51
|
Sun Y, Zhang K, Qi H, Zhang H, Zhang S, Bi Y, Wu L, Sun L, Qi J, Liu D, Ma J, Tien P, Liu W, Li J. Computational predicting the human infectivity of H7N9 influenza viruses isolated from avian hosts. Transbound Emerg Dis 2020; 68:846-856. [PMID: 32706427 PMCID: PMC8246913 DOI: 10.1111/tbed.13750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/03/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022]
Abstract
The genome composition of a given avian influenza virus is the primary determinant of its potential for cross-species transmission from birds to humans. Here, we introduce a viral genome-based computational tool that can be used to evaluate the human infectivity of avian isolates of influenza A H7N9 viruses, which can enable prediction of the potential risk of these isolates infecting humans. This tool, which is based on a novel class weight-biased logistic regression (CWBLR) algorithm, uses the sequences of the eight genome segments of an H7N9 strain as the input and gives the probability of this strain infecting humans (reflecting its human infectivity). We examined the replication efficiency and the pathogenicity of several H7N9 avian isolates that were predicted to have very low or high human infectivity by the CWBLR model in cell culture and in mice, and found that the strains with high predicted human infectivity replicated more efficiently in mammalian cells and were more infective in mice than those that were predicted to have low human infectivity. These results demonstrate that our CWBLR model can serve as a powerful tool for predicting the human infectivity and cross-species transmission risks of H7N9 avian strains.
Collapse
Affiliation(s)
- Yeping Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Heyuan Qi
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Juncai Ma
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Po Tien
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Guangxi, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
52
|
Yu D, Xiang G, Zhu W, Lei X, Li B, Meng Y, Yang L, Jiao H, Li X, Huang W, Wei H, Zhang Y, Hai Y, Zhang H, Yue H, Zou S, Zhao X, Li C, Ao D, Zhang Y, Tan M, Liu J, Zhang X, Gao GF, Meng L, Wang D. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019. ACTA ACUST UNITED AC 2020; 24. [PMID: 31138362 PMCID: PMC6540644 DOI: 10.2807/1560-7917.es.2019.24.21.1900273] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After no reported human cases of highly pathogenic avian influenza (HPAI) H7N9 for over a year, a case with severe disease occurred in late March 2019. Among HPAI H7N9 viral sequences, those recovered from the case and from environmental samples of a poultry slaughtering stall near their home formed a distinct clade from 2017 viral sequences. Several mutations possibly associated to antigenic drift occurred in the haemagglutinin gene, potentially warranting update of H7N9 vaccine strains.
Collapse
Affiliation(s)
- Deshan Yu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou China.,These authors contributed equally in this study as first authors
| | - Guofeng Xiang
- Jiuquan Center for Disease Control and Prevention, Jiuquan, China.,These authors contributed equally in this study as first authors
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China.,These authors contributed equally in this study as first authors
| | - Xia Lei
- Inner Mongolia Center for Disease Control and Prevention, Hohehot, China.,These authors contributed equally in this study as first authors
| | - Baodi Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou China
| | - Yao Meng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Hongyan Jiao
- Alasan League Center for Disease Control and Prevention, Alasan, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Yanping Zhang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Hai
- Inner Mongolia Center for Disease Control and Prevention, Hohehot, China
| | - Hui Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou China
| | - Hua Yue
- Inner Mongolia Center for Disease Control and Prevention, Hohehot, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Chao Li
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Deng Ao
- Alasan League Center for Disease Control and Prevention, Alasan, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Minju Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Xuemei Zhang
- Alasan League Center for Disease Control and Prevention, Alasan, China
| | - George F Gao
- Chinese Center for Disease Control and Prevention, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| | - Lei Meng
- These authors contributed equally as last authors in this study.,Gansu Provincial Center for Disease Control and Prevention, Lanzhou China
| | - Dayan Wang
- These authors contributed equally as last authors in this study.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health Commission, Beijing, China
| |
Collapse
|
53
|
Chen C, Liu Z, Liu L, Wang J, Jin Q. Enhanced Potency of a Broad H7N9-Neutralizing Antibody HNIgGA6 Through Structure-Based Design. Front Microbiol 2020; 11:1313. [PMID: 32636820 PMCID: PMC7316883 DOI: 10.3389/fmicb.2020.01313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 01/28/2023] Open
Abstract
H7N9 influenza virus was first isolated in 2013 and has caused five epidemic waves among humans to date. Treatment opinions are currently limited. Previously, we characterized a human neutralizing antibody, HNIgGA6, by isolating rearranged heavy- and light-chain genes from convalescent patients. The mAb disrupts viral attachment to the cellular receptor by directly interposing into the receptor binding site (RBS) and broadly neutralizing divergent H7N9 strains. To increase the protective efficacy of HNIgGA6, we employed a structure-based design to enhance its binding affinity and neutralization potency. When the serine at position 28 on light-chain complementarity-determining region 1 (LCDR1) was substituted by a histidine, compared to HNIgGA6, the mutated antibody showed an approximately three-fold increase in HA-binding affinity and 10-fold enhancement in neutralization potency in vitro. Importantly, the S28H variant also exhibited broad H7N9-neutralizing activity. When administered to BALB/c mice, mAb S28H showed enhanced potency in inhibiting the pulmonary virus titre and reducing lung lesions and resulted in better protection of the animals than did the original antibody.
Collapse
Affiliation(s)
- Cong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zuliang Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmin Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
54
|
Bi Y, Tan S, Yang Y, Wong G, Zhao M, Zhang Q, Wang Q, Zhao X, Li L, Yuan J, Li H, Li H, Xu W, Shi W, Quan C, Zou R, Li J, Zheng H, Yang L, Liu WJ, Liu D, Wang H, Qin Y, Liu L, Jiang C, Liu W, Lu L, Gao GF, Liu Y. Clinical and Immunological Characteristics of Human Infections With H5N6 Avian Influenza Virus. Clin Infect Dis 2020; 68:1100-1109. [PMID: 30124826 DOI: 10.1093/cid/ciy681] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/12/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND H5N6 avian influenza virus (AIV) has caused sporadic, recurring outbreaks in China and Southeast Asia since 2013, with 19 human infections and 13 deaths. Seventeen of these infections occurred since December 2015, indicating a recent rise in the frequency of H5N6 cases. METHODS To assess the relative threat of H5N6 virus to humans, we summarized and compared clinical data from patients infected with H5N6 (n = 19) against data from 2 subtypes of major public health concern, H5N1 (n = 53) and H7N9 (n = 160). To assess immune responses indicative of prognosis, we compared concentrations of serum cytokines/chemokines in patients infected with H5N6, H5N1, H7N9, and 2009 pandemic H1N1 and characterized specific immune responses from 1 surviving and 2 nonsurviving H5N6 patients. RESULTS H5N6 patients were found to have higher incidences of lymphopenia and elevated alanine aminotransferase and lactate dehydrogenase levels compared with H5N1 and H7N9 patients. Hypercytokinemia was detected at substantially higher frequencies from H5N6 patients compared to those infected with other AIV subtypes. Evaluation of adaptive immunity showed that both humoral and cellular responses could be detected in the H5N6-infected survivor, but cellular responses were absent in the nonsurvivors. In addition, the surviving patient had lower concentrations of both pro- and anti-inflammatory cytokines/chemokines compared to the nonsurvivors. CONCLUSIONS Our results support that H5N6 virus could potentially be a major public health threat, and suggest it is possible that the earlier acquisition of cellular immunity and lower concentrations of cytokines/chemokines contributed to survival in our patient. Analysis of more patient samples will be needed to draw concrete conclusions.
Collapse
Affiliation(s)
- Yuhai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Shuguang Tan
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Min Zhao
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing
| | - Qingchao Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing
| | - Qiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Xiaonan Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | | | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Hao Li
- Intensive Care Unit, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen
| | - Hong Li
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | - Weifeng Shi
- Institute of Pathogen Biology, Taishan Medical College, Taian
| | - Chuansong Quan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing
| | - Di Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing
| | - Huijun Wang
- Diqing Tibetan Autonomous Prefecture Centers for Disease Control and Prevention, Shangri-la
| | - Yantao Qin
- Diqing Tibetan Autonomous Prefecture Centers for Disease Control and Prevention, Shangri-la
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing
| | - Lin Lu
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | - George F Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing.,University of Chinese Academy of Sciences Medical School, Beijing, People's Republic of China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| |
Collapse
|
55
|
Guo L, Li N, Li W, Zhou J, Ning R, Hou M, Liu L. New hemagglutinin dual-receptor-binding pattern of a human-infecting influenza A (H7N9) virus isolated after fifth epidemic wave. Virus Evol 2020; 6:veaa021. [PMID: 32337071 PMCID: PMC7169767 DOI: 10.1093/ve/veaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Since 2013, influenza H7N9 virus has caused five epidemic waves of human infection. The virus evolved from low pathogenic to highly pathogenic in wave 5, 2017, while the prevalence of host receptor-binding tropism in human-infecting viruses maintained dual-receptor-binding property with preference for avian receptor. A human-infecting H7N9 virus was isolated after the fifth epidemic wave and possessed an avian and human dual-receptor specificity, with a moderately higher affinity for human receptor binding. A V186I (H3 numbering) substitution in the receptor-binding site of the hemagglutinin (HA) molecule is responsible for the alteration of the dual-receptor-binding tropism. Viral strains which contain I186 amino acid of avian- and human-infecting H7N9 viruses were all isolated during or after wave 5, and their HA genes clustered in a same phylogenetic clade together with 2018–9 H7N9 isolates, highlights a new evolutionary path for human adaption of natural H7N9 viruses.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| | - Wenlong Li
- Kunming City Center for Disease Control and Prevention, 4# Ziyun Road, Kunming, Yunnan 650228, China
| | - Jienan Zhou
- Yunan Center for Disease Control and Prevention, 158# Dongsi Street, Kunming, Yunnan 650022, China
| | - Ruotong Ning
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| | - Min Hou
- Kunming City Center for Disease Control and Prevention, 4# Ziyun Road, Kunming, Yunnan 650228, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| |
Collapse
|
56
|
Host-Virus Interaction: How Host Cells Defend against Influenza A Virus Infection. Viruses 2020; 12:v12040376. [PMID: 32235330 PMCID: PMC7232439 DOI: 10.3390/v12040376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous animals. The viruses cause millions of infection cases and thousands of deaths every year, thus making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection, IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In the current review, we present a general description on recent work regarding different host cells and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host immune responses.
