51
|
Tao Y, Liu W, Wang S, Nan C, Liu L, Bai Y, Zhou Y, Xing E, Tang J, Liu J. Ultra-stable control near the EP in non-Hermitian systems and high-precision angular rate sensing applications. OPTICS EXPRESS 2024; 32:79-91. [PMID: 38175064 DOI: 10.1364/oe.506209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
In non-Hermitian systems, enhancing sensitivity under exceptional point (EP) conditions offers an ideal solution for reconciling the trade-off between sensitivity and size constraints in sensing applications. However, practical application is limited by undesired sensitivity to external fluctuations, noise, and errors in signal amplification synchronization. This paper presents a precisely controlled EP tracking and detection system (EPTDS) that achieves long-term rapid tracking and locking near the EP by constructing a second-order non-Hermitian optical sensing unit, employing an optical power adaptive control method, and utilizing a combinatorial demodulation-based dual-loop cascaded control (CDCC) technique to selectively suppress traditional noise at different frequencies. The system locking time is 10 ms, and in room temperature conditions, the output frequency error over 1 hour is reduced by more than 30 times compared to before locking. To assess its sensing capabilities, the EPTDS undergoes testing in a rotational experiment based on the Sagnac effect, with the output bias instability based on Allan deviation measured at 0.036 °/h. This is the best result for EP-enhanced angular rate sensing that we are aware of that has been reported. The EPTDS method can be extended to various sensing fields, providing a new path for transitioning non-Hermitian sensing from the laboratory to practical applications.
Collapse
|
52
|
Ji K, Zhong Q, Ge L, Beaudoin G, Sagnes I, Raineri F, El-Ganainy R, Yacomotti AM. Tracking exceptional points above the lasing threshold. Nat Commun 2023; 14:8304. [PMID: 38097572 PMCID: PMC10721897 DOI: 10.1038/s41467-023-43874-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs.
Collapse
Affiliation(s)
- Kaiwen Ji
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120, Palaiseau, France
| | - Qi Zhong
- Department of Physics, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Li Ge
- Department of Physics and Astronomy, College of Staten Island, CUNY, Staten Island, New York, 10314, USA
- Graduate Center, CUNY, New York, New York, 10016, USA
| | - Gregoire Beaudoin
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120, Palaiseau, France
| | - Isabelle Sagnes
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120, Palaiseau, France
| | - Fabrice Raineri
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120, Palaiseau, France
| | - Ramy El-Ganainy
- Department of Physics, Michigan Technological University, Houghton, Michigan, 49931, USA.
- Henes Center for Quantum Phenomena, Michigan Technological University, Houghton, Michigan, 49931, USA.
| | - Alejandro M Yacomotti
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120, Palaiseau, France.
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400, Talence, France.
| |
Collapse
|
53
|
Wang T, Niu Y. Defect modes in defective one dimensional parity-time symmetric photonic crystal. Sci Rep 2023; 13:21338. [PMID: 38049510 PMCID: PMC10696044 DOI: 10.1038/s41598-023-48737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
The introduction of defect layers into one-dimensional parity-time (PT) symmetric photonic crystals gives rise to resonances within the photonic bandgaps. These resonances can be effectively explained by our generalized temporal coupled mode theory. The scattering properties and dispersion relation of defect modes exhibit distinct characteristics compared to conventional one-dimensional Hermitian photonic crystals with defect layers. By tuning the non-Hermiticity or other model parameters, the modulus of the generalized decay rate can be reduced, consequently, the electric field concentrated within the defect layer strengthens. This arises due to the unique band structure of one-dimensional PT-symmetric photonic crystals, which differs significantly from that of traditional one-dimensional Hermitian photonic crystals. Furthermore, the interaction between multiple resonances is investigated through the introduction of multiple defect layers. Our study not only provides insights into resonance phenomena in defective non-Hermitian systems but also contributes to the design of relevant optical resonance devices.
Collapse
Affiliation(s)
- Tiecheng Wang
- College of Physics and Electronic Engineering, Shanxi University, 030006, Taiyuan, China.
| | - Yong Niu
- Institute of Theoretical Physics, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
54
|
Naikoo J, Chhajlany RW, Kołodyński J. Multiparameter Estimation Perspective on Non-Hermitian Singularity-Enhanced Sensing. PHYSICAL REVIEW LETTERS 2023; 131:220801. [PMID: 38101346 DOI: 10.1103/physrevlett.131.220801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Describing the evolution of quantum systems by means of non-Hermitian generators opens a new avenue to explore the dynamical properties naturally emerging in such a picture, e.g. operation at the so-called exceptional points, preservation of parity-time symmetry, or capitalizing on the singular behavior of the dynamics. In this Letter, we focus on the possibility of achieving unbounded sensitivity when using the system to sense linear perturbations away from a singular point. By combining multiparameter estimation theory of Gaussian quantum systems with the one of singular-matrix perturbations, we introduce the necessary tools to study the ultimate limits on the precision attained by such singularity-tuned sensors. We identify under what conditions and at what rate can the resulting sensitivity indeed diverge, in order to show that nuisance parameters should be generally included in the analysis, as their presence may alter the scaling of the error with the estimated parameter.
Collapse
Affiliation(s)
- Javid Naikoo
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Ravindra W Chhajlany
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jan Kołodyński
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| |
Collapse
|
55
|
Su Y, Fan H, Zhang S, Cao T. Tunable parity-time symmetry vortex laser from a phase change material-based microcavity. MICROSYSTEMS & NANOENGINEERING 2023; 9:142. [PMID: 37954039 PMCID: PMC10638240 DOI: 10.1038/s41378-023-00622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023]
Abstract
Traditional light sources cannot emit an electromagnetic (EM) field with an orbital angular momentum (OAM), limiting their applications in modern optics. The recent development of the OAM laser, mainly based on micro- and nanostructures, can satisfy the increasing requirements for on-chip photonics and information capacities. Nevertheless, the photonic structures have fixed parameters that prevent these OAM lasers from being dynamically tuned. Here, we propose tunable vortex lasing from a microring cavity integrated by a phase change material, Ge2Sb2Te5 (GST225). By modulating the complex refractive index to create an exceptional point (EP) to break the degeneracy of whispering gallery modes with opposite orientations, the microlaser working at the EP can impart an artificial angular momentum, thus emitting vortex beams with well-defined OAM. The grating scatter on the edge of the microring can provide efficient vertical radiation. The vortex laser wavelength from the GST225/InGaAsP dual-layered microring cavity can be dynamically tuned by switching the state of GST225 between amorphous and crystalline without changing the microring geometry. We construct an electric-thermal model to show the tuning range of operating wavelengths (EPs) from 1544.5 to 1565.9 nm in ~25 ns. Our study on high-speed tunable PT-symmetry vortex lasers facilitates the next generation of integrated optoelectronic devices for optical computing and communications in both classical and quantum regions.
Collapse
Affiliation(s)
- Ying Su
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024 China
| | - Hongji Fan
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024 China
| | - Shitong Zhang
- School of Science and Letters, UC Davis, 2100 5th St, Davis, CA 95618 USA
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
56
|
Wang XG, Zeng LL, Guo GH, Berakdar J. Floquet Engineering the Exceptional Points in Parity-Time-Symmetric Magnonics. PHYSICAL REVIEW LETTERS 2023; 131:186705. [PMID: 37977646 DOI: 10.1103/physrevlett.131.186705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Magnons serve as a testing ground for fundamental aspects of Hermitian and non-Hermitian wave mechanics and are of high relevance for information technology. This study presents setups for realizing spatiotemporally driven parity-time- (PT) symmetric magnonics based on coupled magnetic waveguides and magnonic crystals. A charge current in a metal layer with strong spin-orbit coupling sandwiched between two insulating magnetic waveguides leads to gain or loss in the magnon amplitude depending on the directions of the magnetization and the charge currents. When gain in one waveguide is balanced by loss in the other waveguide, a PT-symmetric system hosting non-Hermitian degeneracies [or exceptional points (EPs)] is realized. For ac current, multiple EPs appear for a certain gain-loss strength and mark the boundaries between the preserved PT-symmetry and the broken PT-symmetry phases. The number of islands of broken PT-symmetry phases and their extensions is tunable by the frequency and the strength of the spacer current. At EP and beyond, the induced and amplified magnetization oscillations are strong and self-sustained. In particular, these magnetization auto-oscillations in a broken PT-symmetry phase occur at low current densities and do not require further adjustments such as tilt angle between electric polarization and equilibrium magnetization direction in spin-torque oscillators, pointing to a new design of these oscillators and their utilization in computing and sensorics. It is also shown how the periodic gain-loss mechanism allows for the generation of high-frequency spin waves with low-frequency currents. For spatially periodic gain and loss acting on a magnonic crystal, magnon modes approaching each other at the Brillouin-zone boundaries are highly susceptible to PT symmetry, allowing for a wave-vector-resolved experimental realization at very low currents.
