51
|
Ma X, Suga N. Corticofugal modulation of the paradoxical latency shifts of inferior collicular neurons. J Neurophysiol 2008; 100:1127-34. [PMID: 18596179 DOI: 10.1152/jn.90508.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central auditory system creates various types of neurons tuned to different acoustic parameters other than a specific frequency. The response latency of auditory neurons typically shortens with an increase in stimulus intensity. However, approximately 10% of collicular neurons of the little brown bat show a "paradoxical latency-shift (PLS)": long latencies to intense sounds but short latencies to weak sounds. These neurons presumably are involved in the processing of target distance information carried by a pair of an intense biosonar pulse and its weak echo. Our current studies show that collicular PLS neurons of the big brown bat are modulated by the corticofugal (descending) system. Electric stimulation of cortical auditory neurons evoked two types of changes in the PLS neurons, depending on the relationship in the best frequency (BF) between the stimulated cortical and recorded collicular neurons. When the BF was matched between them, the cortical stimulation did not shift the BFs of the collicular neurons and shortened their response latencies at intense sounds so that the PLS became smaller. When the BF was unmatched, however, the cortical stimulation shifted the BFs of the collicular neurons and lengthened their response latencies at intense sounds, so that the PLS became larger. Cortical electric stimulation also modulated the response latencies of non-PLS neurons. It produced an inhibitory frequency tuning curve or curves. Our findings indicate that corticofugal feedback is involved in shaping the spectrotemporal patterns of responses of subcortical auditory neurons presumably through inhibition.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, One Brookings Dr., St. Louis, MO 63130, USA.
| | | |
Collapse
|
52
|
Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J. Corticofugal Projection Inhibits the Auditory Thalamus Through the Thalamic Reticular Nucleus. J Neurophysiol 2008; 99:2938-45. [DOI: 10.1152/jn.00002.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation of the auditory cortex (AC) causes both facilitatory and inhibitory effects on the medial geniculate body (MGB). The purpose of this study was to identify the corticofugal inhibitory pathway to the MGB. We assessed two potential circuits: 1) the cortico-colliculo-thalamic circuit and 2) cortico-reticulo-thalamic one. We compared intracellular responses of MGB neurons to electrical stimulation of the AC following bilateral ablation of the inferior colliculi (IC) or thalamic reticular nucleus (TRN) in anesthetized guinea pigs. Cortical stimulation with intact TRN could cause strong inhibitory effects on the MGB neurons. The corticofugal inhibition remained effective after bilateral IC ablation, but it was minimized after the TRN was lesioned with kainic acid. Synchronized TRN neuronal activity and MGB inhibitory postsynaptic potentials (IPSPs) were observed with multiple recordings. The results suggest that corticofugal inhibition traverses the corticoreticulothalamic pathway, indicating that the colliculi-geniculate inhibitory pathway is probably only for feedforward inhibition.
Collapse
|
53
|
Modulation of auditory processing by cortico-cortical feed-forward and feedback projections. Proc Natl Acad Sci U S A 2008; 105:7600-5. [PMID: 18495931 DOI: 10.1073/pnas.0802961105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The auditory center in the cerebrum, the auditory cortex, consists of multiple interconnected areas. The functional role of these interconnections is poorly understood. The auditory cortex of the mustached bat consists of at least nine areas, including the frequency modulation-frequency modulation (FF) and dorsal fringe (DF) areas. The FF and DF areas consist of neurons tuned to specific echo delays carrying target-distance information. The DF area is hierarchically at a higher level than the FF area. Here, we show that the feedback projection from the DF area to the FF area shifts the delay-tuning of FF neurons toward that of the stimulated DF neurons. In contrast, the feed-forward projection from the FF area to the DF area shifts the delay-tuning of DF neurons away from that of the stimulated FF neurons. The lateral projection within the DF area shifts the delay-tuning of DF neurons toward that of the stimulated DF neurons. In contrast, the lateral projection within the FF area shifts the delay-tuning of FF neurons away from that of the stimulated FF neurons. The delay-tuning shift evoked by the DF stimulation was 2.5 times larger than that evoked by the FF stimulation. Our data indicate that the FF-DF feed-forward and FF-FF lateral projections shape the highly selective neural representation of the tuning of the excited DF neurons, whereas the DF-FF feedback and DF-DF lateral projections enhance the representation of the selected tuning, perhaps, for focal processing of information carried by the excited FF neurons.
Collapse
|
54
|
Coote EJ, Rees A. The distribution of nitric oxide synthase in the inferior colliculus of guinea pig. Neuroscience 2008; 154:218-25. [PMID: 18400412 DOI: 10.1016/j.neuroscience.2008.02.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
The modulation of neuronal activity by the gas nitric oxide is one of the most novel discoveries in neuroscience. In the auditory pathway, the highest expression of nitric oxide synthase is found in the inferior colliculus (IC), an important center for the convergence of parallel ascending pathways traveling in the brainstem, and descending projections from the auditory cortex. Here we use immunocytochemistry with an antibody for neuronal nitric oxide synthase (nNOS), or NOS Type 1, to map the distribution of nNOS expression in the IC of the guinea pig. The results show that nNOS is differentially expressed by both cell bodies and neuropil across its different subdivisions. The highest levels of neuronal staining are seen in the dorsal and lateral cortices, and the commissural nucleus, making them readily distinguishable from the ventro-lateral part of the central nucleus where nNOS expression in neuropil and somata is minimal. Dorso-medially, and caudally, however, the region of nNOS expression extends from the dorsal cortex into the area normally designated as the central nucleus, and nNOS is expressed by neurons characteristic of this subdivision. Our findings support the idea of a gradual transition in cell properties rather than a distinct boundary between the central nucleus and the dorsal cortex. This transition zone may provide a cytoarchitectonic substrate for functional interaction between these two subdivisions.