Collapse
|
57
|
Evaluation of the immune response of a H7N9 candidate vaccine virus derived from the fifth wave A/Guangdong/17SF003/2016. Antiviral Res 2020; 177:104776. [PMID: 32201204 DOI: 10.1016/j.antiviral.2020.104776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
Highly pathogenic influenza H7N9 viruses that emerged in the fifth wave of H7N9 outbreak pose a risk to human health. The World Health Organization has updated the candidate vaccine viruses for H7N9 viruses recently. In this study, we evaluated the immune response to an updated H7N9 candidate vaccine virus, which derived from the highly pathogenic A/Guangdong/17SF003/2016 (GD/16) in mice and rhesus macaques. GD/16 vaccination elicited robust neutralizing, virus-specific immunoglobulin G antibodies and effective protection, but poor hemagglutination inhibition antibody titers. Furthermore, mouse and rhesus macaque serum raised against the previous H7N9 CVV A/Anhui/1/2013 (AH/13) were tested for its cross-reactivity to GD/16 virus. We found that although AH/13-immune serum has poor hemagglutination inhibition reactivity against GD/16 virus, AH/13 elicit efficient cross-neutralizing antibodies and in vivo protection against GD/16. Further studies showed that the hemagglutinin of GD/16 has strong receptor binding avidity, which might be associated with the decreased hemagglutination inhibition assay sensitivity. This study underscores the point that receptor binding avidity should be taken into account when performing quantitative interpretation of hemagglutination inhibition data. A combination of multiple serological assays is required for accurate vaccine evaluation and antigenic analysis of influenza viruses.
Collapse
|
58
|
Jiang W, Hou G, Li J, Peng C, Wang S, Liu S, Zhuang Q, Yuan L, Yu X, Li Y, Wang J, Liu H. Antigenic Variant of Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2019. Emerg Infect Dis 2020; 26:379-380. [PMID: 31855533 PMCID: PMC6986829 DOI: 10.3201/eid2602.191105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In China, influenza A(H7N9) virus appeared in 2013, then mutated into a highly pathogenic virus, causing outbreaks among poultry and cases in humans. Since September 2017, extensive use of the corresponding vaccine, H7-Re1, successfully reduced virus prevalence. However, in 2019, a novel antigenic variant emerged, posing considerable economic and public health threats.A.
Collapse
|
59
|
Jiang W, Hou G, Li J, Peng C, Wang S, Liu S, Zhuang Q, Yuan L, Yu X, Li Y, Wang J, Liu H. Antigenic Variant of Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2019. Emerg Infect Dis 2020. [DOI: 10.3201/eid2502.191105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
60
|
Chan M, Leung A, Hisanaga T, Pickering B, Griffin BD, Vendramelli R, Tailor N, Wong G, Bi Y, Babiuk S, Berhane Y, Kobasa D. H7N9 Influenza Virus Containing a Polybasic HA Cleavage Site Requires Minimal Host Adaptation to Obtain a Highly Pathogenic Disease Phenotype in Mice. Viruses 2020; 12:v12010065. [PMID: 31948040 PMCID: PMC7020020 DOI: 10.3390/v12010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Low pathogenic avian influenza (LPAI) H7N9 viruses have recently evolved to gain a polybasic cleavage site in the hemagglutinin (HA) protein, resulting in variants with increased lethality in poultry that meet the criteria for highly pathogenic avian influenza (HPAI) viruses. Both LPAI and HPAI variants can cause severe disease in humans (case fatality rate of ~40%). Here, we investigated the virulence of HPAI H7N9 viruses containing a polybasic HA cleavage site (H7N9-PBC) in mice. Inoculation of mice with H7N9-PBC did not result in observable disease; however, mice inoculated with a mouse-adapted version of this virus, generated by a single passage in mice, caused uniformly lethal disease. In addition to the PBC site, we identified three other mutations that are important for host-adaptation and virulence in mice: HA (A452T), PA (D347G), and PB2 (M483K). Using reverse genetics, we confirmed that the HA mutation was the most critical for increased virulence in mice. Our study identifies additional disease determinants in a mammalian model for HPAI H7N9 virus. Furthermore, the ease displayed by the virus to adapt to a new host highlights the potential for H7N9-PBC viruses to rapidly acquire mutations that may enhance their risk to humans or other animal species.
Collapse
Affiliation(s)
- Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Brad Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Bryan D. Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320 Yueyang Road, Xuhui District, Shanghai 200031, China;
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, 1050 avenue de la Médecine, QC G1V 0A6, Canada
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China;
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence:
| |
Collapse
|
61
|
Zhou Y, Li S, Bi S, Li N, Bi Y, Liu W, Wang B. Long-lasting protective immunity against H7N9 infection is induced by intramuscular or CpG-adjuvanted intranasal immunization with the split H7N9 vaccine. Int Immunopharmacol 2020; 78:106013. [DOI: 10.1016/j.intimp.2019.106013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
|
62
|
Li M, Xiong Y, Wang D, Liu Y, Na B, Qin H, Liu J, Liang X, Qing G. Biomimetic nanochannels for the discrimination of sialylated glycans via a tug-of-war between glycan binding and polymer shrinkage. Chem Sci 2019; 11:748-756. [PMID: 34123048 PMCID: PMC8145919 DOI: 10.1039/c9sc05319k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sialylated glycans that are attached to cell surface mediate diverse cellular processes such as immune responses, pathogen binding, and cancer progression. Precise determination of sialylated glycans, particularly their linkage isomers that can trigger distinct biological events and are indicative of different cancer types, remains a challenge, due to their complicated composition and limited structural differences. Here, we present a biomimetic nanochannels system integrated with the responsive polymer polyethyleneimine-g-glucopyranoside (Glc-PEI) to solve this problem. By using a dramatic “OFF–ON” change in ion flux, the nanochannels system achieves specific recognition for N-acetylneuraminic acid (Neu5Ac, the predominant form of sialic acid) from various monosaccharides and sialic acid species. Importantly, different “OFF–ON” ratios of the conical nanochannels system allows the precise and sensitive discrimination of sialylated glycan linkage isomers, α2–3 and α2–6 linkage (the corresponding ion conductance increase ratios are 96.2% and 264%, respectively). Analyses revealed an unusual tug-of-war mechanism between polymer-glycan binding and polymer shrinkage. The low binding affinity of Glc-PEI for the α2–6-linked glycan caused considerable shrinkage of Glc-PEI layer, but the high affinity for the α2–3-linked glycan resulted in only a slight shrinkage. This competition mechanism provides a simple and versatile materials design principle for recognition or sensing systems that involve negatively charged target biomolecules. Furthermore, this work broadens the application of nanochannel systems in bioanalysis and biosensing, and opens a new route to glycan analysis that could help to uncover the mysterious and wonderful glycoworld. A glycan-responsive polymer-modified nanochannels system enables the precise discrimination of sialylated glycan linkage isomers via the different “OFF–ON” changes resulting from a “tug-of-war” between polymer-glycan binding and polymer shrinkage.![]()
Collapse
Affiliation(s)
- Minmin Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China .,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology 418 Guanglan Avenue Nanchang 330013 China
| | - Yuting Xiong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China .,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology 418 Guanglan Avenue Nanchang 330013 China
| | - Dongdong Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology 418 Guanglan Avenue Nanchang 330013 China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology 418 Guanglan Avenue Nanchang 330013 China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology Tianjin 300457 China
| | - Jinxuan Liu
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
63
|
Li J, Chen C, Wei J, Huang H, Peng Y, Bi Y, Liu Y, Yang Y. Delayed peak of human infections and ongoing reassortment of H7N9 avian influenza virus in the newly affected western Chinese provinces during Wave Five. Int J Infect Dis 2019; 88:80-87. [PMID: 31499209 DOI: 10.1016/j.ijid.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Eight additional provinces in western China reported human infections for the first time during the fifth wave of human H7N9 infections. The aim of this study was to analyze the epidemiological and virological characteristics of this outbreak. METHODS The epidemiological data of H7N9 cases from the newly affected western Chinese provinces were collected and analyzed. Full-length genome sequences of H7N9 virus were downloaded from the GenBank and GISAID databases, and phylogenetic, genotyping, and genetic analyses were conducted. RESULTS The peak of human infections in the newly affected western Chinese provinces was delayed by 4 months compared to the eastern Chinese provinces, and both low pathogenic (LP) and highly pathogenic (HP) H7N9-infected cases were found. The LP- and HP-H7N9 virus belonged to 10 different genotypes (including four new genotypes), of which G11 and G3 were the dominant genotypes, respectively. Almost all of these viruses originated from eastern and southern China and were most probably imported from neighboring provinces. Genetic characteristics of the circulating viruses were similar to those of the viruses from previously affected provinces during Wave Five. CONCLUSIONS A delayed peak of human infections was observed in the newly affected western Chinese provinces, and reassortment has been ongoing since the introduction of H7N9 viruses. This study highlights the importance of continued surveillance of the circulation and evolution of H7N9 virus in western China.
