51
|
El-Hossary N, Hassanein H, El-Ghareeb AW, Issa H. Intravenous vs intraperitoneal transplantation of umbilical cord mesenchymal stem cells from Wharton's jelly in the treatment of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2016; 121:102-111. [PMID: 27693839 DOI: 10.1016/j.diabres.2016.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 01/16/2023]
Abstract
AIM To evaluate the efficiency of mesenchymal stem cells isolated from Wharton's jelly (WJ-MSCs) through either the intravenous or intraperitoneal transplantations into streptozotocin (STZ)-induced diabetic rats as a therapy for type 1 diabetes mellitus (T1DM). METHODOLOGY A rat model with STZ induction was established and the rats were divided into 3 groups: a tail vein injection group, an intraperitoneal injection group and a STZ control group. Following transplantation, blood glucose levels were monitored weekly then the pancreatic tissues were collected to examine the pancreatic islets by histopathology and morphometric studies. RESULTS Intravenous transplantation of WJ-MSCs ameliorated hyperglycemia at day 7 after transplantation, with sustained decreased fasting blood glucose (FBG) levels until day 56. Further, these cells ameliorated at least partially the damage induced by STZ in the pancreas and produced a similar morphology to normal islets. On the contrary, intraperitoneal transplantation of WJ-MSCs failed to maintain normoglycemia or ameliorate the damaged pancreas in STZ-injected rats. CONCLUSION These findings conclude that the intravenous administration method was effective in transplanting WJ-MSCs for the treatment of T1DM, whereas the intraperitoneal transplantation showed no therapeutic effect in our animal experiments.
Collapse
Affiliation(s)
- Nancy El-Hossary
- Department of Biotechnology, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Hamdy Hassanein
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Hisham Issa
- Department of Clinical Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt; Cell Safe Cord Blood Bank, Dar El Mona Health Care Resort, Giza, Egypt
| |
Collapse
|
52
|
Merani S, Razzak R, Kin T, Haqq A, Huynh H, Shapiro AJ. Total pancreatectomy and autoislet transplant for chronic recurrent pancreatitis in a 5-year-old boy. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2016; 13:28-30. [DOI: 10.1016/j.epsc.2016.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
53
|
Desai CS, Khan KM, Cui W. Islet autotransplantation in a patient with hypercoagulable disorder. World J Transplant 2016; 6:437-441. [PMID: 27358790 PMCID: PMC4919749 DOI: 10.5500/wjt.v6.i2.437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/22/2016] [Accepted: 04/22/2016] [Indexed: 02/05/2023] Open
Abstract
Total pancreatectomy and islet auto transplantation is a good option for chronic pancreatitis patients who suffer from significant pain, poor quality of life, and the potential of type 3C diabetes and pancreatic cancer. Portal vein thrombosis is the most feared complication of the surgery and chances are increased if the patient has a hypercoagulable disorder. We present a challenging case of islet auto transplantation from our institution. A 29-year-old woman with plasminogen activator inhibitor-4G/4G variant and a clinical history of venous thrombosis was successfully managed with a precise peri- and post-operative anticoagulation protocol. In this paper we discuss the anti-coagulation protocol for safely and successfully caring out islet transplantation and associated risks and benefits.
Collapse
|
54
|
Venturini M, Sallemi C, Colantoni C, Agostini G, Balzano G, Esposito A, Secchi A, De Cobelli F, Falconi M, Piemonti L, Maffi P, Del Maschio A. Single-centre experience of extending indications for percutaneous intraportal islet autotransplantation (PIPIAT) after pancreatic surgery to prevent diabetes: feasibility, radiological aspects, complications and clinical outcome. Br J Radiol 2016; 89:20160246. [PMID: 27327404 DOI: 10.1259/bjr.20160246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Islet allotransplantation is a less invasive alternative to surgical pancreas transplantation for Type 1 diabetes, while percutaneous intraportal islet autotransplantation (PIPIAT) is usually performed after pancreatic surgery to prevent diabetes. Our aim was to assess the feasibility, radiological aspects, complications and clinical outcome of PIPIAT following pancreatic surgery for not only chronic pancreatitis but also benign and malignant nodules. METHODS From 2008 to 2012, 41 patients were enrolled for PIPIAT 12-48 h after pancreatic surgery (extended pancreatic surgery for chronic pancreatitis and benign/malignant neoplasms). PIPIAT was performed using a combined ultrasonography and fluoroscopy-guided technique (4-F catheter). PIPIAT feasibility, median follow-up and metabolic (insulin independence rate, graft function based on C-peptide levels) and oncologic outcomes were recorded. RESULTS PIPIAT was not performed in 7/41 patients (4 cases for an inadequate islet mass, 2 cases for haemodynamic instability and 1 case for islet culture contamination), while it was successfully performed in 34/34 patients. Procedure-related major complications occurred in four patients: two bleedings requiring transfusions, one patient with left portal vein thrombosis and one patient with sepsis. Median follow-up duration was 546 days. Insulin independence was achieved in 15/34 (44%) patients, partial graft function in 16/34 (47%) patients and no function in 3/34 (9%) patients. None of the 17 patients with malignant nodules developed liver metastases during follow-up. CONCLUSION PIPIAT, performed under ultrasound and fluoroscopy combined guidance and not requiring immunosuppression, is feasible, with a relatively low complication rate and a better metabolic outcome than allotransplantation. ADVANCES IN KNOWLEDGE PIPIAT can prevent pancreatogenic diabetes. Ultrasound is a useful tool for the guidance and monitoring of PIPIAT.