Collapse
Affiliation(s)
- E J Coote
- Auditory Group, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | | |
Collapse
|
55
|
Suga N. Role of corticofugal feedback in hearing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:169-83. [PMID: 18228080 DOI: 10.1007/s00359-007-0274-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/31/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
Abstract
The auditory system consists of the ascending and descending (corticofugal) systems. The corticofugal system forms multiple feedback loops. Repetitive acoustic or auditory cortical electric stimulation activates the cortical neural net and the corticofugal system and evokes cortical plastic changes as well as subcortical plastic changes. These changes are short-term and are specific to the properties of the acoustic stimulus or electrically stimulated cortical neurons. These plastic changes are modulated by the neuromodulatory system. When the acoustic stimulus becomes behaviorally relevant to the animal through auditory fear conditioning or when the cortical electric stimulation is paired with an electric stimulation of the cholinergic basal forebrain, the cortical plastic changes become larger and long-term, whereas the subcortical changes stay short-term, although they also become larger. Acetylcholine plays an essential role in augmenting the plastic changes and in producing long-term cortical changes. The corticofugal system has multiple functions. One of the most important functions is the improvement and adjustment (reorganization) of subcortical auditory signal processing for cortical signal processing.
Collapse
Affiliation(s)
- Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St Louis, MO 63130, USA.
| |
Collapse
|
56
|
Zhang Y, Yan J. Corticothalamic Feedback for Sound-Specific Plasticity of Auditory Thalamic Neurons Elicited by Tones Paired with Basal Forebrain Stimulation. Cereb Cortex 2008; 18:1521-8. [DOI: 10.1093/cercor/bhm188] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
57
|
Wu Y, Yan J. Modulation of the receptive fields of midbrain neurons elicited by thalamic electrical stimulation through corticofugal feedback. J Neurosci 2007; 27:10651-8. [PMID: 17913899 PMCID: PMC6672809 DOI: 10.1523/jneurosci.1320-07.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ascending and descending projections of the central auditory system form multiple tonotopic loops. This study specifically examines the tonotopic pathway from the auditory thalamus to the auditory cortex and then to the auditory midbrain in mice. We observed the changes of receptive fields in the central nucleus of the inferior colliculus of the midbrain evoked by focal electrical stimulation of the ventral division of the medial geniculate body of the thalamus. The receptive field of an auditory neuron was characterized by five parameters: the best frequency, minimum threshold, bandwidth, size of receptive field, and average spike number. We found that focal thalamic stimulation changed the parametric values characterizing the recorded collicular receptive fields toward those characterizing the stimulated thalamic receptive fields. Cortical inactivation with muscimol prevented the development of the collicular plasticity induced by focal thalamic stimulation. Our data suggest that the intact colliculo-thalamo-cortico-collicular loops are important for the coordination of sound-guided plasticity in the central auditory system.
Collapse
Affiliation(s)
- Yamin Wu
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jun Yan
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
58
|
Skipper JI, van Wassenhove V, Nusbaum HC, Small SL. Hearing lips and seeing voices: how cortical areas supporting speech production mediate audiovisual speech perception. Cereb Cortex 2007; 17:2387-99. [PMID: 17218482 PMCID: PMC2896890 DOI: 10.1093/cercor/bhl147] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Observing a speaker's mouth profoundly influences speech perception. For example, listeners perceive an "illusory" "ta" when the video of a face producing /ka/ is dubbed onto an audio /pa/. Here, we show how cortical areas supporting speech production mediate this illusory percept and audiovisual (AV) speech perception more generally. Specifically, cortical activity during AV speech perception occurs in many of the same areas that are active during speech production. We find that different perceptions of the same syllable and the perception of different syllables are associated with different distributions of activity in frontal motor areas involved in speech production. Activity patterns in these frontal motor areas resulting from the illusory "ta" percept are more similar to the activity patterns evoked by AV(/ta/) than they are to patterns evoked by AV(/pa/) or AV(/ka/). In contrast to the activity in frontal motor areas, stimulus-evoked activity for the illusory "ta" in auditory and somatosensory areas and visual areas initially resembles activity evoked by AV(/pa/) and AV(/ka/), respectively. Ultimately, though, activity in these regions comes to resemble activity evoked by AV(/ta/). Together, these results suggest that AV speech elicits in the listener a motor plan for the production of the phoneme that the speaker might have been attempting to produce, and that feedback in the form of efference copy from the motor system ultimately influences the phonetic interpretation.
Collapse
Affiliation(s)
- Jeremy I Skipper
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
59
|
Peterson DC, Schofield BR. Projections from auditory cortex contact ascending pathways that originate in the superior olive and inferior colliculus. Hear Res 2007; 232:67-77. [PMID: 17643879 PMCID: PMC2682707 DOI: 10.1016/j.heares.2007.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/08/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
The superior olivary complex (SOC) and inferior colliculus (IC) are targets of cortical projections as well as sources of major ascending auditory pathways. This study examines whether the cortical projections contact cells in the SOC or IC that project to higher levels. First, we placed an anterograde tracer into the auditory cortex to label cortico-olivary axons and a retrograde tracer into the IC to label olivocollicular cells in guinea pigs. Cortical axons contacted many labeled cells in the ipsilateral SOC and fewer labeled cells in the contralateral SOC. Contacted cells projected to the ipsilateral or contralateral IC. In a second experiment, we labeled corticocollicular axons with an anterograde tracer and injected retrograde tracers into the medial geniculate (MG) to label colliculogeniculate cells. In the IC ipsilateral to the cortical injection, many cortical axons contacted colliculogeniculate cells in the dorsal cortex and external cortex of the IC. The contacted cells projected to the ipsilateral MG or, less often, to the contralateral MG. The results indicate that cortical projections are likely to contact cells in the SOC and IC that project to higher centers. This suggests that auditory cortex can modulate the ascending auditory pathways at multiple levels of the brainstem.