Collapse
Affiliation(s)
- Jin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Chuming Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxin Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing 101408, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
64
|
Zhu W, Dong J, Zhang Y, Yang L, Li X, Chen T, Zhao X, Wei H, Bo H, Zeng X, Huang W, Li Z, Tang J, Zhou J, Gao R, Xin L, Yang J, Zou S, Chen W, Liu J, Shu Y, Wang D. A Gene Constellation in Avian Influenza A (H7N9) Viruses May Have Facilitated the Fifth Wave Outbreak in China. Cell Rep 2019; 23:909-917. [PMID: 29669294 DOI: 10.1016/j.celrep.2018.03.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 03/17/2018] [Indexed: 01/11/2023] Open
Abstract
The 2016-2017 epidemic of influenza A (H7N9) virus in China prompted concern that a genetic change may underlie increased virulence. Based on an evolutionary analysis of H7N9 viruses from all five outbreak waves, we find that additional subclades of the H7 and N9 genes have emerged. Our analysis indicates that H7N9 viruses inherited NP genes from co-circulating H7N9 instead of H9N2 viruses. Genotypic diversity among H7N9 viruses increased following wave I, peaked during wave III, and rapidly deceased thereafter with minimal diversity in wave V, suggesting that the viruses entered a relatively stable evolutionary stage. The ZJ11 genotype caused the majority of human infections in wave V. We suggest that the largest outbreak of wave V may be due to a constellation of genes rather than a single mutation. Therefore, continuous surveillance is necessary to minimize the threat of H7N9 viruses.
Collapse
Affiliation(s)
- Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Zi Li
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jing Tang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jing Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Wenbing Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China.
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China.
| |
Collapse
|
65
|
A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses. J Virol 2019; 93:JVI.00570-19. [PMID: 31270231 PMCID: PMC6744242 DOI: 10.1128/jvi.00570-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/28/2019] [Indexed: 11/22/2022] Open
Abstract
The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic. The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs. IMPORTANCE The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.
Collapse
|
66
|
Rapid isolation of a potent human antibody against H7N9 influenza virus from an infected patient. Antiviral Res 2019; 170:104564. [PMID: 31336147 DOI: 10.1016/j.antiviral.2019.104564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 11/23/2022]
Abstract
Influenza virus A H7N9 remains a serious threat to public health due to the lack of effective vaccines and drugs. In this study, a neutralizing human antibody named 3L11 was rapidly isolated from the switched memory B cells of a patient infected with H7N9. The antibody 3L11 was encoded by the heavy-chain VH1-8 gene and the light-chain VL2-13 gene that had undergone somatic mutations, and conferred high affinity binding to H7N9 hemagglutinins (HAs). It promoted killing of infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). Epitope mapping by mass spectroscopy (MS) indicated that 3L11 bound to the peptide 149-175 of HAs that contained the 150-loop of the receptor-binding site (RBS). Additionally, the 3L11 escape strains had G151R (Gly151→Arg151) and S152P (Ser152→Pro152) mutations within a conserved antigenic site A near the RBS that were not observed in field strains. Importantly, 3L11 fully protected mice against a lethal H7N9 virus challenge, in both pre- and postexposure administration regimens. Altogether, this work demonstrates the feasibility of rapid isolation of neutralizing H7N9 antibodies from infected patients and provides a potential prophylactic and therapeutic agent against H7N9 viruses.
Collapse
|
67
|
Bao L, Bi Y, Wong G, Qi W, Li F, Lv Q, Wang L, Liu F, Yang Y, Zhang C, Liu WJ, Quan C, Jia W, Liu Y, Liu W, Liao M, Gao GF, Qin C. Diverse biological characteristics and varied virulence of H7N9 from Wave 5. Emerg Microbes Infect 2019; 8:94-102. [PMID: 30866763 PMCID: PMC6456849 DOI: 10.1080/22221751.2018.1560234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There was a substantial increase with infections of H7N9 avian influenza virus (AIV) in humans during Wave 5 (2016-2017). To investigate whether H7N9 had become more infectious/transmissible and pathogenic overall, we characterized the receptor binding and experimentally infected ferrets with highly pathogenic (HP)- and low pathogenic (LP)-H7N9 isolates selected from Wave 5, and compared their pathogenicity and transmissibility with a Wave 1 isolate from 2013. Studies show that A/Anhui/1/2013 (LP) and A/Chicken/Heyuan/16876/2016 (HP) were highly virulent in ferrets, A/Guangdong/Th008/2017 (HP) and A/Chicken/Huizhou/HZ-3/2017 (HP) had moderate virulence and A/Shenzhen/Th001/2016 (LP) was of low virulence in ferrets. Transmission was observed only in ferrets infected with A/Anhui/1/2013 and A/Chicken/Heyuan/16876/2016, consistent with the idea that sicker ferrets had a higher probability to transmit virus to naive animals. Given the Varied virulence and transmissibility observed in circulating H7N9 viruses from Wave 5, we conclude that the current public health risk of H7N9 has not substantially increased compared to 2013 and the circulating viruses are quite diverse.
Collapse
Affiliation(s)
- Linlin Bao
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| | - Yuhai Bi
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China.,c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Gary Wong
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China.,d Département de microbiologie-infectiologie et d'immunologie , Université Laval , Québec City , Canada
| | - Wenbao Qi
- e National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine , South China Agricultural University , Guangzhou , People's Republic of China
| | - Fengdi Li
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| | - Qi Lv
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| | - Liang Wang
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Fei Liu
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Yang Yang
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China
| | - Cheng Zhang
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - William J Liu
- f National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention (China CDC) , Beijing , People's Republic of China
| | - Chuansong Quan
- f National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention (China CDC) , Beijing , People's Republic of China
| | - Weixin Jia
- e National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine , South China Agricultural University , Guangzhou , People's Republic of China
| | - Yingxia Liu
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China
| | - Wenjun Liu
- c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ming Liao
- e National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine , South China Agricultural University , Guangzhou , People's Republic of China
| | - George F Gao
- b Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease , Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital , People's Republic of China.,c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology , Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences , Beijing , People's Republic of China.,f National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention (China CDC) , Beijing , People's Republic of China
| | - Chuan Qin
- a Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC); Key Laboratory of Human Disease Comparative Medicine, Ministry of Health , Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious , Beijing , People's Republic of China
| |
Collapse
|
68
|
Yang L, Xie J, Zhang Y, Zhu W, Li X, Wei H, Li Z, Zhao L, Bo H, Liu J, Dong J, Chen T, Shu Y, Weng Y, Wang D. Emergence of waterfowl-originated gene cassettes in HPAI H7N9 viruses caused severe human infection in Fujian, China. Influenza Other Respir Viruses 2019; 13:496-503. [PMID: 31187583 PMCID: PMC6692551 DOI: 10.1111/irv.12657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022] Open
Abstract
Background Highly pathogenic avian influenza (HPAI) A(H7N9) virus emerged and caused human infections during the 2016‐2017 epidemic wave of influenza A(H7N9) viruses in China. We report a human infection with HPAI H7N9 virus and six environmental isolates in Fujian Province, China. Methods Environmental surveillance was conducted in live poultry markets and poultry farms in Fujian, China. Clinical and epidemiologic data and samples were collected. Real‐time RT‐PCRs were conducted for each sample, and H7‐positive samples were isolated using embryonated chicken eggs. Full genomes of the isolates were obtained by next‐generation sequencing. Phylogenetic analysis and antigenic analysis were conducted. Results A 59‐year‐old man who raised about 1000 ducks was identified as HPAI H7N9 infection. Six HPAI H7 viruses were isolated from environmental samples, including five H7N9 viruses and one H7N6 virus. Phylogenetic results showed the human and environmental viruses are highly genetically diverse and containing significantly different gene constellation from that of other HPAI H7N9 previously reported. The internal genes derived from H7N9/H9N2, H5N6, and the Eurasian wild‐bird gene pool, indicating waterfowl‐originated genotypes, have emerged in HPAI H7N9/N6 viruses and caused human infection. Conclusion The new genotypes raise the concern that these HPAI H7 viruses might transmit back into migratory birds and spread to other countries as the HPAI H5Nx viruses. Considering their capability of causing severe infections in both human and poultry, the HPAI H7 viruses in this study pose a risk to public health and the poultry industry and highlight the importance of sustained surveillance of these viruses.