Collapse
Affiliation(s)
- Massimo Venturini
- 1 Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Sallemi
- 1 Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Caterina Colantoni
- 1 Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Agostini
- 1 Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Balzano
- 2 Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- 1 Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,3 Vita-Salute University, San Raffaele Hospital, Milan, Italy
| | - Antonio Secchi
- 3 Vita-Salute University, San Raffaele Hospital, Milan, Italy.,4 Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- 1 Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,3 Vita-Salute University, San Raffaele Hospital, Milan, Italy
| | - Massimo Falconi
- 2 Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy.,3 Vita-Salute University, San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- 5 Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- 4 Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Del Maschio
- 1 Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,3 Vita-Salute University, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
55
|
Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A, Gala-Lopez B, Kin T, Mitrani E, Shapiro AMJ. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation. PLoS One 2016; 11:e0156053. [PMID: 27227978 PMCID: PMC4881949 DOI: 10.1371/journal.pone.0156053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.
Collapse
Affiliation(s)
| | - Lena Sapozhnikov
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rena L. Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Meygal Kahana
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
56
|
Matsushima H, Kuroki T, Adachi T, Kitasato A, Ono S, Tanaka T, Hirabaru M, Kuroshima N, Hirayama T, Sakai Y, Soyama A, Hidaka M, Takatsuki M, Kin T, Shapiro J, Eguchi S. Human Fibroblast Sheet Promotes Human Pancreatic Islet Survival and Function In Vitro. Cell Transplant 2016; 25:1525-1537. [PMID: 26877090 DOI: 10.3727/096368916x690854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In previous work, we engineered functional cell sheets using bone marrow-derived mesenchymal stem cells (BM-MSCs) to promote islet graft survival. In the present study, we hypothesized that a cell sheet using dermal fibroblasts could be an alternative to MSCs, and then we aimed to evaluate the effects of this cell sheet on the functional viability of human islets. Fibroblast sheets were fabricated using temperature-responsive culture dishes. Human islets were seeded onto fibroblast sheets. The efficacy of the fibroblast sheets was evaluated by dividing islets into three groups: the islets-alone group, the coculture with fibroblasts group, and the islet culture on fibroblast sheet group. The ultrastructure of the islets cultured on each fibroblast sheet was examined by electron microscopy. The fibroblast sheet expression of fibronectin (as a component of the extracellular matrix) was quantified by Western blotting. After 3 days of culture, islet viabilities were 70.2 ± 9.8%, 87.4 ± 5.8%, and 88.6 ± 4.5%, and survival rates were 60.3 ± 6.8%, 65.3 ± 3.0%, and 75.8 ± 5.6%, respectively. Insulin secretions in response to high-glucose stimulation were 5.1 ± 1.6, 9.4 ± 3.8, and 23.5 ± 12.4 µIU/islet, and interleukin-6 (IL-6) secretions were 3.0 ± 0.7, 5.1 ± 1.2, and 7.3 ± 1.0 ng/day, respectively. Islets were found to incorporate into the fibroblast sheets while maintaining a three-dimensional structure and well-preserved extracellular matrix. The fibroblast sheets exhibited a higher expression of fibronectin compared to fibroblasts alone. In conclusion, human dermal fibroblast sheets fabricated by tissue-engineering techniques could provide an optimal substrate for human islets, as a source of cytokines and extracellular matrix.
