51
|
Ron T, Leon A, Kafri A, Ashraf A, Na J, Babu A, Banerjee R, Brookbank H, Muddaluri SR, Little KJ, Aghion E, Pixley S. Nerve Regeneration with a Scaffold Incorporating an Absorbable Zinc-2% Iron Alloy Filament to Improve Axonal Guidance. Pharmaceutics 2023; 15:2595. [PMID: 38004574 PMCID: PMC10674795 DOI: 10.3390/pharmaceutics15112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peripheral nerve damage that results in lost segments requires surgery, but currently available hollow scaffolds have limitations that could be overcome by adding internal guidance support. A novel solution is to use filaments of absorbable metals to supply physical support and guidance for nerve regeneration that then safely disappear from the body. Previously, we showed that thin filaments of magnesium metal (Mg) would support nerve regeneration. Here, we tested another absorbable metal, zinc (Zn), using a proprietary zinc alloy with 2% iron (Zn-2%Fe) that was designed to overcome the limitations of both Mg and pure Zn metal. Non-critical-sized gaps in adult rat sciatic nerves were repaired with silicone conduits plus single filaments of Zn-2%Fe, Mg, or no metal, with autografts as controls. After seventeen weeks, all groups showed equal recovery of function and axonal density at the distal end of the conduit. The Zn alloy group showed some improvements in early rat health and recovery of function. The alloy had a greater local accumulation of degradation products and inflammatory cells than Mg; however, both metals had an equally thin capsule (no difference in tissue irritation) and no toxicity or inflammation in neighboring nerve tissues. Therefore, Zn-2%Fe, like Mg, is biocompatible and has great potential for use in nervous tissue regeneration and repair.
Collapse
Affiliation(s)
- Tomer Ron
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Avi Leon
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alon Kafri
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Nuclear Research Centre-Negev, Beer-Sheva 84190, Israel
| | - Ahmed Ashraf
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - John Na
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ashvin Babu
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Runima Banerjee
- College of Engineering & Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter Brookbank
- College of Arts & Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Kevin J. Little
- Department of Orthopedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Pediatric Hand & Upper Extremity Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eli Aghion
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sarah Pixley
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
52
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
53
|
Malikidogo KP, Isaac M, Uguen A, Morfin JF, Tircsó G, Tóth É, Bonnet CS. Gd 3+ Complexes for MRI Detection of Zn 2+ in the Presence of Human Serum Albumin: Structure-Activity Relationships. Inorg Chem 2023; 62:17207-17218. [PMID: 37815813 DOI: 10.1021/acs.inorgchem.3c02280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Zn2+-responsive magnetic resonance imaging (MRI) contrast agents are typically composed of a Gd chelate conjugated to a Zn2+-binding moiety via a linker. They allow for Zn2+ detection in the presence of human serum albumin (HSA). In order to decipher the key parameters that drive their Zn2+-dependent MRI response, we designed a pyridine-based ligand, PyAmC2mDPA, and compared the properties of GdPyAmC2mDPA to those of analogue complexes with varying Gd core, Zn-binding moiety, or linker sizes. The stability constants determined by pH potentiometry showed the good selectivity of PyAmC2mDPA for Gd3+ (log KGd = 16.27) versus Zn2+ (log KZn = 13.58), proving that our modified Zn2+-binding DPA moiety prevents the formation of previously observed dimeric species. Paramagnetic relaxation enhancement measurements indicated at least three sites that are available for GdPyAmC2mDPA binding on HSA, as well as a 2-fold affinity increase when Zn2+ is present (KD = 170 μM versus KDZn = 60 μM). Fluorescence competition experiments provided evidence of the higher affinity for site II vs site I, as well as the importance of both the Zn-binding part and the Gd core in generating enhanced HSA affinity in the presence of Zn2+. Finally, an analysis of nuclear magnetic relaxation dispersion (NMRD) data suggested a significantly increased rigidity for the Zn2+-bound system, which is responsible for the Zn2+-dependent relaxivity response.
Collapse
Affiliation(s)
- Kyangwi P Malikidogo
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans CEDEX 2, France
| | - Manon Isaac
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans CEDEX 2, France
| | - Adrien Uguen
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans CEDEX 2, France
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans CEDEX 2, France
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4010 Debrecen, Hungary
- Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans CEDEX 2, France
| | - Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans CEDEX 2, France
| |
Collapse
|
54
|
Gao S, Xue S, Gao T, Lu R, Zhang X, Zhang Y, Zhang K, Li R. Transcriptome analysis reveals the role of Zelda in the regulation of embryonic and wing development of Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:587-597. [PMID: 37476851 DOI: 10.1017/s0007485323000263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Zinc finger protein (Zelda) of Tribolium castaneum (TcZelda) has been showed to play pivotal roles in embryonic development and metamorphosis. However, the regulatory mechanism of TcZelda associated with these physiology processes is unclear. Herein, the developmental expression profile showed that Zelda of T. castaneum was highly expressed in early eggs. Tissue expression profiling revealed that TcZelda was mainly expressed in the larval head and adult ovary of late adults and late larvae. TcZelda knockdown led to a 95% mortality rate in adults. These results suggested that TcZelda is related to the activation of the zygote genome in early embryonic development. Furthermore, 592 differentially expressed genes were identified from the dsZelda treated group. Compared with the control group, altered disjunction (ALD) and AGAP005368-PA (GAP) in the dsZelda group were significantly down-regulated, while TGF-beta, propeptide (TGF) was significantly up-regulated, suggesting that TcZelda may be involved in insect embryonic development. In addition, the expression of Ubx ultrabithorax (UBX), Cx cephalothorax (CX), En engrailed (EN), and two Endocuticle structural glycoprotein sgabd (ABD) genes were significantly down-regulated, suggesting that they may cooperate with TcZelda to regulate the development of insect wings. Additionally, Elongation (ELO), fatty acid synthase (FAS), and fatty acyl-CoA desaturase (FAD) expression was inhibited in dsZelda insects, which could disturb the lipase signaling pathways, thus, disrupting the insect reproductive system and pheromone synthesis. These results may help reveal the function of TcZelda in insects and the role of certain genes in the gene regulatory network and provide new ideas for the prevention and control of T. castaneum.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Shuang Xue
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Tian Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Ruixue Lu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinyi Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kunpeng Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Ruimin Li
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| |
Collapse
|
55
|
Shruthi B, Revanasiddappa HD, Shivamallu C, Iqbal M, Amachawadi RG, Majani SS, Kollur SP. Highly selective fluorescent and colorimetric methylphenyl-based sensor towards Zn2+ ion detection: Synthesis, X-ray crystallography and selectivity studies. Inorganica Chim Acta 2023; 556:121614. [DOI: 10.1016/j.ica.2023.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
56
|
Zhang Y, Xu J, Yu J, Si L, Chang L, Li T, Yan D. Identification of CCCH-type zinc finger antiviral protein 1 (ZAP) gene from Pacific white shrimp (Penaeus vannamei): Characterization and expression analysis in response to viral infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108948. [PMID: 37453491 DOI: 10.1016/j.fsi.2023.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Zinc-finger proteins (ZFPs) are a huge family that exert multiple roles in the cells. ZFPs could be divided into nine types based on the numbers and positions of conserved Cys and His residues, in which CCCH-type ZFP was one of the most widely studied types. CCCH-type zinc finger antiviral protein 1 (ZAP), a CCCH-type ZFP that can inhibit the replication of certain RNA viruses and DNA viruses by mediating degradation of viral RNA and repressing mRNA translation, plays significant roles in the host innate immune defenses against viral infections. Presently, there have been numerous reports investigating the antiviral ability of ZAP, while no data is available about ZAP gene in the species of shrimps or even crustaceans. In this study, a novel protein containing CCCH-type zinc finger motifs (ZnF-CCCH), CCCH-type zinc finger antiviral protein 1 (ZAP) gene, was identified from Pacific white shrimp (Penaeus vannamei) and its role in antiviral immunity was further investigated. Similar to mammalian ZAPs, in addition to ZnF-CCCH, PvZAP also possesses central WWE domains and C-terminal PARP domain. Phylogenetic analysis showed that PvZAP was close to that of the crustacean Pacific oyster, separating from the cluster of vertebrate ZAP proteins. Upon in vivo infection by IHHNV, gene expression of PvZAP was strongly up-regulated in the hepatopancreas and gills of both adult and juvenile shrimps, where adult individuals showed higher fold changes of up-regulation than in juvenile individuals. These results suggested that PvZAP might play an important role in the innate immune defense of Pacific white shrimp against IHHNV infection. This allows us to gain new insights into the immunological function of ZAP in the innate immunity of shrimp species and even crustaceans.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiahui Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiyue Yu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingjun Si
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
57
|
Chen L, Cui Y, Ruan J, Zhang X, Zhang Y, Rao P, Ren W. Tough, Eu 3+ -Induced Luminescent Hydrogel as Flexible Chemosensor for Real-Time Quantitative Detection of Zn 2+ Ion. Macromol Rapid Commun 2023; 44:e2300170. [PMID: 37243910 DOI: 10.1002/marc.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Herein, a novel tough luminescent hydrogel with Europium is fabricated using a facile copolymerization process by introducing 2,2':6',2-terpyridine (TPy) into a dual physical cross-linked hydrogel. The obtained P(NAGA-co-MAAc)/Eu/TPy (x) (x refers to the feed ratio of NAGA to MAAc) hydrogels not only show outstanding mechanical performances (fracture strength, ≈2.5 MPa), but also give a special ability of rapid detection to low concentrations of zinc ions. Attractively, the theoretical limits of detection (LOD) of the hydrogel sensors are calculated as 1.6 µm, which is acceptable within the WHO limit. Furthermore, the continuous change in fluorescence of P(NAGA-co-MAAc)/Eu/TPy (10) strips upon contact with Zn2+ can be clearly observed by the naked eyes with the aid of a portable UV lamp, resulting in semi-quantitative naked-eyes detection through a standard colorimetric card. Moreover, by identifying the RGB value of the hydrogel sensor, it can also realize quantitative analysis. Therefore, excellence in sensing, simplicity in structure, and convenience in using make P(NAGA-co-MAAc)/Eu/TPy (10) hydrogel as a superior fluorescent chemosensor of Zn2+ ions.
