CoV2-S was extended to vaccinated mice after virus re-challenge. These findings highlight that ACE2 could be a potential serum biomarker for disease progression and vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew P. Lennol
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Hospital General Universitario de Elche, Elche, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- *Correspondence: Juan García-Arriaza, ; Javier Sáez-Valero,
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- *Correspondence: Juan García-Arriaza, ; Javier Sáez-Valero,
| |
Collapse
|
78
|
Sharma P, Shah K, Loomba J, Patel A, Mallawaarachchi I, Blazek O, Ratcliffe S, Breathett K, Johnson AE, Taylor AM, Salerno M, Ragosta M, Sodhi N, Addison D, Mohammed S, Bilchick KC, Mazimba S. The impact of COVID-19 on clinical outcomes among acute myocardial infarction patients undergoing early invasive treatment strategy. Clin Cardiol 2022; 45:1070-1078. [PMID: 36040721 PMCID: PMC9538930 DOI: 10.1002/clc.23908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The implications of coronavirus disease 2019 (COVID-19) infection on outcomes after invasive therapeutic strategies among patients presenting with acute myocardial infarction (AMI) are not well studied. HYPOTHESIS To assess the outcomes of COVID-19 patients presenting with AMI undergoing an early invasive treatment strategy. METHODS This study was a cross-sectional, retrospective analysis of the National COVID Cohort Collaborative database including all patients presenting with a recorded diagnosis of AMI (ST-elevation myocardial infarction (MI) and non-ST elevation MI). COVID-19 positive patients with AMI were stratified into one of four groups: (1a) patients who had a coronary angiogram with percutaneous coronary intervention (PCI) within 3 days of their AMI; (1b) PCI within 3 days of AMI with coronary artery bypass graft (CABG) within 30 days; (2a) coronary angiogram without PCI and without CABG within 30 days; and (2b) coronary angiogram with CABG within 30 days. The main outcomes were respiratory failure, cardiogenic shock, prolonged length of stay, rehospitalization, and death. RESULTS There were 10 506 COVID-19 positive patients with a diagnosis of AMI. COVID-19 positive patients with PCI had 8.2 times higher odds of respiratory failure than COVID-19 negative patients (p = .001). The odds of prolonged length of stay were 1.7 times higher in COVID-19 patients who underwent PCI (p = .024) and 1.9 times higher in patients who underwent coronary angiogram followed by CABG (p = .001). CONCLUSION These data demonstrate that COVID-19 positive patients with AMI undergoing early invasive coronary angiography had worse outcomes than COVID-19 negative patients.
Collapse
Affiliation(s)
- Prerna Sharma
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| | - Kajal Shah
- Department of Internal MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| | - Johanna Loomba
- Integrated Translational Health Research Institute (iTHRIV)University of VirginiaCharlottesvilleVirginiaUSA
| | - Arti Patel
- Integrated Translational Health Research Institute (iTHRIV)University of VirginiaCharlottesvilleVirginiaUSA
| | | | - Olivia Blazek
- Department of Internal MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
- Division of CardiologyUniversity of Connecticut—Hartford HospitalMansfieldConnecticutUSA
| | - Sarah Ratcliffe
- Department of Public Health SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Khadijah Breathett
- Division of CardiologyUniversity of Arizona Medical CenterTucsonArizonaUSA
| | - Amber E. Johnson
- Division of Cardiology, University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Angela M. Taylor
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| | - Michael Salerno
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| | - Michael Ragosta
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| | - Nishtha Sodhi
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| | - Daniel Addison
- Division of Cardiology, Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Selma Mohammed
- Division of CardiologyCreighton University School of MedicineOmahaNebraskaUSA
| | - Kenneth C. Bilchick
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| | - Sula Mazimba
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVirginiaUSA
| |
Collapse
|
79
|
Nappi F, Nappi P, Gambardella I, Avtaar Singh SS. Thromboembolic Disease and Cardiac Thrombotic Complication in COVID-19: A Systematic Review. Metabolites 2022; 12:889. [PMID: 36295791 PMCID: PMC9611930 DOI: 10.3390/metabo12100889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 pandemic has affected many healthcare systems worldwide. While acute respiratory distress syndrome (ARDS) has been well-documented in COVID-19, there are several cardiovascular complications, such as myocardial infarction, ischaemic stroke, and pulmonary embolism, leading to disability and death. The link between COVID-19 and increasing thrombogenicity potentially occurs due to numerous different metabolic mechanisms, ranging from endothelial damage for direct virus infection, associated excessive formation of neutrophil extracellular traps (NETs), pathogenic activation of the renin-angiotensin-aldosterone system (RAAS), direct myocardial injury, and ischemia induced by respiratory failure, all of which have measurable biomarkers. A search was performed by interrogating three databases (MEDLINE; MEDLINE In-Process and Other Non-Indexed Citations, and EMBASE). Evidence from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were evaluated for the processing of the algorithm and treatment of thromboembolic disease and cardiac thrombotic complications related to COVID-19 during SARS-CoV-2 infection. Studies out with the SARS-Cov-2 infection period and case reports were excluded. A total of 58 studies were included in this analysis. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining thromboembolic disease and cardiac thrombotic complication in COVID-19. Some of the mechanisms of activation of these pathways, alongside the involved biomarkers noted in previous studies, are highlighted. Inflammatory response led to thromboembolic disease and cardiac thrombotic complications in COVID-19. NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, thromboembolic complications in COVID-19 remain an entity that substantially impacts the health care system, with long-term effects that remain uncertain. Continuous monitoring and research are required.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ivancarmine Gambardella
- Department of Cardiothoracic Surgery, Weill Cornell Medicine–New York Presbyterian Medical Center, New York, NY 10065, USA
| | | |
Collapse
|
80
|
Urban S, Fułek M, Błaziak M, Iwanek G, Jura M, Fułek K, Guzik M, Garus M, Gajewski P, Lewandowski Ł, Biegus J, Ponikowski P, Trzeciak P, Tycińska A, Zymliński R. COVID-19 Related Myocarditis in Adults: A Systematic Review of Case Reports. J Clin Med 2022; 11:5519. [PMID: 36233389 PMCID: PMC9573317 DOI: 10.3390/jcm11195519] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022] Open
Abstract
Despite the progress of its management, COVID-19 maintains an ominous condition which constitutes a threat, especially for the susceptible population. The cardiac injury occurs in approximately 30% of COVID-19 infections and is associated with a worse prognosis. The clinical presentation of cardiac involvement can be COVID-19-related myocarditis. Our review aims to summarise current evidence about that complication. The research was registered at PROSPERO (CRD42022338397). We performed a systematic analysis using five different databases, including i.a. MEDLINE. Further, the backward snowballing technique was applied to identify additional papers. Inclusion criteria were: full-text articles in English presenting cases of COVID-19-related myocarditis diagnosed by the ESC criteria and patients over 18 years old. The myocarditis had to occur after the COVID-19 infection, not vaccination. Initially, 1588 papers were screened from the database search, and 1037 papers were revealed in the backward snowballing process. Eventually, 59 articles were included. Data about patients' sex, age, ethnicity, COVID-19 confirmation technique and vaccination status, reported symptoms, physical condition, laboratory and radiological findings, applied treatment and patient outcome were investigated and summarised. COVID-19-related myocarditis is associated with the risk of sudden worsening of patients' clinical status, thus, knowledge about its clinical presentation is essential for healthcare workers.