Collapse
Affiliation(s)
- Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianfeng Xie
- Fujian center for disease control and prevention, Fuzhou, China.,Fujian provincial key laboratory of zoonosis research, Fuzhou, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zi Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Zhao
- Fujian center for disease control and prevention, Fuzhou, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health Shenzhen, Sun Yat-sen University, Guangdong, China
| | - Yuwei Weng
- Fujian center for disease control and prevention, Fuzhou, China.,Fujian provincial key laboratory of zoonosis research, Fuzhou, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
69
|
Human-Derived A/Guangdong/Th005/2017 (H7N9) Exhibits Extremely High Replication in the Lungs of Ferrets and Is Highly Pathogenic in Chickens. Viruses 2019; 11:v11060494. [PMID: 31146467 PMCID: PMC6630577 DOI: 10.3390/v11060494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023] Open
Abstract
After a series of studies on the pathogenicity of several H7N9 strains from 2013 to 2018, we wanted to dynamically track the pathogenicity of A/Guangdong/Th005/2017 in ferrets and poultry. The pathogenicity and transmissibility of Th005, especially the distribution and replication in tissues, were studied in ferrets. We also aimed to assess the level of Th005 pathogenicity in chickens. The results showed that the pathogenicity of Th005 was significantly increased in ferrets and chickens, especially compared with the Anhui strain. The replication of Th005 in the lung tissues of ferrets was 100-fold higher than that of the Anhui strain. Th005 pathogenicity reached an intravenous pathogenicity index (IVPI) score of 3 in avian models. Continuously high titres of viruses could be detected in the cloacal cavity of chickens infected with Th005. Th005 remained highly pathogenic in mice and chickens after passaging in ferrets. High expression of both the α2,6- and α2,3-sialic acid residues in cells in vitro was beneficial to Th005 replication, which was enhanced compared to the Anhui strain. China needs to strengthen its surveillance of virulent influenza virus strains, such as Th005, which continues to increase in pathogenicity.
Collapse
|
70
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
71
|
Stepanova EA, Kotomina TS, Matyushenko VA, Smolonogina TA, Shapovalova VS, Rudenko LG, Isakova-Sivak IN. Amino Acid Substitutions N123D and N149D in Hemagglutinin Molecule Enhance Immunigenicity of Live Attenuated Influenza H7N9 Vaccine Strain in Experiment. Bull Exp Biol Med 2019; 166:631-636. [PMID: 30903496 DOI: 10.1007/s10517-019-04407-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 02/01/2023]
Abstract
We compared three cold-adapted live attenuated influenza vaccine strains prepared by reverse genetics methods on the basis of master donor virus A/Leningrad/134/17/57 and influenza H7N9 strains A/Anhui/1/2013 and A/Shanghai/1/2013. Two strains based on A/Anhui/1/2013 differed by amino acid positions 123 and 149 in HA1 (123N/149N; 123D/149D). All strains efficiently replicated in developing chicken embryos; A/Shanghai/1/2013-based strain and A/Anhui/1/2013-123N/149N variant were characterized by reduced replication in MDCK cells. Strains based on A/Anhui/1/2013 virus agglutinated erythrocytes with α2,3- and α2,6-linked sialic acid residues, whereas strain A/Shanghai/1/2013 only α2,3. In experiments with BALB/c mice, Anhui-123D/149D strain was most immunogenic and induced high crossreactive humoral immune response, therefore it can be recommended as the model virus for the construction of recombinant vector vaccines based on live attenuated influenza vaccine.
Collapse
Affiliation(s)
- E A Stepanova
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia.
| | - T S Kotomina
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - V A Matyushenko
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - T A Smolonogina
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - V S Shapovalova
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - L G Rudenko
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - I N Isakova-Sivak
- A. A. Smorodintsev Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
72
|
Hasan M, Ghosh PP, Azim KF, Mukta S, Abir RA, Nahar J, Hasan Khan MM. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb Pathog 2019; 130:19-37. [PMID: 30822457 DOI: 10.1016/j.micpath.2019.02.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022]
Abstract
H7N9, a novel strain of avian origin influenza was the first recorded incidence where a human was transited by a N9 type influenza virus. Effective vaccination against influenza A (H7N9) is a major concern, since it has emerged as a life threatening viral pathogen. Here, an in silico reverse vaccinology strategy was adopted to design a unique chimeric subunit vaccine against avian influenza A (H7N9). Induction of humoral and cell-mediated immunity is the prime concerned characteristics for a peptide vaccine candidate, hence both T cell and B cell immunity of viral proteins were screened. Antigenicity testing, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach were adopted to generate the most antigenic epitopes of avian influenza A (H7N9) proteome. Further, a novel subunit vaccine was designed by the combination of highly immunogenic epitopes along with suitable adjuvant and linkers. Physicochemical properties and secondary structure of the designed vaccine were assessed to ensure its thermostability, h ydrophilicity, theoretical PI and structural behavior. Homology modeling, refinement and validation of the designed vaccine allowed to construct a three dimensional structure of the predicted vaccine, further employed to molecular docking analysis with different MHC molecules and human immune TLR8 receptor present on lymphocyte cells. Moreover, disulfide engineering was employed to lessen the high mobility region of the designed vaccine in order to extend its stability. Furthermore, we investigated the molecular dynamic simulation of the modeled subunit vaccine and TLR8 complexed molecule to strengthen our prediction. Finally, the suggested vaccine was reverse transcribed and adapted for E. coli strain K12 prior to insertion within pET28a(+) vector for checking translational potency and microbial expression.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Progga Paromita Ghosh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shamsunnahar Mukta
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ruhshan Ahmed Abir
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jannatun Nahar
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Mehedi Hasan Khan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
73
|
Byrd-Leotis L, Jia N, Dutta S, Trost JF, Gao C, Cummings SF, Braulke T, Müller-Loennies S, Heimburg-Molinaro J, Steinhauer DA, Cummings RD. Influenza binds phosphorylated glycans from human lung. SCIENCE ADVANCES 2019; 5:eaav2554. [PMID: 30788437 PMCID: PMC6374103 DOI: 10.1126/sciadv.aav2554] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/28/2018] [Indexed: 05/23/2023]
Abstract
Influenza A viruses can bind sialic acid-terminating glycan receptors, and species specificity is often correlated with sialic acid linkage with avian strains recognizing α2,3-linked sialylated glycans and mammalian strains preferring α2,6-linked sialylated glycans. These paradigms derive primarily from studies involving erythrocyte agglutination, binding to synthetic receptor analogs or binding to undefined surface markers on cells or tissues. Here, we present the first examination of the N-glycome of the human lung for identifying natural receptors for a range of avian and mammalian influenza viruses. We found that the human lung contains many α2,3- and α2,6-linked sialylated glycan determinants bound by virus, but all viruses also bound to phosphorylated, nonsialylated glycans.
Collapse
Affiliation(s)
- Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Nan Jia
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Sucharita Dutta
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Jessica F. Trost
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chao Gao
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Sandra F. Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Thomas Braulke
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sven Müller-Loennies
- Research Center Borstel (RCB), Leibniz Lung Center, Division Biophysics, Parkallee 22, D-23845 Borstel, Germany
| | - Jamie Heimburg-Molinaro
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D. Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
74
|
Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol 2019; 4:306-315. [PMID: 30478290 DOI: 10.1038/s41564-018-0303-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Little is known about the specificities and neutralization breadth of the H7-reactive antibody repertoire induced by natural H7N9 infection in humans. We have isolated and characterized 73 H7-reactive monoclonal antibodies from peripheral B cells from four donors infected in 2013 and 2014. Of these, 45 antibodies were H7-specific, and 17 of these neutralized the virus, albeit with few somatic mutations in their variable domain sequences. An additional set of 28 antibodies, isolated from younger donors born after 1968, cross-reacted between H7 and H3 haemagglutinins in binding assays, and had accumulated significantly more somatic mutations, but were predominantly non-neutralizing in vitro. Crystal structures of three neutralizing and protective antibodies in complex with the H7 haemagglutinin revealed that they recognize overlapping residues surrounding the receptor-binding site of haemagglutinin. One of the antibodies, L4A-14, bound into the sialic acid binding site and made contacts with haemagglutinin residues that were conserved in the great majority of 2016-2017 H7N9 isolates. However, only 3 of the 17 neutralizing antibodies retained activity for the Yangtze River Delta lineage viruses isolated in 2016-2017 that have undergone antigenic change, which emphasizes the need for updated H7N9 vaccines.
Collapse
|
75
|
Yamabe M, Fujita A, Kaihatsu K, Ebara Y. Synthesis of neuraminidase-resistant sialoside-modified three-way junction DNA and its binding ability to various influenza viruses. Carbohydr Res 2019; 474:43-50. [PMID: 30711767 DOI: 10.1016/j.carres.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 11/29/2022]
Abstract
Natural sialic acid-modified compounds are capable of targeting influenza virus hemagglutinin (HA). However, these compounds have limited inhibitory effect because natural O-glycoside bond in these compounds are prone to be cleaved by neuraminidase (NA) on the surface of viruses. In this study, we synthesized NA-resistant sialoside that included unnatural S-glycoside bonds and modified this sialoside on a three-way junction (3WJ) DNA to display complementary distribution to its binding sites on a HA trimer. This S-glycoside-containing sialoside-modified 3WJ DNA showed certain NA resistance and maintained high binding affinity. Importantly, our observations showed that substituting natural O-glycoside with unnatural S-glycoside did not affect the binding affinity of the sialoside-modified 3WJ DNA for viruses. Thus, this study is an important step forward in the development of NA-resistant sialoside derivatives for more effective detection and inhibition of infection by a broad spectrum of viruses.