Collapse
Affiliation(s)
- Liang Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- Chongqing key laboratory of soft-matter material chemistry and function manufacturing, Southwest University, Chongqing, 400715, China
| | - Yuanzhi Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiaping Ruan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xincheng Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yifan Zhang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Ping Rao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenshan Ren
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- Chongqing key laboratory of soft-matter material chemistry and function manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
58
|
Deng Z, Yang Z, Liu X, Dai X, Zhang J, Deng K. Genome-Wide Identification and Expression Analysis of C3H Zinc Finger Family in Potato ( Solanum tuberosum L.). Int J Mol Sci 2023; 24:12888. [PMID: 37629069 PMCID: PMC10454627 DOI: 10.3390/ijms241612888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Transcription factors containing a CCCH structure (C3H) play important roles in plant growth and development, and their stress response, but research on the C3H gene family in potato has not been reported yet. In this study, we used bioinformatics to identify 50 C3H genes in potato and named them StC3H-1 to StC3H-50 according to their location on chromosomes, and we analyzed their physical and chemical properties, chromosome location, phylogenetic relationship, gene structure, collinearity relationship, and cis-regulatory element. The gene expression pattern analysis showed that many StC3H genes are involved in potato growth and development, and their response to diverse environmental stresses. Furthermore, RT-qPCR data showed that the expression of many StC3H genes was induced by high temperatures, indicating that StC3H genes may play important roles in potato response to heat stress. In addition, Some StC3H genes were predominantly expressed in the stolon and developing tubers, suggesting that these StC3H genes may be involved in the regulation of tuber development. Together, these results provide new information on StC3H genes and will be helpful for further revealing the function of StC3H genes in the heat stress response and tuber development in potato.
Collapse
Affiliation(s)
- Zeyi Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Zhijiang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xinyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
59
|
Qiao P, Tian Z. The causal effect of serum micronutrients on malignant kidney neoplasm in European descent. Front Oncol 2023; 13:1191825. [PMID: 37664015 PMCID: PMC10469310 DOI: 10.3389/fonc.2023.1191825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Observational studies have revealed that serum minerals and vitamins are associated with cancer. However, the causal relationships between serum minerals and vitamins and renal malignancies remain unclear. Methods Mendelian randomization (MR) was used for causal estimation. Single nucleotide polymorphisms (SNPs) for serum minerals and vitamins were obtained from published genome-wide association studies (GWAS). GWAS for malignant kidney neoplasm was obtained from the FinnGen consortium. Methods of inverse variance weighted (IVW), MR-Egger, and weighted median were carried out for causal inference. F-statistic was calculated to ensure a robust instrumental variable. Cochran's Q statistics was applied to calculate heterogeneity. MR-Egger regression, MR-pleiotropy residual sum and outlier methods (MR-PRESSO) methods were used to perform pleiotropy analysis. Meanwhile, confounding factors were considered to determine whether causal inference would be biased. Results Eight different micronutrients were included (zinc, iron, magnesium, calcium, copper, selenium, phosphate, and vitamin B12). After MR analysis, we found a protective effect of serum zinc against malignant kidney neoplasm (IVW: odds ratios (ORs), 0.86; 95% confidence interval (95% CI), 0.78-0.94; p, 0.0016; MR-Egger: OR, 0.80; 95% CI, 0.64-0.97; p, 0.052; weighted median: OR, 0.85; 95% CI, 0.75-0.96; p, 0.011). Causal relationships between other micronutrients and malignant kidney neoplasm were not obtained. No heterogeneity and pleiotropy were detected, while causality was not biased by confounding factors. Conclusion We considered that serum zinc exerted a protective effect against malignant kidney neoplasm. In clinical practice, for people with high malignant kidney neoplasm risk, an oral zinc supplementation might play a role in a potential therapeutic target.
Collapse
Affiliation(s)
- Pengfei Qiao
- The Department of Urology Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhentao Tian
- The Department of Urology Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
60
|
Wang Y, Wang G, Lin D, Luo Q, Xu W, Qu S. QTL mapping and stability analysis of trichome density in zucchini ( Cucurbita pepo L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1232154. [PMID: 37636121 PMCID: PMC10457680 DOI: 10.3389/fpls.2023.1232154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Trichomes provide an excellent model for studying cell differentiation and proliferation. The aboveground tissues of plants with long dense trichomes (LDTs) can cause skin itching in people working in a zucchini field, in which management, pollination, and fruit harvesting are difficult. In this study, an F2 population was constructed with the LDT inbred line "16" and the sparse micro trichome (SMT) inbred line "63" for QTL analysis of type I and II trichome density. Two QTLs were identified on chromosomes 3 and 15 using the QTL-seq method. Additionally, 191 InDel markers were developed on 20 chromosomes, a genetic map was constructed for QTL mapping, and three QTLs were identified on chromosomes 3, 6, and 15. Two QTLs, CpTD3.1 and CpTD15.1, were identified in both QTL-seq and genetic map-based QTL analyses, and CpTD15.1 was the major-effect QTL. The stability of CpTD3.1 and CpTD15.1 was confirmed using data from F2 plants under different environmental conditions. The major-effect QTL CpTD15.1 was located between markers chr15-4991349 and chr15-5766791, with a physical distance of 775.44 kb, and explained 12.71%-29.37% of the phenotypic variation observed in the three environments. CpTD3.1 was located between markers chr3-218350 and chr3-2891236, in a region with a physical distance of 2,672.89 kb, and explained 5.00%-10.64% of the phenotypic variation observed in the three environments. The functional annotations of the genes within the CpTD15.1 region were predicted, and five genes encoding transcription factors regulating trichome development were selected. Cp4.1LG15g04400 encoded zinc finger protein (ZFP) and harbored nonsynonymous SNPs in the conserved ring finger domain between the two parental lines. There were significant differences in Cp4.1LG15g04400 expression between "16" and "63", and a similar pattern was found between germplasm resources of LDT lines and SMT lines. It was presumed that Cp4.1LG15g04400 might regulate trichome density in zucchini. These results lay a foundation for better understanding the density of multicellular nonglandular trichomes and the regulatory mechanism of trichome density in zucchini.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Dongjuan Lin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Qinfen Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
61
|
Mohammad Azam, Barik SR, Mohapatra PK, Kumar M, Ansari A, Mohapatra RK, Trzesowska-Kruszynska A, Al-Resayes SI. A Bowl-Shaped Zinc-Salen Complex: Structural Analysis and Molecular Docking Studies against Omicron-S and Delta-S Variants. RUSS J INORG CHEM+ 2023; 68:1005-1012. [DOI: 10.1134/s0036023623600740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 02/12/2025]
|
62
|
Rua AJ, Whitehead Iii RD, Alexandrescu AT. WITHDRAWN: NMR structure verifies the eponymous zinc finger domain of transcription factor ZNF750. J Struct Biol 2023:108003. [PMID: 37487847 DOI: 10.1016/j.jsb.2023.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
This article was initially published in the Journal of Structural Biology, instead of the Journal of Structural Biology: X, due to a publisher error. We regret the inconvenience. The link to the article published in Journal of Structural Biology: X is presented below: https://www.sciencedirect.com/science/article/pii/S2590152423000090. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut
| | | | | |
Collapse
|
63
|
Hussein A, Lafzi F, Kilic H, Bayindir S. Synthesis of Bis-tetraphenylethene as a Novel Turn-On Selective Zinc Sensor. ACS OMEGA 2023; 8:25432-25440. [PMID: 37483257 PMCID: PMC10357583 DOI: 10.1021/acsomega.3c02955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
The main purpose of this study is the synthesis of novel fluorescent Bis-TPE and the investigation of its wide range of photochemical behaviors. For this purpose, initially, Bis-TPE was synthesized. Following this, the interactions of Bis-TPE with a wide range of ions were studied in EtOH using ultraviolet-visible (UV-vis) and fluorescence spectroscopy. As a result of all UV-vis and fluorescence studies, it was determined that Bis-TPE showed turn-on sensor features against Zn2+ ions. Moreover, the limit of detection (LOD) and Ka values of Bis-TPE/Zn2+ were calculated as 0.97 μM (970 nM) and 3.76 × 105 M-1, respectively. Moreover, all reversal studies resulted in switchable on/off variation of the alternative addition of ZnCl2 and [Bu4N]OH to Bis-TPE. This result also implies that the probe Bis-TPE also exhibits specific OH- sensor properties in the presence of zinc.