Collapse
Affiliation(s)
| | - Brett R. Schofield
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, ,
| |
Collapse
|
60
|
Zhou X, Jen PHS. Corticofugal modulation of multi-parametric auditory selectivity in the midbrain of the big brown bat. J Neurophysiol 2007; 98:2509-16. [PMID: 17804577 DOI: 10.1152/jn.00613.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticofugal modulation of sub-cortical auditory selectivity has been shown previously in mammals for frequency, amplitude, time, and direction domains in separate studies. As such, these studies do not show if multi-parametric corticofugal modulation can be mediated through the same sub-cortical neuron. Here we specifically studied corticofugal modulation of best frequency (BF), best amplitude (BA), and best azimuth (BAZ) at the same neuron in the inferior colliculus of the big brown bat, Eptesicus fuscus, using focal electrical stimulation in the auditory cortex. Among 53 corticofugally inhibited collicular neurons examined, cortical electrical stimulation produced a shift of all three measurements (i.e., BF, BA, and BAZ) toward the value of stimulated cortical neuron in 13 (24.5%) neurons, two measurements (i.e., BF and BAZ or BA and BAZ) in 19 (36%) neurons, and one measurement in 16 (30%) neurons. Cortical electrical stimulation did not shift any of these measurements in the remaining five (9.5%) neurons. Corticofugally induced collicular BF shift was symmetrical, whereas the shift in collicular BA or BAZ was asymmetrical. The amount of shift in each measurement was significantly correlated with each measurement difference between recorded collicular and stimulated cortical neurons. However, shifts of three measurements were not correlated with each other. Furthermore, average measurement difference between collicular and cortical neurons was larger for collicular neurons with measurement shifts than for those without shifts. These data indicate that multi-parametric corticofugal modulation can be mediated through the same subcortical neuron based on the difference in auditory selectivity between subcortical and cortical neurons.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Division of Biological Sciences, University of Missouri-Columbia, Missouri, USA
| | | |
Collapse
|
61
|
Castellanos NP, Malmierca E, Nuñez A, Makarov VA. Corticofugal modulation of the tactile response coherence of projecting neurons in the gracilis nucleus. J Neurophysiol 2007; 98:2537-49. [PMID: 17728383 DOI: 10.1152/jn.00815.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precise and reproducible spike timing is one of the alternatives of the sensory stimulus encoding. We test coherence (repeatability) of the response patterns elicited in projecting gracile neurons by tactile stimulation and its modulation provoked by electrical stimulation of the corticofugal feedback from the somatosensory (SI) cortex. To gain the temporal structure we adopt the wavelet-based approach for quantification of the functional stimulus-neural response coupling. We show that the spontaneous firing patterns (when they exist) are essentially random. Tactile stimulation of the neuron receptive field strongly increases the spectral power in the stimulus and 5- to 15-Hz frequency bands. However, the functional coupling (coherence) between the sensory stimulus and the neural response exhibits ultraslow oscillation (0.07 Hz). During this oscillation the stimulus coherence can temporarily fall below the statistically significant level, i.e., the functional stimulus-response coupling may be temporarily lost for a single neuron. We further demonstrate that electrical stimulation of the SI cortex increases the stimulus coherence for about 60% of cells. We find no significant correlation between the increment of the firing rate and the stimulus coherence, but we show that there is a positive correlation with the amplitude of the peristimulus time histogram. The latter argues that the observed facilitation of the neural response by the corticofugal pathway, at least in part, may be mediated through an appropriate ordering of the stimulus-evoked firing pattern, and the coherence enhancement is more relevant in gracilis nucleus than an increase of the number of spikes elicited by the tactile stimulus.
Collapse
|
62
|
Tang J, Xiao Z, Suga N. Bilateral cortical interaction: modulation of delay-tuned neurons in the contralateral auditory cortex. J Neurosci 2007; 27:8405-13. [PMID: 17670987 PMCID: PMC6673069 DOI: 10.1523/jneurosci.1257-07.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcallosal excitation and inhibition have been theorized based on the effect of callosotomy on intractable epilepsy and dichotic listening research, respectively. We studied bilateral interaction of cortical auditory neurons and found that this interaction consisted of focused facilitation and widespread lateral inhibition. The frequency modulated (FM)-FM area of the auditory cortex of the mustached bat is composed of delay-tuned neurons tuned to the combination of the emitted biosonar pulse and its echo with a specific echo delay [best delay (BD)] and consists of three subdivisions in terms of the combination sensitivity of neurons. We found that focal electric stimulation of one of these three subdivisions evoked BD shifts of delay-tuned neurons in all three subdivisions of the contralateral FM-FM area, presumably via the corpus callosum. The effect of electric stimulation of the delay-tuned neurons on the contralateral delay-tuned neurons was different depending on whether the BD of a recorded neuron was matched or unmatched in BD with that of the stimulated neurons. BD-matched neurons did not change their BDs and increased the responses at their BDs, whereas BD-unmatched neurons shifted their BDs away from the BD of the stimulated neurons and reduced their responses. The ipsilateral and contralateral BD shifts evoked by the electric stimulation were identical to each other. The contralateral modulation, in addition to the ipsilateral modulation, increases the contrast in the neural representation of the echo delay to which the stimulated neurons are tuned.
Collapse
Affiliation(s)
- Jie Tang
- Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Zhongju Xiao
- Department of Physiology, Nanfang Medical University, Guangzhou 510515, China
| | - Nobuo Suga
- Department of Biology, Washington University, St. Louis, Missouri 63130, and
| |
Collapse
|
63
|
Palmer AR, Hall DA, Sumner C, Barrett DJK, Jones S, Nakamoto K, Moore DR. Some investigations into non-passive listening. Hear Res 2007; 229:148-57. [PMID: 17275232 DOI: 10.1016/j.heares.2006.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening.
Collapse
Affiliation(s)
- A R Palmer
- MRC Institute of Hearing Research, University Park, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
64
|
Sun X, Xia Q, Lai CH, Shum DKY, Chan YS, He J. Corticofugal modulation of acoustically induced Fos expression in the rat auditory pathway. J Comp Neurol 2007; 501:509-25. [PMID: 17278128 DOI: 10.1002/cne.21249] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To investigate the corticofugal modulation of acoustic information ascending through the auditory pathway of the rat, immunohistochemical techniques were used to study the functional expression of Fos protein in neurons. With auditory stimulation at different frequencies, Fos expression in the medial geniculate body (MGB), inferior colliculus (IC), superior olivary complex, and cochlear nucleus was examined, and the extent of Fos expression on the two sides was compared. Strikingly, we found densely Fos-labeled neurons in all divisions of the MGB after both presentation of an auditory stimulus and administration of a gamma-aminobutyric acid type A (GABA(A)) antagonist (bicuculline methobromide; BIM) to the auditory cortex. The location of Fos-labeled neurons in the ventral division (MGv) after acoustic stimulation at different frequencies was in agreement with the known tonotopic organization. That no Fos-labeled neurons were found in the MGv with acoustic stimuli alone suggests that the transmission of ascending thalamocortical information is critically governed by corticofugal modulation. The dorsal (DCIC) and external cortices (ECIC) of the IC ipsilateral to the BIM-injected cortex showed a significantly higher number of Fos-labeled neurons than the contralateral IC. However, no difference in the number of Fos-labeled neurons was found between the central nucleus of the IC on either side, indicating that direct corticofugal modulation occurs only in the ECIC and DCIC. Further investigations are needed to assess the functional implications of the morphological differences observed between the descending corticofugal projections to the thalamus and the IC.