Collapse
Affiliation(s)
- Xi-Guang Wang
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Lu-Lu Zeng
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Guang-Hua Guo
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Jamal Berakdar
- Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06099 Halle/Saale, Germany
| |
Collapse
|
57
|
Wolterink TAW, Heinrich M, Scheel S, Szameit A. Order-Invariant Two-Photon Quantum Correlations in PT-Symmetric Interferometers. ACS PHOTONICS 2023; 10:3451-3457. [PMID: 37869557 PMCID: PMC10588553 DOI: 10.1021/acsphotonics.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/24/2023]
Abstract
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents. Yet, surprisingly few systematic properties of these crucial algebraic objects are known. As such, predicting the overall multiphoton behavior of a network from its individual building blocks typically defies intuition. In this work, we identify sequences of concatenated two-mode linear optical transformations whose two-photon behavior is invariant under reversal of the order. We experimentally verify this systematic behavior in parity-time-symmetric complex interferometer arrangements of varying compositions. Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways, even in small-scale non-Hermitian networks.
Collapse
Affiliation(s)
- Tom A. W. Wolterink
- Institute for Physics, University
of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Matthias Heinrich
- Institute for Physics, University
of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Stefan Scheel
- Institute for Physics, University
of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Alexander Szameit
- Institute for Physics, University
of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| |
Collapse
|
58
|
Park KT, Kim KH, Min BJ, No YS. Normal mode analysis in multi-coupled non-Hermitian optical nanocavities. Sci Rep 2023; 13:17510. [PMID: 37845301 PMCID: PMC10579268 DOI: 10.1038/s41598-023-44809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Coupled optical cavities are an attractive on-chip optical platform for realizing quantum mechanical concepts in electrodynamics and further developing non-Hermitian photonics. In such systems, an intercavity interaction is often considered as a key parameter to understand the system's behaviors but its estimation/calculation is typically limited for some simplified systems owing to extended complexities. For example, multi-coupled photonic crystal (PhC) nanocavities exhibiting strong resonances with a large free spectral range can serve as an excellent test-bed to study non-Hermitian optical properties when spatially non-uniform gain is introduced. However, the detailed quantitative analysis such as spectral tracing of cavity normal modes is often limited in commercially available numerical tools because of the required massive computation resources. Herein, we report on a concept of spatial overlap integrals (SOIs) between the eigenmodes in non-coupled PhC nanocavities and utilize them to obtain the intercavity interactions in passively coupled PhC nanocavity systems. With the help of coupling strength factors calculated from SOIs, we were able to fully exploit the coupled mode theory (CMT) and readily trace the detailed spectral behaviors of normal modes in various multi-coupled PhC nanocavities. Full-wave numerical simulation results verified the proposed method, revealing that the characteristics of original eigenmodes from non-coupled PhC nanocavities can act as key building blocks for analyzing the normal modes of multi-coupled PhC nanocavities. We further applied this SOI method to various multi-coupled PhC nanocavities with non-symmetric optical gain/loss distributions and successfully observed the unusual spectral evolution of normal modes and the correspondingly occurring unique non-Hermitian behaviors.
Collapse
Affiliation(s)
- Kyong-Tae Park
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyoung-Ho Kim
- Department of Physics, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Byung-Ju Min
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - You-Shin No
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
59
|
Zhou L, Zhang DJ. Non-Hermitian Floquet Topological Matter-A Review. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1401. [PMID: 37895522 PMCID: PMC10606436 DOI: 10.3390/e25101401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
The past few years have witnessed a surge of interest in non-Hermitian Floquet topological matter due to its exotic properties resulting from the interplay between driving fields and non-Hermiticity. The present review sums up our studies on non-Hermitian Floquet topological matter in one and two spatial dimensions. We first give a bird's-eye view of the literature for clarifying the physical significance of non-Hermitian Floquet systems. We then introduce, in a pedagogical manner, a number of useful tools tailored for the study of non-Hermitian Floquet systems and their topological properties. With the aid of these tools, we present typical examples of non-Hermitian Floquet topological insulators, superconductors, and quasicrystals, with a focus on their topological invariants, bulk-edge correspondences, non-Hermitian skin effects, dynamical properties, and localization transitions. We conclude this review by summarizing our main findings and presenting our vision of future directions.
Collapse
Affiliation(s)
- Longwen Zhou
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
- Key Laboratory of Optics and Optoelectronics, Qingdao 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of MOE, Qingdao 266100, China
| | - Da-Jian Zhang
- Department of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
60
|
Cisowski C, Klitis C, Maidment P, Sorel M, Franke-Arnold S. On-chip generation of adjustable cylindrical vector beams. OPTICS EXPRESS 2023; 31:29166-29173. [PMID: 37710722 DOI: 10.1364/oe.494462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Cylindrical vector (CV) beams have sparked considerable interest due to their extraordinary vectorial properties, desirable for applications ranging from microscopy to high energy physics. Increasing demand for cost-effective, small-footprint photonics has fueled the development of photonic integrated circuits (PICs) capable of generating structured light beams in recent years. This technology however suffers from low reconfigurability, limiting the variety of CV beams that can be generated from these devices. In this article, we propose a novel design to overcome this limitation, which exploits the polarization-dependent response of annular gratings embedded into a microring resonator to generate re-configurable CV beams. We demonstrate the viability of the device in a proof-of-principle experiment including spatially resolved Stokes measurements.
Collapse
|
61
|
Wang K, Xiao L, Lin H, Yi W, Bergholtz EJ, Xue P. Experimental simulation of symmetry-protected higher-order exceptional points with single photons. SCIENCE ADVANCES 2023; 9:eadi0732. [PMID: 37611104 PMCID: PMC11801374 DOI: 10.1126/sciadv.adi0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Exceptional points (EPs) of non-Hermitian (NH) systems have recently attracted increasing attention due to their rich phenomenology and intriguing applications. Compared to the predominantly studied second-order EPs, higher-order EPs have been assumed to play a much less prominent role because they generically require the tuning of more parameters. Here, we experimentally simulate two-dimensional topological NH band structures using single-photon interferometry, and observe topologically stable third-order EPs obtained by tuning only two real parameters in the presence of symmetry. In particular, we explore how different symmetries stabilize qualitatively different third-order EPs: the parity-time symmetry leads to a generic cube-root dispersion, while a generalized chiral symmetry implies a square-root dispersion coexisting with a flat band. Additionally, we simulate fourfold degeneracies, composed of the non-defective twofold degeneracies and second-order EPs. Our work reveals the abundant and conceptually richer higher-order EPs protected by symmetries and offers a versatile platform for further research on topological NH systems.
Collapse
Affiliation(s)
- Kunkun Wang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Lei Xiao
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Haiqing Lin
- Beijing Computational Science Research Center, Beijing 100084, China
- School of Physics, Zhejiang University, Hangzhou 310030, China
| | - Wei Yi
- Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Emil J. Bergholtz
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Peng Xue
- Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
62
|
Canós Valero A, Shamkhi HK, Kupriianov AS, Weiss T, Pavlov AA, Redka D, Bobrovs V, Kivshar Y, Shalin AS. Superscattering emerging from the physics of bound states in the continuum. Nat Commun 2023; 14:4689. [PMID: 37542069 PMCID: PMC10403603 DOI: 10.1038/s41467-023-40382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
We study the Mie-like scattering from an open subwavelength resonator made of a high-index dielectric material, when its parameters are tuned to the regime of interfering resonances. We uncover a novel mechanism of superscattering, closely linked to strong coupling of the resonant modes and described by the physics of bound states in the continuum (BICs). We demonstrate that the enhanced scattering occurs due to constructive interference described by the Friedrich-Wintgen mechanism of interfering resonances, allowing to push the scattering cross section of a multipole resonance beyond the currently established limit. We develop a general non-Hermitian model to describe interfering resonances of the quasi-normal modes, and study subwavelength dielectric nonspherical resonators exhibiting avoided crossing resonances associated with quasi-BIC states. We confirm our theoretical findings by a scattering experiment conducted in the microwave frequency range. Our results reveal a new strategy to boost scattering from non-Hermitian systems, suggesting important implications for metadevices.
Collapse
Affiliation(s)
- Adrià Canós Valero
- Institute of Physics, University of Graz, and NAWI Graz, 8010, Graz, Austria.
- ITMO University, St. Petersburg, 197101, Russia.
| | - Hadi K Shamkhi
- ITMO University, St. Petersburg, 197101, Russia
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | | | - Thomas Weiss
- Institute of Physics, University of Graz, and NAWI Graz, 8010, Graz, Austria
| | | | - Dmitrii Redka
- Electrotechnical University LETI, St. Petersburg, 197376, Russia
| | - Vjaceslavs Bobrovs
- Riga Technical University, Institute of Telecommunications, Riga, 1048, Latvia
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia.
| | - Alexander S Shalin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
- MSU, Faculty of Physics, Moscow, 119991, Russia.
| |
Collapse
|
63
|
Zhang X, Liu Q, Zhang Q, Li Z, Ma Y, Gong Q, Gu Y. Loss-induced Purcell enhancement in PT-broken whispering gallery microcavities. OPTICS LETTERS 2023; 48:4069-4072. [PMID: 37527120 DOI: 10.1364/ol.496276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023]
Abstract
Parity-time (PT)-symmetry brings various opportunities for electromagnetic field manipulation and light-matter interaction, such as modification of spontaneous emission. However, previous works mainly focused on the behavior of spontaneous emission at exceptional points or in the PT-symmetry situation. Here, we theoretically demonstrate loss-induced Purcell enhancement in PT-broken whispering gallery microcavities. In the PT-broken phase, one of the supermodes decays slowly thereby playing a leading role in spontaneous emission. As the loss increases, the quality factor of this supermode is higher and the mode volume is smaller, so that the Purcell factors will be larger if the emitter is placed near the lossless cavity. Our findings indicate that loss can enhance the interaction between light and matter, which could be applied to single photon emission, non-Hermitian photonic devices, etc.