Collapse
Affiliation(s)
- Abdullah
Saleh Hussein
- Department
of Chemistry, Faculty of Sciences and Arts, Bingöl University, Bingöl 12000, Türkiye
- College
of Education Chemistry Department, Salahaddin
University—Erbil, Erbil 44002, Iraq
| | - Ferruh Lafzi
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, Erzurum 25240, Türkiye
| | - Haydar Kilic
- Department
of Chemistry, Faculty of Sciences, Atatürk
University, Erzurum 25240, Türkiye
| | - Sinan Bayindir
- Department
of Chemistry, Faculty of Sciences and Arts, Bingöl University, Bingöl 12000, Türkiye
| |
Collapse
|
64
|
Dorjee L, Gogoi R, Kamil D, Kumar R, Mondal TK, Pattanayak S, Gurung B. Essential oil-grafted copper nanoparticles as a potential next-generation fungicide for holistic disease management in maize. Front Microbiol 2023; 14:1204512. [PMID: 37485521 PMCID: PMC10361667 DOI: 10.3389/fmicb.2023.1204512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Sustainable food production is necessary to meet the demand of the incessantly growing human population. Phytopathogens pose a major constraint in food production, and the use of conventional fungicides to manage them is under the purview of criticism due to their numerous setbacks. In the present study, essential oil-grafted copper nanoparticles (EGC) were generated, characterized, and evaluated against the maize fungal pathogens, viz., Bipolaris maydis, Rhizoctonia solani f. sp. sasakii, Macrophomina phaseolina, Fusarium verticillioides, and Sclerotium rolfsii. The ED50 for the fungi under study ranged from 43 to 56 μg ml-1, and a significant inhibition was observed at a low dose of 20 μg ml-1 under in vitro conditions. Under net house conditions, seed treatment + foliar spray at 250 and 500 mg L-1 of EGC performed remarkably against maydis leaf blight (MLB), with reduced percent disease index (PDI) by 27.116 and 25.292%, respectively, in two Kharif seasons (May-Sep, 2021, 2022). The activity of enzymatic antioxidants, viz., β-1, 3-glucanase, PAL, POX, and PPO, and a non-enzymatic antioxidant (total phenolics) was increased in treated maize plants, indicating host defense was triggered. The optimum concentrations of EGC (250 mg L-1 and 500 mg L-1) exhibited improved physiological characteristics such as photosynthetic activity, shoot biomass, plant height, germination percentage, vigor index, and root system traits. However, higher concentrations of 1,000 mg L-1 rendered phytotoxicity, reducing growth, biomass, and copper bioaccumulation to high toxic levels, mainly in the foliar-sprayed maize leaves. In addition, EGC and copper nanoparticles (CuNPs) at 1,000 mg L-1 reduced the absorption and concentration of manganese and zinc indicating a negative correlation between Cu and Mn/Zn. Our study proposes that the CuNPs combined with EO (Clove oil) exhibit astounding synergistic efficacy against maize fungal pathogens and optimized concentrations can be used as an alternative to commercial fungicides without any serious impact on environmental health.
Collapse
Affiliation(s)
- Lham Dorjee
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tapan Kumar Mondal
- Division of Molecular Biology and Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudeepta Pattanayak
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bishal Gurung
- Division of Forecasting and Agricultural Systems Modelling, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
65
|
Splan KE, Choi SR, Claycomb RE, Eckart-Frank IK, Nagdev S, Rodemeier ME. Disruption of zinc (II) binding and dimeric protein structure of the XIAP-RING domain by copper (I) ions. J Biol Inorg Chem 2023:10.1007/s00775-023-02002-4. [PMID: 37268744 DOI: 10.1007/s00775-023-02002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 06/04/2023]
Abstract
Modulation of metalloprotein structure and function via metal ion substitution may constitute a molecular basis for metal ion toxicity and/or metal-mediated functional control. The X-linked Inhibitor of Apoptosis Protein (XIAP) is a metalloprotein that requires zinc for proper structure and function. In addition to its role as a modulator of apoptosis, XIAP has been implicated in copper homeostasis. Given the similar coordination preferences of copper and zinc, investigation of XIAP structure and function upon interaction with copper is relevant. The Really Interesting New Gene (RING) domain of XIAP is representative of a class of zinc finger proteins that utilize a bi-nuclear zinc-binding motif to maintain proper structure and ubiquitin ligase function. Herein, we report the characterization of copper (I) binding to the Zn2-RING domain of XIAP. Electronic absorption studies that monitor copper-thiolate interactions demonstrate that the RING domain of XIAP binds 5-6 Cu(I) ions and that copper is thermodynamically preferred relative to zinc. Repetition of the experiments in the presence of the Zn(II)-specific dye Mag-Fura2 shows that Cu(I) addition results in Zn(II) ejection from the protein, even in the presence of glutathione. Loss of dimeric structure of the RING domain, which is a requirement for its ubiquitin ligase activity, upon copper substitution at the zinc-binding sites, was readily observed via size exclusion chromatography. These results provide a molecular basis for the modulation of RING function by copper and add to the growing body of literature that describe the impact of Cu(I) on zinc metalloprotein structure and function.
Collapse
Affiliation(s)
- Kathryn E Splan
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA.
| | - Sylvia R Choi
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Ruth E Claycomb
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Isaiah K Eckart-Frank
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Shreya Nagdev
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Madeline E Rodemeier
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| |
Collapse
|
66
|
Shao L, Li L, Huang X, Fu Y, Yang D, Li C, Yang J. Identification of C2H2 zinc finger genes through genome-wide association study and functional analyses of LkZFPs in response to stresses in Larix kaempferi. BMC PLANT BIOLOGY 2023; 23:298. [PMID: 37268918 DOI: 10.1186/s12870-023-04298-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND C2H2 zinc finger proteins (C2H2-ZFPs), one of the largest transcription factors, play a variety of roles in plant development and growth as well as stress response. While, the evolutionary history and expression profile of the C2H2-ZFP genes in Larix kaempferi (LkZFPs) have not been reported so far. RESULTS In this study, the whole genome of the LkZFPs was identified and characterized, including physicochemical properties, phylogenetic relationships, conservative motifs, the promoter cis-elements and Gene Ontology (GO) annotation. We identified 47 LkZFPs and divided them into four subfamilies based on phylogenetic analysis and conserved motifs. Subcellular localization prediction showed that most of the LkZFPs were located in the nucleus. Promoter cis-element analysis suggested that the LkZFPs may be involved in the regulation of stress responses. Moreover, Real-time quantitative PCR (RT-qPCR) results showed that Q-type LkZFP genes were involved in the response to abiotic stress, such as salt, drought and hormone stresses. Subcellular localization results showed that LkZFP7 and LkZFP37 were located in the nucleus, LkZFP32 was located in both cytoplasm and nucleus. CONCLUSION The identification and functional analysis of LkZFPs suggested that some LkZFP genes might play important roles in coping with both biological and abiotic stresses. These results could further increase understanding of the function of the LkZFPs, and provide some research direction and theoretical support.
Collapse
Affiliation(s)
- Liying Shao
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Lu Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xun Huang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Da Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
67
|
Majumder A, Sarkar C, Das I, Sk S, Bandyopadhyay S, Mandal S, Bera M. Design, Synthesis and Evaluation of a Series of Zinc(II) Complexes of Anthracene-Affixed Multifunctional Organic Assembly as Potential Antibacterial and Antibiofilm Agents against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22781-22804. [PMID: 37129921 DOI: 10.1021/acsami.2c21899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel class of zinc(II)-based metal complexes, i.e., [Zn2(acdp)(μ-Cl)]·2H2O (1), [Zn2(acdp)(μ-NO3)]·2H2O (2), and [Zn2(acdp)(μ-O2CCF3)]·2H2O (3) (Cl- = chloride; NO3- = nitrate; CF3CO2- = trifluoroacetate) of anthracene-affixed multifunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol), have emerged as promising antibacterial and antibiofilm agents in the domain of medicinal chemistry. Accordingly, complexes 1-3 were synthesized by utilizing H3acdp in combination with ZnCl2, Zn(NO3)2·6H2O, and Zn(CF3CO2)2·H2O respectively, in the presence of NaOH at ambient temperature. The complexation between H3acdp and Zn2+ was delineated by a combined approach of spectrophotometric and spectrofluorometric titration studies. The stoichiometry of acdp3-/Zn2+ in all three complexes is observed to be 1:2, as confirmed by spectrophotometric/spectrofluorometric titration data. Elemental analysis (C, H, N, Zn), molar conductance, FTIR, UV-vis, and thermoanalytical (TGA/DTA) data were effectively used to characterize these complexes. Besides, the structures of 1-3 were established by density functional theory (DFT) calculation using B3LYP/6-311G, specifying a self-assembled compact geometry with average Zn···Zn separation of 3.4629 Å. All three zinc complexes exhibited significantly high antibacterial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA BAA1717). However, complex 1 showed a more recognizable activity than 2 and 3, with minimum inhibitory concentration (MIC) values of 200, 350, and 450 μg/mL, respectively. The antimicrobial activity was tested by employing the minimum inhibitory concentration (MIC) and time-kill assay. The crystal violet (CV) assay and microscopic study were performed to examine the antibiofilm activity. As observed, complexes 1-3 had an effect on the production of extracellular polymeric substance (EPS), biofilm cell-viability, and other virulence factors such as staphyloxanthin and hemolysin production, autoaggregation ability, and microbial cell-surface hydrophobicity. Reactive oxygen species (ROS) generated due to inhibition of staphyloxanthin production in response to 1-3 were also analyzed. Moreover, complexes 1-3 showed an ability to damage the bacterial cell membrane due to accumulation of ROS resulting in DNA leakage. In addition, complexes 1-3 displayed a synergistic/additive activity with a commercially available antibiotic drug, vancomycin, with enhanced antibacterial activity. On the whole, our investigation disclosed that complex 1 could be a promising drug lead and attract much attention to medicinal chemists compared to 2 and 3 from therapeutic aspects.
Collapse
Affiliation(s)
- Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Chandan Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Indrajit Das
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
68
|
Torres A, Rego L, Martins MS, Ferreira MS, Cruz MT, Sousa E, Almeida IF. How to Promote Skin Repair? In-Depth Look at Pharmaceutical and Cosmetic Strategies. Pharmaceuticals (Basel) 2023; 16:ph16040573. [PMID: 37111330 PMCID: PMC10144563 DOI: 10.3390/ph16040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Skin repair encompasses epidermal barrier repair and wound healing which involves multiple cellular and molecular stages. Therefore, many skin repair strategies have been proposed. In order to characterize the usage frequency of skin repair ingredients in cosmetics, medicines, and medical devices, commercialized in Portuguese pharmacies and parapharmacies, a comprehensive analysis of the products' composition was performed. A total of 120 cosmetic products, collected from national pharmacies online platforms, 21 topical medicines, and 46 medical devices, collected from INFARMED database, were included in the study, revealing the top 10 most used skin repair ingredients in these categories. A critical review regarding the effectiveness of the top ingredients was performed and an in-depth analysis focused on the top three skin repair ingredients pursued. Results demonstrated that top three most used cosmetic ingredients were metal salts and oxides (78.3%), vitamin E and its derivatives (54.2%), and Centella asiatica (L.) Urb. extract and actives (35.8%). Regarding medicines, metal salts and oxides were also the most used (47.4%) followed by vitamin B5 and derivatives (23.8%), and vitamin A and derivatives (26.3%). Silicones and derivatives were the most common skin repair ingredients in medical devices (33%), followed by petrolatum and derivatives (22%) and alginate (15%). This work provides an overview of the most used skin repair ingredients, highlighting their different mechanisms of action, aiming to provide an up-to-date tool to support health professionals' decisions.
