51
|
Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF. Hodgkin-Huxley-Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J Physiol 2020; 598:3071-3083. [PMID: 32468591 DOI: 10.1113/jp278086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glutamate receptors are essential ligand-gated ion channels in the central nervous system that mediate excitatory synaptic transmission in response to the release of glutamate from presynaptic terminals. The structural and biophysical basis underlying the function of these receptors has been studied for decades by a wide range of approaches. However recent structural, pharmacological and genetic studies have provided new insight into the regions of this protein that are critical determinants of receptor function. Lack of variation in specific areas of the protein amino acid sequences in the human population has defined three regions in each receptor subunit that are under selective pressure, which has focused research efforts and driven new hypotheses. In addition, these three closely positioned elements reside near a cavity that is shown by multiple studies to be a likely site of action for allosteric modulators, one of which is currently in use as an FDA-approved anticonvulsant. These structural elements are capable of controlling gating of the pore, and appear to permit some modulators bound within the cavity to also alter permeation properties. This creates a new precedent whereby features of the channel pore can be modulated by exogenous drugs that bind outside the pore. The convergence of structural, genetic, biophysical and pharmacological approaches is a powerful means to gain insight into the complex biological processes defined by neurotransmitter receptor function.
Collapse
Affiliation(s)
- Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
52
|
van der Aart J, Yaqub M, Kooijman EJM, Bakker J, Langermans JAM, Schuit RC, Hofman MBM, Christiaans JAM, Lammertsma AA, Windhorst AD, van Berckel BNM. Evaluation of the Novel PET Tracer [ 11C]HACH242 for Imaging the GluN2B NMDA Receptor in Non-Human Primates. Mol Imaging Biol 2020; 21:676-685. [PMID: 30306318 DOI: 10.1007/s11307-018-1284-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE There are currently no positron emission tomography (PET) radiotracers for the GluN2B (NR2B) binding sites of brain N-methyl-D-aspartate (NMDA) receptors. In rats, the GluN2B antagonist Ro25-6981 reduced the binding of N-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamin ([11C]HACH242). This paper reports the evaluation of [11C]HACH242 PET in non-human primates at baseline and following administration of the GluN2B negative allosteric modulator radiprodil. PROCEDURES Eight 90-min dynamic [11C]HACH242 PET scans were acquired in three male anaesthetised rhesus monkeys, including a retest session of subject 1, at baseline and 10 min after intravenous 10 mg/kg radiprodil. Standardised uptake values (SUV) were calculated for 9 brain regions. Arterial blood samples were taken at six timepoints to characterise pharmacokinetics in blood and plasma. Reliable input functions for kinetic modelling could not be generated due to variability in the whole-blood radioactivity measurements. RESULTS [11C]HACH242 entered the brain and displayed fairly uniform uptake. The mean (± standard deviation, SD) Tmax was 17 ± 7 min in baseline scans and 24 ± 15 min in radiprodil scans. The rate of radioligand metabolism in plasma (primarily to polar metabolites) was high, with mean parent fractions of 26 ± 10 % at 20 min and 8 ± 5 % at 85 min. Radiprodil increased [11C]HACH242 whole-brain SUV in the last PET frame by 25 %, 1 %, 3 and 17 % for subjects 1, 2, 3 and retest of subject 1, respectively. The mean brain to plasma ratio was 5.4 ± 2.6, and increased by 39 to 110 % in the radiprodil condition, partly due to lower parent plasma radioactivity of -11 to -56 %. CONCLUSIONS The present results show that [11C]HACH242 has a suitable kinetic profile in the brain and low accumulation of lipophilic radiometabolites. Radiprodil did not consistently change [11C]HACH242 brain uptake. These findings may be explained by variations in cerebral blood flow, a low fraction of specifically bound tracer, or interactions with endogenous NMDA receptor ligands at the binding site. Further experiments of ligand interactions are necessary to facilitate the development of radiotracers for in vivo imaging of the ionotropic NMDA receptor.
Collapse
Affiliation(s)
- Jasper van der Aart
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands. .,Centre for Human Drug Research, Leiden, The Netherlands.
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Esther J M Kooijman
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark B M Hofman
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Johannes A M Christiaans
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Ifenprodil-like NMDA receptor modulator based on the biphenyl scaffold. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Espadinha M, Viejo L, Lopes RMRM, Herrera-Arozamena C, Molins E, Dos Santos DJVA, Gonçalves L, Rodríguez-Franco MI, Ríos CDL, Santos MMM. Identification of tetracyclic lactams as NMDA receptor antagonists with potential application in neurological disorders. Eur J Med Chem 2020; 194:112242. [PMID: 32248004 DOI: 10.1016/j.ejmech.2020.112242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 01/26/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are crucial for the normal function of the central nervous system (CNS), and fundamental in memory and learning-related processes. The overactivation of these receptors is associated with numerous neurodegenerative and psychiatric disorders. Therefore, NMDAR is considered a relevant therapeutic target for many CNS disorders. Herein, we report the synthesis and pharmacological evaluation of a new scaffold with antagonistic activity for NMDAR. Specifically, a chemical library of eighteen 1-aminoindan-2-ol tetracyclic lactams was synthesized and screened as NMDAR antagonists. The compounds were obtained by chiral pool synthesis using enantiomerically pure 1-aminoindan-2-ols as chiral inductors, and their stereochemistry was proven by X-ray crystallographic analysis of two target compounds. Most compounds reveal NMDAR antagonism, and eleven compounds display IC50 values in a Ca2+ entry-sensitive fluo-4 assay in the same order of magnitude of memantine, a clinically approved NMDAR antagonist. Docking studies suggest that the novel compounds can act as NMDAR channel blockers since there is a compatible conformation with MK-801 co-crystallized with NMDAR channel. In addition, we show that the tetracyclic 1-aminoindan-2-ol derivatives are brain permeable and non-toxic, and we identify promising hits for further optimization as modulators of the NMDAR function.
Collapse
Affiliation(s)
- Margarida Espadinha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Lucía Viejo
- Instituto Teófilo Hernando and Departamento Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain
| | - Ricardo M R M Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | | | - Elies Molins
- Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193, Cerdanyola, Spain
| | - Daniel J V A Dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal; LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | | | - Cristóbal de Los Ríos
- Instituto Teófilo Hernando and Departamento Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
55
|
Temme L, Bechthold E, Schreiber JA, Gawaskar S, Schepmann D, Robaa D, Sippl W, Seebohm G, Wünsch B. Negative allosteric modulators of the GluN2B NMDA receptor with phenylethylamine structure embedded in ring-expanded and ring-contracted scaffolds. Eur J Med Chem 2020; 190:112138. [PMID: 32070917 DOI: 10.1016/j.ejmech.2020.112138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/09/2020] [Indexed: 11/26/2022]
Abstract
A set of GluN2B NMDA receptor antagonists with conformationally restricted phenylethylamine substructure was prepared and pharmacologically evaluated. The phenylethylamine substructure was embedded in ring expanded 3-benzazocines 4 as well as ring-contracted tetralinamines 6 and indanamines 7. The ligands 4, 6 and 7 were synthesized by reductive alkylation of secondary amine 11, reductive amination of ketones 12 and 16 and nucleophilic substitution of nosylates 14 and 17. The moderate GluN2B affinity of 3-benzazocine 4d (Ki = 32 nM) translated into moderate cytoprotective activity (IC50 = 890 nM) and moderate ion channel inhibition (60% at 10 μM) in two-electrode voltage clamp experiments with GluN1a/GluN2B expressing oocytes. Although some of the tetralinamines 6 and indanamines 7 showed very high GluN2B affinity (e.g. Ki (7f) = 3.2 nM), they could not inhibit glutamate/glycine inducted cytotoxicity. The low cytoprotective activity of 3-benzazocines 4, tetralinamines 6 and indanamines 7 was attributed to the missing OH moiety at the benzene ring and/or in benzylic position. Docking studies showed that the novel GluN2B ligands adopt similar binding poses as Ro 25-6981 with the central H-bond interaction between the protonated amino moiety of the ligands and the carbamoyl moiety of Gln110. However, due to the lack of a second H-bond forming group, the ligands can adopt two binding poses within the ifenprodil binding pocket.