Collapse
Affiliation(s)
- Hajime Matsushima
- Department of Surgery, Nagasaki University, Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Tsuchiya H, Sakata N, Yoshimatsu G, Fukase M, Aoki T, Ishida M, Katayose Y, Egawa S, Unno M. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation. PLoS One 2015; 10:e0140910. [PMID: 26473955 PMCID: PMC4608691 DOI: 10.1371/journal.pone.0140910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Methods Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Results Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. Conclusions The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.
Collapse
Affiliation(s)
| | - Naoaki Sakata
- Department of Surgery, Tohoku University, Sendai, Japan
- * E-mail:
| | | | | | - Takeshi Aoki
- Department of Surgery, Tohoku University, Sendai, Japan
| | | | - Yu Katayose
- Department of Surgery, Tohoku University, Sendai, Japan
- Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Mediscine, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
58
|
Nerve Growth Factor Improves Survival and Function of Transplanted Islets Via TrkA-mediated β Cell Proliferation and Revascularization. Transplantation 2015; 99:1132-43. [PMID: 25806408 DOI: 10.1097/tp.0000000000000655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Nerve growth factor (NGF), which plays important roles in promoting growth and differentiation of nerve cells, has recently been reported as a regulator in pancreatic β cells in terms of insulin releasing function. In this study, we examined whether NGF stimulation would promote islet graft survival and function in islet transplantation. METHODS We found that supplementation of cultured islets with NGF improved the viability of islet cells and induced the production of insulin, vascular endothelial growth factor, and cellular proliferative markers. Because a specific inhibitor of TrkA, K252a, blocked all these effects, we propose that the TrkA receptor is the mediator of NGF stimulation. RESULTS After transplantation to the kidney subcapsule and liver of syngenic diabetic mice, a higher rate of normoglycemic achievement, increased serum insulin, and improved glucose tolerance were observed in the mice transplanted with NGF-pretreated islet grafts. Histological analysis revealed higher expression of insulin and vascular endothelial growth factor, an increase in proliferative β cells, and revascularization in NGF-pretreated islet grafts without activation of any inflammatory cells. CONCLUSIONS The NGF treatment can therefore serve as a new and promising therapeutic tool for improving islet graft viability and function in islet transplantation.
Collapse
|
59
|
Abstract
BACKGROUND Pancreatic islet transplantation offers a promising biotherapy for the treatment of type 1 diabetes, but this procedure has met significant challenges over the years. One such challenge is to address why primary graft function still remains inconsistent after islet transplantation. Several variables have been shown to affect graft function, but the impact of procedure-related complications on primary and long-term graft functions has not yet been explored. METHODS Twenty-six patients with established type 1 diabetes were included in this study. Each patient had two to three intraportal islet infusions to obtain 10,000 islet equivalent (IEQ)/kg in body weight, equaling a total of 68 islet infusions. Islet transplantation consisted of three sequential fresh islet infusions within 3 months. Islet infusions were performed surgically or under ultrasound guidance, depending on patient morphology, availability of the radiology suite, and patient medical history. Prospective assessment of adverse events was recorded and graded using "Common Terminology Criteria for adverse events in Trials of Adult Pancreatic Islet Transplantation." RESULTS There were no deaths or patients dropouts. Early complications occurred in nine of 68 procedures. β score 1 month after the last graft and optimal graft function (β score ≥7) rate were significantly lower in cases of procedure-related complications (P = 0.02, P = 0.03). Procedure-related complications negatively impacted graft function (P = 0.009) and was an independent predictive factor of long-term graft survival (P = 0.033) in multivariate analysis. CONCLUSION Complications occurring during radiologic or surgical intraportal islet transplantation significantly impair primary graft function and graft survival regardless of their severity.
Collapse
|
60
|
Abstract
Islet transplantation is considered an advanced therapy in the treatment of type-1 diabetes, with a progressive improvement of clinical results as seen in the Collaborative Islet Transplant Registry (CITR) report. It is an accepted method for the stabilization of frequent hypoglycemia, or severe glycemic lability, in patients with hypoglycemic unawareness, poor diabetic control, or a resistance to intensive insulin-based therapies. Worldwide data confirm a positive trend in this field, with the integrated management of pivotal factors: adequate islet mass, immunosuppressive protocols, additional anti-inflammatory therapy, and pre-transplant allo-immunity assessment. Insulin independence has been observed in several clinical trials with different rate, ranging 100-65% of patients; the maintenance of this condition during the follow-up progressively decreased, actually arranged on 44% 3 years after the last infusion, according to data reported from the CITR. Successful duration is progressively increasing, with ≥13 years being the longest reported insulin-free condition on record. The immediate results of functioning islet transplantation are an improvement in hypoglycemic awareness and a reduction in the glycated hemoglobin level. Furthermore, many studies have shown its influence on the chronic complications of diabetes, such as peripheral neuropathy, retinopathy, and macroangiopathy. Pre-transplant nephropathy remains an exclusion criterion as immunosuppressive therapy can exacerbate kidney-function deterioration. The problems linked to immunosuppression following islet transplantation for the treatment of type-1 diabetes need to be considered in order to achieve the correct risk/benefit ratio for each patient.