Collapse
Affiliation(s)
- Ana Torres
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Liliana Rego
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia S Martins
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Marta S Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Isabel F Almeida
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
69
|
Huang H, Song J, Feng Y, Zheng L, Chen Y, Luo K. Genome-Wide Identification and Expression Analysis of the SHI-Related Sequence Family in Cassava. Genes (Basel) 2023; 14:genes14040870. [PMID: 37107628 PMCID: PMC10138042 DOI: 10.3390/genes14040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The SHORT INTERNODES (SHI)-related sequences (SRS) are plant-specific transcription factors that have been quantitatively characterized during plant growth, regeneration, and stress responses. However, the genome-wide discovery of SRS family genes and their involvement in abiotic stress-related activities in cassava have not been documented. A genome-wide search strategy was used to identify eight family members of the SRS gene family in cassava (Manihot esculenta Crantz). Based on their evolutionary linkages, all MeSRS genes featured homologous RING-like zinc finger and IXGH domains. Genetic architecture and conserved motif analysis validated the categorization of MeSRS genes into four groups. Eight pairs of segmental duplications were detected, resulting in an increase in the number of MeSRS genes. Orthologous studies of SRS genes among cassava and three different plant species (Arabidopsis thaliana, Oryza sativa, and Populus trichocarpa) provided important insights into the probable history of the MeSRS gene family. The functionality of MeSRS genes was elucidated through the prediction of protein–protein interaction networks and cis-acting domains. RNA-seq data demonstrated tissue/organ expression selectivity and preference of the MeSRS genes. Furthermore, qRT-PCR investigation of MeSRS gene expression after exposure to salicylic acid (SA) and methyl jasmonate (MeJA) hormone treatments, as well as salt (NaCl) and osmotic (polyethylene glycol, PEG) stresses, showed their stress-responsive patterns. This genome-wide characterization and identification of the evolutionary relationships and expression profiles of the cassava MeSRS family genes will be helpful for further research into this gene family and its function in stress response. It may also assist future agricultural efforts to increase the stress tolerance of cassava.
Collapse
Affiliation(s)
- Huling Huang
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Jiming Song
- Institute of Tropical and subtropical Economic Crops, Yunnan Provincial Academy of Agricultural Sciences, Baoshan 678000, China
| | - Yating Feng
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Linling Zheng
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| | - Kai Luo
- Sanya Nanfan Research Institute, School of Tropical Crops, Hainan University, Haikou 572025, China
| |
Collapse
|
70
|
Hajdu B, Hunyadi-Gulyás É, Kato K, Kawaguchi A, Nagata K, Gyurcsik B. Zinc binding of a Cys2His2-type zinc finger protein is enhanced by the interaction with DNA. J Biol Inorg Chem 2023; 28:301-315. [PMID: 36820987 PMCID: PMC10036435 DOI: 10.1007/s00775-023-01988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023]
Abstract
Zinc finger proteins specifically recognize DNA sequences and, therefore, play a crucial role in living organisms. In this study the Zn(II)-, and DNA-binding of 1MEY#, an artificial zinc finger protein consisting of three finger units was characterized by multiple methods. Fluorimetric, circular dichroism and isothermal calorimetric titrations were applied to determine the accurate stability constant of a zinc finger protein. Assuming that all three zinc finger subunits behave identically, the obtained thermodynamic data for the Zn(II) binding were ΔHbinding site = - (23.5 - 28.0) kcal/mol (depending on the applied protonation state of the cysteines) and logβ'pH 7.4 = 12.2 ± 0.1, being similar to those of the CP1 consensus zinc finger peptide. The specific DNA binding of the protein can be characterized by logβ'pH 7.4 = 8.20 ± 0.08, which is comparable to the affinity of the natural zinc finger proteins (Sp1, WT1, TFIIIA) toward DNA. This value is ~ 1.9 logβ' unit higher than those determined for semi- or nonspecific DNA binding. Competitive circular dichroism and electrophoretic mobility shift measurements revealed that the conditional stability constant characteristic for Zn(II) binding of 1MEY# protein increased by 3.4 orders of magnitude in the presence of its target DNA sequence.
Collapse
Affiliation(s)
- Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm Tér 7, 6720, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm Tér 7, 6720, Szeged, Hungary.
| |
Collapse
|
71
|
Xu W, Jian S, Li J, Wang Y, Zhang M, Xia K. Genomic Identification of CCCH-Type Zinc Finger Protein Genes Reveals the Role of HuTZF3 in Tolerance of Heat and Salt Stress of Pitaya (Hylocereus polyrhizus). Int J Mol Sci 2023; 24:ijms24076359. [PMID: 37047333 PMCID: PMC10094633 DOI: 10.3390/ijms24076359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pitaya (Hylocereus polyrhizus) is cultivated in a broad ecological range, due to its tolerance to drought, heat, and poor soil. The zinc finger proteins regulate gene expression at the transcriptional and post-transcriptional levels, by interacting with DNA, RNA, and proteins, to play roles in plant growth and development, and stress response. Here, a total of 81 CCCH-type zinc finger protein genes were identified from the pitaya genome. Transcriptomic analysis showed that nine of them, including HuTZF3, responded to both salt and heat stress. RT-qPCR results showed that HuTZF3 is expressed in all tested organs of pitaya, with a high level in the roots and stems, and confirmed that expression of HuTZF3 is induced by salt and heat stress. Subcellular localization showed that HuTZF3 is targeted in the processing bodies (PBs) and stress granules (SGs). Heterologous expression of HuTZF3 could improve both salt and heat tolerance in Arabidopsis, reduce oxidative stress, and improve the activity of catalase and peroxidase. Therefore, HuTZF3 may be involved in post-transcriptional regulation via localizing to PBs and SGs, contributing to both salt and heat tolerance in pitaya.
Collapse
Affiliation(s)
- Weijuan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- South China National Botanical Garden, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianyi Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusang Wang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| |
Collapse
|
72
|
Zhang Q, Zhang J, Wei F, Fu X, Wei H, Lu J, Ma L, Wang H. The CCCH-Type Zinc-Finger Protein GhC3H20 Enhances Salt Stress Tolerance in Arabidopsis thaliana and Cotton through ABA Signal Transduction Pathway. Int J Mol Sci 2023; 24:ijms24055057. [PMID: 36902489 PMCID: PMC10002529 DOI: 10.3390/ijms24055057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The CCCH zinc-finger protein contains a typical C3H-type motif widely existing in plants, and it plays an important role in plant growth, development, and stress responses. In this study, a CCCH zinc-finger gene, GhC3H20, was isolated and thoroughly characterized to regulate salt stress in cotton and Arabidopsis. The expression of GhC3H20 was up-regulated under salt, drought, and ABA treatments. GUS activity was detected in the root, stem, leaves, and flowers of ProGhC3H20::GUS transgenic Arabidopsis. Compared with the control, the GUS activity of ProGhC3H20::GUS transgenic Arabidopsis seedlings under NaCl treatment was stronger. Through the genetic transformation of Arabidopsis, three transgenic lines of 35S-GhC3H20 were obtained. Under NaCl and mannitol treatments, the roots of the transgenic lines were significantly longer than those of the wild-type (WT) Arabidopsis. The leaves of the WT turned yellow and wilted under high-concentration salt treatment at the seedling stage, while the leaves of the transgenic Arabidopsis lines did not. Further investigation showed that compared with the WT, the content of catalase (CAT) in the leaves of the transgenic lines was significantly higher. Therefore, compared with the WT, overexpression of GhC3H20 enhanced the salt stress tolerance of transgenic Arabidopsis. A virus-induced gene silencing (VIGS) experiment showed that compared with the control, the leaves of pYL156-GhC3H20 plants were wilted and dehydrated. The content of chlorophyll in pYL156-GhC3H20 leaves was significantly lower than those of the control. Therefore, silencing of GhC3H20 reduced salt stress tolerance in cotton. Two interacting proteins (GhPP2CA and GhHAB1) of GhC3H20 have been identified through a yeast two-hybrid assay. The expression levels of PP2CA and HAB1 in transgenic Arabidopsis were higher than those in the WT, and pYL156-GhC3H20 had expression levels lower than those in the control. GhPP2CA and GhHAB1 are the key genes involved in the ABA signaling pathway. Taken together, our findings demonstrate that GhC3H20 may interact with GhPP2CA and GhHAB1 to participate in the ABA signaling pathway to enhance salt stress tolerance in cotton.
Collapse
|
73
|
Solouki A, Berna-Sicilia JÁ, Martinez-Alonso A, Ortiz-Delvasto N, Bárzana G, Carvajal M. Onion plants ( Allium cepa L.) react differently to salinity levels according to the regulation of aquaporins. Heliyon 2023; 9:e13815. [PMID: 36895341 PMCID: PMC9988491 DOI: 10.1016/j.heliyon.2023.e13815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
As salinity is one of the main environmental stresses that reduces the growth and productivity of crops by reducing water uptake and transport, in this work, we associated the physiological tolerance response of onion to increased NaCl concentration (from 25, 50, 75, to 100 mM) with the expression of aquaporins. Measurements of transpiration, gas exchange and nutrients content in leaf, roots and bulb tissues were determined in relation to the expression of PIP2, PIP1, and TIP2 aquaporin genes. The results indicated a significant decrease in growth in leaves, roots and bulbs only when 50 mM NaCl was applied. However, this was not correlated with the rest of the parameters, such as transpiration, number of stomata, osmotic potential, or chlorophyll concentration. In this way, the finding that the decreases in Mn, Zn and B observed in leaves, roots and bulbs at 50 mM NaCl were related to the expression of aquaporins, leaded to propose two phases of responses to salinity depending on level of NaCl. Therefore, the activation of PIP2 at 75 mM, in relation to Zn uptake, is proposed as relevant in the response of onion to high salinity.