Collapse
Affiliation(s)
- Miyuki Yamabe
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Kobe, Hyogo 657-8501, Japan
| | - Akira Fujita
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Kobe, Hyogo 657-8501, Japan
| | - Kunihiro Kaihatsu
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yasuhito Ebara
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
76
|
Chang P, Sealy JE, Sadeyen JR, Iqbal M. Amino Acid Residue 217 in the Hemagglutinin Glycoprotein Is a Key Mediator of Avian Influenza H7N9 Virus Antigenicity. J Virol 2019; 93:e01627-18. [PMID: 30282714 PMCID: PMC6288333 DOI: 10.1128/jvi.01627-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022] Open
Abstract
Avian influenza viruses continue to evolve and acquire mutations that facilitate antigenic drift and virulence change. In 2017, low-pathogenicity H7N9 avian influenza viruses evolved to a high-pathogenicity phenotype in China. Comparative antigenic analysis of the low- and high-pathogenicity virus strains showed marked variability. In order to identify residues that may be linked to the antigenic change among the H7N9 viruses, we serially passaged the viruses in the presence of homologous ferret antiserum. Progeny viruses able to overcome the neutralizing capacity of the antiserum were sequenced. The analysis showed that the emergent immune escape viruses contained mutations A125T, A151T, and L217Q in the hemagglutinin (HA) glycoprotein as early as passage 5 and that these mutations persisted until passage 10. The results revealed that a single mutation, L217Q, in the HA of H7N9 virus led to 23- and 8-fold reductions in hemagglutination inhibition (HI) titer with ferret and chicken antisera, respectively. Further analysis showed that this change also contributed to antigenic differences between the low- and high-pathogenicity H7N9 viruses, thus playing a major role in their antigenic diversification. Therefore, evolutionary changes at amino acid position 217 in the H7N9 viruses can serve as a genetic marker for virus antigenic diversity during vaccine seed matching and selection. The in vitro immune escape mutant selection method used in this study could also aid in the prediction of emerging antigenic variants in naturally infected or immunized animals.IMPORTANCE Avian influenza H7N9 viruses circulating in poultry and wild birds continue to evolve and acquire important phenotypic changes. Mutations to the virus hemagglutinin (HA) glycoprotein can modulate virus antigenicity and facilitate virus escape from natural or vaccine-induced immunity. The focus of this study was to identify evolutionary markers in the HA of H7N9 that drive escape from antibody-based immunity. To achieve this, we propagated low-pathogenicity H7N9 virus in the presence of polyclonal antiserum derived from ferrets infected with the same strain of virus (homologous antiserum). This selection process was repeated 10 times. The HA gene sequences of viruses recovered after the fifth passage showed that the viruses readily acquired mutations at three different amino acid positions (A125T, A151T, and L217Q). Further functional analysis of these mutations confirmed that the mutation at residue 217 in the HA was responsible for mediating changes to the immunological properties of the H7N9 virus.
Collapse
Affiliation(s)
| | | | | | - Munir Iqbal
- The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
77
|
Risk Assessment of Fifth-Wave H7N9 Influenza A Viruses in Mammalian Models. J Virol 2018; 93:JVI.01740-18. [PMID: 30305359 DOI: 10.1128/jvi.01740-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023] Open
Abstract
The fifth wave of the H7N9 influenza epidemic in China was distinguished by a sudden increase in human infections, an extended geographic distribution, and the emergence of highly pathogenic avian influenza (HPAI) viruses. Genetically, some H7N9 viruses from the fifth wave have acquired novel amino acid changes at positions involved in mammalian adaptation, antigenicity, and hemagglutinin cleavability. Here, several human low-pathogenic avian influenza (LPAI) and HPAI H7N9 virus isolates from the fifth epidemic wave were assessed for their pathogenicity and transmissibility in mammalian models, as well as their ability to replicate in human airway epithelial cells. We found that an LPAI virus exhibited a similar capacity to replicate and cause disease in two animal species as viruses from previous waves. In contrast, HPAI H7N9 viruses possessed enhanced virulence, causing greater lethargy and mortality, with an extended tropism for brain tissues in both ferret and mouse models. These HPAI viruses also showed signs of adaptation to mammalian hosts by acquiring the ability to fuse at a lower pH threshold than other H7N9 viruses. All of the fifth-wave H7N9 viruses were able to transmit among cohoused ferrets but exhibited a limited capacity to transmit by respiratory droplets, and deep sequencing analysis revealed that the H7N9 viruses sampled after transmission showed a reduced amount of minor variants. Taken together, we conclude that the fifth-wave HPAI H7N9 viruses have gained the ability to cause enhanced disease in mammalian models and with further adaptation may acquire the ability to cause an H7N9 pandemic.IMPORTANCE The potential pandemic risk posed by avian influenza H7N9 viruses was heightened during the fifth epidemic wave in China due to the sudden increase in the number of human infections and the emergence of antigenically distinct LPAI and HPAI H7N9 viruses. In this study, a group of fifth-wave HPAI and LPAI viruses was evaluated for its ability to infect, cause disease, and transmit in small-animal models. The ability of HPAI H7N9 viruses to cause more severe disease and to replicate in brain tissues in animal models as well as their ability to fuse at a lower pH threshold than LPAI H7N9 viruses suggests that the fifth-wave H7N9 viruses have evolved to acquire novel traits with the potential to pose a higher risk to humans. Although the fifth-wave H7N9 viruses have not yet gained the ability to transmit efficiently by air, continuous surveillance and risk assessment remain essential parts of our pandemic preparedness efforts.
Collapse
|
78
|
Guo L, Hou M, Ning R, Li W, Yang Z, Li H, Chu M, Yu L, Liu L. A family cluster of two fatal cases infected with influenza A (H7N9) virus in Kunming China, 2017. INFECTION GENETICS AND EVOLUTION 2018; 66:152-158. [DOI: 10.1016/j.meegid.2018.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/24/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
|
79
|
Lazniewski M, Dawson WK, Szczepińska T, Plewczynski D. The structural variability of the influenza A hemagglutinin receptor-binding site. Brief Funct Genomics 2018; 17:415-427. [PMID: 29253080 PMCID: PMC6252403 DOI: 10.1093/bfgp/elx042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hemagglutinin (HA) is a transmembrane protein of the influenza A virus and a key component in its life cycle. The protein allows the virus to enter a host cell by recognizing specific glycans attached to transmembrane proteins of the host, which leads to viral endocytosis. In recent years, significant progress has been made in understanding the structural relationship between changes in the HA receptor-binding site (RBS) and the sialylated glycans that bind them. Several mutations were identified in the HA RBS that allows the virus to change host tropism. Their impact on binding the analogs of human and avian receptors was determined with X-ray crystallography. In this article, we provide a short overview of the HA protein structure and briefly discuss the adaptive mutations introduced to different HA subtypes.
Collapse
Affiliation(s)
- Michal Lazniewski
- University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
- Department of Physical Chemistry in the Faculty of Pharmacy at the Medical University of Warsaw, Poland
| | - Wayne K Dawson
- University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
- Bio-information Lab in Yayoi campus at the University of Tokyo
| | - Teresa Szczepińska
- Professor Dariusz Plewczyński Laboratory at Center of New Technologies, Warsaw, Poland
| | | |
Collapse
|
80
|
Yin R, Zhou X, Zheng J, Kwoh CK. Computational identification of physicochemical signatures for host tropism of influenza A virus. J Bioinform Comput Biol 2018; 16:1840023. [PMID: 30567479 DOI: 10.1142/s0219720018400231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Avian influenza viruses from migratory birds have managed to cross host species barriers and infected various hosts like human and swine. Epidemics and pandemics might occur when influenza viruses are adapted to humans, causing deaths and enormous economic loss. Receptor-binding specificity of the virus is one of the key factors for the transmission of influenza viruses across species. The determination of host tropism and understanding of molecular properties would help identify the mechanism why zoonotic influenza viruses can cross species barrier and infect humans. In this study, we have constructed computational models for host tropism prediction on human-adapted subtypes of influenza HA proteins using random forest. The feature vectors of the prediction models were generated based on seven physicochemical properties of amino acids from influenza sequences of three major hosts. Feature aggregation and associative rules were further applied to select top 20 features and extract host-associated physicochemical signatures on the combined model of nonspecific subtypes. The prediction model achieved high performance ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>Accuracy</mml:mtext><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mn>4</mml:mn><mml:mn>8</mml:mn></mml:math> , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>Precision</mml:mtext><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mn>5</mml:mn><mml:mn>4</mml:mn></mml:math> , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>MCC</mml:mtext><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mn>2</mml:mn><mml:mn>2</mml:mn></mml:math> ). Support and confidence rates were calculated for the host class-association rules. The results indicated that secondary structure and normalized Van der Waals volume were identified as more important physicochemical signatures in determining the host tropism.