Collapse
|
61
|
Moore SJ, Gala-Lopez BL, Pepper AR, Pawlick RL, Shapiro AMJ. Bioengineered stem cells as an alternative for islet cell transplantation. World J Transplant 2015; 5:1-10. [PMID: 25815266 PMCID: PMC4371156 DOI: 10.5500/wjt.v5.i1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/18/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes is an autoimmune and increasingly prevalent condition caused by immunological destruction of beta cells. Insulin remains the mainstay of therapy. Endeavours in islet transplantation have clearly demonstrated that type 1 diabetes is treatable by cellular replacement. Many challenges remain with this approach. The opportunity to use bioengineered embryonic or adult pluripotential stem cells, or islets derived from porcine xenograft sources could address future demands, but are still associated with considerable challenges. This detailed review outlines current progress in clinical islet transplantation, and places this in perspective for the remarkable scientific advances now occurring in stem cell and regenerative medicine approaches in the treatment of future curative treatment of diabetes.
Collapse
|
62
|
Yoshimatsu G, Sakata N, Tsuchiya H, Minowa T, Takemura T, Morita H, Hata T, Fukase M, Aoki T, Ishida M, Motoi F, Naitoh T, Katayose Y, Egawa S, Unno M. The co-transplantation of bone marrow derived mesenchymal stem cells reduced inflammation in intramuscular islet transplantation. PLoS One 2015; 10:e0117561. [PMID: 25679812 PMCID: PMC4332659 DOI: 10.1371/journal.pone.0117561] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/27/2014] [Indexed: 12/12/2022] Open
Abstract
Aims/Hypothesis Although the muscle is one of the preferable transplant sites in islet transplantation, its transplant efficacy is poor. Here we attempted to determine whether an intramuscular co-transplantation of mesenchymal stem cells (MSCs) could improve the outcome. Methods We co-cultured murine islets with MSCs and then analyzed the morphological changes, viability, insulin-releasing function (represented by the stimulation index), and gene expression of the islets. We also transplanted 500 islets intramuscularly with or without 5 × 105 MSCs to diabetic mice and measured their blood glucose level, the glucose changes in an intraperitoneal glucose tolerance test, and the plasma IL-6 level. Inflammation, apoptosis, and neovascularization in the transplantation site were evaluated histologically. Results The destruction of islets tended to be prevented by co-culture with MSCs. The stimulation index was significantly higher in islets co-cultured with MSCs (1.78 ± 0.59 vs. 7.08 ± 2.53; p = 0.0025). In terms of gene expression, Sult1c2, Gstm1, and Rab37 were significantly upregulated in islets co-cultured with MSCs. Although MSCs were effective in the in vitro assays, they were only partially effective in facilitating intramuscular islet transplantation. Co-transplanted MSCs prevented an early inflammatory reaction from the islets (plasma IL-6; p = 0.0002, neutrophil infiltration; p = 0.016 inflammatory area; p = 0.021), but could not promote neovascularization in the muscle, resulting in the failure of many intramuscular transplanted islets to engraft. Conclusions In conclusion, co-culturing and co-transplanting MSCs is potentially useful in islet transplantation, especially in terms of anti-inflammation, but further augmentation for an anti-apoptosis effect and neovascularization is necessary.