Collapse
Affiliation(s)
- Alireza Solouki
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Jose Ángel Berna-Sicilia
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Alberto Martinez-Alonso
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Nidia Ortiz-Delvasto
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Gloria Bárzana
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
- Corresponding author.
| | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100 Murcia, Spain
- Corresponding author.
| |
Collapse
|
74
|
A fluorescent probe based on a phenylalanine derivative is capable of sequential detection of Zn 2+ and Cys/His. J Biol Inorg Chem 2023; 28:205-211. [PMID: 36652011 DOI: 10.1007/s00775-022-01984-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023]
Abstract
A facile and dual fluorescent chemosensor (named 7-IDF) based on a phenylalanine derivative with an indole group was designed and synthesized. 7-IDF can selectively and sensitively detect Zn2+ via obvious fluorescence enhancement in an aqueous solution. Remarkably, the 7-IDF-Zn complex with blue luminescence has higher selectivity toward cysteine (Cys) and histidine (His) than for other amino acids. Intriguingly, 7-IDF can also be used as an excellent probe to detect Zn2+ in real water samples. Moreover, 7-IDF and 7-IDF-Zn possess excellent biocompatibility and cell permeability, and 7-IDF can consecutively detect Zn2+ and Cys/His in Hela cells through fluorescence imaging experiments. This study suggests that the phenylalanine-based chemosensor possesses great potential applications for the sequential detection of Zn2+ and Cys/His in biosystems.
Collapse
|
75
|
Ray S, Laha S, Das M, Das UK, Bag A, Choudhuri I, Bhattacharya N, Samanta BC, Maity T. Solvent-regulated fluorescence off-on signaling of Ni(II) and Zn(II) with the formation of two mononuclear complexes with an ATP detection ability by Zn(II) assembly. Analyst 2023; 148:594-608. [PMID: 36594590 DOI: 10.1039/d2an01938h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current study shows that Schiff base HL, (Z)-2,4-dibromo-6-(((piperidin-2-ylmethyl)imino)methyl)phenol, can be used successfully as a selective chemosensor for Zn(II) and Ni(II) among several competing cations in purely aqueous and semi-aqueous media. Under UV light in methanol-water (9 : 1) HEPES buffer, the receptor gives its response by changing its color to cyan color in the presence of Zn(II) and to bluish cyan color in the presence of Ni(II). Surprisingly, the chemosensor can only reliably identify Zn(II) in a hundred percent aqueous medium by changing its color to light yellow. UV and fluorescence studies in both aqueous and semi-aqueous media are used to further investigate this Zn(II) and Ni(II) recognition phenomenon. The high values of the host-guest binding constants, obtained by electronic and fluorescence titration, ensure that a strong bond exists between HL and Ni(II)/Zn(II). As anticipated, two highly luminescent mononuclear, crystalline compounds, complexes 1 and 2, have been developed by a separate reaction of HL and Zn(II)/Ni(II), and the high luminous properties are due to the occurrence of Chelation Enhanced Fluorescence (CHEF). According to the single crystal structure, the asymmetric units of both complexes consist of two deprotonated chemosensor units and one Zn(II)/Ni(II), leading to the formation of an octahedral complex. For Ni(II) and Zn(II) sensing, the predicted LOD is in the nanomolar range. Both complexes 1 and 2 are fluorescence active and studies to check their ATP detection ability, but intriguingly, only complex 2 is capable of detecting ATP in a fully aqueous solution. Finally, the live cell imaging study validates the two sensors' biosensing functionality.
Collapse
Affiliation(s)
- Subham Ray
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, West Bengal, 721404, India.
| | - Soumik Laha
- Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Manik Das
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, West Bengal, 721404, India.
| | - Uttam Kumar Das
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| | - Arijit Bag
- School of Natural and Applied Sciences, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | - Indranil Choudhuri
- Department of Biotechnology, Panskura Banamali College, Panskura, West Bengal, India
| | - Nandan Bhattacharya
- Department of Biotechnology, Panskura Banamali College, Panskura, West Bengal, India
| | | | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, West Bengal, 721404, India.
| |
Collapse
|
76
|
Interactions of an Artificial Zinc Finger Protein with Cd(II) and Hg(II): Competition and Metal and DNA Binding. INORGANICS 2023. [DOI: 10.3390/inorganics11020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cys2His2 zinc finger proteins are important for living organisms, as they—among other functions—specifically recognise DNA when Zn(II) is coordinated to the proteins, stabilising their ββα secondary structure. Therefore, competition with other metal ions may alter their original function. Toxic metal ions such as Cd(II) or Hg(II) might be especially dangerous because of their similar chemical properties to Zn(II). Most competition studies carried out so far have involved small zinc finger peptides. Therefore, we have investigated the interactions of toxic metal ions with a zinc finger proteins consisting of three finger units and the consequences on the DNA binding properties of the protein. Binding of one Cd(II) per finger subunit of the protein was shown by circular dichroism spectroscopy, fluorimetry and electrospray ionisation mass spectrometry. Cd(II) stabilised a similar secondary structure to that of the Zn(II)-bound protein but with a slightly lower affinity. In contrast, Hg(II) could displace Zn(II) quantitatively (logβ′ ≥ 16.7), demolishing the secondary structure, and further Hg(II) binding was also observed. Based on electrophoretic gel mobility shift assays, the Cd(II)-bound zinc finger protein could recognise the specific DNA target sequence similarly to the Zn(II)-loaded form but with a ~0.6 log units lower stability constant, while Hg(II) could destroy DNA binding completely.
Collapse
|
77
|
Yi D, Zhao H, Zhao J, Li L. Modular Engineering of DNAzyme-Based Sensors for Spatioselective Imaging of Metal Ions in Mitochondria. J Am Chem Soc 2023; 145:1678-1685. [PMID: 36573341 DOI: 10.1021/jacs.2c11081] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNAzyme-based sensors remain at the forefront of metal-ion imaging efforts, but most lack the subcellular precision necessary to their applications in specific organelles. Here, we seek to overcome this limitation by presenting a DNAzyme-based biosensor technology for spatiotemporally controlled imaging of metal ions in mitochondria. A DNA nanodevice was constructed by integrating an optically activatable DNAzyme sensor and an upconversion nanoparticle with an organelle-targeting signal. We exemplify that this approach allows for mitochondria-specific imaging of Zn2+ in living cells in a near-infrared light-controlled manner. Based on this, the system is used for the monitoring of mitochondrial Zn2+ during drug treatment in a cellular model of ischemia insult. Furthermore, the DNA nanodevice is employed to assess dynamic Zn2+ change and pharmacological interventions in an injury cell model of Zn2+ toxicity. This method paves the way for engineering of DNAzyme sensors to investigate the pathophysiological roles of metal ions at the subcellular level.
Collapse
Affiliation(s)
- Deyu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
78
|
Park S, Na C, Han J, Lim MH. Methods for analyzing the coordination and aggregation of metal-amyloid-β. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2023; 15:6973210. [PMID: 36617236 DOI: 10.1093/mtomcs/mfac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
The misfolding and aggregation of amyloid-β (Aβ) peptides are histopathological features found in the brains of Alzheimer's disease (AD). To discover effective therapeutics for AD, numerous efforts have been made to control the aggregation of Aβ species and their interactions with other pathological factors, including metal ions. Metal ions, such as Cu(II) and Zn(II), can bind to Aβ peptides forming metal-bound Aβ (metal-Aβ) complexes and, subsequently, alter their aggregation pathways. In particular, redox-active metal ions bound to Aβ species can produce reactive oxygen species leading to oxidative stress. In this review, we briefly illustrate some experimental approaches for characterizing the coordination and aggregation properties of metal-Aβ complexes.
Collapse
Affiliation(s)
- Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chanju Na
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
79
|
A Fluorescent Probe Based on the Hydrazone Schiff Base for the Detection of Zn 2+ and its Application on Test Strips. J Fluoresc 2023; 33:1183-1189. [PMID: 36622493 DOI: 10.1007/s10895-022-03140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
A novel fluorescent probe SHK for Zn2+ detection was designed based on the hydrazone Schiff base, successfully synthesized by Suzuki coupling and condensation reactions. The probe SHK in DMSO/H2O showed extremely weak fluorescence. However, the solution exhibited an intensive yellow-green emission with the introduction of Zn2+. In contrast, negligible fluorescence change was observed when other metal ions were added, suggesting a high selectivity of SHK for Zn2+ detection. The Job's Plot analysis revealed that a 1:1 stoichiometric adduct SHK-Zn2+ formed during the Zn2+ sensing. The binding constant of the complex was determined to be 184 M- 1, and the detection limit for Zn2+ was calculated to be 112 µM. Moreover, the probe SHK achieved selective fluorescence sensing for Zn2+ on test strips, which guaranteed its practical application prospect.