Collapse
Affiliation(s)
- Szymon Urban
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Mikołaj Błaziak
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Gracjan Iwanek
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Maksym Jura
- Department of Physiology and Pathophysiology, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Katarzyna Fułek
- Lower Silesian Oncology, Pulmonology and Hematology Center, 50-376 Wroclaw, Poland
| | - Mateusz Guzik
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Mateusz Garus
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Piotr Gajewski
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Przemysław Trzeciak
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Agnieszka Tycińska
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Robert Zymliński
- Institute of Heart Diseases, Wroclaw Medical University, 50-376 Wroclaw, Poland
| |
Collapse
|
81
|
Vergara A, Wang K, Colombo D, Gheblawi M, Rasmuson J, Mandal R, Del Nonno F, Chiu B, Scholey JW, Soler MJ, Wishart DS, Oudit GY. Urinary angiotensin-converting enzyme 2 and metabolomics in COVID-19-mediated kidney injury. Clin Kidney J 2022; 16:272-284. [PMID: 36751625 PMCID: PMC9494506 DOI: 10.1093/ckj/sfac215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.
Collapse
Affiliation(s)
- Ander Vergara
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Mahmoud Gheblawi
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jaslyn Rasmuson
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Brian Chiu
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - James W Scholey
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - María José Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Barcelona, Spain,Nephrology and Transplantation Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - David S Wishart
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
82
|
Akkaif MA, Bitar AN, Al-Kaif LAIK, Daud NAA, Sha’aban A, Noor DAM, Abd Aziz F, Cesaro A, SK Abdul Kader MA, Abdul Wahab MJ, Khaw CS, Ibrahim B. The Management of Myocardial Injury Related to SARS-CoV-2 Pneumonia. J Cardiovasc Dev Dis 2022; 9:307. [PMID: 36135452 PMCID: PMC9503627 DOI: 10.3390/jcdd9090307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
The global evolution of the SARS-CoV-2 virus is known to all. The diagnosis of SARS-CoV-2 pneumonia is expected to worsen, and mortality will be higher when combined with myocardial injury (MI). The combination of novel coronavirus infections in patients with MI can cause confusion in diagnosis and assessment, with each condition exacerbating the other, and increasing the complexity and difficulty of treatment. It would be a formidable challenge for clinical practice to deal with this situation. Therefore, this review aims to gather literature on the progress in managing MI related to SARS-CoV-2 pneumonia. This article reviews the definition, pathogenesis, clinical evaluation, management, and treatment plan for MI related to SARS-CoV-2 pneumonia based on the most recent literature, diagnosis, and treatment trial reports. Many studies have shown that early diagnosis and implementation of targeted treatment measures according to the different stages of disease can reduce the mortality rate among patients with MI related to SARS-CoV-2 pneumonia. The reviewed studies show that multiple strategies have been adopted for the management of MI related to COVID-19. Clinicians should closely monitor SARS-CoV-2 pneumonia patients with MI, as their condition can rapidly deteriorate and progress to heart failure, acute myocardial infarction, and/or cardiogenic shock. In addition, appropriate measures need to be implemented in the diagnosis and treatment to provide reasonable care to the patient.
Collapse
Affiliation(s)
- Mohammed Ahmed Akkaif
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Ahmad Naoras Bitar
- Department of Clinical Pharmacy, Michel Sayegh College of Pharmacy, Aqaba University of Technology, South of Aqaba, South Beach Road, Opposite Aqaba Development Corporation Stores, Aqaba 910122, Jordan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Malaysian Allied Health Sciences Academy, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - Laith A. I. K. Al-Kaif
- Department of Medical Laboratory Techniques, Al Mustaqbal University College, Hillah 51001, Babylon, Iraq
| | | | - Abubakar Sha’aban
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4YS, UK
| | | | | | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | | | | | - Chee Sin Khaw
- Department of Cardiology, Penang General Hospital, George Town 10990, Malaysia
| | - Baharudin Ibrahim
- Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
83
|
Dimiati H, Umara DA, Naufal I. Covid-19-induced pulmonary hypertension in children, and the use of phosphodiesterase-5 inhibitors. F1000Res 2022; 10:792. [PMID: 39228925 PMCID: PMC11369592 DOI: 10.12688/f1000research.53966.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 09/05/2024] Open
Abstract
Respiratory tract infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first occurred in Wuhan, China, in December 2019 and was declared as a pandemic by WHO. The interaction between the 2019 coronavirus disease (COVID-19) and pulmonary hypertension (PH) in children is not widely known. Phosphodiesterase-5 inhibitors (PDEI), one class of drugs used to treat PH, including sildenafil, can suppress angiotensin type I (AT-1) receptor expression. Furthermore, it reduces proinflammatory cytokines and infiltrates the alveolar, inhibits endothelial and smooth muscle transition, mesenchymal cells in the pulmonary artery, and prevents clotting and thrombosis complications. Sildenafil has shown positive effects by diverting the blood flow to the lungs in such a way that ventilation is adequate and can also be anti-inflammatory.