Collapse
Affiliation(s)
- Gumpei Yoshimatsu
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoaki Sakata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruyuki Tsuchiya
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Japan
| | - Taro Takemura
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Japan
| | - Hiromi Morita
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Japan
| | - Tatsuo Hata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiko Fukase
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Naitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Katayose
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Integrated Surgery and Oncology, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
63
|
Gunawardana SC. Benefits of healthy adipose tissue in the treatment of diabetes. World J Diabetes 2014; 5:420-430. [PMID: 25126390 PMCID: PMC4127579 DOI: 10.4239/wjd.v5.i4.420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin. Insulin deficiency is either absolute due to destruction or failure of pancreatic β cells, or relative due to decreased sensitivity of peripheral tissues to insulin. The primary lesion being related to insulin, treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin. These therapies have their own limitations and complications, some of which can be life-threatening. For example, exogenous insulin administration can lead to fatal hypoglycemic episodes; islet/pancreas transplantation requires life-long immunosuppressive therapy; and anti-diabetic drugs have dangerous side effects including edema, heart failure and lactic acidosis. Thus the need remains for better safer long term treatments for diabetes. The ultimate goal in treating diabetes is to re-establish glucose homeostasis, preferably through endogenously generated hormones. Recent studies increasingly show that extra-pancreatic hormones, particularly those arising from adipose tissue, can compensate for insulin, or entirely replace the function of insulin under appropriate circumstances. Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism. While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines, healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties, which can complement and/or compensate for the function of insulin. Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes, and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin. Although specific adipokines may correct diabetes, administration of individual adipokines still carries risks similar to those of insulin monotherapy. Thus a better approach is to achieve glucose homeostasis with endogenously-generated adipokines through transplantation or regeneration of healthy adipose tissue. Our recent studies on mouse models show that type 1 diabetes can be reversed without insulin through subcutaneous transplantation of embryonic brown adipose tissue, which leads to replenishment of recipients’ white adipose tissue; increase of a number of beneficial adipokines; and fast and long-lasting euglycemia. Insulin-independent glucose homeostasis is established through a combination of endogenously generated hormones arising from the transplant and/or newly-replenished white adipose tissue. Transplantation of healthy white adipose tissue is reported to alleviate type 2 diabetes in rodent models on several occasions, and increasing the content of endogenous brown adipose tissue is known to combat obesity and type 2 diabetes in both humans and animal models. While the underlying mechanisms are not fully documented, the beneficial effects of healthy adipose tissue in improving metabolism are increasingly reported, and are worthy of attention as a powerful tool in combating metabolic disease.
Collapse
|
64
|
Balzano G, Carvello M, Piemonti L, Nano R, Ariotti R, Mercalli A, Melzi R, Maffi P, Braga M, Staudacher C. Combined laparoscopic spleen-preserving distal pancreatectomy and islet autotransplantation for benign pancreatic neoplasm. World J Gastroenterol 2014; 20:4030-4036. [PMID: 24744593 PMCID: PMC3983459 DOI: 10.3748/wjg.v20.i14.4030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/05/2013] [Accepted: 03/07/2013] [Indexed: 02/07/2023] Open
Abstract
AIM: To evaluate the safety and feasibility of laparoscopic spleen-preserving distal pancreatectomy (LSPDP) with autologous islet transplantation (AIT) for benign tumors of the pancreatic body-neck.
METHODS: Three non-diabetic, female patients (age 37, 44 and 35 years, respectively) were declared candidates for surgery, between May and September 2011, because of pancreatic body/neck cystic lesions. The planned operation was an LSPDP associated with AIT from the normal pancreas distal to the neoplasm. Islets isolation was performed on the residual pancreatic parenchyma after frozen section examination of the margin. Purified autologous islets were infused into the portal vein by a percutaneous transhepatic approach the day after surgery.
RESULTS: The procedure was performed successfully in all the three cases, and the spleen was preserved along with its vessels. Mean operation time was 283 ± 52 min and average blood loss was 133 ± 57 mL. Residual pancreas weights were 33, 22 and 30 g, and 105.200, 40.390 and 94.790 islet equivalents were isolated, respectively. Surgical complications occurred in one patient (grade A pancreatic fistula). Postoperative stays were 6, 6 and 7 d, respectively. Histopathological evaluation revealed mucinous cystic neoplasm in cases 1 and 3, and serous cystic neoplasm in patient 2. No postoperative insulin administration was required. One patient developed a transient partial portal thrombosis 2 mo after islet infusion. Patients are insulin independent at a mean follow up of 8 ± 2 mo.
CONCLUSION: Combination of LSPDP and AIT is feasible and could be effective to minimize the surgical impact for benign neoplasm of pancreatic body-neck.
Collapse
|
65
|
|
66
|
Mittal S, Johnson P, Friend P. Pancreas transplantation: solid organ and islet. Cold Spring Harb Perspect Med 2014; 4:a015610. [PMID: 24616200 DOI: 10.1101/cshperspect.a015610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transplantation of the pancreas, either as a solid organ or as isolated islets of Langerhans, is indicated in a small proportion of patients with insulin-dependent diabetes in whom severe complications develop, particularly severe glycemic instability and progressive secondary complications (usually renal failure). The potential to reverse diabetes has to be balanced against the morbidity of long-term immunosuppression. For a patient with renal failure, the treatment of choice is often a simultaneous transplant of the pancreas and kidney (SPK), whereas for a patient with glycemic instability, specifically hypoglycemic unawareness, the choice between a solid organ and an islet transplant has to be individual to the patient. Results of SPK transplantation are comparable to other solid-organ transplants (kidney, liver, heart) and there is evidence of improved quality of life and life expectancy, but the results of solitary pancreas transplantation and islets are inferior with respect to graft survival. There is some evidence of benefit with respect to the progression of secondary diabetic complications in patients with functioning transplants for several years.