Collapse
|
80
|
Aslan A, Karapinar HS, Kilicel F, Boyacıoğlu T, Pekin C, Toprak ŞS, Cihan M, Yilmaz BS. Trace element levels in serum and gastric mucosa in patients with Helicobacter pylori positive and negative gastritis. J Trace Elem Med Biol 2023; 75:127108. [PMID: 36435152 DOI: 10.1016/j.jtemb.2022.127108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Most trace elements are inhibited by Helicobacter pylori-infection, and variations in specific element levels are linked to the development of stomach cancer. This is the first study to show the relationship between serum and tissue concentrations of twenty-five trace elements and H. pylori infection status. This study purposed to define serum and tissue trace element levels of 25 healthy individuals with Helicobacter pylori-positive gastritis and Helicobacter pylori-negative gastritis and to reveal their relationship with the disease. METHODS Study groups consisted of sixty-two patients with Helicobacter pylori-positive, thirty-seven patients with Helicobacter pylori-negative, and thirty healthy individuals. Serum and tissue concentrations of twenty-five elements (aluminum, boron, arsenic, barium, calcium, beryllium, copper, cadmium, iron, chromium, mercury, lithium, potassium, magnesium, sodium, manganese, nickel, phosphorus, lead, scandium, strontium, selenium, tellurium, titanium, zinc) were defined by inductively coupled plasma optical emission spectrometry. RESULTS Except for copper, lithium, and strontium elements in serum samples, other trace elements differed significantly between the groups (p < 0.05). The serum chromium (p = 0.002), mercury (p = 0.001), boron (p < 0.001), and cadmium (p < 0.001) levels of H. pylori-negative gastritis and H. pylori-positive gastritis participants were significantly different, and their serum concentrations were less than 0.5 µ/l. Boron, barium, beryllium, chromium, lithium, phosphorus and strontium elements in tissue samples did not differ significantly between the groups (p > 0.05). Manganese, nickel, tellurium and titanium elements were not detected in tissue and serum samples. The mean concentrations of calcium, beryllium, chromium, iron, potassium, lithium, magnesium, scandium, and selenium were higher in the tissues of patients with H. pylori gastritis compared to healthy control tissues. Also, cadmium could not be detected in tissue samples. There was a significant difference between H. pylori-infected tissue and serum chromium levels (p = 0.001), with lower levels detected in tissue samples. CONCLUSION This is the first study that we are knowledgeable of that reports the concentrations of twenty five elements in both serum and tissue samples, as well as the relationship between trace elements and Helicobacter pylori-infection status. Dietary adjustment is indicated as an adjunct to medical therapy to stabilize trace elements because Helicobacter pylori bacteria cause inflammation and impair element absorption in gastritis patients. We also think that this study will shed light on studies on the relationship between Helicobacter pylori-trace elements and serum-tissue/healthy serum-tissue trace element levels of patients with Helicobacter pylori gastritis.
Collapse
Affiliation(s)
- Ahmet Aslan
- Department of General Surgery, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Hacer Sibel Karapinar
- Scientific and Technological Research & Application Center, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey.
| | - Fevzi Kilicel
- Department of Chemistry, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Tülin Boyacıoğlu
- Institute of Science, Department of Chemistry, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Ceyhun Pekin
- Department of General Surgery, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Şükrü Salih Toprak
- Department of General Surgery, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| | - Mehmethan Cihan
- Department of General Surgery, Karaman Training and Research Hospital, 70100 Karaman, Turkey
| | - Burcu Sanal Yilmaz
- Department of Medical Pathology, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
| |
Collapse
|
81
|
Sharma V, Sahu M, Manna AK, De D, Patra GK. A quinazolin-based Schiff-base chemosensor for colorimetric detection of Ni 2+ and Zn 2+ ions and ' turn-on' fluorometric detection of Zn 2+ ion. RSC Adv 2022; 12:34226-34235. [PMID: 36545589 PMCID: PMC9709804 DOI: 10.1039/d2ra05564c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Herein, we have reported a novel quinazolin-based Schiff base chemosensor (E)-2-benzamido-N'-(1-(pyridin-2-yl)ethylidene)benzohydrazide (L). L has been designed, synthesised and characterised by 1H-NMR, IR spectroscopy, ESI-MS spectrometry and theoretical studies. The receptor showed appreciable colorimetric λ max shift for both Ni2+ and Zn2+ ions and fluorometric "turn on" response in presence of only Zn2+ ion. The Jobs plot analysis revealed that receptor forms 2 : 1 complex with both the ions Ni2+ and Zn2+, further confirmed by ESI-MS analysis. The single crystal structure of L-Ni2+ complex (1) has also been determined. The colorimetric detection limits were calculated to 7.9 nM and 7.5 nM respectively for Ni2+ and Zn2+ in methanol-Tris-HCl buffer medium (10 mM, pH 7.2, 1 : 1 v/v). The chemosensor L can be applied for the recovery of contaminated water samples.
Collapse
Affiliation(s)
- Vanshika Sharma
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Meman Sahu
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Amit Kumar Manna
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Dinesh De
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Goutam Kumar Patra
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| |
Collapse
|
82
|
Zhao B, He D, Gao S, Zhang Y, Wang L. Hypothetical protein FoDbp40 influences the growth and virulence of Fusarium oxysporum by regulating the expression of isocitrate lyase. Front Microbiol 2022; 13:1050637. [DOI: 10.3389/fmicb.2022.1050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Fungal growth is closely related to virulence. Finding the key genes and pathways that regulate growth can help elucidate the regulatory mechanisms of fungal growth and virulence in efforts to locate new drug targets. Fusarium oxysporum is an important plant pathogen and human opportunistic pathogen that has research value in agricultural and medicinal fields. A mutant of F. oxysporum with reduced growth was obtained by Agrobacterium tumefaciens-mediated transformation, the transferred DNA (T-DNA) interrupted gene in this mutant coded a hypothetical protein that we named FoDbp40. FoDbp40 has an unknown function, but we chose to explore its possible functions as it may play a role in fungal growth regulatory mechanisms. Results showed that F. oxysporum growth and virulence decreased after FoDbp40 deletion. FOXG_05529 (NCBI Gene ID, isocitrate lyase, ICL) was identified as a key gene that involved in the reduced growth of this mutant. Deletion of FoDbp40 results in a decrease of more than 80% in ICL expression and activity, succinate level, and energy level, plus a decrease in phosphorylated mammalian target of rapamycin level and an increase in phosphorylated 5′-adenosine monophosphate activated protein kinase level. In summary, our study found that the FoDbp40 regulates the expression of ICL at a transcriptional level and affects energy levels and downstream related pathways, thereby regulating the growth and virulence of F. oxysporum.
Collapse
|
83
|
Wang M, Wang WX. Meeting Zn Needs during Medaka Eye Development: Nanoscale Visualization of Retina by Expansion Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15780-15790. [PMID: 36266765 DOI: 10.1021/acs.est.2c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fish eyes require high Zn levels to support their early development. Although numerous studies have been conducted on the nutritional and toxic effects of Zn on the eye, the Zn requirement for retinal cell development is still debatable. Moreover, due to the complexity of the retinal structure, it is difficult to clearly visualize each retinal layer and accurately separate cell morphology in vivo by conventional methods. In the present study, we for the first time have achieved nanoscale imaging of retinal anatomy affected by dietary and waterborne Zn exposure by novel expansion microscopy. We demonstrated that the fish retina showed different developmental strategies in response to dietary and aqueous Zn exposures. Excess dietary Zn produced toxicity to retinal photoreceptor cells, resulting in a reduction in cell number and cell area, and this toxicity became severe with biological development. In contrast, waterborne Zn in the natural environment probably failed to meet the Zn requirements of retinal development. Overall, our results indicated that during early development, the Zn requirement of the fish eyes was sensitive, and oversupplementation led to impaired photoreceptor cell development. Our study has provided new perspectives using the powerful and novel expansion microscopy technique in toxicity assessment, enabling ultra-clear visualization of small but complex organ development.
Collapse
Affiliation(s)
- Mengyu Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
84
|
Bioinformatics Analysis of WRKY Family Genes in Erianthus fulvus Ness. Genes (Basel) 2022; 13:genes13112102. [DOI: 10.3390/genes13112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most prominent transcription factors in higher plants, the WRKY gene family, is crucial for secondary metabolism, phytohormone signaling, plant defense responses, and plant responses to abiotic stresses. It can control the expression of a wide range of target genes by coordinating with other DNA-binding or non-DNA-binding interacting proteins. In this study, we performed a genome-wide analysis of the EfWRKY genes and initially identified 89 members of the EfWRKY transcription factor family. Using some members of the OsWRKY transcription factor family, an evolutionary tree was built using the neighbor-joining (NJ) method to classify the 89 members of the EfWRKY transcription factor family into three major taxa and one unclassified group. Molecular weights ranged from 22,614.82 to 303,622.06 Da; hydrophilicity ranged from (−0.983)–(0.159); instability coefficients ranged from 40.97–81.30; lipid coefficients ranged from 38.54–91.89; amino acid numbers ranged from 213–2738 bp; isoelectric points ranged from 4.85–10.06. A signal peptide was present in EfWRKY41 but not in the other proteins, and EfWRK85 was subcellularly localized to the cell membrane. Chromosome localization revealed that the WRKY gene was present on each chromosome, proving that the conserved pattern WRKYGQK is the family’s central conserved motif. Conserved motif analysis showed that practically all members have this motif. Analysis of the cis-acting elements indicated that, in addition to the fundamental TATA-box, CAAT-box, and light-responsive features (GT1-box), there are response elements implicated in numerous hormones, growth regulation, secondary metabolism, and abiotic stressors. These results inform further studies on the function of EfWRKY genes and will lead to the improvement of sugarcane.