Collapse
|
64
|
Li Z, Luo XW, Lin D, Gharajeh A, Moon J, Hou J, Zhang C, Gu Q. Topological Microlaser with a Non-Hermitian Topological Bulk. PHYSICAL REVIEW LETTERS 2023; 131:023202. [PMID: 37505939 DOI: 10.1103/physrevlett.131.023202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/25/2023] [Indexed: 07/30/2023]
Abstract
Bulk-edge correspondence, with quantized bulk topology leading to protected edge states, is a hallmark of topological states of matter and has been experimentally observed in electronic, atomic, photonic, and many other systems. While bulk-edge correspondence has been extensively studied in Hermitian systems, a non-Hermitian bulk could drastically modify the Hermitian topological band theory due to the interplay between non-Hermiticity and topology, and its effect on bulk-edge correspondence is still an ongoing pursuit. Importantly, including non-Hermicity can significantly expand the horizon of topological states of matter and lead to a plethora of unique properties and device applications, an example of which is a topological laser. However, the bulk topology, and thereby the bulk-edge correspondence, in existing topological edge-mode lasers is not well defined. Here, we propose and experimentally probe topological edge-mode lasing with a well-defined non-Hermitian bulk topology in a one-dimensional (1D) array of coupled ring resonators. By modeling the Hamiltonian with an additional degree of freedom (referred to as synthetic dimension), our 1D structure is equivalent to a 2D non-Hermitian Chern insulator with precise mapping. Our Letter may open a new pathway for probing non-Hermitian topological effects and exploring non-Hermitian topological device applications.
Collapse
Affiliation(s)
- Zhitong Li
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Xi-Wang Luo
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Dayang Lin
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Abouzar Gharajeh
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Jiyoung Moon
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Junpeng Hou
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Chuanwei Zhang
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Qing Gu
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
65
|
Wang A, Meng Z, Chen CQ. Non-Hermitian topology in static mechanical metamaterials. SCIENCE ADVANCES 2023; 9:eadf7299. [PMID: 37406119 DOI: 10.1126/sciadv.adf7299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The combination of broken Hermiticity and band topology in physical systems unveils a novel bound state dubbed as the non-Hermitian skin effect (NHSE). Active control that breaks reciprocity is usually used to achieve NHSE, and gain and loss in energy are inevitably involved. Here, we demonstrate non-Hermitian topology in a mechanical metamaterial system by exploring its static deformation. Nonreciprocity is introduced via passive modulation of the lattice configuration without resorting to active control and energy gain/loss. Intriguing physics such as the reciprocal and higher-order skin effects can be tailored in the passive system. Our study provides an easy-to-implement platform for the exploration of non-Hermitian and nonreciprocal phenomena beyond conventional wave dynamics.
Collapse
Affiliation(s)
- Aoxi Wang
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
| | - Zhiqiang Meng
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
| | - Chang Qing Chen
- Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
66
|
Lee JY, Chen PY. Wave propagation, bi-directional reflectionless, and coherent perfect absorption-lasing in finite periodic PT-symmetric photonic systems. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3099-3108. [PMID: 39635052 PMCID: PMC11501334 DOI: 10.1515/nanoph-2023-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 12/07/2024]
Abstract
With consideration of parity-time (PT) symmetry, Lorentz reciprocity theorem, and real Bloch phase, we propose a generalized parametric space for any PT-symmetric unit cells that can comprehensively illustrate the PT phase transition, Bloch phase, and necessary conditions of exotic wave scattering in the general finite periodic PT photonic structures. We put forward rigorous and formal expressions of bi-directional reflectionless and coherent perfect absorption and lasing (CPAL) for the finite one-dimensional PT photonic structures. With a new concept of the parametric space, we demonstrate the necessary PT phases of general unit cells, which result in the abnormal bi-directional reflectionless and CPAL effects. Moreover, thanks to parametrization, analytical formulas for complex relative permittivities of the unit cells composed of subwavelength gain-loss heterostructure are derived to provide a guideline for manipulating different PT scattering events. We accordingly study several one-dimensional PT photonic systems to achieve exotic wave scattering enabled by PT-symmetry. We believe this work may offer a theoretical underpinning for studying extraordinary wave phenomena of PT-symmetric photonics and may open avenues for manipulation of light.
Collapse
Affiliation(s)
- Jeng Yi Lee
- Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien974301, Taiwan
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL60661, USA
| |
Collapse
|
67
|
Gao Z, Qiao X, Pan M, Wu S, Yim J, Chen K, Midya B, Ge L, Feng L. Two-Dimensional Reconfigurable Non-Hermitian Gauged Laser Array. PHYSICAL REVIEW LETTERS 2023; 130:263801. [PMID: 37450823 DOI: 10.1103/physrevlett.130.263801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/11/2023] [Indexed: 07/18/2023]
Abstract
Topological effects in photonic non-Hermitian systems have recently led to extraordinary discoveries including nonreciprocal lasing, topological insulator lasers, and topological metamaterials, to mention a few. These effects, although realized in non-Hermitian systems, are all stemming from their Hermitian components. Here we experimentally demonstrate the topological skin effect and boundary sensitivity, induced by the imaginary gauge field in a two-dimensional laser array, which are fundamentally different from any Hermitian topological effects and intrinsic to open systems. By selectively and asymmetrically injecting gain into the system, we have synthesized an imaginary gauge field on chip, which can be flexibly reconfigured on demand. We show not only that the non-Hermitian topological features remain intact in a nonlinear nonequilibrium system, but also that they can be harnessed to enable persistent phase locking with intensity morphing. Our work lays the foundation for a dynamically reconfigurable on-chip coherent system with robust scalability, attractive for building high-brightness sources with arbitrary intensity profiles.
Collapse
Affiliation(s)
- Zihe Gao
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xingdu Qiao
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mingsen Pan
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shuang Wu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jieun Yim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kaiyuan Chen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bikashkali Midya
- Department of Physical Sciences, Indian Institute of Science Education and Research, Berhampur, Odisha 760003, India
| | - Li Ge
- Department of Physics and Astronomy, College of Staten Island, CUNY, Staten Island, New York 10314, USA
- The Graduate Center, CUNY, New York, New York 10016, USA
| | - Liang Feng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
68
|
Xu G, Zhou X, Li Y, Cao Q, Chen W, Xiao Y, Yang L, Qiu CW. Non-Hermitian Chiral Heat Transport. PHYSICAL REVIEW LETTERS 2023; 130:266303. [PMID: 37450831 DOI: 10.1103/physrevlett.130.266303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
Exceptional point (EP) has been captivated as a concept of interpreting eigenvalue degeneracy and eigenstate exchange in non-Hermitian physics. The chirality in the vicinity of EP is intrinsically preserved and usually immune to external bias or perturbation, resulting in the robustness of asymmetric backscattering and directional emission in classical wave fields. Despite recent progress in non-Hermitian thermal diffusion, all state-of-the-art approaches fail to exhibit chiral states or directional robustness in heat transport. Here we report the first discovery of chiral heat transport, which is manifested only in the vicinity of EP but suppressed at the EP of a thermal system. The chiral heat transport demonstrates significant robustness against drastically varying advections and thermal perturbations imposed. Our results reveal the chirality in heat transport process and provide a novel strategy for manipulating mass, charge, and diffusive light.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge 117583, Republic of Singapore
| | - Xue Zhou
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Qitao Cao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University100871, Beijing, China
| | - Weijin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge 117583, Republic of Singapore
| | - Yunfeng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University100871, Beijing, China
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, USA
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge 117583, Republic of Singapore
| |
Collapse
|
69
|
Bai K, Li JZ, Liu TR, Fang L, Wan D, Xiao M. Nonlinear Exceptional Points with a Complete Basis in Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:266901. [PMID: 37450800 DOI: 10.1103/physrevlett.130.266901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Exceptional points (EPs) are special spectral singularities at which two or more eigenvalues, and their corresponding eigenvectors, coalesce and become identical. In conventional wisdom, the coalescence of eigenvectors inevitably leads to the loss of completeness of the eigenbasis. Here, we show that this scenario breaks down in general at nonlinear EPs (NEPs). As an example, we realize a fifth-order NEP (NEP_{5}) within only three coupled resonators with both a theoretical model and simulations in circuits. One stable and another four auxiliary steady eigenstates of the nonlinear Hamiltonian coalesce at the NEP_{5}, and the response of eigenfrequency to perturbations demonstrates a fifth-order root law. Intriguingly, the biorthogonal eigenbasis of the Hamiltonian governing the system dynamics is still complete, and this fact is corroborated by a finite Petermann factor instead of a divergent one at conventional EPs. Consequently, the amplification of noise, which diverges at other EPs, converges at our NEP_{5}. Our finding transforms the understanding of EPs and shows potential for miniaturizing various key applications operating near EPs.