Collapse
Affiliation(s)
- Louisa Temme
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität, Münster, Germany
| | - Elena Bechthold
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Julian A Schreiber
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität, Münster, Germany; Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120, Halle (Saale), Germany
| | - Sandeep Gawaskar
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Dina Robaa
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, D-48149, Münster, Germany
| | - Wolfgang Sippl
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, D-48149, Münster, Germany
| | - Guiscard Seebohm
- Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120, Halle (Saale), Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
56
|
Temme L, Börgel F, Schepmann D, Robaa D, Sippl W, Daniliuc C, Wünsch B. Impact of hydroxy moieties at the benzo[7]annulene ring system of GluN2B ligands: Design, synthesis and biological evaluation. Bioorg Med Chem 2019; 27:115146. [PMID: 31648876 DOI: 10.1016/j.bmc.2019.115146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
Abstract
In this study, the impact of one or two hydroxy moieties at the benzo[7]annulene scaffold on the GluN2B affinity and cytoprotective activity was analyzed. The key intermediate for the synthesis of OH-substituted benzo[7]annulenamines 11-13 and 17 was the epoxyketone 8. Reductive epoxide opening of 8 resulted with high regioselectivity in the 5-hydroxyketone 9 (Pd(OAc)2, HCO2H, phosphane ligand) or the 6-hydroxyketone 10 (H2, Pd/C), whereas hydrolysis in aqueous dioxane led to the dihydroxyketone 14. Reductive amination of these ketones with primary amines and NaBH(OAc)3 afforded the benzo[7]annulenamines 11-13 and 17. In receptor binding studies 5-OH derivatives 11 and 12 showed higher GluN2B affinity than 6-OH derivatives 13, which in turn were more active than 5,6-di-OH derivative 17a. The same order was found for the cytoprotective activity of the ligands. The tertiary amine 12a with one OH moiety in 5-position represents the most promising GluN2B negative allosteric modulator with a binding affinity of Ki = 49 nM and a cytoprotective activity of IC50 = 580 nM. In the binding pocket 12a shows a crucial H-bond between the benzylic OH moiety and the backbone carbonyl O-atom of Ser132 (GluN1b). It was concluded that a 5-OH moiety is essential for the inhibition of the NMDA receptor associated ion channel, whereas a OH moiety in 6-position is detrimental for binding and inhibition. An OH or CH2OH moiety at 2-position results in binding at the ifenprodil binding site, but very weak ion channel inhibition.
Collapse
Affiliation(s)
- Louisa Temme
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität Münster, Germany
| | - Frederik Börgel
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Dina Robaa
- Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Wolfgang Sippl
- Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Constantin Daniliuc
- Organisch-chemisches Institut der Westfälischen Wilhelms-Universität, Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität Münster, Germany.
| |
Collapse
|
57
|
Winkler DA, Warden AC, Prangé T, Colloc'h N, Thornton AW, Ramirez-Gil JF, Farjot G, Katz I. Massive in Silico Study of Noble Gas Binding to the Structural Proteome. J Chem Inf Model 2019; 59:4844-4854. [PMID: 31613613 DOI: 10.1021/acs.jcim.9b00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noble gases are chemically inert, and it was therefore thought they would have little effect on biology. Paradoxically, it was found that they do exhibit a wide range of biological effects, many of which are target-specific and potentially useful and some of which have been demonstrated in vivo. The underlying mechanisms by which useful pharmacology, such as tissue and neuroprotection, anti-addiction effects, and analgesia, is elicited are relatively unexplored. Experiments to probe the interactions of noble gases with specific proteins are more difficult with gases than those with other chemicals. It is clearly impractical to conduct the large number of gas-protein experiments required to gain a complete picture of noble gas biology. Given the simplicity of atoms as ligands, in silico methods provide an opportunity to gain insight into which noble gas-protein interactions are worthy of further experimental or advanced computational investigation. Our previous validation studies showed that in silico methods can accurately predict experimentally determined noble gas binding sites in X-ray structures of proteins. Here, we summarize the largest reported in silico reverse docking study involving 127 854 protein structures and the five nonradioactive noble gases. We describe how these computational screening methods are implemented, summarize the main types of interactions that occur between noble gases and target proteins, describe how the massive data set that this study generated can be analyzed (freely available at group18.csiro.au), and provide the NDMA receptor as an example of how these data can be used to understand the molecular pharmacology underlying the biology of the noble gases. We encourage chemical biologists to access the data and use them to expand the knowledge base of noble gas pharmacology, and to use this information, together with more efficient delivery systems, to develop "atomic drugs" that can fully exploit their considerable and relatively unexplored potential in medicine.
Collapse
Affiliation(s)
- D A Winkler
- CSIRO Future Industries , Bayview Avenue , Clayton , Victoria 3168 , Australia.,Monash Institute of Pharmaceutical Sciences , Monash University , 392 Royal Parade , Parkville 3052 , Australia.,La Trobe Institute for Molecular Science , La Trobe University , Kingsbury Drive , Bundoora 3086 , Australia.,School of Pharmacy , University of Nottingham , Nottingham NG7 2QL , U.K
| | - A C Warden
- CSIRO Land and Water , Clunies Ross Street , Acton , New South Wales 2601 , Australia
| | - T Prangé
- CiTeCoM UMR 8038 CNRS University Paris Descartes , Paris 75006 , France
| | - N Colloc'h
- ISTCT UMR 6030 CNRS Université de Caen-Normandie CEA, CERVOxy Team, Centre Cyceron , Caen 14032 , France
| | - A W Thornton
- CSIRO Future Industries , Bayview Avenue , Clayton , Victoria 3168 , Australia
| | - J-F Ramirez-Gil
- Medical R&D, Healthcare World Business Line, Air Liquide Santé International , Paris Innovation Campus , Jouy-en-Josas 78354 , France
| | - G Farjot
- Medical R&D, Healthcare World Business Line, Air Liquide Santé International , Paris Innovation Campus , Jouy-en-Josas 78354 , France
| | - I Katz
- Medical R&D, Healthcare World Business Line, Air Liquide Santé International , Paris Innovation Campus , Jouy-en-Josas 78354 , France
| |
Collapse
|
58
|
Schreiber JA, Schepmann D, Frehland B, Thum S, Datunashvili M, Budde T, Hollmann M, Strutz-Seebohm N, Wünsch B, Seebohm G. A common mechanism allows selective targeting of GluN2B subunit-containing N-methyl-D-aspartate receptors. Commun Biol 2019; 2:420. [PMID: 31754650 PMCID: PMC6858350 DOI: 10.1038/s42003-019-0645-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 01/24/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), especially GluN2B-containing NMDARs, are associated with neurodegenerative diseases like Parkinson, Alzheimer and Huntington based on their high Ca2+ conductivity. Overactivation leads to high intracellular Ca2+ concentrations and cell death rendering GluN2B-selective inhibitors as promising drug candidates. Ifenprodil represents the first highly potent prototypical, subtype-selective inhibitor of GluN2B-containing NMDARs. However, activity of ifenprodil on serotonergic, adrenergic and sigma receptors limits its therapeutic use. Structural reorganization of the ifenprodil scaffold to obtain 3-benzazepines retained inhibitory GluN2B activity but decreased the affinity at the mentioned non-NMDARs. While scaffold optimization improves the selectivity, the molecular inhibitory mechanism of these compounds is still not known. Here, we show a common inhibitory mechanism of ifenprodil and the related 3-benzazepines by mutational modifications of the receptor binding site, chemical modifications of the 3-benzazepine scaffold and subsequent in silico simulation of the inhibitory mechanism.