Collapse
Affiliation(s)
- Shruti Mittal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | |
Collapse
|
67
|
Sakata N, Aoki T, Yoshimatsu G, Tsuchiya H, Hata T, Katayose Y, Egawa S, Unno M. Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes Metab Res Rev 2014; 30:1-10. [PMID: 24000195 DOI: 10.1002/dmrr.2463] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Abstract
Intraportal islet transplantation has a long history as a procedure for clinical islet transplantation. However, many recent studies revealed that the intraportal procedure has some disadvantages in transplant efficiency and safety. Many candidates as an optimal transplant site for islets have been assessed, but further studies and clinical trials are still necessary. Intramuscular and subcutaneous spaces are important candidates, because the transplant and biopsy procedures are simple approaches with minimal invasion and few complications. Although they are sites with hypovascularity and hypoxia, which contribute to the poor transplant efficiency, many experimental trials for improving the outcome in intramuscular and subcutaneous islet transplantations have been performed, focusing on early angiogenesis and scaffolds for engrafting transplanted islets. We review current progress in intramuscular and subcutaneous islet transplantations and discuss ways to develop them as optimal transplant sites for islets.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Pepper AR, Gala-Lopez B, Ziff O, Shapiro AMJ. Current status of clinical islet transplantation. World J Transplant 2013; 3:48-53. [PMID: 24392308 PMCID: PMC3879523 DOI: 10.5500/wjt.v3.i4.48] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/29/2013] [Indexed: 02/05/2023] Open
Abstract
Islet transplantation (IT) is today a well-established treatment modality for selected patients with type 1 diabetes mellitus (T1DM). After the success of the University of Alberta group with a modified approach to the immune protection of islets, the international experience grew along with the numbers of transplants in highly specialized centers. Yet, long-term analysis of those initial results from the Edmonton group indicated that insulin-independence was not durable and most patients return to modest amounts of insulin around the fifth year, without recurrent hypoglycemia events. Many phenomena have been identified as limiting factor for the islet engraftment and survival, and today all efforts are aimed to improve the quality of islets and their engrafting process, as well as more optimized immunosuppression to facilitate tolerance and ultimately, better long term survival. This brief overview presents recent progress in IT. A concise historical perspective is provided, along with the latest efforts to improve islet engraftment, immune protection and ultimately, prolonged graft survival. It is apparent that as the community continues to work together further optimizing IT, it is hopeful a cure for T1DM will soon be achievable.
Collapse
|
69
|
Wilhelm JJ, Bellin MD, Dunn TB, Balamurugan AN, Pruett TL, Radosevich DM, Chinnakotla S, Schwarzenberg SJ, Freeman ML, Hering BJ, Sutherland DER, Beilman GJ. Proposed thresholds for pancreatic tissue volume for safe intraportal islet autotransplantation after total pancreatectomy. Am J Transplant 2013; 13:3183-91. [PMID: 24148548 PMCID: PMC4087156 DOI: 10.1111/ajt.12482] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 01/25/2023]
Abstract
The simple question of how much tissue volume (TV) is really safe to infuse in total pancreatectomy-islet autotransplantation (TP-IAT) for chronic pancreatitis (CP) precipitated this analysis. We examined a large cohort of CP patients (n = 233) to determine major risk factors for elevated portal pressure (PP) during islet infusion, using bivariate and multivariate regression modeling. Rates of bleeding requiring operative intervention and portal venous thrombosis (PVT) were evaluated. The total TV per kilogram body weight infused intraportally was the best independent predictor of change in PP (ΔPP) (p < 0.0001; R(2) = 0.566). Rates of bleeding and PVT were 7.73% and 3.43%, respectively. Both TV/kg and ΔPP are associated with increased complication rates, although ΔPP appears to be more directly relevant. Receiver operating characteristic analysis identified an increased risk of PVT above a suggested cut-point of 26 cmH2O (area under the curve = 0.759), which was also dependent on age. This ΔPP threshold was more likely to be exceeded in cases where the total TV was >0.25 cm(3)/kg. Based on this analysis, we have recommended targeting a TV of <0.25 cm(3)/kg during islet manufacturing and to halt intraportal infusion, at least temporarily, if the ΔPP exceeds 25 cmH2O. These models can be used to guide islet manufacturing and clinical decision making to minimize risks in TP-IAT recipients.