Collapse
Affiliation(s)
- Rui Yin
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jie Zheng
- School of Information Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, P. R. China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
81
|
Xiao YL, Ren L, Zhang X, Qi L, Kash JC, Xiao Y, Wu F, Wang J, Taubenberger JK. Deep Sequencing of H7N9 Influenza A Viruses from 16 Infected Patients from 2013 to 2015 in Shanghai Reveals Genetic Diversity and Antigenic Drift. mSphere 2018; 3:e00462-18. [PMID: 30232169 PMCID: PMC6147129 DOI: 10.1128/mspheredirect.00462-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) infections are a major public health concern, including annual epidemics, epizootic outbreaks, and pandemics. A significant IAV epizootic outbreak was the H7N9 avian influenza A outbreak in China, which was first detected in 2013 and which has spread over 5 waves from 2013 to 2017, causing human infections in many different Chinese provinces. Here, RNA from primary clinical throat swab samples from 20 H7N9-infected local patients with different clinical outcomes, who were admitted and treated at one hospital in Shanghai, China, from April 2013 to April 2015, was analyzed. Whole-transcriptome amplification, with positive enrichment of IAV RNA, was performed, all 20 samples were subjected to deep sequencing, and data from 16 samples were analyzed in detail. Many single-nucleotide polymorphisms, including ones not previously reported, and many nonsynonymous changes that could affect hemagglutinin head and stalk antibody binding epitopes were observed. Minor populations representing viral quasispecies, including nonsynonymous hemagglutinin changes shared by antigenically variant H7N9 clades identified in the most recent wave of H7N9 infections in 2016 to 2017, were also identified.IMPORTANCE H7N9 subtype avian influenza viruses caused infections in over 1,400 humans from 2013 to 2017 and resulted in almost 600 deaths. It is important to understand how avian influenza viruses infect and cause disease in humans and to assess their potential for efficient person-to-person transmission. In this study, we used deep sequencing of primary clinical material to assess the evolution and potential for human adaptation of H7N9 influenza viruses.
Collapse
Affiliation(s)
- Yong-Li Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fan Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
82
|
Saliva as a source of reagent to study human susceptibility to avian influenza H7N9 virus infection. Emerg Microbes Infect 2018; 7:156. [PMID: 30228261 PMCID: PMC6143562 DOI: 10.1038/s41426-018-0160-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/30/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022]
Abstract
Avian influenza H7N9 viruses are an important public health concern due to their high mortality rate and potentials for future pandemics. We investigated human susceptibility to H7N9 viruses using recombinant H7N9 hemagglutinin (HA) proteins as a probe and found a strong association between H7N9 infections and HA binding among saliva samples from 32 patients and 60 uninfected controls in Jiangsu province, China, during the 2016 epidemic season. We also found that sialyl Lex (SLex) antigen that was recognized by H7N9 HA was associated with H7N9 virus infection. Further analysis suggested that additional saccharide residues adjacent to the SLex moiety may affect the H7N9-binding specificity. Our data suggested that saliva may be a useful reagent to study human susceptibility to avian influenza H7N9 virus, which may impact the disease control and prevention of avian influenza viruses as important human pathogens.
Collapse
|
83
|
Zhu W, Yang L, Shu Y. Did the Highly Pathogenic Avian Influenza A(H7N9) Viruses Emerged in China Raise Increased Threat to Public Health? Vector Borne Zoonotic Dis 2018; 19:22-25. [PMID: 30222520 DOI: 10.1089/vbz.2018.2299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The low pathogenic avian influenza A(H7N9) viruses (LPAI) were first identified in 2013 and have continued to infect humans since then. It was reported in February 2017 that the LPAI H7N9 virus has evolved into highly pathogenic avian influenza (HPAI) viruses, potentially increasing the risk for human and poultry. We in this study overviewed the emergence, epidemiology, and biological characterizations of the HPAI H7N9 viruses for the risk assessment.
Collapse
Affiliation(s)
- Wenfei Zhu
- 1 National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Lei Yang
- 1 National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Yuelong Shu
- 1 National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China.,2 School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| |
Collapse
|
84
|
Gambaryan AS, Matrosovich TY, Boravleva EY, Lomakina NF, Yamnikova SS, Tuzikov AB, Pazynina GV, Bovin NV, Fouchier RA, Klenk HD, Matrosovich MN. Receptor-binding properties of influenza viruses isolated from gulls. Virology 2018; 522:37-45. [DOI: 10.1016/j.virol.2018.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/21/2023]
|
85
|
The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses 2018; 10:v10090461. [PMID: 30154345 PMCID: PMC6164301 DOI: 10.3390/v10090461] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
The 1918 H1N1 Spanish Influenza pandemic was the most severe pandemic in modern history. Unlike more recent pandemics, most of the 1918 H1N1 virus' genome was derived directly from an avian influenza virus. Recent avian-origin H5 A/goose/Guangdong/1/1996 (GsGd) and Asian H7N9 viruses have caused several hundred human infections with high mortality rates. While these viruses have not spread beyond infected individuals, if they evolve the ability to transmit efficiently from person-to-person, specifically via the airborne route, they will initiate a pandemic. Therefore, this review examines H5 GsGd and Asian H7N9 viruses that have caused recent zoonotic infections with a focus on viral properties that support airborne transmission. Several GsGd H5 and Asian H7N9 viruses display molecular changes that potentiate transmission and/or exhibit ability for limited transmission between ferrets. However, the hemagglutinin of these viruses is unstable; this likely represents the most significant obstacle to the emergence of a virus capable of efficient airborne transmission. Given the global disease burden of an influenza pandemic, continued surveillance and pandemic preparedness efforts against H5 GsGd and Asian lineage H7N9 viruses are warranted.
Collapse
|
86
|
Shibata A, Okamatsu M, Sumiyoshi R, Matsuno K, Wang ZJ, Kida H, Osaka H, Sakoda Y. Repeated detection of H7N9 avian influenza viruses in raw poultry meat illegally brought to Japan by international flight passengers. Virology 2018; 524:10-17. [PMID: 30138834 DOI: 10.1016/j.virol.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/22/2023]
Abstract
H7N9 highly and low pathogenic avian influenza viruses (HPAIV and LPAIV, respectively) have been isolated from duck meat products that were brought illegally into Japan by flight passengers in their hand luggage. These H7N9 virus isolates were phylogenetically closely related to those prevailing in China. Antigenic analysis revealed that the hemagglutinin of the H7N9 HPAIV isolate was slightly different from those of the H7N9 LPAIV and older H7 strains. These meat products contaminated with AIVs repeatedly brought into Japan lead to increased risks of poultry and public health. Continuous border disease control based on the detection and culling of infected poultry and meat products is, thus, essential for the prevention of introduction and spread of AIVs.
Collapse
Affiliation(s)
- Akihiro Shibata
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Aichi 479-0881, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Riho Sumiyoshi
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Aichi 479-0881, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Zu-Jyun Wang
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Training Program for Asian Veterinarians, Japan Veterinary Medical Association, Tokyo 107-0062, Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Hiroyuki Osaka
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname, Aichi 479-0881, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
87
|
Tong J, Fu Y, Meng F, Krüger N, Valentin-Weigand P, Herrler G. The Sialic Acid Binding Activity of Human Parainfluenza Virus 3 and Mumps Virus Glycoproteins Enhances the Adherence of Group B Streptococci to HEp-2 Cells. Front Cell Infect Microbiol 2018; 8:280. [PMID: 30175075 PMCID: PMC6107845 DOI: 10.3389/fcimb.2018.00280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
In the complex microenvironment of the human respiratory tract, different kinds of microorganisms may synergistically interact with each other resulting in viral-bacterial co-infections that are often associated with more severe diseases than the respective mono-infections. Human respiratory paramyxoviruses, for example parainfluenza virus type 3 (HPIV3), are common causes of respiratory diseases both in infants and a subset of adults. HPIV3 recognizes sialic acid (SA)-containing receptors on host cells. In contrast to human influenza viruses which have a preference for α2,6-linked sialic acid, HPIV3 preferentially recognize α2,3-linked sialic acids. Group B streptococci (GBS) are colonizers in the human respiratory tract. They contain a capsular polysaccharide with terminal sialic acid residues in an α2,3-linkage. In the present study, we report that HPIV3 can recognize the α2,3-linked sialic acids present on GBS. The interaction was evident not only by the binding of virions to GBS in a co-sedimentation assay, but also in the GBS binding to HPIV3-infected cells. While co-infection by GBS and HPIV3 had a delaying effect on the virus replication, it enhanced GBS adherence to virus-infected cells. To show that other human paramyxoviruses are also able to recognize the capsular sialic acid of GBS we demonstrate that GBS attaches in a sialic acid-dependent way to transfected BHK cells expressing the HN protein of mumps virus (MuV) on their surface. Overall, our results reveal a new type of synergism in the co-infection by respiratory pathogens, which is based on the recognition of α2,3-linked sialic acids. This interaction between human paramyxoviruses and GBS enhances the bacterial adherence to airway cells and thus may result in more severe disease.