Collapse
Affiliation(s)
- Julian A. Schreiber
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Bastian Frehland
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Simone Thum
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Maia Datunashvili
- Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University Münster, Münster, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Nathalie Strutz-Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University Münster, Münster, Germany
| | - Guiscard Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| |
Collapse
|
59
|
Yi F, Bhattacharya S, Thompson CM, Traynelis SF, Hansen KB. Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors. J Physiol 2019; 597:5495-5514. [PMID: 31541561 DOI: 10.1113/jp278168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Triheteromeric NMDA receptors contain two GluN1 and two distinct GluN2 subunits and mediate excitatory neurotransmission in the CNS. Triheteromeric GluN1/2B/2D receptors have functional properties intermediate to those of diheteromeric GluN1/2B and GluN1/2D receptors. GluN1/2B/2D receptors are more sensitive to channel blockade by ketamine and memantine compared to GluN1/2B receptors in the presence of physiological Mg2+ . GluN2B-selective antagonists produce robust inhibition of GluN1/2B/2D receptors, and the GluN2B-selective positive allosteric modulator spermine enhances responses from GluN1/2B/2D but not GluN1/2A/2B receptors. These insights into the properties of triheteromeric GluN1/2B/2D receptors are necessary to appreciate their physiological roles in neural circuit function and the actions of therapeutic agents targeting NMDA receptors. ABSTRACT Triheteromeric NMDA-type glutamate receptors that contain two GluN1 and two different GluN2 subunits contribute to excitatory neurotransmission in the adult CNS. In the present study, we report properties of the triheteromeric GluN1/2B/2D NMDA receptor subtype that is expressed in distinct neuronal populations throughout the CNS. We show that neither GluN2B, nor GluN2D dominate the functional properties of GluN1/2B/2D receptors because agonist potencies, open probability and the glutamate deactivation time course of GluN1/2B/2D receptors are intermediate to those of diheteromeric GluN1/2B and GluN1/2D receptors. Furthermore, channel blockade of GluN1/2B/2D by extracellular Mg2+ is intermediate compared to GluN1/2B and GluN1/2D, although GluN1/2B/2D is more sensitive to blockade by ketamine and memantine compared to GluN1/2B in the presence of physiological Mg2+ . Subunit-selective allosteric modulators have distinct activity at GluN1/2B/2D receptors, including GluN2B-selective antagonists, ifenprodil, EVT-101 and CP-101-606, which inhibit with similar potencies but with different efficacies at GluN1/2B/2D (∼65% inhibition) compared to GluN1/2B (∼95% inhibition). Furthermore, the GluN2B-selective positive allosteric modulator spermine enhances responses from GluN1/2B/2D but not GluN1/2A/2B receptors. We show that these key features of allosteric modulation of recombinant GluN1/2B/2D receptors are also observed for NMDA receptors in hippocampal interneurons but not CA1 pyramidal cells, which is consistent with the expression of GluN1/2B/2D receptors in interneurons and GluN1/2A/2B receptors in pyramidal cells. Altogether, we uncover previously unknown functional and pharmacological properties of triheteromeric GluN1/2B/2D receptors that can facilitate advances in our understanding of their physiological roles in neural circuit function and therapeutic drug actions.
Collapse
Affiliation(s)
- Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT, USA.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, USA
| | | | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT, USA.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, USA
| |
Collapse
|
60
|
Zhang L, Quan J, Zhao Y, Yang D, Zhao Q, Liu P, Cheng M, Ma C. Design, synthesis and biological evaluation of 1-benzyl-5-oxopyrrolidine-2-carboximidamide derivatives as novel neuroprotective agents. Eur J Med Chem 2019; 182:111654. [PMID: 31494474 DOI: 10.1016/j.ejmech.2019.111654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/01/2023]
Abstract
A series of 1-benzyl-5-oxopyrrolidine-2-carboximidamide derivatives were designed and synthesized. Their protective activities against N-methyl-d-aspartic acid (NMDA)-induced cytotoxicity were investigated in vitro. All of the compounds exhibited neuroprotective activities, especially 12k, which showed higher potency than reference compound 1 (ifenprodil). Further investigation showed that 12k could attenuate Ca2+ influx and suppress the NR2B upregulation induced by NMDA. The docking results indicated that 12k could fit well into binding site of 1 in the NR2B-NMDA receptor. Additionally, 12k exhibited excellent metabolic stability. Furthermore, the results of behavioral tests showed that compound 12k could significantly improve learning and memory in vivo. These results suggested that 12k is a promising neuroprotective drug candidate and that the NR2B-NMDA receptor is a potential target of 12k.