Collapse
Affiliation(s)
- J J Wilhelm
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, St. Paul, MN
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bozkurt NC, Peixoto EML, Froud T, Herrada E, Corrales A, Ricordi C, Alejandro R. Hepatic hematoma after islet cell transplantation. Transplantation 2013; 95:e73-6. [PMID: 23774776 PMCID: PMC3810207 DOI: 10.1097/tp.0b013e31829468e2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nujen Colak Bozkurt
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, 06580, Turkey
| | | | - Tatiana Froud
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Radiology, Jackson Memorial Hospital, Miami, FL, 33136, USA
| | - Eva Herrada
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Andrea Corrales
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Jackson Memorial Hospital-University of Miami Transplant Institute, University of Miami Miller School of Medicine, FL, 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rodolfo Alejandro
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
71
|
Balamurugan AN, Pruett TL. Trying to prevent the clogged drain: optimizing the yield and function of portal vein-infused islets. Dig Dis Sci 2013; 58:1170-2. [PMID: 23649376 DOI: 10.1007/s10620-013-2682-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
72
|
Islet autotransplantation to preserve beta cell mass in selected patients with chronic pancreatitis and diabetes mellitus undergoing total pancreatectomy. Pancreas 2013; 42:317-21. [PMID: 23146918 PMCID: PMC3573248 DOI: 10.1097/mpa.0b013e3182681182] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Islet autotransplantation (IAT) is performed in nondiabetic patients with chronic pancreatitis at the time of total pancreatectomy (TP) to minimize risk of postoperative diabetes. The role of TP-IAT in patients with chronic pancreatitis and C-peptide-positive diabetes is not established. We postulate that IAT can preserve beta cell mass and thereby benefit patients with preexisting diabetes undergoing TP. METHODS Preoperative metabolic testing, islet isolation outcomes, and subsequent islet graft function were reviewed for 27 patients with diabetes mellitus and chronic pancreatitis undergoing TP-IAT. The relationships between the results of preoperative metabolic testing and islet isolation outcomes were explored using regression analysis. RESULTS Mean islet yield was 2060 (SD, 2408) islet equivalents/kg. Peak C-peptide (from mixed meal tolerance testing) was the strongest predictor of islet yield, with higher stimulated C-peptide levels associated with greater islet mass. Half of the patients who had C-peptide levels measured after transplantation demonstrated C-peptide production at a level that conveys protective benefit in type 1 diabetes (≥ 0.6 ng/mL). CONCLUSIONS These findings provide proof of concept that significant islet mass can be isolated in patients with chronic pancreatitis and C-peptide-positive diabetes mellitus undergoing TP-IAT. Stimulated C-peptide may be a useful marker of islet mass before transplantation in these patients.
Collapse
|
73
|
Cantarelli E, Citro A, Marzorati S, Melzi R, Scavini M, Piemonti L. Murine animal models for preclinical islet transplantation: No model fits all (research purposes). Islets 2013; 5:79-86. [PMID: 23751893 PMCID: PMC4204022 DOI: 10.4161/isl.24698] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Advances in islet transplantation research have led to remarkable improvements in the outcome in humans with type 1 diabetes. However, pitfalls, mainly linked both to early liver-specific inflammatory events and to pre-existing and transplant-induced auto- and allo-specific adaptive immune responses, still remain. In this scenario research into pancreatic islet transplantation, essential to investigate new strategies to overcome open issues, needs very well-designed preclinical studies to obtain consistent and reliable results and select only promising strategies that may be translated into the clinical practice. This review discusses the main shortcomings of the mouse models currently used in islet transplantation research, outlining the main factors and variables to take into account for the design of new preclinical studies. Since several parameters concerning both the graft (i.e., islets) and the recipient (i.e., diabetic mice) may influence transplant outcome, we recommend considering several critical points in designing future bench-to-bedside islet transplantation research.