Collapse
Affiliation(s)
- Jie Tong
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Yuguang Fu
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
88
|
Heterosubtypic Protections against Human-Infecting Avian Influenza Viruses Correlate to Biased Cross-T-Cell Responses. mBio 2018; 9:mBio.01408-18. [PMID: 30087171 PMCID: PMC6083907 DOI: 10.1128/mbio.01408-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Against a backdrop of seasonal influenza virus epidemics, emerging avian influenza viruses (AIVs) occasionally jump from birds to humans, posing a public health risk, especially with the recent sharp increase in H7N9 infections. Evaluations of cross-reactive T-cell immunity to seasonal influenza viruses and human-infecting AIVs have been reported previously. However, the roles of influenza A virus-derived epitopes in the cross-reactive T-cell responses and heterosubtypic protections are not well understood; understanding those roles is important for preventing and controlling new emerging AIVs. Here, among the members of a healthy population presumed to have previously been infected by pandemic H1N1 (pH1N1), we found that pH1N1-specific T cells showed cross- but biased reactivity to human-infecting AIVs, i.e., H5N1, H6N1, H7N9, and H9N2, which correlates with distinct protections. Through a T-cell epitope-based phylogenetic analysis, the cellular immunogenic clustering expanded the relevant conclusions to a broader range of virus strains. We defined the potential key conserved epitopes required for cross-protection and revealed the molecular basis for the immunogenic variations. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development. We revealed preexisting but biased T-cell reactivity of pH1N1 influenza virus to human-infecting AIVs, which provided distinct protections. The cross-reactive T-cell recognition had a regular pattern that depended on the T-cell epitope matrix revealed via bioinformatics analysis. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development.
Collapse
|
89
|
Goneau LW, Mehta K, Wong J, L'Huillier AG, Gubbay JB. Zoonotic Influenza and Human Health-Part 1: Virology and Epidemiology of Zoonotic Influenzas. Curr Infect Dis Rep 2018; 20:37. [PMID: 30069735 DOI: 10.1007/s11908-018-0642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Zoonotic influenza viruses are those that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. They have also been implicated in the causation of deadly pandemics in recent history. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this first part of a two-part review, we describe the structure of zoonotic influenza viruses, the relationship between mutation and pandemic capacity, pathogenesis of infection, and also discuss history and epidemiology. RECENT FINDINGS We are currently witnessing the fifth and the largest wave of the avian influenza A(H7N9) epidemic. Also in circulation are a number of other zoonotic influenza viruses, including avian influenza A(H5N1) and A(H5N6); avian influenza A(H7N2); and swine influenza A(H1N1)v, A(H1N2)v, and A(H3N2)v viruses. Most recently, the first human case of avian influenza A(H7N4) infection has been documented. By understanding the virology and epidemiology of emerging zoonotic influenzas, we are better prepared to face a new pandemic. However, continued effort is warranted to build on this knowledge in order to efficiently combat the constant threat posed by the zoonotic influenza viruses.
Collapse
Affiliation(s)
- L W Goneau
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada
- University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada
| | - K Mehta
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Wong
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, North York General Hospital, Toronto, ON, Canada
| | - A G L'Huillier
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J B Gubbay
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada.
- University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada.
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
90
|
Lin J, Wang K, Xia X, Shen L. Quantification of Multivalency in Protein-Oligomer-Coated Nanoparticles Targeting Dynamic Membrane Glycan Receptors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8415-8421. [PMID: 29958494 DOI: 10.1021/acs.langmuir.8b01605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multivalent binding of proteins to glycan receptors on the host cell quantitatively controls the initial adhesion of most viruses. However, quantifying such multivalency in terms of binding valency has always been a challenge because of the hierarchy of multivalency involving multiple protein oligomers on the virus, limiting our understanding of virus adhesion and virulence. To address this challenge, we mimicked virus adhesion to cell surfaces by attaching protein-oligomer-coated nanoparticles (NPs) to fluidic glycolipid membranes with surface glycan density varying over 4 orders of magnitude. Using total internal reflection fluorescence microscopy to track single attached NPs, we show that the binding isotherms exhibit two regions, attributed to monovalent and multivalent protein/glycan interactions at low and high glycan densities, respectively. The bimodal binding curve allows the quantification of the different valency and binding constants of monovalent and multivalent interactions. In addition, the competitive inhibition of multivalency by the glycopolymer presenting multiple glycan moieties is quantitatively appreciated. This work is essential to mapping and understanding the complex binding specificities of glycan-binding proteins and inhibitory drug designs and applications.
Collapse
Affiliation(s)
- Jiake Lin
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Kang Wang
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiaoyu Xia
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| |
Collapse
|
91
|
Westenius V, Mäkelä SM, Julkunen I, Österlund P. Highly Pathogenic H5N1 Influenza A Virus Spreads Efficiently in Human Primary Monocyte-Derived Macrophages and Dendritic Cells. Front Immunol 2018; 9:1664. [PMID: 30065728 PMCID: PMC6056608 DOI: 10.3389/fimmu.2018.01664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses cause recurrent epidemics and occasional global pandemics. Wild birds are the natural reservoir of influenza A virus from where the virus can be transmitted to poultry or to mammals including humans. Mortality among humans in the highly pathogenic avian influenza H5N1 virus infection is even 60%. Despite intense research, there are still open questions in the pathogenicity of the H5N1 virus in humans. To characterize the H5N1 virus infection in human monocyte-derived macrophages (Mɸs) and dendritic cells (DCs), we used human isolates of highly pathogenic H5N1/2004 and H5N1/1997 and low pathogenic H7N9/2013 avian influenza viruses in comparison with a seasonal H3N2/1989 virus. We noticed that the H5N1 viruses have an overwhelming ability to replicate and spread in primary human immune cell cultures, and even the addition of trypsin did not equalize the infectivity of H7N9 or H3N2 viruses to the level seen with H5N1 virus. H5N1 virus stocks contained more often propagation-competent viruses than the H7N9 or H3N2 viruses. The data also showed that human DCs and Mɸs maintain 1,000- and 10,000-fold increase in the production of infectious H5N1 virus, respectively. Both analyzed highly pathogenic H5N1 viruses showed multi-cycle infection in primary human DCs and Mɸs, whereas the H3N2 and H7N9 viruses were incapable of spreading in immune cells. Interestingly, H5N1 virus was able to spread extremely efficiently despite the strong induction of antiviral interferon gene expression, which may in part explain the high pathogenicity of H5N1 virus infection in humans.
Collapse
Affiliation(s)
- Veera Westenius
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanna M Mäkelä
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
92
|
Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol 2018; 430:2590-2611. [PMID: 29924965 PMCID: PMC6083867 DOI: 10.1016/j.jmb.2018.06.024] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics. Viral receptors are key regulators of host range, tissue tropism, and viral pathogenesis. Many viruses utilize common viral receptors including sialic acid, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. Detailed molecular interactions between viruses and receptors have been defined through elegant biochemical analyses including glycan array screens, structural–functional analyses, and cell-based approaches providing tremendous insights into these initial events in viral infection. Commonalities in virus–receptor interactions present promising targets for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469-5735, USA.
| |
Collapse
|
93
|
Yang Q, Shi W, Zhang L, Xu Y, Xu J, Li S, Zhang J, Hu K, Ma C, Zhao X, Li X, Liu F, Tong X, Zhang G, Yu P, Pybus OG, Tian H. Westward Spread of Highly Pathogenic Avian Influenza A(H7N9) Virus among Humans, China. Emerg Infect Dis 2018; 24:1095-1098. [PMID: 29619922 PMCID: PMC6004833 DOI: 10.3201/eid2406.171135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report infection of humans with highly pathogenic avian influenza A(H7N9) virus in Shaanxi, China, in May 2017. We obtained complete genomes for samples from 5 patients and from live poultry markets or farms in 4 cities. Results indicate that H7N9 is spreading westward from southern and eastern China.
Collapse
|
94
|
New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five. J Virol 2018; 92:JVI.00301-18. [PMID: 29563296 DOI: 10.1128/jvi.00301-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKGKRTAR/G, PKGKRIAR/G, PKRKRAAR/G, and PKRKRTAR/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5.IMPORTANCE The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9/H9N2 and H6Ny) and lineages (Yangtze and Pearl River Delta lineages), resulting in totals of 36 and 3 major genotypes, respectively. Notably, the NAI drug-resistant (R292K in NA) and mammalian-adapted (e.g., E627K in PB2) mutations were found in HP-H7N9 not only from human isolates but also from poultry and environmental isolates, indicating increased risks for human infections. The broad dissemination of LP- and HP-H7N9 with high levels of genetic diversity and host adaptation and drug-resistant mutations likely accounted for the sharp increases in the number of human infections during wave 5. Therefore, more strategies are needed against the further spread and damage of H7N9 in the world.