Collapse
Affiliation(s)
- Linkui Zhang
- Key Laboratory of Structure-Based Drug Design& Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Jishun Quan
- Key Laboratory of Structure-Based Drug Design& Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ying Zhao
- Key Laboratory of Structure-Based Drug Design& Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Donglin Yang
- Key Laboratory of Structure-Based Drug Design& Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qingchun Zhao
- Department of General Hospital of Northern Theater Command, Shenyang, PR China
| | - Peng Liu
- Key Laboratory of Structure-Based Drug Design& Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design& Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design& Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|
61
|
Luo C, Bandar JS. Selective Defluoroallylation of Trifluoromethylarenes. J Am Chem Soc 2019; 141:14120-14125. [DOI: 10.1021/jacs.9b07766] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chaosheng Luo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
62
|
Singh R, Ganeshpurkar A, Kumar D, Kumar D, Kumar A, Singh SK. Identifying potential GluN2B subunit containing N-Methyl-D-aspartate receptor inhibitors: an integrative in silico and molecular modeling approach. J Biomol Struct Dyn 2019; 38:2533-2545. [PMID: 31232189 DOI: 10.1080/07391102.2019.1635530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs), a class of ligand-gated ion channels, are involved in non-selective cation transport across the membrane. These are contained in glutamatergic synapse and produce excitatory effects leading to synaptic plasticity and memory function. GluN1-GluN2B, a subtype of NMDAR(s), has significant role in neurodegeneration, amyloid β (Aβ) induced synaptic dysfunction and loss. Thus, targeting and inhibiting GluN1-GluN2B may be effective in the management of neurodegenerative diseases including Alzheimer's disease. In the present study, ligand and structure-based approaches were tried to identify the inhibitors. The pharmacophore, developed from co-crystallised ifenprodil, afforded virtual hits, which were further subjected through drug likeliness and PAINS filters to remove interfering compounds. Further comprehensive docking studies, free energy calculations and ADMET studies resulted in two virtual leads. The leads, ZINC257261614 and ZINC95977857 displayed good docking scores of -12.90 and -12.20 Kcal/mol and free binding energies of -60.83 and -61.83 Kcal/mol, respectively. The compounds were having acceptable predicted ADMET profiles and were subjected to molecular dynamic (MD) studies. The MD simulation produced stable complexes of these ligands with GluN1-GluN2B subunit having protein and ligand RMSD in acceptable limit. AbbreviationsADAlzheimer's diseaseADMEAbsorption distribution metabolism and excretionATDAmino terminal domainBBBBlood-brain barrierCNSCentral nervous systemCREBcAMP response element binding proteinCTDCarboxy-terminal domainGluGlutamateGMQEGlobal model quality estimationHTVSHigh throughput virtual screeningHIAHuman intestinal absorptionLGALamarckian genetic algorithmMDMolecular dynamicsMM-GBSAMolecular mechanics, the Generalised Born model for Solvent AccessibilityNMDARN-methyl-D-aspartate receptorsPAINSPan assay interference compoundsRMSDRoot-mean square deviationRMSFRoot-mean-square fluctuationSMARTSSMILES arbitrary target specificationSPstandard precisionXPextra precisionCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharti Vidyapeeth University, Pune, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
63
|
Structural biology of glutamate receptor ion channels: towards an understanding of mechanism. Curr Opin Struct Biol 2019; 57:185-195. [PMID: 31185364 DOI: 10.1016/j.sbi.2019.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ion channels that mediate signal transmission at neuronal synapses, where they contribute centrally to the postsynaptic plasticity that underlies learning and memory. Receptor activation by l-glutamate triggers complex allosteric cascades that are transmitted through the layered and highly flexible receptor assembly culminating in opening a cation-selective pore. This process is shaped by the arrangement of the four core subunits as well as the presence of various auxiliary subunits, and is subject to regulation by an array of small molecule modulators targeting a number of sites throughout the complex. Here, we discuss recent structures of iGluR homomers and heteromers illuminating the organization and subunit arrangement of the core tetramer, co-assembled with auxiliary subunits and in complex with allosteric modulators.
Collapse
|
64
|
Fjelldal MF, Freyd T, Evenseth LM, Sylte I, Ring A, Paulsen RE. Exploring the overlapping binding sites of ifenprodil and EVT-101 in GluN2B-containing NMDA receptors using novel chicken embryo forebrain cultures and molecular modeling. Pharmacol Res Perspect 2019; 7:e00480. [PMID: 31164987 PMCID: PMC6543015 DOI: 10.1002/prp2.480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDAR) are widely expressed in the brain. GluN2B subunit-containing NMDARs has recently attracted significant attention as potential pharmacological targets, with emphasis on the functional properties of allosteric antagonists. We used primary cultures from chicken embryo forebrain (E10), expressing native GluN2B-containing NMDA receptors as a novel model system. Comparing the inhibition of calcium influx by well-known GluN2B subunit-specific allosteric antagonists, the following rank order of potency was found: EVT-101 (EC 50 22 ± 8 nmol/L) > Ro 25-6981 (EC 50 60 ± 30 nmol/L) > ifenprodil (EC 50 100 ± 40 nmol/L) > eliprodil (EC 50 1300 ± 700 nmol/L), similar to previous observations in rat cortical cultures and cell lines overexpressing chimeric receptors. The less explored Ro 04-5595 had an EC 50 of 186 ± 32 nmol/L. Venturing to explain the differences in potency, binding properties were further studied by in silico docking and molecular dynamics simulations using x-ray crystal structures of GluN1/GluN2B amino terminal domain. We found that Ro 04-5595 was predicted to bind the recently discovered EVT-101 binding site, not the ifenprodil-binding site. The EVT-101 binding pocket appears to accommodate more structurally different ligands than the ifenprodil-binding site, and contains residues essential in ligand interactions necessary for calcium influx inhibition. For the ifenprodil site, the less effective antagonist (eliprodil) fails to interact with key residues, while in the EVT-101 pocket, difference in potency might be explained by differences in ligand-receptor interaction patterns.
Collapse
Affiliation(s)
- Marthe F. Fjelldal
- Department of Pharmaceutical BiosciencesSchool of PharmacyUniversity of OsloOsloNorway
- Norwegian Defence Research EstablishmentKjellerNorway
- Realomics Strategic Research InitiativeOsloNorway
| | - Thibaud Freyd
- Molecular Pharmacology and ToxicologyDepartment of Medical BiologyUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
- Department of ChemistryHylleraas Centre for Quantum Molecular SciencesUniversity of OsloOsloNorway
| | - Linn M. Evenseth
- Molecular Pharmacology and ToxicologyDepartment of Medical BiologyUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Ingebrigt Sylte
- Molecular Pharmacology and ToxicologyDepartment of Medical BiologyUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Avi Ring
- Norwegian Defence Research EstablishmentKjellerNorway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical BiosciencesSchool of PharmacyUniversity of OsloOsloNorway
- Realomics Strategic Research InitiativeOsloNorway
| |
Collapse
|
65
|
Fu H, Tang W, Chen Z, Belov VV, Zhang G, Shao T, Zhang X, Yu Q, Rong J, Deng X, Han W, Myers SJ, Giffenig P, Wang L, Josephson L, Shao Y, Davenport AT, Daunais JB, Papisov M, Yuan H, Li Z, Traynelis SF, Liang SH. Synthesis and Preliminary Evaluations of a Triazole-Cored Antagonist as a PET Imaging Probe ([ 18F]N2B-0518) for GluN2B Subunit in the Brain. ACS Chem Neurosci 2019; 10:2263-2275. [PMID: 30698943 PMCID: PMC6727982 DOI: 10.1021/acschemneuro.8b00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
GluN2B is the most studied subunit of N-methyl-d-aspartate receptors (NMDARs) and implicated in the pathologies of various central nervous system disorders and neurodegenerative diseases. As pan NMDAR antagonists often produce debilitating side effects, new approaches in drug discovery have shifted to subtype-selective NMDAR modulators, especially GluN2B-selective antagonists. While positron emission tomography (PET) studies of GluN2B-selective NMDARs in the living brain would enable target engagement in drug development and improve our understanding in the NMDAR signaling pathways between normal and disease conditions, a suitable PET ligand is yet to be identified. Herein we developed an 18F-labeled potent antagonist, 2-((1-(4-[18F]fluoro-3-methylphenyl)-1 H-1,2,3-triazol-4-yl)methoxy)-5-methoxypyrimidine ([18F]13; also called [18F]N2B-0518) as a PET tracer for imaging the GluN2B subunit. The radiofluorination of [18F]13 was efficiently achieved by our spirocyclic iodonium ylide (SCIDY) method. In in vitro autoradiography studies, [18F]13 displayed highly region-specific binding in brain sections of rat and nonhuman primate, which was in accordance with the expression of GluN2B subunit. Ex vivo biodistribution in mice revealed that [18F]13 could penetrate the blood-brain barrier with moderate brain uptake (3.60% ID/g at 2 min) and rapid washout. Altogether, this work provides a GluN2B-selective PET tracer bearing a new chemical scaffold and shows high specificity to GluN2B subunit in vitro, which may pave the way for the development of a new generation of GluN2B PET ligands.