Collapse
Affiliation(s)
- Kai Bai
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jia-Zheng Li
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tian-Rui Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Liang Fang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Duanduan Wan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Meng Xiao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| |
Collapse
|
70
|
Hou J, You Y, Liu Y, Jiang K, Han X, He W, Geng W, Liu Y, Chou X. Ultra-Narrow Bandwidth Microwave Photonic Filter Implemented by Single Longitudinal Mode Parity Time Symmetry Brillouin Fiber Laser. MICROMACHINES 2023; 14:1322. [PMID: 37512633 PMCID: PMC10384477 DOI: 10.3390/mi14071322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
In this paper, a novel microwave photonic filter (MPF) based on a single longitudinal mode Brillouin laser achieved by parity time (PT) symmetry mode selection is proposed, and its unparalleled ultra-narrow bandwidth as low as to sub-kHz together with simple and agile tuning performance is experimentally verified. The Brillouin fiber laser ring resonator is cascaded with a PT symmetric system to achieve this MPF. Wherein, the Brillouin laser resonator is excited by a 5 km single mode fiber to generate Brillouin gain, and the PT symmetric system is configured with Polarization Beam Splitter (PBS) and polarization controller (PC) to achieve PT symmetry. Thanks to the significant enhancement of the gain difference between the main mode and the edge mode when the polarization state PT symmetry system breaks, a single mode oscillating Brillouin laser is generated. Through the selective amplification of sideband modulated signals by ultra-narrow linewidth Brillouin single mode laser gain, the MPF with ultra-narrow single passband performance is obtained. By simply tuning the central wavelength of the stimulated Brillouin scattering (SBS) pumped laser to adjust the Brillouin oscillation frequency, the gain position of the Brillouin laser can be shifted, thereby achieving flexible tunability. The experimental results indicate that the MPF proposed in this paper achieves a single pass band narrow to 72 Hz and the side mode rejection ratio of more than 18 dB, with a center frequency tuning range of 0-20 GHz in the testing range of vector network analysis, which means that the MPF possesses ultra high spectral resolution and enormous potential application value in the domain of ultra fine microwave spectrum filtering such as radar imaging and electronic countermeasures.
Collapse
Affiliation(s)
- Jiaxin Hou
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Yajun You
- School of Aerospace Engineering, North University of China, Taiyuan 030051, China
| | - Yuan Liu
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Kai Jiang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Xuefeng Han
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Wenjun He
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Wenping Geng
- School of Semiconductor and Physics, North University of China, Taiyuan 030051, China
| | - Yi Liu
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Xiujian Chou
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| |
Collapse
|
71
|
Soley MB, Bender CM, Stone AD. Experimentally Realizable PT Phase Transitions in Reflectionless Quantum Scattering. PHYSICAL REVIEW LETTERS 2023; 130:250404. [PMID: 37418706 DOI: 10.1103/physrevlett.130.250404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/24/2023] [Accepted: 05/10/2023] [Indexed: 07/09/2023]
Abstract
Above-barrier quantum scattering with truncated real potentials V(x)=-|x|^{p} provides an experimentally accessible platform that exhibits spontaneous parity-time symmetry breaking as p is varied. The unbroken phase has reflectionless states that correspond to bound states in the continuum of the nontruncated potentials at arbitrarily high discrete real energies. In the fully broken phase there are no bound states. There is a mixed phase in which exceptional points occur at specific energies and values of p. These effects should be observable in cold-atom scattering experiments.
Collapse
Affiliation(s)
- Micheline B Soley
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706, USA
- Yale Quantum Institute, Yale University, PO Box 208334, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Carl M Bender
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - A Douglas Stone
- Yale Quantum Institute, Yale University, PO Box 208334, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
72
|
Şeker E, Olyaeefar B, Dadashi K, Şengül S, Teimourpour MH, El-Ganainy R, Demir A. Single-mode quasi PT-symmetric laser with high power emission. LIGHT, SCIENCE & APPLICATIONS 2023; 12:149. [PMID: 37328473 DOI: 10.1038/s41377-023-01175-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/18/2023]
Abstract
Large-area lasers are practical for generating high output powers. However, this often comes at the expense of lower beam quality due to the introduction of higher-order modes. Here, we experimentally demonstrate a new type of electrically pumped, large-area edge-emitting lasers that exhibit a high power emission (∼0.4 W) and a high-quality beam (M2∼1.25). These favorable operational characteristics are enabled by establishing a quasi PT-symmetry between the second-order mode of a large area two-mode laser cavity and that of a single-mode auxiliary partner cavity, i.e., by implementing a partial isospectrality between the two coupled cavities. This in turn enlarges the effective volume of the higher-order modes. As a result, a selective pump applied via current injection into the main laser cavity can provide a stronger modal gain to the fundamental mode, and thus lead to lasing in the single mode regime after filtering out higher order transverse modes. The reported experimental results confirm this intuitive picture and are in good agreement with both theoretical and numerical analysis. Above all, the employed material platform and fabrication process are compatible with the industrial standards of semiconductor lasers. This work provides the first clear demonstration, beyond previous proof-of-concept studies, of the utility of PT-symmetry in building laser geometries with enhanced performance and, at the same time, useful output power levels and emission characteristics.
Collapse
Affiliation(s)
- Enes Şeker
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Babak Olyaeefar
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Khalil Dadashi
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Serdar Şengül
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | | | - Ramy El-Ganainy
- Department of Physics, Michigan Technological University, Houghton, MI, 49931, USA.
- Henes Center for Quantum Phenomena, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Abdullah Demir
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
73
|
Xu G, Zhou X, Yang S, Wu J, Qiu CW. Observation of bulk quadrupole in topological heat transport. Nat Commun 2023; 14:3252. [PMID: 37277349 DOI: 10.1038/s41467-023-39117-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
The quantized bulk quadrupole moment has so far revealed a non-trivial boundary state with lower-dimensional topological edge states and in-gap zero-dimensional corner modes. In contrast to photonic implementations, state-of-the-art strategies for topological thermal metamaterials struggle to achieve such higher-order hierarchical features. This is due to the absence of quantized bulk quadrupole moments in thermal diffusion fundamentally prohibiting possible band topology expansions. Here, we report a recipe for generating quantized bulk quadrupole moments in fluid heat transport and observe the quadrupole topological phases in non-Hermitian thermal systems. Our experiments show that both the real- and imaginary-valued bands exhibit the hierarchical features of bulk, gapped edge and in-gap corner states-in stark contrast to the higher-order states observed only on real-valued bands in classical wave fields. Our findings open up unique possibilities for diffusive metamaterial engineering and establish a playground for multipolar topological physics.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Xue Zhou
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Shuihua Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Jing Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore.
| |
Collapse
|
74
|
Wang W, Zhang Y, Li B, Wang J, Ma J, Yuan P, Zhang D, Zhang H, Qian L. Generation of an ultrashort pulse train through ultrafast parity-time symmetry switching. OPTICS EXPRESS 2023; 31:19523-19535. [PMID: 37381365 DOI: 10.1364/oe.492567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
We propose a scheme for the direct generation of an ultrashort pulse train as well as the further compression of pulsed lasers based on the nonlinearity inherent to parity-time (PT) symmetric optical systems. Implementation of optical parametric amplification in a directional coupler of χ(2) waveguides enables ultrafast gain switching through pump-controlled breaking of PT symmetry. We theoretically demonstrate that pumping such a PT symmetric optical system with a periodically amplitude-modulated laser enables periodic gain switching, which can directly convert a continuous-wave signal laser into a train of ultrashort pulses. We further demonstrate that by engineering the PT symmetry threshold, an apodized gain switching that enables the production of ultrashort pulses without side lobes. This work suggests a new approach for exploring the non-linearity inherent to various PT symmetric optical structures to extend optical manipulation capabilities.
Collapse
|
75
|
Liu H, Lai P, Wang H, Cheng H, Tian J, Chen S. Topological phases and non-Hermitian topology in photonic artificial microstructures. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2273-2294. [PMID: 39633770 PMCID: PMC11502100 DOI: 10.1515/nanoph-2022-0778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 12/07/2024]
Abstract
In the past few decades, the discovery of topological matter states has ushered in a new era in topological physics, providing a robust framework for strategically controlling the transport of particles or waves. Topological photonics, in particular, has sparked considerable research due to its ability to construct and manipulate photonic topological states via photonic artificial microstructures. Although the concept of topology originates from condensed matter, topological photonics has given rise to new fundamental ideas and a range of potential applications that may lead to revolutionary technologies. Here, we review recent developments in topological photonics, with a focus on the realization and application of several emerging research areas in photonic artificial microstructures. We highlight the research trend, spanning from the photonic counterpart of topological insulator phases, through topological semimetal phases, to other emerging non-Hermitian topologies.