Collapse
|
85
|
Xie X, Shang F, Ding BY, Yang L, Wang JJ. Assessment of a zinc finger protein gene (MPZC3H10) as potential RNAi target for green peach aphid Myzus persicae control. PEST MANAGEMENT SCIENCE 2022; 78:4956-4962. [PMID: 36181420 DOI: 10.1002/ps.7118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND RNA interference (RNAi) has potential application in pest control, and selection of the specific target gene is one of the key steps in RNAi. As an important effector, the zinc finger protein (ZFP) gene has high similarity among aphid species, and may have potential use in an RNAi-based pest control strategy. This study assessed the control efficiency of an RNAi target, MPZC3H10, a CCCH-type ZFP gene, against green peach aphid. RESULTS ZC3H10 amino acid sequence similarity is more than 97.71% among the five tested aphid species: Myzus persicae, Aphis citricidus, Acyrthosiphon pisum, Diuraphis noxia and Rhopalosiphum maidis. However, no homologous sequence was found in the transcriptome of their ladybeetle predator, Propylaea japonica. Spatial expression patterns revealed that MPZC3H10 showed high expression in the muscle and fat body of M. persicae. The RNAi bioassay revealed that silencing of MPZC3H10 resulted in high mortality (53.33%) in M. persicae. By contrast, there were no observed negative effects on the growth and development of P. japonica when fed on aphids treated with double-stranded RNA (dsRNA) or injected with a "high dose" of dsRNA. CONCLUSION Targeting MPZC3H10 showed promising efficiency for green peach aphid control via artificially designed dsRNA, and was safe for the predatory ladybeetle. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiucheng Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
86
|
Ayari M, Banitalebi Dehkordi A, Mohammadi Ziarani G, Ghasemi JB, Ganjali MR, Soleimani M, Badiei A, Dragoi EN, Rokni H. Ultrasound-assisted synthesis of europium doped BPO 4 nanoparticles; a new approach for Zn 2+ (aq) detection. Food Chem Toxicol 2022; 168:113373. [PMID: 35985367 DOI: 10.1016/j.fct.2022.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
In this work, europium ion was doped into boron phosphate nanoparticles (BPO4) using an ultrasonic method followed by the calcination process. The nanoparticles were characterized by various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM). Doping of europium ion into the BPO4 host crystal was proved by cell volume calculation from XRD patterns, the shift in Raman spectra, and photoluminescence properties. In addition, the europium doped boron phosphate (BPE) as a fluorescence sensor for the quantification of Zn2+ cation was studied. The obtained results showed the enhancement and shift of the photoluminescence peak from 292 to 340 nm. The sensor's selectivity toward this ion was verified in the presence of a variety of common interfering cations. Surprisingly, BPE revealed excellent selectivity and sensitivity towards Zn2+ in the presence of Pb2+, Na+, Fe2+, Al3+, Ca2+, Mg2+, Cu2+, Co2+, Ni2+, Mn2+, Cd2+, Hg2+, Ba2+ and Fe3+ cations. The fluorescence response was linearly proportional to the Zn2+concentration. After the addition of trace amounts of Zn2+ ions into the aqueous solution, a significant enhancement of fluorescence emission occurred with the detection limit of 0.3 μM.
Collapse
Affiliation(s)
- Mana Ayari
- School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran
| | - Ali Banitalebi Dehkordi
- School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, P. O. Box, 1993893973, Iran
| | - Jahan B Ghasemi
- School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, P. O. Box 1439817435, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, 14176-13151, Tehran, Iran
| | - Meisam Soleimani
- School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Bld. D. Mangeron No 73, 700050, Romania.
| | - Hassan Rokni
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
87
|
Ahmad T, Abdel-Azeim S, Khan S, Ullah N. Turn-on fluorescent sensors for nanomolar detection of zinc ions: Synthesis, properties and DFT studies. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
88
|
Enbanathan S, Munusamy S, Jothi D, Manojkumar S, Manickam S, Iyer SK. Zinc ion detection using a benzothiazole-based highly selective fluorescence "turn-on" chemosensor and its real-time application. RSC Adv 2022; 12:27839-27845. [PMID: 36320258 PMCID: PMC9520313 DOI: 10.1039/d2ra04874d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/19/2022] [Indexed: 07/25/2023] Open
Abstract
A new photochromic fluorescence chemosensor was devised and effectively synthesized using benzothiazole and imidazopyridine derivatives. A "turn-on" fluorescence sensor BIPP for Zn2+ detection was developed and has a quick response, excellent sensitivity, and remarkable selectivity over other metal ions. When Zn2+ was added to the BIPP solution, a new strong fluorescence emission peak at 542 nm formed with a considerable increase in intensity. The fluorescence color of the BIPP solution changed from blue to bright green. The binding ratio 8 : 2 was found between BIPP and Zn2+ by the results of Job's plot, HRMS and 1H-NMR. The detection limit (LOD) of BIPP towards Zn2+ was determined to be 2.36 × 10-8, which is remarkably low. The ability to detect Zn2+ in real water samples demonstrates that BIPP may also be used in environmental systems. Additionally, BIPP can be used to measure Zn2+ levels in living cells.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| | - Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Selin Manojkumar
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology Vellore-632014 India
| | - Saravanakumar Manickam
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai-602 105 Tamil Nadu India
| | | |
Collapse
|
89
|
Honnappa N, Anil AG, Shekar S, Behera SK, Ramamurthy PC. Design of a Highly Selective Benzimidazole-Based Derivative for Optical and Solid-State Detection of Zinc Ion. Inorg Chem 2022; 61:15085-15097. [PMID: 36083867 DOI: 10.1021/acs.inorgchem.2c02175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel series of benzimidazole-based molecules mimicking biological receptors, which exhibit selective coordination with zinc ions, were designed and synthesized. The photochromic behavior of these derivatives with various metal ions suggests a selective interaction of one of the receptors 2-(pyridin-2-yl)-4,7-di(thiophen-2-yl)-3H-benzo[d]imidazole (2c) with zinc ion. The lower limit of detection by photoluminescence quenching was determined to be 16 nM. The mechanism of selective complexation was elucidated by 1H nuclear magnetic resonance titrations and dynamic light scattering analysis. The stoichiometry of the formation of the Zn(2c)2 complex was evaluated by single-crystal X-ray diffraction and mass spectral techniques and calculated to be 2:1 (L:M). A change in the electronic energy levels on the sensor analyte interaction was observed by both ultraviolet photoelectron spectroscopy analysis and by density functional theory calculations, suggesting an electroactive semiconductor behavior. A symmetric Schottky structured sensor device was fabricated using the receptor 2c as the active sensing layer. A distinct change in current-voltage characteristics between the receptor and the complex suggests that the fabricated device could be used as a solid-state sensor for detecting zinc ion.
Collapse
Affiliation(s)
- Nagarajaiah Honnappa
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Amith G Anil
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Shweta Shekar
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Sushant Kumar Behera
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| | - Praveen C Ramamurthy
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru 560012, India
| |
Collapse
|
90
|
Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC, Qin QP, Bian H. Novel glycosylation zinc(II)-cryptolepine complexes perturb mitophagy pathways and trigger cancer cell apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem 2022; 243:114743. [PMID: 36116236 DOI: 10.1016/j.ejmech.2022.114743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022]
Abstract
With the aim of shedding some light on the mechanism of action of zinc(II) complexes in antiproliferative processes and molecular signaling pathways, three novel glycosylated zinc(II)-cryptolepine complexes, i.e., [Zn(QA1)Cl2] (Zn(QA1)), [Zn(QA2)Cl2] (Zn(QA2)), and [Zn(QA3)Cl2] (Zn(QA3)), were prepared by conjugating a glucose moiety with cryptolepine, followed by complexation of the resulting glycosylated cryptolepine compounds N-((1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)methyl)-benzofuro[3,2-b]quinolin-11-amine (QA1), 2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)methyl)-1H-1,2,3-triazol-1-yl)ethan-1-ol (QA2), and (2S,3S,4R,5R,6S)-2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)-methyl)-1H-1,2,3-triazol-1-yl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (QA3) with zinc(II), and their anticancer activity was evaluated. In MTT assays, Zn(QA1)-Zn(QA3) were more active against cisplatin-resistant ovarian SK-OV-3/DDP cancer cells (SK-OV-3cis) than ZnCl2 and the QA1-QA3 ligands, with IC50 values of 1.81 ± 0.50, 2.92 ± 0.32, and 1.01 ± 0.11 μM, respectively. Complexation of glycosylated cryptolepine QA3 with zinc(II) increased the antiproliferative activity of the ligand, suggesting that Zn(QA3) could act as a chaperone to deliver the active ligand intracellularly, in contrast with other cryptolepine metal complexes previously reported. In vivo and in vitro investigations suggested that Zn(QA3) exhibited enhanced anticancer activity with treatment effects comparable to those of the clinical drug cisplatin. Furthermore, Zn(QA1)-Zn(QA3) triggered SK-OV-3cis cell apoptosis through mitophagy pathways in the order Zn(QA1) > Zn(QA1) > Zn(QA2). These results demonstrate the potential of glycosylated zinc(II)-cryptolepine complexes for the development of chemotherapy drugs against cisplatin-resistant SK-OV-3cis cells.
Collapse
Affiliation(s)
- Zhen Zhou
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Li-Gang Zhu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Qiao-Chang Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hedong Bian
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China.
| |
Collapse
|
91
|
Zhang X, Jin G, Chen Z, Wu Y, Li Q, Liu P, Xi G. An efficient turn-on fluorescence chemosensor system for Zn(II) ions detection and imaging in mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112485. [PMID: 35809431 DOI: 10.1016/j.jphotobiol.2022.112485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria-targetable fluorescent chemosensors, Rhodamine-B and rhodamine 6G bearing syringaldehyde based receptors were designed and synthesized for efficient chemosensing of Zinc(II) ions. The probes showed the very selective naked eye color change to pink from colorless upon addition of Zinc(II) ions, further these probes showing turn-on fluorescence enhancement with Zn(II) ions by opening of rhodamine spirolactam. The probes are very sensitive towards Zn(II) ions among other ions. These probes RBS and R6S will be applicable to detect zinc ions upto the low level concentration 0.18 and 0.19 nano molar respectively. The affinity of these sensors RBS and R6S for Zinc (II) ions was found to be in the range of 1.12 × 104 M-1 and 7.28 × 104 M-1 respectively. 1H-nmr titrations of the probes with Zn(II) ions clearly indicating the spiroring opening of the spirolactam. DFT calculations supporting that the perceived photophysical changes of the probes on appendage of the zinc ions. Probes RBS and R6S are useable for selective staining mitochondria. Both of the probes are applicable to reveal labile Zn(II) in live Hela and MCF-7 cells via fluorescence imaging. RBS and R6S are also finding application on quantification of Zinc(II) ions inside mitochondria via fluorescence imaging.