Collapse
Affiliation(s)
- Herlina Dimiati
- Department of Pediatric, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia, Indonesia
| | - Dimas Arya Umara
- Department of Cardiology, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia, Indonesia
| | - Iflan Naufal
- Department of Family Medicine, Universitas Syiah Kuala, Banda aceh, Aceh, Indonesia, Indonesia
| |
Collapse
|
84
|
Spike-based adenovirus vectored COVID-19 vaccine does not aggravate heart damage after ischemic injury in mice. Commun Biol 2022; 5:902. [PMID: 36056135 PMCID: PMC9439278 DOI: 10.1038/s42003-022-03875-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
An unprecedented number of COVID-19 vaccination campaign are under way worldwide. The spike protein of SARS-CoV-2, which majorly binds to the host receptor angiotensin converting enzyme 2 (ACE2) for cell entry, is used by most of the vaccine as antigen. ACE2 is highly expressed in the heart and has been reported to be protective in multiple organs. Interaction of spike with ACE2 is known to reduce ACE2 expression and affect ACE2-mediated signal transduction. However, whether a spike-encoding vaccine will aggravate myocardial damage after a heart attack via affecting ACE2 remains unclear. Here, we demonstrate that cardiac ACE2 is up-regulated and protective after myocardial ischemia/reperfusion (I/R). Infecting human cardiac cells or engineered heart tissues with a spike-based adenovirus type-5 vectored COVID-19 vaccine (AdSpike) does not affect their survival and function, whether subjected to hypoxia-reoxygenation injury or not. Furthermore, AdSpike vaccination does not aggravate heart damage in wild-type or humanized ACE2 mice after I/R injury, even at a dose that is ten-fold higher as used in human. This study represents the first systematic evaluation of the safety of a leading COVID-19 vaccine under a disease context and may provide important information to ensure maximal protection from COVID-19 in patients with or at risk of heart diseases.
Collapse
|
85
|
Mitra J, Kodavati M, Provasek VE, Rao KS, Mitra S, Hamilton DJ, Horner PJ, Vahidy FS, Britz GW, Kent TA, Hegde ML. SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Res Rev 2022; 80:101687. [PMID: 35843590 PMCID: PMC9288264 DOI: 10.1016/j.arr.2022.101687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vincent E Provasek
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; College of Medicine, Texas A&M University, College Station, TX, USA
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Sankar Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Philip J Horner
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Farhaan S Vahidy
- Center for Outcomes Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA.
| |
Collapse
|
86
|
Rout A, Suri S, Vorla M, Kalra DK. Myocarditis associated with COVID-19 and its vaccines - a systematic review. Prog Cardiovasc Dis 2022; 74:111-121. [PMID: 36279947 PMCID: PMC9596182 DOI: 10.1016/j.pcad.2022.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Since the beginning of the COVID-19 (Coronavirus Disease of 2019) pandemic, myocarditis has received much attention and controversy as one of the more worrisome cardiovascular complications. After the availability of highly effective COVID-19 mRNA vaccines in late 2020, myocarditis was also appreciated as an important vaccine-related adverse event. Though the overall frequency of clinically evident viral myocarditis is rare in the general population, young males show a higher predilection for COVID vaccine-induced myocarditis. The severity of COVID-19 viral myocarditis is variable, ranging from very mild to severe, while vaccine-induced myocarditis is usually mild, and rarely a severe or fatal disease. The diagnosis of either COVID-19 or vaccine-induced myocarditis is based on typical clinical features, laboratory investigations, and imaging, preferably with cardiac magnetic resonance. The management of COVID-19 myocarditis is supportive care for mild or moderate disease. For the rare patient who develops severe disease, advanced heart failure therapies such as mechanical circulatory support devices may have to be employed and can be lifesaving. Avoidance of strenuous exercise during the bout of myocarditis and its recovery phase is important. Despite the small but finite risk of vaccine-induced myocarditis, the benefits of protection against COVID-19 disease and its attendant complications far outweigh the risks.
Collapse
Affiliation(s)
- Amit Rout
- Division of Cardiology, University of Louisville, Louisville, KY, USA
| | - Sarabjeet Suri
- Division of Cardiology, University of Louisville, Louisville, KY, USA
| | - Mounica Vorla
- Division of Cardiology, University of Louisville, Louisville, KY, USA
| | - Dinesh K Kalra
- Division of Cardiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
87
|
Sen R, Sengupta D, Mukherjee A. Mechanical dependency of the SARS-CoV-2 virus and the renin-angiotensin-aldosterone (RAAS) axis: a possible new threat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62235-62247. [PMID: 34859345 PMCID: PMC8638800 DOI: 10.1007/s11356-021-16356-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/01/2021] [Indexed: 04/12/2023]
Abstract
Pathogens in our environment can act as agents capable of inflicting severe human diseases. Among them, the SARS-CoV-2 virus has recently plagued the globe and paralyzed the functioning of ordinary human life. The virus enters the cell through the angiotensin-converting enzyme-2 (ACE-2) receptor, an integral part of the renin-angiotensin system (RAAS). Reports on hypertension and its relation to the modulation of the RAAS are generating interest in the scientific community. This short review focuses on the SARS-CoV-2 infection's direct and indirect effects on our body through modulation of the RAAS axis. A patient having severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, which causes COVID-19 relates to hypertension as a pre-existing disease or develops it in a post-COVID scenario. Several studies on how SARS-CoV-2 modulates the RAAS axis indicate that it alters our body's physiological balance. This review seeks to establish a hypothesis on the mechanical dependency of SARS-CoV-2 and RAAS modulation in the human body. This study intends to impart ideas on drug development and designing by targeting the modulation of the RAAS axis to inactivate the pathogenicity of the SARS-CoV-2 virus. A systematic hypothesis can severely attenuate the pathogenicity of the dreadful viruses of the future.