Collapse
Affiliation(s)
- Hualong Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Weiting Tang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Vasily V. Belov
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts 02114, United States
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Xiaofei Zhang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Qingzhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Xiaoyun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Wei Han
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, P. R. China
| | - Scott J. Myers
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Pilar Giffenig
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, P. R. China
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April T. Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B. Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Mikhail Papisov
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts 02114, United States
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Steven H. Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
66
|
Börgel F, Galla F, Lehmkuhl K, Schepmann D, Ametamey SM, Wünsch B. Pharmacokinetic properties of enantiomerically pure GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold. J Pharm Biomed Anal 2019; 172:214-222. [PMID: 31060034 DOI: 10.1016/j.jpba.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023]
Abstract
Recently, the eutomers of highly potent GluN2B selective NMDA receptor antagonists with 3-benzazepine scaffold were identified. Herein, pharmacokinetic properties regarding lipophilicity, plasma protein binding (PPB) and metabolism are analyzed. The logD7.4 values of 1.68 for phenol 1 and 2.46 for methyl ether 2 are in a very good range for CNS agents. A very similar logD7.4 value was recorded for the prototypical GluN2B antagonist ifenprodil (logD7.4 = 1.49). The herein developed high performance affinity chromatography (HPAC) method using human serum albumin as stationary phase led to PPB of 3-benzazepines (R)-1-3 and (S)-1-3 of 76-98%. Upon incubation with mouse liver microsomes, (R)-1-3 and (S)-1-3 showed moderate to high metabolic stability. The (R)-configured eutomers turned out to be metabolically more stable than their (S)-configured distomers. During phase I metabolism of 3-benzazepines 1-3 hydroxylations at both aromatic rings, the aliphatic side chain and the seven-membered ring were observed. O-demethylation of methyl ether (S)-2 was faster than O-demethylation of its enantiomer (R)-2. In phase I biotransformation the phenol eutomer (R)-1 showed comparable stability as ifenprodil. In phase II biotransformation, glucuronidation of the phenolic (only 1) and benzylic hydroxy groups was observed. Both enantiomers formed the same type of metabolites, respectively, but in different amounts. Whereas, the benzylic hydroxy group of (R)-2 was glucuronidated preferably, predominant benzylic glucuronidation of (S)-3 was detected. Mouse liver microsomes produced the glucuronide of phenol 1 (main metabolite) in larger amounts than rat liver microsomes.
Collapse
Affiliation(s)
- Frederik Börgel
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Fabian Galla
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Kirstin Lehmkuhl
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
67
|
Summer SL, Kell SA, Zhu Z, Moore R, Liotta DC, Myers SJ, Koszalka GW, Traynelis SF, Menaldino DS. Di-aryl Sulfonamide Motif Adds π-Stacking Bulk in Negative Allosteric Modulators of the NMDA Receptor. ACS Med Chem Lett 2019; 10:248-254. [PMID: 30891121 DOI: 10.1021/acsmedchemlett.8b00395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
The N-methyl-d-aspartate receptor plays a critical role in central nervous system processes. Its diverse properties, as well as hypothesized role in neurological disease, render NMDA receptors a target of interest for the development of therapeutically relevant modulators. A number of subunit-selective modulators have been reported in the literature, one of which is TCN-201, a GluN2A-selective negative allosteric modulator. Recently, it was determined from a cocrystallization study of TCN-201 with the NMDA receptor that a unique active pose exists in which the sulfonamide group of TCN-201 incorporates a π-π stacking interaction between the two adjacent aryl rings that allows it to make important contacts with the protein. This finding led us to investigate whether this unique structural feature of the diaryl sulfonamide could be incorporated into other modulators that act on distinct pockets. To test whether this idea might have more general utility, we added an aryl ring plus the sulfonamide linker modification to a previously published series of GluN2C- and GluN2D-selective negative allosteric modulators that bind to an entirely different pocket. Herein, we report data suggesting that this structural modification of the NAB-14 series of modulators was tolerated and, in some instances, enhanced potency. These results suggest that this motif may be a reliable means for introducing a π-π stacking element to molecular scaffolds that could improve activity if it allowed access to ligand-protein interactions not accessible from one planar aromatic group.
Collapse
Affiliation(s)
- Samantha L. Summer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Steven A. Kell
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zongjian Zhu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Rhonda Moore
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Scott J. Myers
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- NeurOp Inc., 58 Edgewood Avenue, Atlanta, Georgia 30303, United States
| | | | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - David S. Menaldino
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
68
|
Brogi S, Campiani G, Brindisi M, Butini S. Allosteric Modulation of Ionotropic Glutamate Receptors: An Outlook on New Therapeutic Approaches To Treat Central Nervous System Disorders. ACS Med Chem Lett 2019; 10:228-236. [PMID: 30891118 DOI: 10.1021/acsmedchemlett.8b00450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
The allosteric targeting of ionotropic glutamate receptors (iGluRs) is a valuable approach for treating various central nervous system (CNS) disorders. In this frame, this Innovations provides a summary of the state-of-the art in the development of allosteric modulators for iGluRs and offers an outlook regarding innovative strategies for treating neurological diseases.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
- Department of Pharmacy, University of Napoli Federico II, DoE Department of Excellence 2018−2022, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
| | - Margherita Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
69
|
Dissecting diverse functions of NMDA receptors by structural biology. Curr Opin Struct Biol 2019; 54:34-42. [PMID: 30703613 DOI: 10.1016/j.sbi.2018.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels, which are critically involved in brain development, learning and memory, cognition, as well as a number of neurological diseases and disorders. Structural biology of NMDARs has been challenging due to technical difficulties associated with assembling a number of different membrane protein subunits. Here, we review historical X-ray crystallographic studies on isolated extracellular domains, which are still the most effective mean to delineate compound binding modes, as well as the most recent studies using electron cryo-microscopy (cryo-EM). A number of NMDAR structures accumulated over the past 15 years provide insights into the hetero-tetrameric assembly pattern, pharmacological specificities elicited by subtypes and alternative splicing, and potential patterns of conformational dynamics; however, many more important unanswered questions remain.
Collapse
|
70
|
Regan MC, Zhu Z, Yuan H, Myers SJ, Menaldino DS, Tahirovic YA, Liotta DC, Traynelis SF, Furukawa H. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat Commun 2019; 10:321. [PMID: 30659174 PMCID: PMC6338780 DOI: 10.1038/s41467-019-08291-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Context-dependent inhibition of N-methyl-D-aspartate (NMDA) receptors has important therapeutic implications for the treatment of neurological diseases that are associated with altered neuronal firing and signaling. This is especially true in stroke, where the proton concentration in the afflicted area can increase by an order of magnitude. A class of allosteric inhibitors, the 93-series, shows greater potency against GluN1-GluN2B NMDA receptors in such low pH environments, allowing targeted therapy only within the ischemic region. Here we map the 93-series compound binding site in the GluN1-GluN2B NMDA receptor amino terminal domain and show that the interaction of the N-alkyl group with a hydrophobic cage of the binding site is critical for pH-dependent inhibition. Mutation of residues in the hydrophobic cage alters pH-dependent potency, and remarkably, can convert inhibitors into potentiators. Our study provides a foundation for the development of highly specific neuroprotective compounds for the treatment of neurological diseases. Context-dependent inhibition of NMDA receptors has important therapeutic implications for treatment of neurological diseases. Here, the authors use structural biology and biophysics to describe the basis for pH-dependent inhibition for a class of allosteric NMDAR inhibitors, called the 93-series.