Collapse
Affiliation(s)
- Hui Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Pengtao Lai
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Haonan Wang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
| |
Collapse
|
76
|
Tang Y, Liang C, Wen X, Li W, Xu AN, Liu YC. PT-Symmetric Feedback Induced Linewidth Narrowing. PHYSICAL REVIEW LETTERS 2023; 130:193602. [PMID: 37243661 DOI: 10.1103/physrevlett.130.193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/14/2023] [Indexed: 05/29/2023]
Abstract
Narrow linewidth is a long-pursued goal in precision measurement and sensing. We propose a parity-time symmetric (PT-symmetric) feedback method to narrow the linewidths of resonance systems. By using a quadrature measurement-feedback loop, we transform a dissipative resonance system into a PT-symmetric system. Unlike the conventional PT-symmetric systems that typically require two or more modes, here the PT-symmetric feedback system contains only a single resonance mode, which greatly extends the scope of applications. The method enables remarkable linewidth narrowing and enhancement of measurement sensitivity. We illustrate the concept in a thermal ensemble of atoms, achieving a 48-fold narrowing of the magnetic resonance linewidth. By applying the method in magnetometry, we realize a 22-times improvement of the measurement sensitivity. This work opens the avenue for studying non-Hermitian physics and high-precision measurements in resonance systems with feedback.
Collapse
Affiliation(s)
- Yuanjiang Tang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Chao Liang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xin Wen
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Weipeng Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - An-Ning Xu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
77
|
Xu Y, Li L, Jeong H, Kim S, Kim I, Rho J, Liu Y. Subwavelength control of light transport at the exceptional point by non-Hermitian metagratings. SCIENCE ADVANCES 2023; 9:eadf3510. [PMID: 37172089 PMCID: PMC10181182 DOI: 10.1126/sciadv.adf3510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The concept of non-Hermitian physics, originally developed in the context of quantum field theory, has been investigated on distinct photonic platforms and created a plethora of counterintuitive phenomena. Interfacing non-Hermitian photonics and nanoplasmonics, here, we demonstrate unidirectional excitation and reflection of surface plasmon polaritons by elaborately designing the permittivity profile of non-Hermitian metagratings, in which the eigenstates of the system can coalesce at an exceptional point. Continuous tuning of the excitation or reflection ratios is also possible through altering the geometry of the metagrating. The controllable directionality and robust performance are attributed to the phase transition near the exceptional point, which is fully confirmed by the theoretic calculation, numerical simulation, and experimental characterization. Our work pushes non-Hermitian photonics to the nanoscale regime and paves the way toward high-performance plasmonic devices with superior controllability, performance, and robustness by using the topological effect associated with non-Hermitian systems.
Collapse
Affiliation(s)
- Yihao Xu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Lin Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Heonyeong Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| | - Yongmin Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
78
|
Huo D, Hua S, Tian XD, Liu YM. Lopsided optical diffraction in a loop electromagnetically induced grating. OPTICS EXPRESS 2023; 31:16251-16266. [PMID: 37157708 DOI: 10.1364/oe.483806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We propose a theoretical scheme in a cold rubidium-87 (87Rb) atomic ensemble with a non-Hermitian optical structure, in which a lopsided optical diffraction grating can be realized just with the combination of single spatially periodic modulation and loop-phase. Parity-time (PT) symmetric and parity-time antisymmetric (APT) modulation can be switched by adjusting different relative phases of the applied beams. Both PT symmetry and PT antisymmetry in our system are robust to the amplitudes of coupling fields, which allows optical response to be modulated precisely without symmetry breaking. Our scheme shows some nontrivial optical properties, such as lopsided diffraction, single-order diffraction, asymmetric Dammam-like diffraction, etc. Our work will benefit the development of versatile non-Hermitian/asymmetric optical devices.
Collapse
|
79
|
Li H, Jia Q, Lyu B, Cao F, Yang G, Liu D, Shi J. Parity-time symmetry breaking optical nanocircuit. OPTICS EXPRESS 2023; 31:14986-14996. [PMID: 37157350 DOI: 10.1364/oe.488467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Gain and loss balanced parity-time (PT) inversion symmetry has been achieved across multiple platforms including acoustics, electronics, and photonics. Tunable subwavelength asymmetric transmission based on PT symmetry breaking has attracted great interest. However, due to the diffraction limit, the geometric size of an optical PT symmetric system is much larger than the resonant wavelength, which limits the device miniaturization. Here, we theoretically studied a subwavelength optical PT symmetry breaking nanocircuit based on the similarity between a plasmonic system and an RLC circuit. Firstly, the asymmetric coupling of an input signal is observed by varying the coupling strength and gain-loss ratio between the nanocircuits. Furthermore, a subwavelength modulator is proposed by modulating the gain of the amplified nanocircuit. Notably, the modulation effect near the exceptional point is remarkable. Finally, we introduce a four-level atomic model modified by the Pauli exclusion principle to simulate the nonlinear dynamics of a PT symmetry broken laser. The asymmetric emission of a coherent laser is realized by full-wave simulation with a contrast of about 50. This subwavelength optical nanocircuit with broken PT symmetry is of great significance for realizing directional guided light, modulator and asymmetric-emission laser at subwavelength scales.
Collapse
|
80
|
Liao K, Zhong Y, Du Z, Liu G, Li C, Wu X, Deng C, Lu C, Wang X, Chan CT, Song Q, Wang S, Liu X, Hu X, Gong Q. On-chip integrated exceptional surface microlaser. SCIENCE ADVANCES 2023; 9:eadf3470. [PMID: 37043581 PMCID: PMC10096563 DOI: 10.1126/sciadv.adf3470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The on-chip integrated visible microlaser is a core unit of high-speed visible-light communication with huge bandwidth resources, which needs robustness against fabrication errors, compressible linewidth, reducible threshold, and in-plane emission. However, until now, it has been a great challenge to meet these requirements simultaneously. Here, we report a scalable strategy to realize a robust on-chip integrated visible microlaser with further improved lasing performances enabled by the increased orders (n) of exceptional surfaces, and experimentally verify the strategy by demonstrating the performances of a second-order exceptional surface-tailored microlaser. We further prove the potential application of the strategy by discussing an exceptional surface-tailored topological microlaser with unique performances. This work lays a foundation for further development of on-chip integrated high-speed visible-light communication and processing systems, provides a platform for the fundamental study of non-Hermitian photonics, and proposes a feasible method of joint research for non-Hermitian photonics with nonlinear optics and topological photonics.
Collapse
Affiliation(s)
- Kun Liao
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhuochen Du
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Guodong Liu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Chentong Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chunhua Deng
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Cuicui Lu
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xingyuan Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qinghai Song
- State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shufeng Wang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Beijing Academy of Quantum Information Sciences, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
81
|
Guo CX, Chen S, Ding K, Hu H. Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2023; 130:157201. [PMID: 37115861 DOI: 10.1103/physrevlett.130.157201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Defective spectral degeneracy, known as exceptional point (EP), lies at the heart of various intriguing phenomena in optics, acoustics, and other nonconservative systems. Despite extensive studies in the past two decades, the collective behaviors (e.g., annihilation, coalescence, braiding, etc.) involving multiple exceptional points or lines and their interplay have been rarely understood. Here we put forward a universal non-Abelian conservation rule governing these collective behaviors in generic multiband non-Hermitian systems and uncover several counterintuitive phenomena. We demonstrate that two EPs with opposite charges (even the pairwise created) do not necessarily annihilate, depending on how they approach each other. Furthermore, we unveil that the conservation rule imposes strict constraints on the permissible exceptional-line configurations. It excludes structures like Hopf link yet permits novel staggered rings composed of noncommutative exceptional lines. These intriguing phenomena are illustrated by concrete models which could be readily implemented in platforms like coupled acoustic cavities, optical waveguides, and ring resonators. Our findings lay the cornerstone for a comprehensive understanding of the exceptional non-Abelian topology and shed light on the versatile manipulations and applications based on exceptional degeneracies in nonconservative systems.
Collapse
Affiliation(s)
- Cui-Xian Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China
| | - Kun Ding
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Haiping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
82
|
Chimczak G, Kowalewska-Kudłaszyk A, Lange E, Bartkiewicz K, Peřina J. The effect of thermal photons on exceptional points in coupled resonators. Sci Rep 2023; 13:5859. [PMID: 37041323 PMCID: PMC10090181 DOI: 10.1038/s41598-023-32864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
We analyse two quantum systems with hidden parity-time ([Formula: see text]) symmetry: one is an optical device, whereas another is a superconducting microwave-frequency device. To investigate their symmetry, we introduce a damping frame (DF), in which loss and gain terms for a given Hamiltonian are balanced. We show that the non-Hermitian Hamiltonians of both systems can be tuned to reach an exceptional point (EP), i.e., the point in parameter space at which a transition from broken to unbroken hidden [Formula: see text] symmetry takes place. We calculate a degeneracy of a Liouvillian superoperator, which is called the Liouvillian exceptional point (LEP), and show that, in the optical domain, LEP is equivalent to EP obtained from the non-Hermitian Hamiltonian (HEP). We also report breaking the equivalence between LEP and HEP by a non-zero number of thermal photons for the microwave-frequency system.