Collapse
Affiliation(s)
- Rohit Sen
- Department of Zoology, Charuchandra College, University of Calcutta, 22, Lake Road, Kolkata, 700029 India
| | | | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, 22, Lake Road, Kolkata, 700029 India
| |
Collapse
|
88
|
Zhang ZQ, Wan JQ, Zhu SK, Wang M, Wang XA, Tong XH, Ding JW. Analysis of cardiovascular disease factors on SARS-CoV-2 infection severity. MEDICINA CLINICA (ENGLISH ED.) 2022; 159:171-176. [PMID: 36042952 PMCID: PMC9411992 DOI: 10.1016/j.medcle.2021.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Background At present, COVID-19 is a global pandemic and is seriously harmful to humans. In this retrospective study, the aim was to investigate the interaction between CVD and COVID-19. Methods A total of 180 patients diagnosed with COVID-19 in Yichang Central People's Hospital from 29 January to 17 March 2020 were initially included. The medical history, clinical manifestations at the time of admission, laboratory test results, hospitalization time and complications were recorded. According to the medical history, the patients were assigned to the nonsevere group with non-CVD (n = 90), the nonsevere group with CVD (n = 22), the severe group with non-CVD (n = 40) and the severe group with CVD (n = 28). Results In the severe group, compared with non-CVD patients, CVD patients had a significantly higher incidence of fever (P < 0.05). However, compared with the nonsevere group, the severe group had significantly higher proportions of patients with hypertension, type 2 diabetes mellitus, CHD and HF (all P < 0.05). Among the patients with nonsevere COVID-19, the WBC count and the levels of IL-6, CRP, D-dimer, NT-proBNP, and FBG were significantly higher and the Hb level was significantly lower in the CVD patients than in the non-CVD patients (all P < 0.05). However, among the patients with severe COVID-19, only the level of NT-proBNP was significantly higher in CVD patients than in non-CVD patients (P < 0.05). In addition, the WBC count and the levels of IL-6, CRP, D-dimer, CKMB, ALT, AST, SCR, NT-proBNP, and FBG were significantly higher and the Hb level was significantly lower in the severe group than in the nonsevere group (all P < 0.05). However, among the patients with severe COVID-19, the incidences of acute myocardial injury, acute kidney injury, arrhythmia, and sudden death were significantly higher in the CVD group than in the non-CVD group (all P < 0.05). The same results were found in the comparison of the nonsevere group with the severe group. Among the patients with nonsevere COVID-19, those without CVD had a mean hospitalization duration of 25.25 (SD 7.61) days, while those with CVD had a mean hospitalization duration of 28.77 (SD 6.11) days; the difference was significant (P < 0.05). The same results were found in the comparison of the severe group. Conclusions CVD affects the severity of COVID-19. COVID-19 also increases the risk of severe CVD.
Collapse
Affiliation(s)
- Zai-Qiang Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Jian-Qiao Wan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Sheng-Kui Zhu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Man Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Xin-An Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Xiao-Hong Tong
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Jia-Wang Ding
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
89
|
Zhang ZQ, Wan JQ, Zhu SK, Wang M, Wang XA, Tong XH, Ding JW. Analysis of cardiovascular disease factors on SARS-CoV-2 infection severity. Med Clin (Barc) 2022; 159:171-176. [PMID: 34895748 PMCID: PMC8563366 DOI: 10.1016/j.medcli.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND At present, COVID-19 is a global pandemic and is seriously harmful to humans. In this retrospective study, the aim was to investigate the interaction between CVD and COVID-19. METHODS A total of 180 patients diagnosed with COVID-19 in Yichang Central People's Hospital from 29 January to 17 March 2020 were initially included. The medical history, clinical manifestations at the time of admission, laboratory test results, hospitalization time and complications were recorded. According to the medical history, the patients were assigned to the nonsevere group with non-CVD (n=90), the nonsevere group with CVD (n=22), the severe group with non-CVD (n=40) and the severe group with CVD (n=28). RESULTS In the severe group, compared with non-CVD patients, CVD patients had a significantly higher incidence of fever (P<0.05). However, compared with the nonsevere group, the severe group had significantly higher proportions of patients with hypertension, type 2 diabetes mellitus, CHD and HF (all P<0.05). Among the patients with nonsevere COVID-19, the WBC count and the levels of IL-6, CRP, D-dimer, NT-proBNP, and FBG were significantly higher and the Hb level was significantly lower in the CVD patients than in the non-CVD patients (all P<0.05). However, among the patients with severe COVID-19, only the level of NT-proBNP was significantly higher in CVD patients than in non-CVD patients (P<0.05). In addition, the WBC count and the levels of IL-6, CRP, D-dimer, CKMB, ALT, AST, SCR, NT-proBNP, and FBG were significantly higher and the Hb level was significantly lower in the severe group than in the nonsevere group (all P<0.05). However, among the patients with severe COVID-19, the incidences of acute myocardial injury, acute kidney injury, arrhythmia, and sudden death were significantly higher in the CVD group than in the non-CVD group (all P<0.05). The same results were found in the comparison of the nonsevere group with the severe group. Among the patients with nonsevere COVID-19, those without CVD had a mean hospitalization duration of 25.25 (SD 7.61) days, while those with CVD had a mean hospitalization duration of 28.77 (SD 6.11) days; the difference was significant (P<0.05). The same results were found in the comparison of the severe group. CONCLUSIONS CVD affects the severity of COVID-19. COVID-19 also increases the risk of severe CVD.