Collapse
|
95
|
Wang J, Su N, Dong Z, Liu C, Cui P, Huang JA, Chen C, Zhu Y, Chen L. The fifth influenza A(H7N9) epidemic: A family cluster of infection in Suzhou city of China, 2016. Int J Infect Dis 2018; 74:128-135. [PMID: 29738825 DOI: 10.1016/j.ijid.2018.04.4322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Influenza A(H7N9) virus is known for its high pathogenicity in human. A family cluster of influenza A(H7N9) virus infection was identified in Suzhou, China. This study aimed to investigate the possibility of human-to-human transmission of the virus and examine the virologic features of this family cluster. METHODS The clinical and epidemiologic data of two patients in the family cluster of influenza A(H7N9) virus infection were collected. Viral RNA in samples derived from the two patients, their close contacts, and the environments with likely influenza A(H7N9) virus transmission were tested by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay. Hemagglutination inhibition (HI) assay was used to detect virus-specific antibodies. Genetic sequencing and phylogenetic analysis were also performed. RESULTS The index patient (Case 1), a 66-year old man, was virologically diagnosed with influenza A(H7N9) virus infection 12days after experiencing influenza-like symptoms, then died of multi-organ failure. His 39-year old daughter (Case 2), denying any other exposure to influenza A(H7N9) virus, became infected with influenza A(H7N9) virus following taking care of her father during his illness. Sequencing viral genomes isolated from the two patients showed nearly identical nucleotide sequence, and genetically resembled the viral genome isolated from a chicken in the wet market where the index patient once visited. All three influenza A(H7N9) viruses shared S138A, G186V, Q226L mutations in HA (H3) protein and a single basic amino acid (PEIPKGR↓G) at the cleavage site. CONCLUSIONS Human-to-human transmission of influenza A(H7N9) virus most likely occurred in this household. The three-amino-acid mutations in HA protein were discovered in this study, which might have increased the binding affinity of influenza A(H7N9) virus to the receptor on trachea epithelial cells to facilitate viral transmission among humans.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Nan Su
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Zefeng Dong
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Cheng Liu
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Pengwei Cui
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Cheng Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Yehan Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Liling Chen
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu Province, China.
| |
Collapse
|
96
|
Xiang D, Shen X, Pu Z, Irwin DM, Liao M, Shen Y. Convergent Evolution of Human-Isolated H7N9 Avian Influenza A Viruses. J Infect Dis 2018; 217:1699-1707. [PMID: 29438519 DOI: 10.1093/infdis/jiy082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/08/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Avian influenza A virus H7N9 has caused 5 epidemic waves of human infections in China since 2013. Avian influenza A viruses may face strong selection to adapt to novel conditions when establishing themselves in humans. In this study, we sought to determine whether adaptive evolution had occurred in human-isolated H7N9 viruses. METHODS We evaluated all available genomes of H7N9 avian influenza A virus. Maximum likelihood trees were separately reconstructed for all 8 genes. Signals of positive selection and convergent evolution were then detected on branches that lead to changes in host tropism (from avian to human). RESULTS We found that 3 genes had significant signals of positive selection (all of them P < .05). In addition, we detected 34 sites having significant signals for parallel evolution in 8 genes (all of them P < .05), including 7 well-known sites (Q591K, E627K, and D701N in PB2 gene; R156K, V202A, and L244Q in HA; and R289K in NA) that play roles in crossing species barriers for avian influenza A viruses. CONCLUSION Our study suggests that, during infection in humans, H7N9 viruses have undergone adaptive evolution to adapt to their new host environment and that the sites where parallel evolution occurred might play roles in crossing species barriers and respond to the new selection pressures arising from their new host environments.
Collapse
Affiliation(s)
- Dan Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
- Shantou University Medical College, Guangzhou, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
| | - Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Canada
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou
- Shantou University Medical College, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
97
|
Song H, Qi J, Xiao H, Bi Y, Zhang W, Xu Y, Wang F, Shi Y, Gao GF. Avian-to-Human Receptor-Binding Adaptation by Influenza A Virus Hemagglutinin H4. Cell Rep 2018; 20:1201-1214. [PMID: 28768203 DOI: 10.1016/j.celrep.2017.07.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/11/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022] Open
Abstract
Low-pathogenicity avian influenza viruses (LPAIVs) have caused a global concern to public health since the first novel LPAIV H7N9 outbreak occurred. The receptor-binding properties of the viral hemagglutinin are one key factor for efficient transmission and infection in humans. Recent evidence shows that H4 subtype viruses have been widely circulating in domestic poultry and human asymptomatic infections might have occurred. Here, we evaluated the receptor-binding properties of two representative isolates, avian H4N6 (containing Q226 and G228) and swine H4N6 (containing L226 and S228), and found that the avian isolate preferentially binds to avian receptors, whereas the swine isolate preferentially binds to human receptors. The Q226L and G228S substitutions are pivotal for the receptor-binding switch, which resulted in similar human receptor-binding features to the pandemic H2 and H3, implying that H4 has the potential to cause human infections. This early-warning study calls for future extensive surveillance.
Collapse
Affiliation(s)
- Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
98
|
Abstract
Five epidemic waves of human infection with influenza A (H7N9) virus have emerged in China since spring 2013. We previously described the epidemiological characterization of the fifth wave in Jiangsu province. In this study, 41 H7N9 viruses from patients and live-poultry markets were isolated and sequenced to further elucidate the genetic features of viruses of the fifth wave in Jiangsu province. Phylogenetic analysis revealed substantial genetic diversity in the internal genes, and 18 genotypes were identified from the 41 H7N9 virus strains. Furthermore, our data revealed that 41 isolates from Jiangsu contained the G186V and Q226L/I mutations in their haemagglutinin (HA) protein, which may increase the ability of these viruses to bind the human receptor. Four basic amino acid insertions were not observed in the HA cleavage sites of 167 H7N9 viruses from Jiangsu, which revealed that highly pathogenic avian influenza (HPAI) H7N9 viruses did not spread to Jiangsu province in the fifth wave. These findings revealed that multiple genotypes of H7N9 viruses co-circulated in the fifth wave in Jiangsu province, which indicated that the viruses have undergone ongoing evolution with genetic mutation and reassortment. Our study highlights the need to constantly monitor the evolution of H7N9 viruses and reinforce systematic influenza surveillance of humans, birds, and pigs in China.
Collapse
|
99
|
Chen C, Liu L, Xiao Y, Cui S, Wang J, Jin Q. Structural Insight into a Human Neutralizing Antibody against Influenza Virus H7N9. J Virol 2018; 92:e01850-17. [PMID: 29212936 PMCID: PMC5809732 DOI: 10.1128/jvi.01850-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/21/2017] [Indexed: 01/12/2023] Open
Abstract
Since its first emergence in East China in early 2013, many cases of avian influenza A H7N9 have been reported. The disease has extended to 22 provinces in mainland China and some surrounding areas. Strategies to combat viral infection are urgently needed. We previously isolated a human monoclonal antibody, HNIgGA6, that neutralized the H7N9 virus both in vitro and in vivo In this study, we determined the crystal structure of viral hemagglutinin (HA) globular head bound to the fragment antigen-binding region (Fab) of HNIgGA6. The crystal structure shows that the tip of the HNIgGA6 heavy-chain complementarity-determining region 3 (HCDR3) directly interposes into the receptor binding site (RBS) and mimics, in many respects, the interaction of the sialic acid receptor. Three residues at Y98, H183, and E190, which are critical to human cellular receptor binding, are also essential for HNIgGA6 recognition. Meanwhile, dual mutations at V186G and L226Q in RBS were able to disrupt viral HA1 binding with the antibody. Our study provides a better understanding of the mechanism for protective antibody recognition and a sound foundation for the design of therapeutic drugs and vaccines against H7N9 influenza.IMPORTANCE Neutralization by antibody is one of the most important mechanisms for a host to defend against viral infections. Human-originated antibody HNIgGA6 was generated in response to the natural infectious H7N9 virus and showed potential for use in suppression of H7N9 infection, with possible therapeutic implications. The crystal structure of the HNIgGA6/HA1 complex provided new insight into the protective immune response to H7N9 virus in humans, as well as possibilities for the development of effective H7N9 pandemic vaccines and antiviral molecules.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Antiviral Agents
- Binding Sites
- China
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/immunology
- Crystallization
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Histocompatibility Antigens Class II
- Humans
- Immunoglobulin G
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Models, Molecular
- Mutation
- Protein Conformation
- Receptors, Cell Surface
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Cong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| |
Collapse
|
100
|
Wu NC, Xie J, Zheng T, Nycholat CM, Grande G, Paulson JC, Lerner RA, Wilson IA. Diversity of Functionally Permissive Sequences in the Receptor-Binding Site of Influenza Hemagglutinin. Cell Host Microbe 2018; 21:742-753.e8. [PMID: 28618270 DOI: 10.1016/j.chom.2017.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/24/2017] [Accepted: 05/27/2017] [Indexed: 12/21/2022]
Abstract
Influenza A virus hemagglutinin (HA) initiates viral entry by engaging host receptor sialylated glycans via its receptor-binding site (RBS). The amino acid sequence of the RBS naturally varies across avian and human influenza virus subtypes and is also evolvable. However, functional sequence diversity in the RBS has not been fully explored. Here, we performed a large-scale mutational analysis of the RBS of A/WSN/33 (H1N1) and A/Hong Kong/1/1968 (H3N2) HAs. Many replication-competent mutants not yet observed in nature were identified, including some that could escape from an RBS-targeted broadly neutralizing antibody. This functional sequence diversity is made possible by pervasive epistasis in the RBS 220-loop and can be buffered by avidity in viral receptor binding. Overall, our study reveals that the HA RBS can accommodate a much greater range of sequence diversity than previously thought, which has significant implications for the complex evolutionary interrelationships between receptor specificity and immune escape.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tianqing Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|