Collapse
Affiliation(s)
- Xia Sun
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
65
|
Ma X, Suga N. Multiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain. J Neurophysiol 2007; 97:3722-30. [PMID: 17376844 DOI: 10.1152/jn.01268.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subcortical auditory nuclei contain not only neurons tuned to a specific frequency but also those tuned to multiple parameters characterizing a sound. All these neurons are potentially subject to modulation by descending fibers from the auditory cortex (corticofugal modulation). In the past, we electrically stimulated cortical duration-tuned neurons of the big brown bat, Eptesicus fuscus, and found that its collicular duration-tuned neurons were corticofugally modulated in the frequency and time (duration) domains. In the current paper, we report that they were also corticofugally modulated in the amplitude (intensity) domain. We found the following collicular changes evoked by focal cortical electric stimulation. 1) Corticofugal modulation in the amplitude domain differed depending on whether recorded collicular neurons matched in best frequency (BF) with stimulated cortical neurons. BF-matched neurons decreased their thresholds, whereas BF-unmatched neurons increased their thresholds: the larger the BF difference between the recorded collicular and stimulated cortical neurons, the larger the threshold increase. 2) In general, the dynamic range for amplitude coding was larger in the inferior colliculus than in the auditory cortex. BF-matched neurons increased their dynamic ranges and response magnitude, whereas BF-unmatched neurons decreased them. 3) Single duration-tuned neurons were simultaneously modulated by cortical electric stimulation in the amplitude, frequency and time domains. 4) Corticofugal modulation in these three domains indicates that the contrast of the neural representation of repeatedly delivered sound stimuli is increased.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Dept. of Biology, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
66
|
de Villers-Sidani E, Chang EF, Bao S, Merzenich MM. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J Neurosci 2007; 27:180-9. [PMID: 17202485 PMCID: PMC6672294 DOI: 10.1523/jneurosci.3227-06.2007] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experience-dependent plasticity during development results in the emergence of highly adapted representations of the external world in the adult brain. Previous studies have convincingly shown that the primary auditory cortex (A1) of the rat possesses a postnatal period of sensory input-driven plasticity but its precise timing (onset, duration, end) has not been defined. In the present study, we examined the effects of pure-tone exposure on the auditory cortex of developing rat pups at different postnatal ages with a high temporal resolution. We found that pure-tone exposure resulted in profound, persistent alterations in sound representations in A1 only if the exposure occurred during a brief period extending from postnatal day 11 (P11) to P13. We also found that postnatal sound exposure in this epoch led to striking alterations in the cortical representation of sound intensity.
Collapse
Affiliation(s)
- Etienne de Villers-Sidani
- W. M. Keck Center for Integrative Neuroscience, Coleman Laboratory, Department of Otolaryngology, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
67
|
Gourévitch B, Eggermont JJ. Evaluating information transfer between auditory cortical neurons. J Neurophysiol 2007; 97:2533-43. [PMID: 17202243 DOI: 10.1152/jn.01106.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfer entropy, presented as a new tool for investigating neural assemblies, quantifies the fraction of information in a neuron found in the past history of another neuron. The asymmetry of the measure allows feedback evaluations. In particular, this tool has potential applications in investigating windows of temporal integration and stimulus-induced modulation of firing rate. Transfer entropy is also able to eliminate some effects of common history in spike trains and obtains results that are different from cross-correlation. The basic transfer entropy properties are illustrated with simulations. The information transfer through a network of 16 simultaneous multiunit recordings in cat's auditory cortex was examined for a large number of acoustic stimulus types. Application of the transfer entropy to a large database of multiple single-unit activity in cat's primary auditory cortex revealed that most windows of temporal integration found during spontaneous activity range between 2 and 15 ms. The normalized transfer entropy shows similarities and differences with the strength of cross-correlation; these form the basis for revisiting the neural assembly concept.
Collapse
Affiliation(s)
- Boris Gourévitch
- Department of Physiology and Biophysics and Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
68
|
Li L, Ebner FF. Cortical modulation of spatial and angular tuning maps in the rat thalamus. J Neurosci 2007; 27:167-79. [PMID: 17202484 PMCID: PMC6672283 DOI: 10.1523/jneurosci.4165-06.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/20/2006] [Accepted: 11/28/2006] [Indexed: 11/21/2022] Open
Abstract
The massive feedback projections from cortex to the thalamus modulate sensory information transmission in many ways. We investigated the role of corticothalamic feedback projections on the directional selectivity (angular tuning) of neurons in the rat ventral posterior medial (VPM) nucleus to stimulation of their principal whisker. The angular tuning properties of single VPM neurons were compared before and after epochs of electrical stimulation of layer VI feedback neurons in the ipsilateral cortex under urethane anesthesia. Microstimulation of layer VI in "matched" (homologous) barrel columns sharpens the angular tuning curves of single VPM neurons that are tuned to the same direction as the stimulation site in the cortex. Further, microstimulation rotates the angular preference of VPM neurons initially tuned to a different direction toward the direction that cortical neurons prefer. Stimulation in "mismatched" (nonhomologous) barrel columns suppresses responses without consistent effects on angular tuning. We conclude that the primary sensory cortex exerts a significant influence on both spatial and angular tuning maps in the relay nuclei that project to it. The results suggest that the tuning properties of VPM cells in the behaving animal are continually modified to optimize perception of the most salient incoming messages.