Collapse
Affiliation(s)
- Zai-Qiang Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Jian-Qiao Wan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Sheng-Kui Zhu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Man Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Xin-An Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Xiao-Hong Tong
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China
| | - Jia-Wang Ding
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei Province, China.
| |
Collapse
|
90
|
Kovalevskaiia L, Pakhlevanzade A, Ivanchenko S, Kupriianova L, Volianska V, Plakida A, Panigrahi P. Cardiovascular Disorders as a Result of COVID-19. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Based on the literature data, we present current literature information about frequency, main spectrum, and prognostic value of cardiovascular complications of the SARS-CoV-2 infection. We have highlighted in detail the variants of cardiovascular disorders in the case of patients with SARS-CoV-2 infection caused by concomitant diseases of hypertension, acute coronary syndrome, myocardial infarction, arrhythmias, virus-associated myocarditis, and heart failure. We have described the adverse cardiovascular effects of medicines of different groups used to treat COVID-19 disease and possible medical interactions. We have summarized some current recommendations on cardiotonic and cardioprotective therapy in the case of patients with cardiovascular complications.
Collapse
|
91
|
Henning RJ. Cardiovascular complications of COVID-19 severe acute respiratory syndrome. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2022; 12:170-191. [PMID: 36147783 PMCID: PMC9490160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
603,711,760 confirmed cases of COVID-19 have been reported throughout the world and 6,484,136 individuals have died from complications of COVID-19 as of September 7, 2022. Significantly, the Omicron variant has produced the largest number of COVID-19 associated hospitalizations since the beginning of the pandemic. Cardiac injury occurs in ≥20% of the hospitalized patients with COVID-19 and is associated with cardiac dysrhythmias in 17 to 44%, cardiac injury with increases in blood troponin in 22 to 40%, myocarditis in 2 to 7%, heart failure in 4 to 21%, and thromboembolic events in 15 to 39%. Risk factors for cardiac complications include age >70 years, male sex, BMI ≥30 kg/m2, diabetes, pre-existing cardiovascular disease, and moderate to severe pneumonia at hospital presentation. Patients with prior cardiovascular disease who contract COVID-19 and experience a significant increase in their blood troponin concentration are at risk for mortality rates as high as 69%. This review focuses on the prevalence, the pathophysiologic mechanisms of CoV-2 injury to the cardiovascular system and the current recommended treatments in hospitalized patients with COVID-19 in order that medical personnel can decrease the morbidity and mortality of patients with COVID-19 and effectively treat patients with Covid and post Covid syndrome.
Collapse
Affiliation(s)
- Robert J Henning
- University of South Florida 13201 Bruce B. Downs Blvd, Tampa, Florida 33612-3805, USA
| |
Collapse
|
92
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
93
|
Almamlouk R, Kashour T, Obeidat S, Bois MC, Maleszewski JJ, Omrani OA, Tleyjeh R, Berbari E, Chakhachiro Z, Zein-Sabatto B, Gerberi D, Tleyjeh IM, Paniz Mondolfi AE, Finn AV, Duarte-Neto AN, Rapkiewicz AV, Frustaci A, Keresztesi AA, Hanley B, Märkl B, Lardi C, Bryce C, Lindner D, Aguiar D, Westermann D, Stroberg E, Duval EJ, Youd E, Bulfamante GP, Salmon I, Auer J, Maleszewski JJ, Hirschbühl K, Absil L, Barton LM, Ferraz da Silva LF, Moore L, Dolhnikoff M, Lammens M, Bois MC, Osborn M, Remmelink M, Nascimento Saldiva PH, Jorens PG, Craver R, Aparecida de Almeida Monteiro R, Scendoni R, Mukhopadhyay S, Suzuki T, Mauad T, Fracasso T, Grimes Z. COVID-19-Associated cardiac pathology at the postmortem evaluation: a collaborative systematic review. Clin Microbiol Infect 2022; 28:1066-1075. [PMID: 35339672 PMCID: PMC8941843 DOI: 10.1016/j.cmi.2022.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many postmortem studies address the cardiovascular effects of COVID-19 and provide valuable information, but are limited by their small sample size. OBJECTIVES The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies. DATA SOURCES We searched the online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus, and Web of Science for concepts of autopsy or histopathology combined with COVID-19, published between database inception and February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory. STUDY ELIGIBILITY CRITERIA Articles were considered eligible for inclusion if they reported human postmortem cardiovascular findings among individuals with a confirmed SARS coronavirus type 2 (CoV-2) infection. PARTICIPANTS Confirmed COVID-19 patients with post-mortem cardiovascular findings. INTERVENTIONS None. METHODS Studies were individually assessed for risk of selection, detection, and reporting biases. The median prevalence of different autopsy findings with associated interquartile ranges (IQRs). RESULTS This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median: 100.0%; IQR, 20%-100%; number of studies = 9; number of patients = 64) and myocardial oedema (median: 55.5%; IQR, 19.5%-92.5%; number of studies = 4; number of patients = 46). The median reported prevalence of extensive, focal active, and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median: 69.0%; IQR, 46.8%-92.1%) and fibrosis (median: 35.0%; IQR, 35.0%-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%). CONCLUSIONS Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19 and SARS-CoV-2 cardiac tropism, as well as the low prevalence of myocarditis in COVID-19.