Collapse
Affiliation(s)
- Michael C Regan
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zongjian Zhu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dave S Menaldino
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
71
|
Burnell ES, Irvine M, Fang G, Sapkota K, Jane DE, Monaghan DT. Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. J Med Chem 2019; 62:3-23. [PMID: 29446949 PMCID: PMC6368479 DOI: 10.1021/acs.jmedchem.7b01640] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Excitatory activity in the CNS is predominately mediated by l-glutamate through several families of l-glutamate neurotransmitter receptors. Of these, the N-methyl-d-aspartate receptor (NMDAR) family has many critical roles in CNS function and in various neuropathological and psychiatric conditions. Until recently, the types of compounds available to regulate NMDAR function have been quite limited in terms of mechanism of action, subtype selectivity, and biological effect. However, several new classes of NMDAR agents have now been identified that are positive or negative allosteric modulators (PAMs and NAMs, respectively) with various patterns of NMDAR subtype selectivity. These new agents act at several newly recognized binding sites on the NMDAR complex and offer significantly greater pharmacological control over NMDAR activity than previously available agents. The purpose of this review is to summarize the structure-activity relationships for these new NMDAR modulator drug classes and to describe the current understanding of their mechanisms of action.
Collapse
Affiliation(s)
- Erica S. Burnell
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
- School of Chemistry, National University of Ireland Galway,
Galway H91TK33, Irelands
| | - Mark Irvine
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Guangyu Fang
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience,
University of Nebraska Medical Center, Omaha, NE 68198
| | - David E. Jane
- Centre for Synaptic Plasticity, School of Physiology,
Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Daniel T. Monaghan
- Department of Pharmacology and Experimental Neuroscience,
University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
72
|
Computational investigation of the antagonism effect towards GluN2B-Containing NMDA receptor: Combined ligand-based and target-based approach. J Mol Graph Model 2018; 86:95-105. [PMID: 30343207 DOI: 10.1016/j.jmgm.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022]
Abstract
The interaction of GluN2B-Containing NMDA Receptor with 18 antagonists were investigated by a combined ligand-based and target-based approach. First, two distinct pharmacophore models were generated for antagonists which cluster in two groups with Catalyst (HipHop module). The pharmacophore of "ifenprodil group" antagonists includes three hydrophobic groups, one H-bond donor and one H-bond acceptor, the pharmacophore of "EVT101 group" antagonists involves one aromatic ring, two hydrophobic groups and one H-bond acceptor. Docking results and pharmacophore model confrontation allow the pharmacodynamic characteristics to be weighted and structural information integrated. Which results in the proposal of two interaction models inside the GluN2B binding cavity for two groups of antagonists. The interaction model of "ifenprodil group" antagonists consists of one hydrophobic group, one H-bond donor, one H-bond acceptor and an aromatic ring, while on the other hand, the interaction model of "EVT101 group" antagonists includes three hydrophobic groups and an aromatic ring.
Collapse
|
73
|
Pyridine bioisosteres of potent GluN2B subunit containing NMDA receptor antagonists with benzo[7]annulene scaffold. Eur J Med Chem 2018; 157:397-404. [DOI: 10.1016/j.ejmech.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/22/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022]
|
74
|
Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF. A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 2018; 596:4057-4089. [PMID: 29917241 PMCID: PMC6117563 DOI: 10.1113/jp276093] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Key points The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Abstract NMDA receptors (NMDARs) are tetrameric complexes comprising two glycine‐binding GluN1 and two glutamate‐binding GluN2 subunits. Four GluN2 subunits encoded by different genes can produce up to 10 different di‐ and triheteromeric receptors. In addition, some neurological patients contain a de novo mutation or inherited rare variant in only one subunit. There is currently no mechanistic framework to describe tetrameric receptor function that can be extended to receptors with two different GluN1 or GluN2 subunits. Here we use the structural features of glutamate receptors to develop a mechanism describing both single channel and macroscopic NMDAR currents. We propose that each agonist‐bound subunit undergoes some rate‐limiting conformational change after agonist binding, prior to channel opening. We hypothesize that this conformational change occurs within a triad of interactions between a short helix preceding the M1 transmembrane helix, the highly conserved M3 motif encoded by the residues SYTANLAAF, and the linker preceding the M4 transmembrane helix of the adjacent subunit. Molecular dynamics simulations suggest that pre‐M1 helix motion is uncorrelated between subunits, which we interpret to suggest independent subunit‐specific conformational changes may influence these pre‐gating steps. According to this interpretation, these conformational changes are the main determinants of the key kinetic properties of NMDA receptor activation following agonist binding, and so these steps sculpt their physiological role. We show that this structurally derived tetrameric model describes both single channel and macroscopic data, giving a new approach to interpreting functional properties of synaptic NMDARs that provides a logical framework to understanding receptors with non‐identical subunits. The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Collapse
Affiliation(s)
- Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin K Ogden
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Miranda J McDaniel
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katie M Vance
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Steven A Kell
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Chris Butch
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Pieter Burger
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Dennis C Liotta
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
75
|
Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150:1081-1105. [PMID: 30037851 PMCID: PMC6080888 DOI: 10.1085/jgp.201812032] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hansen et al. review recent structural data that have provided insight into the function and allosteric modulation of NMDA receptors. NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Lonnie P Wollmuth
- Departments of Neurobiology & Behavior and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
76
|
Börgel F, Szermerski M, Schreiber JA, Temme L, Strutz‐Seebohm N, Lehmkuhl K, Schepmann D, Ametamey SM, Seebohm G, Schmidt TJ, Wünsch B. Synthesis and Pharmacological Evaluation of Enantiomerically Pure GluN2B Selective NMDA Receptor Antagonists. ChemMedChem 2018; 13:1580-1587. [DOI: 10.1002/cmdc.201800214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Frederik Börgel
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster Corrensstraße 48 48149 Münster Germany
| | - Marina Szermerski
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster Corrensstraße 48 48149 Münster Germany
| | - Julian A. Schreiber
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster Corrensstraße 48 48149 Münster Germany
| | - Louisa Temme
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster Corrensstraße 48 48149 Münster Germany
| | - Nathalie Strutz‐Seebohm
- Myocellular Electrophysiology and Molecular Biology Institute for Genetics of Heart Diseases (IfGH) Department of Cardiovascular Medicine University Hospital Münster 48149 Münster Germany
| | - Kirstin Lehmkuhl
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster Corrensstraße 48 48149 Münster Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster Corrensstraße 48 48149 Münster Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM) Westfälische Wilhelms-Universität Münster Münster Germany
| | - Simon M. Ametamey
- Department of Chemistry and Applied Biosciences Institute of Pharmaceutical Sciences ETH Zürich Zürich Switzerland
| | - Guiscard Seebohm
- Myocellular Electrophysiology and Molecular Biology Institute for Genetics of Heart Diseases (IfGH) Department of Cardiovascular Medicine University Hospital Münster 48149 Münster Germany
| | - Thomas J. Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie der Universität Münster Corrensstraße 48 48149 Münster Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster Corrensstraße 48 48149 Münster Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM) Westfälische Wilhelms-Universität Münster Münster Germany
| |
Collapse
|
77
|
Zhang L, Zhao Y, Wang J, Yang D, Zhao C, Wang C, Ma C, Cheng M. Design, synthesis and bioevaluation of 1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline-1-carboxylic acid derivatives as potent neuroprotective agents. Eur J Med Chem 2018; 151:27-38. [PMID: 29604542 DOI: 10.1016/j.ejmech.2018.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
Abstract
Diverse of 1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline-1-carboxylic acid derivatives were designed, synthesized and evaluated for their neuroprotective activity against NMDA-induced cytotoxicity in vitro, and 5q exhibited excellent neuroprotective activity. The compound 5q was selected for further investigation. We found that 5q could attenuate Ca2+ influx induced by NMDA, meanwhile, 5q could suppress the NR2B up-regulation and increase p-ERK1/2 expression. The molecular docking results showed that 5q might fit well in the binding pocket of 4 and interact with some key residues in the binding pocket of 1 simultaneously. Besides, 5q exhibited acceptable metabolic stability. These results suggested that 5q was a promising lead for further development of new potent and orally bioavailable NR2B-selective NMDAR antagonists.