Collapse
Affiliation(s)
- Lu Li
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| | - Ford F. Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| |
Collapse
|
69
|
Schofield BR, Coomes DL, Schofield RM. Cells in auditory cortex that project to the cochlear nucleus in guinea pigs. J Assoc Res Otolaryngol 2006; 7:95-109. [PMID: 16557424 PMCID: PMC2504579 DOI: 10.1007/s10162-005-0025-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 12/07/2005] [Indexed: 11/28/2022] Open
Abstract
Fluorescent retrograde tracers were used to identify the cells in auditory cortex that project directly to the cochlear nucleus (CN). Following injection of a tracer into the CN, cells were labeled bilaterally in primary auditory cortex and the dorsocaudal auditory field as well as several surrounding fields. On both sides, the cells were limited to layer V. The size of labeled cell bodies varied considerably, suggesting that different cell types may project to the CN. Cells ranging from small to medium in size were present bilaterally, whereas the largest cells were labeled only ipsilaterally. In optimal cases, the extent of dendritic labeling was sufficient to identify the morphologic class. Many cells had an apical dendrite that could be traced to a terminal tuft in layer I. Such "tufted" pyramidal cells were identified both ipsilateral and contralateral to the injected CN. The results suggest that the direct pathway from auditory cortex to the cochlear nucleus is substantial and is likely to play a role in modulating the way the cochlear nucleus processes acoustic stimuli.
Collapse
Affiliation(s)
- Brett R Schofield
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 St. Rt. 44, P.O. Box 95, Rootstown, OH 44272, USA.
| | | | | |
Collapse
|
70
|
Abstract
Many studies of neuromodulators have focused on changes in the magnitudes of neural responses, but fewer studies have examined neuromodulator effects on response latency. Across sensory systems, response latency is important for encoding not only the temporal structure but also the identity of stimuli. In the auditory system, latency is a fundamental response property that varies with many features of sound, including intensity, frequency, and duration. To determine the extent of neuromodulatory regulation of latency within the inferior colliculus (IC), a midbrain auditory nexus, the effects of iontophoretically applied serotonin on first-spike latencies were characterized in the IC of the Mexican free-tailed bat. Serotonin significantly altered the first-spike latencies in response to tones in 24% of IC neurons, usually increasing, but sometimes decreasing, latency. Serotonin-evoked changes in latency and spike count were not always correlated but sometimes occurred independently within individual neurons. Furthermore, in some neurons, the size of serotonin-evoked latency shifts depended on the frequency or intensity of the stimulus, as reported previously for serotonin-evoked changes in spike count. These results support the general conclusion that changes in latency are an important part of the neuromodulatory repertoire of serotonin within the auditory system and show that serotonin can change latency either in conjunction with broad changes in other aspects of neuronal excitability or in highly specific ways.
Collapse
Affiliation(s)
- Laura M Hurley
- Biology Department, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
71
|
Li L, Ebner FF. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold. Exp Brain Res 2006; 172:397-415. [PMID: 16429268 DOI: 10.1007/s00221-005-0337-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Rats tactually explore a nearly spherical space field around their heads with their whiskers. The information sampled by the two sets of whiskers is integrated bilaterally at the cortical level in an activity dependent manner via the corpus callosum. We have recently shown that sensory activity in one barrel field cortex (BFC) modulates the processing of incoming sensory information to the other BFC. Whether interhemispheric integration is dynamically linked with corticothalamic modulation of incoming sensory activity is an important hypothesis to test, since subcortical relay neurons are directly modulated by cortical neurons through top-down processes. In the present study, we compared the direct sensory responses of single thalamic relay neurons under urethane anesthesia before and after inactivating the BFC contralateral to a thalamic neuron. The data show that silencing one BFC reduces response magnitude in contralateral thalamic relay neurons, significantly and reversibly, in response to test stimuli applied to the principal whisker at two times response threshold (2T) intensity for each unit. Neurons in the ventral posterior medial (VPM) nucleus and the medial division of the posterior nucleus (POm) react in a similar manner, although POm neurons are more profoundly depressed by inactivation of the contralateral BFC than VPM neurons. The results support the novel idea that the subcortical relay of sensory information to one hemisphere is strongly modulated by activity levels in the contralateral as well as in the ipsilateral SI cortex. The mechanism of the modulation appears to be based on shifting the stimulus-response curves of thalamic neurons, thereby rendering them more or less sensitive to sensory stimuli. We conclude that global sensory processing is created by combining activity in each cerebral hemisphere and continually balancing the flow of information to cortex by adjusting the responsiveness of ascending sensory pathways.