Collapse
Affiliation(s)
| | - Tarek Kashour
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Sawsan Obeidat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Osama A Omrani
- The Royal London Hospital, Barts Health NHS Trust, London, UK; Barts and the London School of Medicine and Dentistry, Queen Mary University, London, UK
| | - Rana Tleyjeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Elie Berbari
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Zaher Chakhachiro
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassel Zein-Sabatto
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Dana Gerberi
- Mayo Clinic Libraries, Mayo Clinic, Rochester, MN, USA
| | - Imad M Tleyjeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Infectious Diseases Section, Department of Medical Specialties King Fahad Medical City, Riyadh, Saudi Arabia; Division of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | | | - Aloke V Finn
- CVPath Institute, Inc., Gaithersburg, and University of Maryland, Baltimore, MD, USA
| | - Amaro Nunes Duarte-Neto
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Amy V Rapkiewicz
- NYU Winthrop Hospital, Department of Pathology, Long Island School of Medicine, Long Island, NY, USA
| | - Andrea Frustaci
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, La Sapienza University, Rome, Italy; Cellular and Molecular Cardiology Lab, IRCCS L. Spallanzani, Rome, Italy
| | - Arthur-Atilla Keresztesi
- Fogolyan Kristof Emergency County Hospital, Covasna County Institution of Forensic Medicine, Covasna, Romania
| | - Brian Hanley
- Department of Cellular Pathology, Northwest London Pathology, Imperial College London NHS Trust, London, UK; Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Bruno Märkl
- Institute of Pathology and Molecular Diagnostics, University Medical Center Augsburg, Augsburg, Germany
| | - Christelle Lardi
- University Center of Legal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Clare Bryce
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Centre, Hamburg, Germany; DZHK-German Center for Cardiovascular Research, Partner site, Hamburg/Kiel/Lübeck, Germany
| | - Diego Aguiar
- University Center of Legal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Dirk Westermann
- Department of Cardiology, University Heart and Vascular Centre, Hamburg, Germany; DZHK-German Center for Cardiovascular Research, Partner site, Hamburg/Kiel/Lübeck, Germany
| | - Edana Stroberg
- Office of the Chief Medical Examiner, Oklahoma City, OK, USA
| | - Eric J Duval
- Office of the Chief Medical Examiner, Oklahoma City, OK, USA
| | - Esther Youd
- Forensic Medicine and Science, University of Glasgow, Glasgow, UK
| | - Gaetano Pietro Bulfamante
- Unità di Anatomia Patologica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy; Struttura Complessa di Anatomia Patologica e Genetica Medica, ASST Santi Paolo e Carlo, Milan, Italy
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium; Centre Universitaire inter Régional d'expertise en Anatomie Pathologique Hospitalière, Jumet, Belgium; DIAPath, Center for Microscopy and Molecular Imaging, ULB, Gosselies, Belgium
| | - Johann Auer
- Department of Cardiology and Intensive Care, St. Josef Hospital Braunau, Austria; Department of Cardiology and Intensive Care, Kepler University of Medicine Linz, Austria
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Klaus Hirschbühl
- Department of Hematology and Clinical Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Lara Absil
- Department of Pathology, Erasme Hospital, ULB, Brussels, Belgium
| | - Lisa M Barton
- Office of the Chief Medical Examiner, Oklahoma City, OK, USA
| | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Luiza Moore
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Marisa Dolhnikoff
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael Osborn
- Department of Cellular Pathology, Northwest London Pathology, Imperial College London NHS Trust, London, UK; Death Investigation Committee, Royal College of Pathologists, London, UK; Nightingale NHS Hospital, London, UK
| | - Myriam Remmelink
- Department of Pathology, Erasme Hospital, ULB, Brussels, Belgium
| | | | - Philippe G Jorens
- Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Department of Medicine and Health Sciences, Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; Department of Intensive Care Medicine, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Randall Craver
- Children's Hospital of New Orleans and Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Roberto Scendoni
- Institute of Legal Medicine, Department of Law, University of Macerata, Macerata, Italy
| | | | - Tadaki Suzuki
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Thais Mauad
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tony Fracasso
- University Center of Legal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Zachary Grimes
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
94
|
Guliani A, Tandon A, Chakroborty A, Gupta PP. Predictors of post COVID complications in patients admitted with moderate to severe COVID symptoms: A single center, prospective, observational study. Monaldi Arch Chest Dis 2022; 93. [PMID: 35872628 DOI: 10.4081/monaldi.2022.2307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022] Open
Abstract
While the world was still busy battling active COVID-19 infections, a large subset of patients started showing prolonged symptoms or developing complications following an initial recovery from COVID-19. Post covid complications range from mild symptoms such as fatigue, headache, shortness of breath to serious, life threatening conditions like opportunistic infections, deep venous thrombosis, pulmonary embolism, pneumothorax and lung fibrosis. A single center, prospective, observational study was carried out in a tertiary respiratory care institute in North India from June 2021 to August 2021 where 224 cases of previously treated COVID-19/ongoing symptomatic COVID-19 (those patients who were manifesting symptoms beyond 4 weeks), were enrolled and followed up for a period of 3 months to estimate the prevalence of persistent symptoms, complications and any risk factors associated with it. Data analysis was done using SPSS software version 21. Univariate and multivariate analysis done among risk factors and outcome variables. ROC was done on predictor variables and area under curve (AUC) calculated. p value less than 0.05 was considered significant. Among the 24.6% symptomatic patients at follow up, the most common symptom was fatigue (51.8%) followed by dyspnea (43.8%) and anxiety (43.3%). Among the complications of COVID-19, the most common according to our study was fibrosis (15.2%), followed by pulmonary thromboembolism (PTE) (12.1%), echocardiographic abnormalities (11.2%) and pulmonary mucormycosis (5.4%). Female gender, presence of comorbidities, requirement of non-invasive or invasive ventilation during hospital stay emerged as independent risk factors for complications following COVID-19. This study brings forth the huge morbidity burden that COVID-19 brought upon seemingly cured individuals and lists the risk factors associated with persistence of symptoms and complications. This would help to better streamline health resources and standardize follow up guidance of COVID-19 patients.