Collapse
Affiliation(s)
- Linkui Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ying Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Donglin Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chenwen Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Changli Wang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenhe District, Shenyang, 110840, PR China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|
78
|
Kashkin VA, Shekunova EV, Titov MI, Eliseev II, Gureev MA, Porozov YB, Makarova MN, Makarov VG. A new tridecapeptide with an octaarginine vector has analgesic therapeutic potential and prevents morphine-induced tolerance. Peptides 2018; 99:61-69. [PMID: 29175519 DOI: 10.1016/j.peptides.2017.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
A growing body of evidence suggests that peptides may possess analgesic effects without tolerance development. The synthetic tetrapeptide Tyr-d-Arg-Phe-Gly-NH2 was modified with the inclusion of a (d-Arg)8 vector to prevent the action of endopeptidase and to increase the duration of the analgesic action of the tetrapeptide when administered orally. The aim of this study was to estimate the analgesic efficacy of the tetrapeptide with (d-Arg)8 (tridecapeptide, TDP) in experimental models of acute and chronic pain. The analgesic effects of TDP were estimated using a model of acute visceral pain in mice (writhing test) and a model of chronic neuropathic pain (chronic constriction injury (CCI) of the sciatic nerve) in rats. The intravenous administration of morphine (0.32-1mg/kg) and TDP (0.32-1.8mg/kg) produced significant dose-related antinociceptive effects in the writhing test. The potency of TDP after i.g. administration was lower than that after i.v. administration but comparable with that of i.g. morphine. In the CCI model, TDP (0.1, 1 and 10mg/kg, i.g.) induced marked analgesia with repeated administration without any signs of tolerance. The single administration of TDP after morphine treatment (7days) produced a significant analgesic effect in morphine-tolerant rats, indicating the absence of cross-tolerance between these two drugs. The combined administration of TDP and morphine resulted in the reduction of analgesic tolerance to morphine. The absence of cross-tolerance to morphine and the ability to prevent morphine tolerance allows this compound to be a prospective candidate for chronic pain therapy. In order to find the target receptors for TDP, a docking study was performed. It was found that the molecule can bind to the NMDA receptor using electrostatic, hydrogen bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Vladimir A Kashkin
- Valdman Institute of Pharmacology, First Pavlov State Medical University, St. Petersburg, 197022, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, 194223, Russia.
| | - Elena V Shekunova
- Valdman Institute of Pharmacology, First Pavlov State Medical University, St. Petersburg, 197022, Russia; Institute of Experimental Pharmacology, The Leningrad Region, Vsevolozhskiy District, 188663, Russia
| | | | | | - Maxim A Gureev
- ITMO University, St. Petersburg, 197101, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia; St. Petersburg State Technological Institute (Technical University), St. Petersburg, 190013, Russia
| | - Yuri B Porozov
- ITMO University, St. Petersburg, 197101, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Marina N Makarova
- Institute of Experimental Pharmacology, The Leningrad Region, Vsevolozhskiy District, 188663, Russia
| | - Valery G Makarov
- Institute of Experimental Pharmacology, The Leningrad Region, Vsevolozhskiy District, 188663, Russia
| |
Collapse
|
79
|
Temme L, Frehland B, Schepmann D, Robaa D, Sippl W, Wünsch B. Hydroxymethyl bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists: Design, synthesis and pharmacological evaluation. Eur J Med Chem 2018; 144:672-681. [DOI: 10.1016/j.ejmech.2017.12.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
80
|
Stroebel D, Casado M, Paoletti P. Triheteromeric NMDA receptors: from structure to synaptic physiology. CURRENT OPINION IN PHYSIOLOGY 2017; 2:1-12. [PMID: 29682629 DOI: 10.1016/j.cophys.2017.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that play crucial roles in brain development and synaptic plasticity. They are also therapeutic targets of interest since their dysfunction is associated with multiple neurological and psychiatric disorders. In vivo, NMDARs exist as multiple subtypes that differ in their subunit composition, anatomical distribution, functional properties, as well as signaling capacities. While much is known about diheteromeric NMDARs composed of two GluN1 subunits and two identical GluN2 (or GluN3) subunits, the majority of native NMDARs are triheteromers containing two GluN1 and two different GluN2 (or a combination of GluN2 and GluN3). Knowledge about triheteromeric NMDARs has recently boomed, with the first decoding of their atomic structure and the development of a new methodology allowing selective expression of recombinant triheteromers at the cell-surface without confounding co-expression of diheteromers. Here we review these progresses and highlight the unique attributes of triheteromers. Particular emphasis is put on GluN1/GluN2A/GluN2B triheteromers, presumably the most abundant NMDARs in the adult forebrain and critical actors of synaptic plasticity. Better understanding triheteromeric NMDAR structure and function is of major interest for brain physiology and drug discovery.
Collapse
Affiliation(s)
- David Stroebel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, 46 rue d'Ulm, F-75005 Paris, France
| | - Mariano Casado
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, 46 rue d'Ulm, F-75005 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, 46 rue d'Ulm, F-75005 Paris, France
| |
Collapse
|
81
|
Design, Synthesis, Pharmacological Evaluation and Docking Studies of GluN2B-Selective NMDA Receptor Antagonists with a Benzo[7]annulen-7-amine Scaffold. ChemMedChem 2017; 12:1212-1222. [DOI: 10.1002/cmdc.201700311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/07/2017] [Indexed: 11/07/2022]
|
82
|
Rakesh G, Pae CU, Masand PS. Beyond serotonin: newer antidepressants in the future. Expert Rev Neurother 2017; 17:777-790. [DOI: 10.1080/14737175.2017.1341310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gopalkumar Rakesh
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Chi-Un Pae
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Prakash S. Masand
- Academic Medicine Education Institute, Duke-NUS Medical School, Singapore, Singapore
- Global Medical Education, New York, NY, USA
| |
Collapse
|
83
|
Karlov DS, Radchenko EV, Palyulin VA, Zefirov NS. Molecular design of proneurogenic and neuroprotective compounds-allosteric NMDA receptor modulators. DOKL BIOCHEM BIOPHYS 2017; 473:132-136. [PMID: 28510125 DOI: 10.1134/s1607672917020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 01/23/2023]
Abstract
N-Methyl-D-aspartic acid (NMDA) receptor is a promising target for treatment of neurodegenerative diseases and other brain disorders as well as for designing proneurogenic compounds able to stimulate neurogenesis in adult brain. We analyzed the structure of the binding site of negative allosteric modulators in the amino-terminal domain of the NMDA receptor and identified possible modes of their binding as well as performed molecular design of new modulators that significantly differ from the known ones in structure and binding mode. In addition, we formed a focused library of chemical compounds with potential neuroprotective and proneurogenic properties, desirable set of pharmacokinetic properties, and low toxicity, which can be the basis for development of new-generation drugs.