Collapse
Affiliation(s)
- Lu Li
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
| | | |
Collapse
|
72
|
Zhou X, Jen PHS. Corticofugal modulation of directional sensitivity in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 2005; 203:201-15. [PMID: 15855045 DOI: 10.1016/j.heares.2004.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 12/22/2004] [Indexed: 11/18/2022]
Abstract
In our recent study of corticofugal modulation of collicular amplitude sensitivity of the big brown bat, Eptesicus fuscus, we suggested that the corticofugal modulation is based upon the best frequency (BF) differences and the relative amplitude sensitivity difference between collicular (IC) and cortical (AC) neurons but not the absolute amplitude sensitivity of IC and AC neurons. To show that corticofugal modulation is systematic and multiparametric, we studied corticofugal modulation of directional sensitivity in 89 corticofugally inhibited IC neurons in the same bat species under free field stimulation conditions. A neuron's directional sensitivity was expressed with the azimuthal range (AR) at 50% below the maximum of each directional sensitivity curve and the best azimuth (BAZ) at which the neuron discharged maximally. Cortical electrical stimulation did not affect the directional sensitivity of 40 (45%) neurons with BF(IC-AC) differences of 7.3+/-4.4kHz but sharpened the directional sensitivity of other 49 (55%) neurons with BF(IC-AC) differences of 2.3+/-1.8kHz. Corticofugal modulation sharpened directional sensitivity curves of IC neurons by decreasing the AR and shifting collicular BAZ toward cortical BAZ. The decrease in AR and the shift in BAZ increased significantly with AR(IC-AC) and BAZ(IC-AC) differences but not with absolute AR and BAZ of IC and AC neurons or BF(IC-AC) differences. Corticofual modulation also shifted collicular BF toward cortical BF. The shift in BF increased significantly with BF(IC-AC) differences but not with the BF of IC and AC neurons or BAZ shift. Consonant with our previous study, these data indicate that corticofugal modulation of collicular directional sensitivity is based on topographic projections between the IC and the AC and the difference in directional sensitivity but not the absolute directional sensitivity of IC or AC neurons.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Division of Biological Sciences and Interdisciplinary Neuroscience Program, University of Missouri, 208 Lefevre Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
73
|
Zhang Y, Hakes JJ, Bonfield SP, Yan J. Corticofugal feedback for auditory midbrain plasticity elicited by tones and electrical stimulation of basal forebrain in mice. Eur J Neurosci 2005; 22:871-9. [PMID: 16115210 DOI: 10.1111/j.1460-9568.2005.04276.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The auditory cortex (AC) is the major origin of descending auditory projections and is one of the targets of the cholinergic basal forebrain, nucleus basalis (NB). In the big brown bat, cortical activation evokes frequency-specific plasticity in the inferior colliculus and the NB augments this collicular plasticity. To examine whether cortical descending function and NB contributions to collicular plasticity are different between the bat and mouse and to extend the findings in the bat, we induced plasticity in the central nucleus of the mouse inferior colliculus by a tone paired with electrical stimulation of the NB (hereafter referred to as tone-ES(NB)). We show here that tone-ES(NB) shifted collicular best frequencies (BFs) towards the frequency of the tone paired with ES(NB) when collicular BFs were different from tone frequency. The shift in collicular BF was linearly correlated to the difference between collicular BFs and tone frequencies. The changes in collicular BFs after tone-ES(NB) were similar to those found in the big brown bat. Compared with cortical plasticity evoked by tone-ES(NB), the pattern of collicular BF shifts was identical but the shifting range of collicular BFs was narrower. A GABA(A) agonist (muscimol) or a muscarinic acetylcholine receptor antagonist (atropine) applied to the AC completely abolished the collicular plasticity evoked by tone-ES(NB). Therefore, our findings strongly suggest that the AC plays a critical role in experience-dependent auditory plasticity through descending projections.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Drive, N.W., Rm193B, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
74
|
Zhang Y, Suga N. Corticofugal feedback for collicular plasticity evoked by electric stimulation of the inferior colliculus. J Neurophysiol 2005; 94:2676-82. [PMID: 16000518 DOI: 10.1152/jn.00549.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal electric stimulation of the auditory cortex, 30-min repetitive acoustic stimulation, and auditory fear conditioning each evoke shifts of the frequency-tuning curves [hereafter, best frequency (BF) shifts] of cortical and collicular neurons. The short-term collicular BF shift is produced by the corticofugal system and primarily depends on the relationship in BF between a recorded collicular and a stimulated cortical neuron or between the BF of a recorded collicular neuron and the frequency of an acoustic stimulus. However, it has been unknown whether focal electric stimulation of the inferior colliculus evokes the collicular BF shift and whether the collicular BF shift, if evoked, depends on corticofugal feedback. In our present research with the awake big brown bat, we found that focal electric stimulation of collicular neurons evoked the BF shifts of collicular neurons located near the stimulated ones; that there were two types of BF shifts: centripetal and centrifugal BF shifts, i.e., shifts toward and shifts away from the BF of stimulated neurons, respectively; and that the development of these collicular BF shifts was blocked by inactivation of the auditory cortex. Our data indicate that the collicular BF shifts (plasticity) evoked by collicular electric stimulation depended on corticofugal feedback. It should be noted that collicular BF shifts also depend on acetylcholine because it has been demonstrated that atropine (an antagonist of muscarinic acetylcholine receptors) applied to the IC blocks the development of collicular BF shifts.
Collapse
Affiliation(s)
- Yongkui Zhang
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
75
|
Ma X, Suga N. Long-term cortical plasticity evoked by electric stimulation and acetylcholine applied to the auditory cortex. Proc Natl Acad Sci U S A 2005; 102:9335-40. [PMID: 15961542 PMCID: PMC1166631 DOI: 10.1073/pnas.0503851102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auditory fear conditioning with tone bursts followed by electric leg stimulation activates neurons not only in the auditory and somatosensory systems but also in many other regions of the brain and elicits shifts in the best frequencies (BFs) of collicular and cortical neurons, i.e., reorganization of the frequency (co-chleotopic) maps in the inferior colliculus and auditory cortex (AC). What are the neural elements minimally necessary for evoking long-term cortical BF shifts? We found that: (i) both electric stimulation and acetylcholine applied to the AC evoke the long-term cortical BF shift as does the conditioning; (ii) both electric stimulation of the AC and acetylcholine applied to the inferior colliculus increase the short-term collicular BF shift evoked by the cortical electric stimulation but do not change it into long-term; and (iii) as this short-term collicular BF shift is blocked by atropine, the development of the long-term cortical BF shift becomes slow and small. Therefore, the most essential neural elements for evoking the long-term cortical BF shift are the AC, corticofugal feedback and the cholinergic nucleus. Our current data support the Gao-Suga model, which hypothesizes that the small short-term cortical BF shifts are evoked by tonal stimuli without the association of conditioned and unconditioned stimuli in the multisensory thalamic nuclei and that these BF shifts are augmented and changed into the large long-term BF shifts by cholinergic neurons.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
76
|
Ma X, Suga N. Lateral inhibition for center-surround reorganization of the frequency map of bat auditory cortex. J Neurophysiol 2004; 92:3192-9. [PMID: 15548634 DOI: 10.1152/jn.00301.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency-tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
77
|
Yan J, Zhang Y, Ehret G. Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice. J Neurophysiol 2004; 93:71-83. [PMID: 15331615 DOI: 10.1152/jn.00348.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity of the auditory cortex can be induced by conditioning or focal cortical stimulation. The latter was used here to measure how stimulation in the tonotopy of the mouse primary auditory cortex influences frequency tuning in the midbrain central nucleus of the inferior colliculus (ICC). Shapes of collicular frequency tuning curves (FTCs) were quantified before and after cortical activation by measuring best frequencies, FTC bandwidths at various sound levels, level tolerance, Q-values, steepness of low- and high-frequency slopes, and asymmetries. We show here that all of these measures were significantly changed by focal cortical activation. The changes were dependent not only on the relationship of physiological properties between the stimulated cortical neurons and recorded collicular neurons but also on the tuning curve class of the collicular neuron. Cortical activation assimilated collicular FTC shapes; sharp and broad FTCs were changed to the shapes comparable to those of auditory nerve fibers. Plasticity in the ICC was organized in a center (excitatory)-surround (inhibitory) way with regard to the stimulated location (i.e., the frequency) of cortical tonotopy. This ensures, together with the spatial gradients of distribution of collicular FTC shapes, a sharp spectral filtering at the core of collicular frequency-band laminae and an increase in frequency selectivity at the periphery of the laminae. Mechanisms of FTC plasticity were suggested to comprise both corticofugal and local ICC components of excitatory and inhibitory modulation leading to a temporary change of the balance between excitation and inhibition in the ICC.