Collapse
Affiliation(s)
- Xiaoping Zhang
- College Of Tobacco Science, flavors and fragrance engineering & technology Research center of Henan Province, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Guiyong Jin
- College Of Tobacco Science, flavors and fragrance engineering & technology Research center of Henan Province, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zeshao Chen
- Technology center, China Tobacco Henan Industrial Co., ltd., Zhengzhou 450016, Henan, China
| | - Yunjie Wu
- College Of Tobacco Science, flavors and fragrance engineering & technology Research center of Henan Province, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Qian Li
- Technology center, China Tobacco Henan Industrial Co., ltd., Zhengzhou 450016, Henan, China
| | - Pengfei Liu
- College Of Tobacco Science, flavors and fragrance engineering & technology Research center of Henan Province, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Gaolei Xi
- Technology center, China Tobacco Henan Industrial Co., ltd., Zhengzhou 450016, Henan, China.
| |
Collapse
|
92
|
Fang D, Zhang W, Cheng X, Hu F, Ye Z, Cao J. Molecular evolutionary analysis of the SHI/STY gene family in land plants: A focus on the Brassica species. FRONTIERS IN PLANT SCIENCE 2022; 13:958964. [PMID: 35991428 PMCID: PMC9386158 DOI: 10.3389/fpls.2022.958964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific SHORT INTERNODES/STYLISH (SHI/STY) proteins belong to a family of transcription factors that are involved in the formation and development of early lateral roots. However, the molecular evolution of this family is rarely reported. Here, a total of 195 SHI/STY genes were identified in 21 terrestrial plants, and the Brassica species is the focus of our research. Their physicochemical properties, chromosome location and duplication, motif distribution, exon-intron structures, genetic evolution, and expression patterns were systematically analyzed. These genes are divided into four clades (Clade 1/2/3/4) based on phylogenetic analysis. Motif distribution and gene structure are similar in each clade. SHI/STY proteins are localized in the nucleus by the prediction of subcellular localization. Collinearity analysis indicates that the SHI/STYs are relatively conserved in evolution. Whole-genome duplication is the main factor for their expansion. SHI/STYs have undergone intense purifying selection, but several positive selection sites are also identified. Most promoters of SHI/STY genes contain different types of cis-elements, such as light, stress, and hormone-responsive elements, suggesting that they may be involved in many biological processes. Protein-protein interaction predicted some important SHI/STY interacting proteins, such as LPAT4, MBOATs, PPR, and UBQ3. In addition, the RNA-seq and qRT-PCR analysis were studied in detail in rape. As a result, SHI/STYs are highly expressed in root and bud, and can be affected by Sclerotinia sclerotiorum, drought, cold, and heat stresses. Moreover, quantitative real-time PCR (qRT-PCR) analyses indicates that expression levels of BnSHI/STYs are significantly altered in different treatments (cold, salt, drought, IAA, auxin; ABA, abscisic acid; 6-BA, cytokinin). It provides a new understanding of the evolution and expansion of the SHI/STY family in land plants and lays a foundation for further research on their functions.
Collapse
|
93
|
Three new turn-on fluorescent sensors for the selective detection of Zn2+: Synthesis, properties and DFT studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
94
|
The Effect of Mn on the Mechanical Properties and In Vitro Behavior of Biodegradable Zn-2%Fe Alloy. METALS 2022. [DOI: 10.3390/met12081291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The attractiveness of Zn-based alloys as structural materials for biodegradable implants mainly relates to their excellent biocompatibility, critical physiological roles in the human body and excellent antibacterial properties. Furthermore, in in vivo conditions, they do not tend to produce hydrogen gas (as occurs in the case of Mg-based alloys) or voluminous oxide (as occurs in Fe-based alloys). However, the main disadvantages of Zn-based alloys are their reduced mechanical properties and their tendency to provoke undesirable fibrous encapsulation due to their relatively high standard reduction potential. The issue of fibrous encapsulation was previously addressed by the authors via the development of the Zn-2%Fe alloy that was selected as the base alloy for this study. This development assumed that the addition of Fe to pure Zn can create a microgalvanic effect between the Delta phase (Zn11Fe) and the Zn-matrix that significantly increases the biodegradation rate of the alloy. The aim of the present study is to examine the effect of up to 0.8% Mn on the mechanical properties of biodegradable Zn-2%Fe alloy and to evaluate the corrosion behavior and cytotoxicity performance in in vitro conditions. The selection of Mn as an alloying element is related to its vital role in the synthesis of proteins and the activation of enzyme systems, as well as the fact that Mn is not considered to be a toxic element. Microstructure characterization was carried out by optical microscopy and scanning electron microscopy (SEM), while phase analysis was obtained by X-ray diffraction (XRD). Mechanical properties were examined in terms of hardness and tensile strength, while corrosion performance and electrochemical behavior were assessed by immersion tests, open circuit potential examination, potentiodynamic polarization analysis and impedance spectroscopy. All the in vitro corrosion testing was performed in a simulated physiological environment in the form of a phosphate-buffered saline (PBS) solution. The cytotoxicity performance was evaluated by indirect cell viability analysis, carried out according to the ISO 10993-5/12 standard using Mus musculus 4T1 cells. The obtained results clearly demonstrate the strengthening effect of the biodegradable Zn-2%Fe alloy due to Mn addition. The effect of Mn on in vitro corrosion degradation was insignificant, while in parallel Mn had a favorable effect on indirect cell viability.
Collapse
|
95
|
Huang Y, Du L, Wang M, Ren M, Yu S, Yang Q. Multifaceted roles of zinc finger proteins in regulating various agronomic traits in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:974396. [PMID: 35958192 PMCID: PMC9359907 DOI: 10.3389/fpls.2022.974396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Rice is an important cereal crop, which provides staple food for more than half of the world's population. To meet the demand of the ever-growing population in the next few decades, an extra increase in rice yield is an urgent need. Given that various agronomic traits contribute to the yield of rice, deciphering the key regulators involved in multiple agronomic trait formation is particularly important. As a superfamily of transcription factors, zinc finger proteins participate in regulating multiple genes in almost every stage of rice growth and development. Therefore, understanding zinc finger proteins underlying regulatory network would provide insights into the regulation of agronomic traits in rice. To this end, we intend to summarize the current advances in zinc finger proteins, with emphasis on C2H2 and CCCH proteins, and then discuss their potential in improving rice yield.
Collapse
Affiliation(s)
- Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Guangdong Province Key Laboratory of Plant Molecular Breeding, Guangzhou, China
| | - Longgang Du
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Meixi Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Mengyun Ren
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shouwu Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Qianying Yang
- Division of Integrative Bioscience and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang-si, South Korea
| |
Collapse
|
96
|
Che Z, Yan C, Wang X, Liao L. Organic
Near‐Infrared
Luminescent Materials Based on Excited State Intramolecular Proton Transfer Process. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zong‐Lu Che
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Chang‐Cun Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078 Macau SAR China
| |
Collapse
|
97
|
Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Ameen A, Zaynab M, Mukhtar MS, Pajerowska-Mukhtar KM. A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 2022; 12:12328. [PMID: 35853967 PMCID: PMC9296551 DOI: 10.1038/s41598-022-16602-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs in Gossypium sp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Akif Burhan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Zunaira Nasim
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Raveena Bano
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| | | |
Collapse
|
98
|
Spenner JM, Berg JM. Exploring the use of cobalt(II) dipolar shifts in refining the structure of a zinc finger peptide. J Inorg Biochem 2022; 235:111912. [PMID: 35850025 DOI: 10.1016/j.jinorgbio.2022.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
The uses of dipolar shifts due to cobalt(II) substituted for zinc(II) in a consensus zinc finger peptide for refining the NMR-determined structure were examined. Substantial differences between the calculated and observed chemical shift differences between the cobalt(II) and zinc(II) complexes were observed when these dipolar shifts were not used as constraints in the structure refinement. However, inclusion of these constraints resulted in excellent agreement with minor adjustments in the structure and a slight improvement in the precision of the structure determination. Other calculations revealed that the dipolar shifts were not adequate to determine the overall folded structure by themselves, but were useful in increasing the accuracy and precision of a structure determined based only on nuclear Overhauser effects constraints involving only backbone atoms.
Collapse
Affiliation(s)
- Jonathan M Spenner
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy M Berg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
99
|
Kumar A, Virender, Saini M, Mohan B, Shayoraj, Kamboj M. Colorimetric and Fluorescent Schiff Base Sensors for Trace Detection of Pollutants and Biologically Significant Cations: A Review (2010-2021). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Foliar Spraying of Solanum tuberosum L. with CaCl2 and Ca(NO3)2: Interactions with Nutrients Accumulation in Tubers. PLANTS 2022; 11:plants11131725. [PMID: 35807677 PMCID: PMC9269299 DOI: 10.3390/plants11131725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Calcium is essential for plants, yet as its mobility is limited, the understanding of the rate of Ca2+ accumulation and deposition in tissues of tubers, as well as the interactions with other critical nutrients prompted this study. To assess the interactions and differential accumulation of micro and macronutrients in the tissues of tubers, Solanum tuberosum L. varieties Agria and Rossi were cultivated and, after the beginning of tuberization, four foliar sprayings (at 8–10 day intervals) with CaCl2 (3 and 6 kg ha−1) or Ca(NO3)2 (2 and 4 kg ha−1) solutions were performed. It was found that both fertilizers increased Ca accumulation in tubers (mostly in the parenchyma tissues located in the center of the equatorial region). The functioning of the photosynthetic apparatus was not affected until the 3rd application but was somewhat affected when approaching the end of the crop cycle (after the 4th application), although the lower dose of CaCl2 seemed to improve the photochemical use of energy, particularly when compared with the greater dose of Ca(NO3)2. Still, none of these impacts modified tuber height and diameter. Following the increased accumulation of Ca, in the tubers of both varieties, the mean contents of P, K, Na, Fe, and Zn revealed different accumulation patterns. Moreover, accumulation of K, Fe, Mn, and Zn prevailed in the epidermis, displaying a contrasting pattern relative to Ca. Therefore, Ca accumulation revealed a heterogeneous trend in the different regions analyzed, and Ca enrichment of tubers altered the accumulation of other nutrients.
Collapse
|