Collapse
Affiliation(s)
- D S Karlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
| | - E V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia.
| | - V A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
| | - N S Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
| |
Collapse
|
84
|
Wu J, Gao L, Shang L, Wang G, Wei N, Chu T, Chen S, Zhang Y, Huang J, Wang J, Lin R. Ecdysterones from Rhaponticum carthamoides (Willd.) Iljin reduce hippocampal excitotoxic cell loss and upregulate mTOR signaling in rats. Fitoterapia 2017; 119:158-167. [PMID: 28373010 DOI: 10.1016/j.fitote.2017.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 12/30/2022]
Abstract
Glutamate-induced excitotoxicity is a key pathological mechanism in many neurological disease states. Ecdysterones derived from Rhaponticum carthamoides (Willd.) Iljin (RCI) have been shown to alleviate glutamate-induced neuronal damage; although their mechanism of action is unclear, some data suggest that they enhance signaling in the mechanistic target of rapamycin (mTOR) signaling pathway. This study sought to elucidate the mechanisms underlying ecdysterone-mediated neuroprotection. We used in silico target prediction and simulation methods to identify putative ecdysterone binding targets, and to specifically identify those that represent nodes where several neurodegenerative diseases converge. We then used histological analyses in a rat hippocampal excitotoxicity model to test the effectiveness of ecdysterones in vivo. We found that RCI-derived ecdysterones should bind to glutamatergic NMDA-type receptors (NMDARs); specifically, in vivo modeling showed binding to the GRIN2B subunit of NMDARs, which was found also to be a node of convergence in several neurodegenerative disease pathways. Computerized network construction by using pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed putative links between GRIN2B and mTOR pathway elements including phosphoinositide-3kinase (PI3K), mTOR, and protein kinase C (PKC); these elements are associated with neuronal survival. Brain tissue western blots of ecdysterone-treated rats showed upregulated PI3K, Akt, mTOR, and phosphorylated Akt and mTOR, and down regulated GRIN2B and the apoptotic enzyme cleaved caspase-3. Ecdysterone treatment also prevented glutamate-induced rat hippocampal cell loss. In summary, RCI-derived ecdysterones appear to prevent glutamatergic excitotoxicity by increasing mTOR/Akt/PI3K signaling activity.
Collapse
Affiliation(s)
- Jiming Wu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Le Gao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Shang
- College of Basic Medical Science, Shenyang Medical College, Shenyang 110034, China
| | - Guihua Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nana Wei
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tiantian Chu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Suping Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yujun Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; College of Pharmacy, Shihezi University, Shihezi 832002, China.
| | - Ruichao Lin
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
85
|
Hansen KB, Yi F, Perszyk RE, Menniti FS, Traynelis SF. NMDA Receptors in the Central Nervous System. Methods Mol Biol 2017; 1677:1-80. [PMID: 28986865 DOI: 10.1007/978-1-4939-7321-7_1] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NMDA-type glutamate receptors are ligand-gated ion channels that mediate a major component of excitatory neurotransmission in the central nervous system (CNS). They are widely distributed at all stages of development and are critically involved in normal brain functions, including neuronal development and synaptic plasticity. NMDA receptors are also implicated in the pathophysiology of numerous neurological and psychiatric disorders, such as ischemic stroke, traumatic brain injury, Alzheimer's disease, epilepsy, mood disorders, and schizophrenia. For these reasons, NMDA receptors have been intensively studied in the past several decades to elucidate their physiological roles and to advance them as therapeutic targets. Seven NMDA receptor subunits exist that assemble into a diverse array of tetrameric receptor complexes, which are differently regulated, have distinct regional and developmental expression, and possess a wide range of functional and pharmacological properties. The diversity in subunit composition creates NMDA receptor subtypes with distinct physiological roles across neuronal cell types and brain regions, and enables precise tuning of synaptic transmission. Here, we will review the relationship between NMDA receptor structure and function, the diversity and significance of NMDA receptor subtypes in the CNS, as well as principles and rules by which NMDA receptors operate in the CNS under normal and pathological conditions.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA. .,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, USA.
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., George & Anne Ryan Institute for Neuroscience, Kingston, RI, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
86
|
Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF. Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 2016; 132:115-121. [PMID: 27818011 PMCID: PMC5125235 DOI: 10.1016/j.jphs.2016.10.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR) gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.
Collapse
Affiliation(s)
- Chun Hu
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Wenjuan Chen
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Scott J Myers
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA; Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA; Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA; Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
87
|
Higgins GA, Silenieks LB, MacMillan C, Sevo J, Zeeb FD, Thevarkunnel S. Enhanced attention and impulsive action following NMDA receptor GluN2B-selective antagonist pretreatment. Behav Brain Res 2016; 311:1-14. [PMID: 27180168 DOI: 10.1016/j.bbr.2016.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/18/2022]
Abstract
NMDA GluN2B (NR2B) subtype selective antagonists are currently in clinical development for a variety of indications, including major depression. We previously reported the selective NMDA GluN2B antagonists Ro 63-1908 and traxoprodil, increase premature responding in a 5-choice serial reaction time task (5-CSRTT) suggesting an effect on impulsive action. The present studies extend these investigations to a Go-NoGo and delay discounting task, and the 5-CSRTT under test conditions of both regular (5s) and short (2-5s) multiple ITI (Intertrial interval). Dizocilpine was included for comparison. Both Ro 63-1908 (0.1-1mg/kg SC) and traxoprodil (0.3-3mg/kg SC) increased premature and perseverative responses in both 5-CSRT tasks and improved attention when tested under a short ITI test condition. Ro 63-1908 but not traxoprodil increased motor impulsivity (false alarms) in a Go-NoGo task. Dizocilpine (0.01-0.06mg/kg SC) affected both measures of motor impulsivity and marginally improved attention. In a delay discounting test of impulsive choice, both dizocilpine and Ro 63-1908 decreased impulsive choice (increased choice for the larger, delayed reward), while traxoprodil showed a similar trend. Motor stimulant effects were evident following Ro 63-1908, but not traxoprodil treatment - although no signs of motor stereotypy characteristic of dizocilpine (>0.1mg/kg) were noted. The findings of both NMDA GluN2B antagonists affecting measures of impulsive action and compulsive behavior may underpin emerging evidence to suggest glutamate signaling through the NMDA GluN2B receptor plays an important role in behavioural flexibility. The profiles between Ro 63-1908 and traxoprodil were not identical, perhaps suggesting differences between members of this drug class.
Collapse
Affiliation(s)
- Guy A Higgins
- InterVivo Solutions Inc, 120 Carlton Street, Toronto, ON M5A 4K2, Canada; Dept. Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Leo B Silenieks
- InterVivo Solutions Inc, 120 Carlton Street, Toronto, ON M5A 4K2, Canada
| | - Cam MacMillan
- Vivocore., 120 Carlton Street, Toronto, ON M5A 4K2, Canada
| | - Julia Sevo
- Vivocore., 120 Carlton Street, Toronto, ON M5A 4K2, Canada
| | - Fiona D Zeeb
- Dept. Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Sandy Thevarkunnel
- InterVivo Solutions Inc, 120 Carlton Street, Toronto, ON M5A 4K2, Canada
| |
Collapse
|