Collapse
Affiliation(s)
- Jun Yan
- Department of Physiology and Biophysics, Neuroscience Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive, N.W., Rm193B, Calgary, Alberta, T2N 4N1, Canada.
| | | | | |
Collapse
|
78
|
Jen PHS, Zhou X. Corticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 2004; 184:91-106. [PMID: 14553907 DOI: 10.1016/s0378-5955(03)00237-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies have shown that the corticofugal system systematically modulates and improves subcortical signal processing in the frequency, time and spatial domains. The present study examined corticofugal modulation of amplitude sensitivity of 113 corticofugally inhibited neurons in the central nucleus of the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus. Cortical electrical stimulation decreased the number of impulses and increased the response latency of these neurons. They had an average of 5.9+/-4.4 kHz best frequency (BF) differences between collicular and electrically stimulated cortical neurons. Cortical electrical stimulation synchronized with sound stimulation for 30 min compressed the rate-amplitude functions of half (56, 49.6%) of these collicular neurons and shifted their minimum thresholds (MT) and dynamic ranges (DR) toward that of electrically stimulated cortical neurons for as long as 40 min. These collicular neurons had an average of 1.6+/-1.4 kHz BF differences. The shift in collicular MT and DR significantly increased with differences in MT and DR between collicular and cortical neurons. Cortical electrical stimulation also shifted the BF and best amplitude (BA) of collicular neurons toward that of cortical neurons. The BF shift increased with BF differences and the BA shift increased with BA differences. These data suggest that the corticofugal system modulates collicular responses on the basis of topographic projections between the IC and auditory cortex. However, corticofugal modulation of collicular amplitude sensitivity is primarily dependent upon the difference but not the absolute amplitude sensitivity between collicular and cortical neurons.
Collapse
Affiliation(s)
- Philip H-S Jen
- Division of Biological Sciences and Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
79
|
Yu YQ, Xiong Y, Chan YS, He J. Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J Neurosci 2004; 24:3060-9. [PMID: 15044545 PMCID: PMC6729842 DOI: 10.1523/jneurosci.4897-03.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, we investigated the auditory responses of the medial geniculate (MGB) neurons, through in vivo intracellular recordings of anesthetized guinea pigs, while the auditory cortex was electrically activated. Of the 63 neurons that received corticofugal modulation of the membrane potential, 30 received potentiation and 33 received hyperpolarization. The corticofugal potentiation of the membrane potential (amplitude, mean +/- SD, 8.6 +/- 5.5 mV; duration, 125.5 +/- 75.4 msec) facilitated the auditory responses and spontaneous firing of the MGB neurons. The hyperpolarization of -11.3 +/- 4.9 mV in amplitude and 210.0 +/- 210.1 msec in duration suppressed the auditory responses and spontaneous firing of the MGB neurons. Four of the five neurons that were histologically confirmed to be located in the lemniscal MGB received corticofugal facilitatory modulation, and all of the four neurons that were confirmed to be located in the non-lemniscal MGB received corticofugal inhibitory modulation. The present intracellular recording provides novel results on how the corticofugal projection gates the sensory information in the thalamus: via the spatially selective depolarization of lemniscal MGB neurons and hyperpolarization of non-lemniscal MGB neurons. It is speculated that the systematic selectivity of facilitation and inhibition over the lemniscal and non-lemniscal MGB is related to the attention shift within the auditory modality and across the sensory modalities.
Collapse
Affiliation(s)
- Yan-Qin Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
80
|
Chowdhury SA, Greek KA, Rasmusson DD. Changes in corticothalamic modulation of receptive fields during peripheral injury-induced reorganization. Proc Natl Acad Sci U S A 2004; 101:7135-40. [PMID: 15100406 PMCID: PMC406478 DOI: 10.1073/pnas.0307840101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of corticothalamic projections on the thalamus during different stages of reorganization was determined in anesthetized raccoons that had undergone previous removal of a single forepaw digit. Single-unit recordings were made from 522 sites in the somatosensory nucleus of the thalamus (ventroposterior lateral nucleus) before and after lesioning parts of primary somatosensory cortex. In those parts of ventroposterior lateral nucleus that had intact input from the periphery, the cortical lesion resulted in an immediate 85% increase in receptive field (RF) size. In animals studied 2-6 weeks after digit amputation, peripherally denervated thalamic neurons had unique RFs that were larger than normal, and these were not further enlarged by cortical lesion. However, at longer periods of reorganization (>4 mo), when the new RFs of denervated neurons had decreased in size, cortical lesion again produced expansion of RF size. These data demonstrate that corticothalamic fibers modulate the spatial extent of thalamic RFs in intact animals, probably by controlling intrathalamic inhibition. This corticothalamic modulation is ineffective during the early stages of injury-induced reorganization when new RFs are being formed, but is reinstated after the new RFs have become stabilized. The fact that neurons in the denervated thalamic region retained their unique RFs after cortical lesion indicates that their new inputs are not being relayed from a reorganized cortex and support the view that some plasticity occurs in or below the thalamus.