Collapse
Affiliation(s)
- Elisa Cantarelli
- San Raffaele Diabetes Research Institute (OSR-DRI), San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
74
|
Bagul A, Frost JH, Drage M. Stem cells and their role in renal ischaemia reperfusion injury. Am J Nephrol 2013; 37:16-29. [PMID: 23295823 DOI: 10.1159/000345731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/07/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ischaemia-reperfusion injury (IRI) remains one of the leading causes of acute kidney injury (AKI). IRI is an underlying multifactorial pathophysiological process which affects the outcome in both native and transplanted patients. The high morbidity and mortality associated with IRI/AKI and disappointing results from current available clinical therapeutic approaches prompt further research. Stem cells (SC) are undifferentiated cells that can undergo both renewal and differentiation into one or more cell types which can possibly ameliorate IRI. AIM To carry out a detailed literature analysis and construct a comprehensive literature review addressing the role of SC in AKI secondary to IRI. METHODS Evidence favouring the role of SC in renal IRI and evidence showing no benefits of SC in renal IRI are the two main aspects to be studied. The search strategy was based on an extensive search addressing MESH terms and free text terms. RESULTS The majority of studies in the field of renal IRI and stem cell therapy show substantial benefits. CONCLUSIONS Studies were mostly conducted in small animal models, thus underscoring the need for further pre-clinical studies in larger animal models, and results should be taken with caution. SC therapy may be promising though controversy exists in the exact mechanism. Thorough scientific exploration is required to assess mechanism, safety profile, reproducibility and methods to monitor administered SC.
Collapse
Affiliation(s)
- Atul Bagul
- Department of Transplantation, MRC Centre for Transplantation, Guys and St. Thomas' NHS Foundation Trust, London, UK.
| | | | | |
Collapse
|
75
|
Shapiro AMJ. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev Diabet Stud 2012; 9:385-406. [PMID: 23804275 DOI: 10.1900/rds.2012.9.385] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, 2000 College Plaza, 8215 112th Street, Edmonton AB Canada T6G 2C8.
| |
Collapse
|
76
|
Abstract
Despite modern medical breakthroughs, diabetes mellitus is a worldwide leading cause of morbidity and mortality. Definitive surgical treatment of diabetes mellitus was established with the advent and refinement of clinical pancreas transplantation in the 1960s. During the following decades, critical discoveries involving islet isolation and engraftment took place. Clinical islet cell transplantation represents the potential for reduced insulin requirements and debilitating hypoglycemic episodes without the morbidity of surgery. Unfortunately, islet cell transplantation was unable to achieve comparable results with solid organ transplantation. This was until the Edmonton protocol (steroid-free immunosuppression) was described, which demonstrated that islet cell transplantation could be a viable alternative to pancreas transplantation. Significant advances in islet purification techniques and novel immunomodulatory agents have since renewed interest in islet cell transplantation. Yet the field is still challenged by a limited supply of islet cells, inadequate engraftment, and the deleterious effects of chronic immunosuppression. This article discusses the history and the current status of clinical islet cell transplantation.
Collapse
Affiliation(s)
- Avinash Agarwal
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
77
|
Sakata N, Sumi S, Yoshimatsu G, Goto M, Egawa S, Unno M. Encapsulated islets transplantation: Past, present and future. World J Gastrointest Pathophysiol 2012; 3:19-26. [PMID: 22368783 PMCID: PMC3284522 DOI: 10.4291/wjgp.v3.i1.19] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/04/2011] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation could become an ideal treatment for severe diabetes to prevent hypoglycemia shock and irreversible diabetic complications, once some of the major and unresolved obstacles are overcome, including limited donor supplies and side effects caused by permanent immunosuppressant use. Approximately 30 years ago, some groups succeeded in improving the blood glucose of diabetic animals by transplanting encapsulated islets with semi-permeable membranes consisting of polymer. A semi-permeable membrane protects both the inner islets from mechanical stress and the recipient's immune system (both cellular and humoral immunities), while allowing bidirectional diffusion of nutrients, oxygen, glucose, hormones and wastes, i.e., immune-isolation. This device, which enables immune-isolation, is called encapsulated islets or bio-artificial pancreas. Encapsulation with a semi-permeable membrane can provide some advantages: (1) this device protects transplanted cells from the recipient's immunity even if the xenogeneic islets (from large animals such as pig) or insulin-producing cells are derived from cells that have the potential for differentiation (some kinds of stem cells). In other words, the encapsulation technique can resolve the problem of limited donor supplies; and (2) encapsulation can reduce or prevent chronic administration of immunosuppressants and, therefore, important side effects otherwise induced by immunosuppressants. And now, many novel encapsulated islet systems have been developed and are being prepared for testing in a clinical setting.
Collapse
|
78
|
Senior PA, Kin T, Shapiro J, Koh A. Islet Transplantation at the University of Alberta: Status Update and Review of Progress over the Last Decade. Can J Diabetes 2012; 36:32-37. [DOI: 10.1016/j.jcjd.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|