Collapse
Affiliation(s)
- Grzegorz Chimczak
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland.
| | - Anna Kowalewska-Kudłaszyk
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Ewelina Lange
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Karol Bartkiewicz
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
- RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of Czech Academy of Sciences, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jan Peřina
- RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of Czech Academy of Sciences, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
83
|
Baek S, Park SH, Oh D, Lee K, Lee S, Lim H, Ha T, Park HS, Zhang S, Yang L, Min B, Kim TT. Non-Hermitian chiral degeneracy of gated graphene metasurfaces. LIGHT, SCIENCE & APPLICATIONS 2023; 12:87. [PMID: 37024464 PMCID: PMC10079968 DOI: 10.1038/s41377-023-01121-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 05/25/2023]
Abstract
Non-Hermitian degeneracies, also known as exceptional points (EPs), have been the focus of much attention due to their singular eigenvalue surface structure. Nevertheless, as pertaining to a non-Hermitian metasurface platform, the reduction of an eigenspace dimensionality at the EP has been investigated mostly in a passive repetitive manner. Here, we propose an electrical and spectral way of resolving chiral EPs and clarifying the consequences of chiral mode collapsing of a non-Hermitian gated graphene metasurface. More specifically, the measured non-Hermitian Jones matrix in parameter space enables the quantification of nonorthogonality of polarisation eigenstates and half-integer topological charges associated with a chiral EP. Interestingly, the output polarisation state can be made orthogonal to the coalesced polarisation eigenstate of the metasurface, revealing the missing dimension at the chiral EP. In addition, the maximal nonorthogonality at the chiral EP leads to a blocking of one of the cross-polarised transmission pathways and, consequently, the observation of enhanced asymmetric polarisation conversion. We anticipate that electrically controllable non-Hermitian metasurface platforms can serve as an interesting framework for the investigation of rich non-Hermitian polarisation dynamics around chiral EPs.
Collapse
Affiliation(s)
- Soojeong Baek
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Sang Hyun Park
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union street SE, Minneapolis, MN, 55455, USA
| | - Donghak Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Kanghee Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
- Korea Research Institute of Standards and Science (KRISS), Gajeong-ro 267, Daejeon, 34113, Republic of Korea
| | - Sangha Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea
| | - Hosub Lim
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, 25 Shattuck Street, Boston, MA, 02215, USA
| | - Taewoo Ha
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Seobu-ro 2066, Suwon, 16419, Republic of Korea
| | - Hyun Sung Park
- Samsung Advanced Institute of Technology, Samsung Electronics, Samsung-ro, Suwon, 16678, Republic of Korea
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO, 63130, USA
| | - Bumki Min
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea.
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea.
| | - Teun-Teun Kim
- Department of Physics, University of Ulsan, Daehak-ro, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
84
|
Zhang C, Shu FJ, Zou CL, Dong H, Yao J, Zhao YS. Organic Synthetic Photonic Systems with Reconfigurable Parity-Time Symmetry Breaking for Tunable Single-Mode Microlasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300054. [PMID: 36744301 DOI: 10.1002/adma.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Indexed: 05/17/2023]
Abstract
Synthetic photonic materials exploiting the quantum concept of parity-time (PT) symmetry lead to an emerging photonic paradigm-non-Hermitian photonics, which is revolutionizing the photonic sciences. The non-Hermitian photonics dealing with the interplay between gain and loss in PT synthetic photonic material systems offers a versatile platform for advancing microlaser technology. However, current PT-symmetric microcavity laser systems only manipulate imaginary parts of the refractive indices, suffering from limited laser spectral bandwidth. Here, an organic composite material system is proposed to synthesize reconfigurable PT-symmetric microcavities with controllable complex refractive indices for realizing tunable single-mode laser outputs. A grayscale electron-beam direct-writing technique is elaborately designed to process laser dye-doped polymer films in one single step into microdisk cavities with periodic gain and loss distribution, which enables thresholdless PT-symmetry breaking and single-mode laser operation. Furthermore, organic photoisomerizable compounds are introduced to reconfigure the PT-symmetric systems in real-time by tailoring the real refractive index of the polymer microresonators, allowing for a dynamically and continuously tunable single-mode laser output. This work fundamentally enhances the PT-symmetric photonic systems for innovative design of synthetic photonic materials and architectures.
Collapse
Affiliation(s)
- Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Fang-Jie Shu
- Henan Province Engineering Research Center of Microcavity and Photoelectric Intelligent Sensing, School of Electronics and Electrical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| | - Chang-Ling Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
85
|
Mukhamedyanov A, Zyablovsky AA, Andrianov ES. Subthreshold phonon generation in an optomechanical system with an exceptional point. OPTICS LETTERS 2023; 48:1822-1825. [PMID: 37221775 DOI: 10.1364/ol.485245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
We consider a phonon laser based on an optomechanical system consisting of two optical modes interacting with each other via a phononic mode. An external wave exciting one of the optical modes plays the role of the pumping. We show that in this system at some amplitude of the external wave an exceptional point exists. When the external wave amplitude is less than one corresponding to the exceptional point, the splitting of the eigenfrequencies takes place. We demonstrate that in this case, the periodic modulation of the external wave amplitude can result in simultaneous generation of photons and phonons even below the threshold of optomechanical instability.
Collapse
|
86
|
Li F, Lapointe S, Courval T, Fetisova M, Kämpfe T, Verrier I, Jourlin Y, Karvinen P, Kuittinen M, Bisson JF. A chiral microchip laser using anisotropic grating mirrors for single mode emission. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1741-1752. [PMID: 39634113 PMCID: PMC11502084 DOI: 10.1515/nanoph-2022-0783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 12/07/2024]
Abstract
A pair of nanostructured mirrors made of a diffraction grating inscribed in the top layer of a Bragg mirror are designed such that a phase shift near π and different reflected amplitudes exist between transverse electric (TE) and magnetic (TM) reflected polarization states at normal incidence. When a standing wave laser resonator is formed with two such mirrors and the two mirrors' principal axes are twisted one with respect to the other, this phase shift condition suppresses multiple longitudinal mode emission arising from axial spatial hole burning. In addition, the different amplitudes of TE and TM reflected polarizations create polarization eigenstates with different round-trip losses, suppressing one polarization eigenstate. Laser experiments made with a Yb3+-doped Y3Al5O12 active material reveal enhanced purity of the emission spectrum compared to similar lasers using conventional laser mirrors. The proposed design enables a miniature single mode laser, replacing more complex designs usually needed to achieve that goal.
Collapse
Affiliation(s)
- Fangfang Li
- Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101Joensuu, Finland
| | - Shawn Lapointe
- Département de physique et d’astronomie, Université de Moncton, 18 Antonine-Maillet Ave., E1A 3E9, Moncton, Canada
| | - Théo Courval
- Département de physique et d’astronomie, Université de Moncton, 18 Antonine-Maillet Ave., E1A 3E9, Moncton, Canada
| | - Marina Fetisova
- Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101Joensuu, Finland
| | - Thomas Kämpfe
- Laboratoire Hubert Curien UMR 5516, Univ. Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School, F-42023, Saint-Etienne, France
| | - Isabelle Verrier
- Laboratoire Hubert Curien UMR 5516, Univ. Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School, F-42023, Saint-Etienne, France
| | - Yves Jourlin
- Laboratoire Hubert Curien UMR 5516, Univ. Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School, F-42023, Saint-Etienne, France
| | - Petri Karvinen
- Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101Joensuu, Finland
| | - Markku Kuittinen
- Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, FI-80101Joensuu, Finland
| | - Jean-François Bisson
- Département de physique et d’astronomie, Université de Moncton, 18 Antonine-Maillet Ave., E1A 3E9, Moncton, Canada
| |
Collapse
|
87
|
Liu CW, Liu Y, Du L, Su WJ, Wu H, Li Y. Enhanced sensing of optomechanically induced nonlinearity by linewidth suppression and optical bistability in cavity-waveguide systems. OPTICS EXPRESS 2023; 31:9236-9250. [PMID: 37157497 DOI: 10.1364/oe.482075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We study the enhanced sensing of optomechanically induced nonlinearity (OMIN) in a cavity-waveguide coupled system. The Hamiltonian of the system is anti-PT symmetric, with the two involved cavities being dissipatively coupled via the waveguide. The anti-PT symmetry may break down when a weak waveguide-mediated coherent coupling is introduced. However, we find a strong bistable response of the cavity intensity to the OMIN near the cavity resonance, benefiting from linewidth suppression caused by the vacuum induced coherence. The joint effect of optical bistability and the linewidth suppression is inaccessible by the anti-PT symmetric system involving only dissipative coupling. Due to that, the sensitivity measured by an enhancement factor is greatly enhanced by two orders of magnitude compared to that for the anti-PT symmetric model. Moreover, the enhancement factor shows resistance to a reasonably large cavity decay and robustness to fluctuations in the cavity-waveguide detuning. Based on the integrated optomechanical cavity-waveguide systems, the scheme can be used for sensing different physical quantities related to the single-photon coupling strength and has potential applications in high-precision measurements with systems involving Kerr-type nonlinearity.