Collapse
Affiliation(s)
- Astha Guliani
- Department of Respiratory Medicine, Pt. BD. Postgraduate Institute of Medical Sciences, Rohtak.
| | - Abhishek Tandon
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, Jodhpur.
| | - Amartya Chakroborty
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, Jodhpur.
| | - Prem Parkash Gupta
- Department of Respiratory Medicine, Pt. BD. Postgraduate Institute of Medical Sciences, Rohtak.
| |
Collapse
|
95
|
Sivri F, Özdemir B, Çelik MM, Aksoy F, Akçay B. Prognostic Value of T-wave Positivity in Lead aVR in COVID-19 Pneumonia. Rev Assoc Med Bras (1992) 2022; 68:882-887. [PMID: 35946762 PMCID: PMC9574967 DOI: 10.1590/1806-9282.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE T-wave positivity in the lead aVR is a marker of ventricular repolarization abnormality and provides information on short- and long-term cardiovascular mortality in heart failure patients, those with anterior myocardial infarction, and patients who underwent hemodialysis for various reasons. The aim of this study was to investigate the relationship between T-wave positivity in the lead aVR on superficial electrocardiogram and mortality from COVID-19 pneumonia. METHODS This study retrospectively included 130 patients who were diagnosed with COVID-19 and treated as an outpatient or in the thoracic diseases ward in a single center between January 2021 and June 2021. All patients included in the study had clinical and radiological features and signs of COVID-19 pneumonia. The COVID-19 diagnosis of all patients was confirmed by polymerase chain reaction detected from an oropharyngeal swab. RESULTS A total of 130 patients were included in this study. Patients were divided into two groups: survived and deceased. There were 55 patients (mean age: 64.76-14.93 years, 58.18 male, 41.12% female) in the survived group and 75 patients (mean age: 65-15 years, 58.67 male, 41.33% female) in the deceased group. The univariate and multivariate regression analyses showed that positive transcatheter aortic valve replacement (OR 5.151; 95%CI 1.001-26.504; p=0.0012), lactate dehydrogenase (OR 1.006; 95%CI 1.001-1.010; p=0.012), and d-dimer (OR 1.436; 95%CI 1.115-1.848; p=0.005) were independent risk factors for mortality. CONCLUSION A positive transcatheter aortic valve replacement is useful in risk stratification for mortality from COVID-19 pneumonia.
Collapse
Affiliation(s)
- Fatih Sivri
- Hatay Dörtyol State Hospital – Hatay, Turkey.,Corresponding author:
| | - Burcu Özdemir
- Samsun Training and Research Hospital – Samsun, Turkey
| | | | - Fatih Aksoy
- Süleyman Demirel University – Isparta, Turkey
| | | |
Collapse
|
96
|
Taş S, Taş Ü. MECHANICAL VENTILATION NEED AND GLYCEMIC STATUS IN PATIENTS WITH COVID -19: A FOLLOW-UP STUDY. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:306-315. [PMID: 36699169 PMCID: PMC9867819 DOI: 10.4183/aeb.2022.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Context Diabetes mellitus is a well known risk factor for COVID-19 patients. However, There is limited data to investigate the association between prediabetes and COVID-19. Objective We aimed to evaluate the effect of prediabetes and mechanical ventilation on the course of COVID-19 and determine whether patients who recover from COVID-19 infection show changes in cardiac function and laboratory findings during follow-up. Patients and Methods This study included 87 adult patients who were diagnosed with COVID-19 according to the WHO definition and were admitted for inpatient treatment between April 2021 and August 2021. They were classified into 3 groups, normoglycemia (n=40), prediabetes (n=25), and diabetes (n=22), and then divided into groups according to need for mechanical ventilation. Statistical analyses were performed to compare laboratory, echocardiographic findings and COVID-19 outcomes among the groups. Results The need of mechanical ventilation was significantly higher in both diabetes and prediabetes groups than the normoglycemic group. Patients with diabetes and prediabetes had significantly higher LV E/Em (p=0.003, p=0.045) and RV MPI (p=0.032, p=0.021) and significantly shorter PAT (p=0.001, p=0.036) and significantly longer RV IVRT (p=0.021, p=0.017), respectively, compared to the normoglycemia group. Patients who required mechanical ventilation had significantly higher CRP (p=0.043), troponin (p<0.001), ferritin (p<0.001), HBA1C (P<0.001), glucose (p=0.019), monocytes (p<0.001), and monocytes-HDL ratio (MHR) (p<0.001) and significantly lower levels of HDL-C (p<0.001). Glucose, HDL-C, troponin, MPV, NLR, PLR level and RV and E/Em were found independently associated with the RVMPI. Conclusion Prediabetes was associated with more impaired LV and RV diastolic functions compared to normoglycemic patients, comparable to those seen in diabetes. Our observations suggest that prediabetes should be considered as diabetes in the risk stratification of patients with COVID-19.
Collapse
Affiliation(s)
- S. Taş
- Manisa City Hospital, Department of Cardiology, Manisa Merkezefendi State Hospital, Department of Cardiology, Manisa, Turkey
| | - Ü. Taş
- Manisa City Hospital, Department of Cardiology, Manisa Merkezefendi State Hospital, Department of Cardiology, Manisa, Turkey
| |
Collapse
|
97
|
Rasmi Y, Hatamkhani S, Naderi R, Shokati A, Nayeb Zadeh V, Hosseinzadeh F, Farnamian Y, Jalali L. Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochem 2022; 124:151908. [PMID: 35662001 PMCID: PMC9130726 DOI: 10.1016/j.acthis.2022.151908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Cytokine storms and extra-activated cytokine signaling pathways can lead to severe tissue damage and patient death. Activation of inflammatory signaling pathways during Cytokine storms are an important factor in the development of acute respiratory syndrome (SARS-CoV-2), which is the major health problem today, causing systemic and local inflammation. Cytokine storms attract many inflammatory cells that attack the lungs and other organs and cause tissue damage. Angiotensin-converting enzyme 2 (ACE2) are expressed in a different type of tissues. inhibition of ACE2 activity impairs renin-angiotensin (RAS) function, which is related to the severity of symptoms and mortality rate in COVID-19 patients. Different signaling cascades are activated, affecting various organs during SARS-CoV-2 infection. Nowadays, there is no specific treatment for COVID-19, but scientists have recognized and proposed several treatment alternatives, including applying cytokine inhibitors, immunomodulators, and plasma therapy. Herein, we have provided the detailed mechanism of SARS-CoV-2 induced cytokine signaling and its connection with pathophysiological features in different organs. Possible treatment options to cope with the severe clinical manifestations of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Sciences, Qom, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
98
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
99
|
Chan JK, Assaf O, Guella E, Mustafa S, Kumar N. The prevalence and course of COVID-19 and the Cardiovascular Diseases. HEART, VESSELS AND TRANSPLANTATION 2022; 0. [DOI: 10.24969/hvt.2022.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Corona pandemic has infected over 277 million people and has claimed more than 5.4 million lives with recovery of 249 million globally by early 2022. The global case fatality rate ranged from 6-7% in United States, Switzerland, Ireland, 12-14% in Sweden, Spain, Netherlands, United Kingdom, Italy, and 15-16% in France and Belgium among hospitalized and non-hospitalized COVID-19 patients, the prevalence of underlying cardiovascular diseases was 9%. The prevalence of cardiovascular diseases among hospitalized COVID-19 patients and those requiring intensive care unit admission were 23% and 29% respectively. The virus continues to evolve into new formats latest being Delta and Omicron variants.
In a multicenter study of 8910 COVID-19 patients from 169 hospitals in Asia, Europe and North America, presence of pre-existing coronary artery disease, chronic heart failure and cardiac arrhythmia was associated with increased mortality of 10.2%, 15.3% and 11.5% respectively, compared with 5-6% mortality in those without the above co-morbidities.
The systemic inflammation caused by SARS-CoV-2 could lead to a wide spectrum of cardiovascular complications including acute cardiac injury, acute coronary syndrome, coronary artery dissection, acute myocarditis, cardiomyopathy, chronic heart failure, cardiac arrhythmia, pulmonary embolism, cardiogenic shock, circulatory failure or even cardiac arrest.
Collapse
|
100
|
Sozzi FB, Gherbesi E, Faggiano A, Gnan E, Maruccio A, Schiavone M, Iacuzio L, Carugo S. Viral Myocarditis: Classification, Diagnosis, and Clinical Implications. Front Cardiovasc Med 2022; 9:908663. [PMID: 35795363 PMCID: PMC9250986 DOI: 10.3389/fcvm.2022.908663] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium with focal or diffuse involvement. Viral infections are the most common cause of myocarditis, especially in Western countries. A recent viral illness with gastroenteric or upper respiratory symptoms often precedes myocarditis. The absence of specific pathognomonic features in conjunction with the wide spectrum of clinical manifestations that range from subclinical cases to sudden cardiac death (SCD) makes myocarditis diagnosis particularly challenging. Moreover, myocarditis might represent a cause of initially unexplained dilated cardiomyopathy (DCM) and heart failure (HF), especially among children and young adults. Cardiac magnetic resonance imaging (CMR) is crucial for myocarditis diagnosis, because of its ability to detect interstitial edema during acute inflammation. Assessment of subepicardial or mid-myocardial fibrosis by late gadolinium enhancement (LGE) is typical for myocarditis. Cardiac arrhythmias are frequent events that may arise especially in more severe myocarditis cases. The most common form of arrhythmia is atrial fibrillation, followed by ventricular tachycardia. Documented arrhythmias have been reported more commonly with HIV myocarditis than other more common infections such as Adenovirus, Parvovirus B19, human Herpes virus 6, and Enterovirus. The mechanisms of arrhythmogenesis in myocardial inflammation are not fully understood; in the acute phase, the spectrum of arrhythmogenesis ranges from a direct effect on cardiomyocytes that leads to electrical instability and ion channel impairment to ischemia from coronary macro- or microvascular disease. In chronic myocarditis, instead, myocardial replacement with fibrosis promotes scar-mediated re-entrant ventricular arrhythmias. Observational data suggested the important role of CMR, with LGE being the strongest independent predictor of SCD, cardiac, and all-cause mortality. In acute myocarditis, the most common localization of subepicardial LGE dwells in the lateral wall. Patients with myocarditis that develop HF and arrhythmias usually show a larger LGE distribution involving several myocardial segments. Moreover, a mid-layer LGE in the interventricular septum is more frequent in acute myocarditis than in acute coronary syndromes cases. The risk of SCD in patients with wide areas of LGE is significant, and a shared decision-making approach is warranted. Nevertheless, there is no formal consensus about the extension of LGE to justify implantable cardioverter defibrillator (ICD) implantation in primary prevention.
Collapse
Affiliation(s)
- Fabiola B. Sozzi
- Cardiology Unit, Internal Medicine Department, Fondazione Ospedale Maggiore Policlinico IRCCS Cà Granda, University of Milan, Milan, Italy
| | - Elisa Gherbesi
- Cardiology Unit, Internal Medicine Department, Fondazione Ospedale Maggiore Policlinico IRCCS Cà Granda, University of Milan, Milan, Italy
| | - Andrea Faggiano
- Cardiology Unit, Internal Medicine Department, Fondazione Ospedale Maggiore Policlinico IRCCS Cà Granda, University of Milan, Milan, Italy
| | - Eleonora Gnan
- Cardiology Unit, Internal Medicine Department, Fondazione Ospedale Maggiore Policlinico IRCCS Cà Granda, University of Milan, Milan, Italy
| | - Alessio Maruccio
- Cardiology Unit, Internal Medicine Department, Fondazione Ospedale Maggiore Policlinico IRCCS Cà Granda, University of Milan, Milan, Italy
| | - Marco Schiavone
- Cardiology Unit, Luigi Sacco University Hospital, Milan, Italy
| | | | - Stefano Carugo
- Cardiology Unit, Internal Medicine Department, Fondazione Ospedale Maggiore Policlinico IRCCS Cà Granda, University of Milan, Milan, Italy
| |
Collapse
|