Collapse
|
88
|
Wang Q, Zhu C, Zheng X, Xue H, Zhang B, Chong YD. Continuum of Bound States in a Non-Hermitian Model. PHYSICAL REVIEW LETTERS 2023; 130:103602. [PMID: 36962029 DOI: 10.1103/physrevlett.130.103602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In a Hermitian system, bound states must have quantized energies, whereas free states can form a continuum. We demonstrate how this principle fails for non-Hermitian systems, by analyzing non-Hermitian continuous Hamiltonians with an imaginary momentum and Landau-type vector potential. The eigenstates, which we call "continuum Landau modes" (CLMs), have Gaussian spatial envelopes and form a continuum filling the complex energy plane. We present experimentally realizable 1D and 2D lattice models that host CLMs; the lattice eigenstates are localized and have other features matching the continuous model. One of these lattices can serve as a rainbow trap, whereby the response to an excitation is concentrated at a position proportional to the frequency. Another lattice can act a wave funnel, concentrating an input excitation onto a boundary over a wide frequency bandwidth. Unlike recent funneling schemes based on the non-Hermitian skin effect, this requires a simple lattice design with reciprocal couplings.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Changyan Zhu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xu Zheng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Haoran Xue
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Y D Chong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
89
|
Mossakowska-Wyszyńska A, Witoński P, Szczepański P. Nonlinear operation of an FP laser with PT symmetry active medium. OPTICS EXPRESS 2023; 31:8518-8534. [PMID: 36859965 DOI: 10.1364/oe.479222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
In this paper, an analysis of the nonlinear laser operation in an active medium made of a parity time (PT) symmetric structure placed in a Fabry-Perot (FP) resonator is demonstrated for the first time. The FP mirrors' reflection coefficients and phases, the PT symmetric structure period, primitive cell number, and the gain and loss saturation effects are taken into account in a presented theoretical model. The modified transfer matrix method is used to obtain characteristics of laser output intensity. Numerical results show that the selection of the appropriate phase of the FP resonator's mirrors makes it possible to obtain different levels of the output intensity. Moreover, for certain value of a ratio of the grating period to the operating wavelength, it is possible to obtain the bistability effect.
Collapse
|
90
|
Liu Z, Yang S, Han Y, Hao T, Zhang M, Li M, Zhu N. Directly modulated parity-time symmetric single-mode Fabry-Perot laser. OPTICS EXPRESS 2023; 31:6770-6781. [PMID: 36823927 DOI: 10.1364/oe.484580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Effective manipulation of resonant mode, output power and modulation bandwidth of lasers are all of vital importance for practical application scenarios such as communication systems. We show that by breaking the parity-time (PT) symmetry, single mode operation lasing can be realized in an intrinsic multiple mode Fabry-Perot (FP) resonator. Two identical FP resonators are employed to establish a symmetric system and high output power can be achieved with lower fabrication difficulty and intracavity losses compared with ring resonators. The small-signal response and direct modulation of the PT-symmetric FP laser have also been demonstrated with electrical pumping. Our work opens new avenues for mode selection of high-performance FP lasers and provides a cost-effective candidate for practical applications such as communication systems.
Collapse
|
91
|
Pei Y, Huang W, Zhang N, Wang M, Zhou Y, Li K, Shi F. Investigating exceptional points in dark-bright mode-coupled plasmonic systems. OPTICS EXPRESS 2023; 31:6156-6169. [PMID: 36823879 DOI: 10.1364/oe.481770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Exceptional points (EPs) of non-Hermitian systems are gaining more and more attention due to their important applications in unidirectional transmitters, sensors, etc. However, theoretical studies on EPs of reflection, transmission, and absorption spectra are less available. In this paper, in the dark-bright mode-coupled plasmonic systems, the variations of EPs of reflection, transmission, and absorption spectra are numerically investigated using temporal coupled-mode theory, and an assumption is given using the representation transformation theory. The intermediate representation (IR) is firstly proposed and related to the reflection spectrum, while the normal representation (NR) is associated with the absorption spectrum. In the region far from EPs, the IR (or NR) describes the reflection (or absorption) spectrum well. Near EPs, modified formulas similar to the representation transformation theory are given. In order to verify the correctness of the assumption, two metasurfaces are designed. And the simulation results are in good agreement with the assumption and it is found in the near-infrared and visible-light band that the absorption loss of the dark mode is linearly related to the EPs of reflection, transmission, and absorption spectra, while the radiation loss of the bright mode is only linearly related to the EPs of the absorption spectrum. These laws can help to manipulate the splitting of spectral lines for reflection, transmission, and absorption by adjusting the radiation loss and absorption loss of bright mode, the absorption loss of dark mode, and the coupling coefficients between two resonant modes. This research provides a guiding scheme for the design of micro and nano photonics devices.
Collapse
|
92
|
Lu X, Zhou F, Sun Y, Chanana A, Wang M, McClung A, Aksyuk VA, Davanco M, Srinivasan K. Rod and slit photonic crystal microrings for on-chip cavity quantum electrodynamics. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:521-529. [PMID: 39635407 PMCID: PMC11501185 DOI: 10.1515/nanoph-2022-0622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/07/2024]
Abstract
Micro-/nanocavities that combine high quality factor (Q) and small mode volume (V) have been used to enhance light-matter interactions for cavity quantum electrodynamics (cQED). Whispering gallery mode (WGM) geometries such as microdisks and microrings support high-Q and are design- and fabrication-friendly, but V is often limited to tens of cubic wavelengths to avoid WGM radiation. The stronger modal confinement provided by either one-dimensional or two-dimensional photonic crystal defect geometries can yield sub-cubic-wavelength V, yet the requirements on precise design and dimensional control are typically much more stringent to ensure high-Q. Given their complementary features, there has been sustained interest in geometries that combine the advantages of WGM and photonic crystal cavities. Recently, a "microgear" photonic crystal ring (MPhCR) has shown promise in enabling additional defect localization ( > 10× reduction of V) of a WGM, while maintaining high-Q ( ≈ 1 0 6 ) and other WGM characteristics in ease of coupling and design. However, the unit cell geometry used is unlike traditional PhC cavities, and etched surfaces may be too close to embedded quantum nodes (quantum dots, atomic defect spins, etc.) for cQED applications. Here, we report two novel PhCR designs with "rod" and "slit" unit cells, whose geometries are more traditional and suitable for solid-state cQED. Both rod and slit PhCRs have high-Q ( > 1 0 6 ) with WGM coupling properties preserved. A further ≈10× reduction of V by defect localization is observed in rod PhCRs. Moreover, both fundamental and 2nd-order PhC modes co-exist in slit PhCRs with high Qs and good coupling. Our work showcases that high-Q/V PhCRs are in general straightforward to design and fabricate and are a promising platform to explore for cQED.
Collapse
Affiliation(s)
- Xiyuan Lu
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD20742, USA
| | - Feng Zhou
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD20742, USA
| | - Yi Sun
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD20742, USA
| | - Ashish Chanana
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
| | - Mingkang Wang
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742, USA
| | - Andrew McClung
- Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA01003, USA
| | - Vladimir A. Aksyuk
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
| | - Marcelo Davanco
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
| | - Kartik Srinivasan
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD20742, USA
| |
Collapse
|
93
|
Yang M, Zhang HQ, Liao YW, Liu ZH, Zhou ZW, Zhou XX, Xu JS, Han YJ, Li CF, Guo GC. Realization of exceptional points along a synthetic orbital angular momentum dimension. SCIENCE ADVANCES 2023; 9:eabp8943. [PMID: 36696496 PMCID: PMC9876542 DOI: 10.1126/sciadv.abp8943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Exceptional points (EPs), at which more than one eigenvalue and eigenvector coalesce, are unique spectral features of non-Hermiticity (NH) systems. They exist widely in open systems with complex energy spectra. We experimentally demonstrate the appearance of paired EPs in a periodical-driven degenerate optical cavity along the synthetic orbital angular momentum dimension with a tunable parameter. The complex-energy band structures and the key features of EPs, i.e., their bulk Fermi arcs, parity-time symmetry breaking transition, energy swapping, and half-integer band windings, are directly observed by detecting the wavefront angle-resolved transmission spectrum. Our results demonstrate the flexibility of using the photonic synthetic dimensions to implement NH systems beyond their geometric dimension and EP-based sensing.
Collapse
Affiliation(s)
- Mu Yang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Qing Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Wei Liao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Wei Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xing-Xiang Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jin-Shi Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yong-Jian Han
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
94
|
Zhang X, Hu J, Zhao N. Stable Atomic Magnetometer in Parity-Time Symmetry Broken Phase. PHYSICAL REVIEW LETTERS 2023; 130:023201. [PMID: 36706400 DOI: 10.1103/physrevlett.130.023201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
Random motion of spins is usually detrimental in magnetic resonance experiments. The spin diffusion in nonuniform magnetic fields causes broadening of the resonance and limits the sensitivity and the spectral resolution in applications like magnetic resonance spectroscopy. Here, by observation of the parity-time (PT) phase transition of diffusive spins in gradient magnetic fields, we show that the spatial degrees of freedom of atoms could become a resource, rather than harmful, for high-precision measurement of weak signals. In the normal phase with zero or low gradient fields, the diffusion results in dissipation of spin precession. However, by increasing the field gradient, the spin system undergoes a PT transition, and enters the PT symmetry broken phase. In this novel phase, the spin precession frequency splits due to spatial localization of the eigenmodes. We demonstrate that, using these spatial-motion-induced split frequencies, the spin system can serve as a stable magnetometer, whose output is insensitive to the inevitable long-term drift of control parameters. This opens a door to detect extremely weak signals in imperfectly controlled environments.
Collapse
Affiliation(s)
| | - Jinbo Hu
- Beijing Computational Science Research Center
| | - Nan Zhao
- Beijing Computational Science Research Center
| |
Collapse
|
95
|
Feng Z, Sun X. Harnessing Dynamical Encircling of an Exceptional Point in Anti-PT-Symmetric Integrated Photonic Systems. PHYSICAL REVIEW LETTERS 2022; 129:273601. [PMID: 36638290 DOI: 10.1103/physrevlett.129.273601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Dynamically encircling an exceptional point in a non-Hermitian system can lead to chiral behaviors, but this process is difficult for on-chip PT-symmetric devices which require accurate control of gain and loss rates. Here, we experimentally demonstrated encircling an exceptional point with a fixed loss rate in a compact anti-PT-symmetric integrated photonic system, where chiral mode switching was achieved within a length that is an order of magnitude shorter than that of a PT-symmetric system. Based on the experimental demonstration, we proposed a topologically protected mode (de)multiplexer that is robust against fabrication errors with a wide operating wavelength range. With the advantages of simplified fabrication and characterization processes, the demonstrated system can be used for studying higher-order exceptional points and for exotic light manipulation.
Collapse
Affiliation(s)
- Ziyao Feng
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xiankai Sun
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
96
|
Cai W, Liu J, Gao Y, Ye W. Diverse lateral shifts of beams in non-Hermitian waveguide arrays. OPTICS EXPRESS 2022; 30:46982-46990. [PMID: 36558636 DOI: 10.1364/oe.476424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Non-Hermitian systems have attracted considerable attention in optics due to the rich physics introduced by the existence of real spectra and exceptional points (EPs), which is exploited in lasers, optical sensors and on-chip manipulations of light. Here, focusing on the dynamics of beams in non-Hermitian waveguide arrays supporting a ring of EPs (exceptional ring) and 3rd-order EPs, we theoretically demonstrate that the center of energy of a beam prepared around an eigenstate of the waveguide array near EPs could exhibit non-zero shifts in the lateral direction during its propagation. When the initial state of the beam prepared around an eigenstate inside (outside) the exceptional ring with the imaginary (real) eigenvalue, the lateral shifts of the beams are manifested by the non-oscillating (Zitterbewegung-like) motions, which are robust to the perturbations of coupling coefficients between waveguides. Remarkably, the amplitude of the non-oscillating shift is dependent on a non-Hermitian Berry connection (U(1) gauge invariance). It contradicts the conventional wisdom that the Berry connection cannot induce the dynamic effect. Furthermore, near the high-order EPs, the initial-state-dependent lateral shifts of the beams present diversity, such as multifrequencies and destructive interferences. The counterintuitive lateral shifts of the beams stem from the non-orthogonal nature of eigenstate of the non-Hermitian systems, which may open a gateway towards the non-Hermitian beam dynamics and manipulations of beams.
Collapse
|
97
|
Guo Q, Ren XQ, Bai CH, Zhang Y, Li G, Zhang T. Mechanical squeezing in an active-passive-coupled double-cavity optomechanical system via pump modulation. OPTICS EXPRESS 2022; 30:47070-47081. [PMID: 36558644 DOI: 10.1364/oe.475529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
We focus on the generation of mechanical squeezing by using periodically amplitude-modulated laser to drive an active-passive-coupled double-cavity optomechanical system, where the coupled gain cavity and loss cavity can form into a parity-time (P T)-symmetry system. The numerical analysis of the system stability shows that the system is more likely to be stable in the unbroken-P T-symmetry regime than in the broken-P T-symmetry regime. The mechanical squeezing in the active-passive system exhibits stronger robustness against the thermal noise than that in the passive-passive system, and the so-called 3 dB limit can be broken in the resolved-sideband regime. Furthermore, it is also found that the mechanical squeezing obtained in the unbroken-P T-symmetry region is stronger than that in the broken-P T-symmetry region. This work may be meaningful for the quantum state engineering in the gain-loss quantum system that contributes to the study of P T-symmetric physics in the quantum regime.
Collapse
|
98
|
Soori A, Sivakumar M, Subrahmanyam V. Transmission across non-HermitianPT-symmetric quantum dots and ladders. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:055301. [PMID: 36395507 DOI: 10.1088/1361-648x/aca3ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
A non-Hermitian (NH) region connected to semi-infinite Hermitian lattices acts either as a source or as a sink and the probability current is not conserved in a scattering typically. Even aPT-symmetric region that contains both a source and a sink does not lead to current conservation plainly. We propose a model and study the scattering across a NHPT-symmetric two-level quantum dot (QD) connected to two semi-infinite one-dimensional lattices in a special way so that the probability current is conserved. Aharonov-Bohm type phases are included in the model, which arise from magnetic fluxes (ℏϕL/e, ℏϕR/e) through two loops in the system. We show that whenϕL=ϕR, the probability current is conserved. We find that the transmission across the QD can be perfect in thePT-unbroken phase (corresponding to real eigenenergies of the isolated QD) whereas the transmission is never perfect in thePT-broken phase (corresponding to purely imaginary eigenenergies of the QD). The two transmission peaks have the same width only for special values of the fluxes (being odd multiples ofπℏ/2e). In the broken phase, the transmission peak is surprisingly not at zero energy. We give an insight into this feature through a four-site toy model. We extend the model to aPT-symmetric ladder connected to two semi-infinite lattices. We show that the transmission is perfect in unbroken phase of the ladder due to Fabry-Pérot type interference, that can be controlled by tuning the chemical potential. In the broken phase of the ladder, the transmission is substantially suppressed.
Collapse
Affiliation(s)
- Abhiram Soori
- School of Physics, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - M Sivakumar
- School of Physics, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - V Subrahmanyam
- School of Physics, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
99
|
Wang L, Cheng X, Zhang X, Yu J, Xia M, Li C, Lin X, Liu F, Jin C. PT symmetric single-mode line-defect photonic crystal lasers with asymmetric loss design. OPTICS LETTERS 2022; 47:6033-6036. [PMID: 37219165 DOI: 10.1364/ol.475803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 05/24/2023]
Abstract
The exploration of parity-time (PT) symmetry in micro-/nano-cavity lasers has recently gained immense research interest. The PT symmetric phase transition to single-mode lasing has been achieved by arranging the spatial distribution of optical gain and loss in single or coupled cavity systems. In terms of photonic crystal (PhC) lasers, a non-uniform pumping scheme is usually employed to enter the PT symmetry-breaking phase in a longitudinal PT symmetric system. Instead, we use a uniform pumping scheme to enable the PT symmetric transition to the desired single lasing mode in line-defect PhC cavities based on a simple design with asymmetric optical loss. The flexible control of gain-loss contrast is realized by removing a few rows of air holes in PhCs. We obtain single-mode lasing with a side mode suppression ratio (SMSR) of around 30 dB without affecting the threshold pump power and linewidth. The output power of the desired mode is six times higher than that in multimode lasing. This simple approach enables single-mode PhC lasers without sacrificing the output power, threshold pump power, and linewidth of a multimode cavity design.
Collapse
|
100
|
Lu Y, Zhao Y, Li R, Liu J. Anomalous spontaneous emission dynamics at chiral exceptional points. OPTICS EXPRESS 2022; 30:41784-41803. [PMID: 36366646 DOI: 10.1364/oe.473824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
An open quantum system operated at the spectral singularities where dimensionality reduces, known as exceptional points (EPs), demonstrates distinguishing behavior from the Hermitian counterpart. Here, we present an analytical description of local density of states (LDOS) for microcavity featuring chiral EPs, and unveil the anomalous spontaneous emission dynamics from a quantum emitter (QE) due to the non-Lorentzian response of EPs. Specifically, we reveal that a squared Lorentzian term of LDOS contributed by chiral EPs can destructively interfere with the linear Lorentzian profile, resulting in the null Purcell enhancement to a QE with special transition frequency, which we call EP induced transparency. While for the case of constructive interference, the squared Lorentzian term can narrow the linewidth of Rabi splitting even below that of bare components, and thus significantly suppresses the decay of Rabi oscillation. Interestingly, we further find that an open microcavity with chiral EPs supports atom-photon bound states for population trapping and decay suppression in long-time dynamics. As applications, we demonstrate the advantages of microcavity operated at chiral EPs in achieving high-fidelity entanglement generation and high-efficiency single-photon generation. Our work unveils the exotic cavity quantum electrodynamics unique to chiral EPs, which opens the door for controlling light-matter interaction at the quantum level through non-Hermiticity, and holds great potential in building high-performance quantum-optics devices.
Collapse
|