Collapse
Affiliation(s)
- S A Chowdhury
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
81
|
Coomes DL, Schofield BR. Projections from the auditory cortex to the superior olivary complex in guinea pigs. Eur J Neurosci 2004; 19:2188-200. [PMID: 15090045 DOI: 10.1111/j.0953-816x.2004.03317.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used anterograde tracing techniques to characterize projections from auditory cortex to the superior olivary complex (SOC) in guinea pigs. Large injections of fluorescent or biotinylated dextrans into the temporal cortex labeled many axons in the SOC. Labeled boutons were most numerous in the ventral nucleus of the trapezoid body, with additional boutons in all other olivary nuclei. The distribution of boutons was similar in the ipsilateral and contralateral SOC; however, the contralateral SOC had markedly fewer axons and boutons. Similar patterns of labeling were also observed following injections confined to primary auditory cortex or the dorsocaudal auditory field. Cortical axons in many of the SOC nuclei share numerous morphological features, suggesting that individual axons may innervate multiple nuclei and have widespread effects. In addition, some nuclei contain axons with branching or termination patterns unique to that nucleus; these axons may represent focused projections with effects limited to individual SOC nuclei. Given the many projections of SOC nuclei, cortico-olivary projections are in a position to modify the activity of many brainstem auditory circuits.
Collapse
Affiliation(s)
- Diana L Coomes
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
82
|
Malmierca E, Nuñez A. Primary somatosensory cortex modulation of tactile responses in nucleus gracilis cells of rats. Eur J Neurosci 2004; 19:1572-80. [PMID: 15066153 DOI: 10.1111/j.1460-9568.2004.03256.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Corticofugal influences from the primary somatosensory cortex to the gracilis nuclei were studied with single unit recordings performed in urethane-anaesthetized rats. Two types of neurons were identified: low firing rate (LF) neurons, which could be activated antidromically by medial lemniscus stimulation; and high firing rate (HF) neurons. The effects of electrically stimulating the contralateral primary somatosensory cortex were studied in two situations: when the stimulated cortical area and specific gracilis cells had overlapping receptive fields and when the receptive fields of the cells and primary somatosensory cortex did not overlap. Cortical stimulation facilitated cortical and tactile responses in most gracilis neurons (68% and 58% for LF and HF neurons, respectively) with overlapping receptive fields. When receptive fields were different, cortical stimulation inhibited tactile response in most LF neurons (58%) and some HF neurons (20%). Trains of cortical shocks during sensory stimulation demonstrated that the facilitatory and inhibitory effects outlasted the stimulation period by 5 min. The facilitatory effect was decreased by iontophoretic application of the N-methyl-D-aspartate (NMDA) receptor antagonist APV (50 mm). However, APV did not modify the intensity of the tactile response inhibition in cells with nonoverlapping receptive fields, although, its duration was decreased (<5 min). Iontophoretic application of the gamma-aminobutyric acid (GABA)(A) antagonist bicuculline (20 mm) blocked the cortically evoked inhibition in cells with nonoverlapping receptive fields. The results indicate that the somatosensory cortex precisely controls somatosensory transmission throughout the gracilis nucleus by means of NMDA and GABA(A) receptor activation.
Collapse
Affiliation(s)
- Eduardo Malmierca
- Departamento de Morfologia, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | |
Collapse
|
83
|
Xiao Z, Suga N. Reorganization of the auditory cortex specialized for echo-delay processing in the mustached bat. Proc Natl Acad Sci U S A 2004; 101:1769-74. [PMID: 14745034 PMCID: PMC341851 DOI: 10.1073/pnas.0307296101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Focal excess sensory stimulation evokes reorganization of a sensory system. It is usually an expansion of the neural representation of that stimulus resulting from the shifts of the tuning curves (receptive fields) of neurons toward those of the stimulated neurons. The auditory cortex of the mustached bat has an area that is highly specialized for the processing of target-distance information carried by echo delays. In this area, however, reorganization is due to shifts of the delay-tuning curves of neurons away from those of the stimulated cortical neurons. Elimination of inhibition in the target-distance processing area in the auditory cortex by a drug reverses the direction of the shifts in neural tuning curves. Therefore, such unique reorganization in the time domain is due to strong lateral inhibition in the highly specialized area of the auditory cortex.
Collapse
Affiliation(s)
- Zhongju Xiao
- Department of Biology, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
84
|
Temereanca S, Simons DJ. Functional Topography of Corticothalamic Feedback Enhances Thalamic Spatial Response Tuning in the Somatosensory Whisker/Barrel System. Neuron 2004; 41:639-51. [PMID: 14980211 DOI: 10.1016/s0896-6273(04)00046-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 11/06/2003] [Accepted: 12/29/2003] [Indexed: 11/16/2022]
Abstract
Corticothalamic (CT) projections are approximately 10 times more numerous than thalamocortical projections, yet their function in sensory processing is poorly understood. In particular, the functional significance of the topographic precision of CT feedback is unknown. We addressed these issues in the rodent somatosensory whisker/barrel system by deflecting individual whiskers and pharmacologically enhancing activity in layer VI of single whisker-related cortical columns. Enhancement of corticothalamic activity in a cortical column facilitated whisker-evoked responses in topographically aligned thalamic barreloid neurons, while activation of an adjacent column weakly suppressed activity at the same thalamic site. Both effects were more pronounced when stimulating the preferred, or principal, whisker than for adjacent whiskers. Thus, facilitation by homologous CT feedback sharpens thalamic receptive field focus, while suppression by nonhomologous feedback diminishes it. Our findings demonstrate that somatosensory cortex can selectively regulate thalamic spatial response tuning by engaging topographically specific excitatory and inhibitory mechanisms in the thalamus.
Collapse
Affiliation(s)
- Simona Temereanca
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
85
|
Abstract
Echolocating bats (sub-order: Microchiroptera) form a highly successful group of animals, comprising approximately 700 species and an estimated 25% of living mammals. Many echolocating bats are nocturnal predators that have evolved a biological sonar system to orient and forage in three-dimensional space. Acoustic signal processing and vocal-motor control are tightly coupled, and successful echolocation depends on the coordination between auditory and motor systems. Indeed, echolocation involves adaptive changes in vocal production patterns, which, in turn, constrain the acoustic information arriving at the bat's ears and the time-scales over which neural computations take place.
Collapse
Affiliation(s)
- Cynthia F Moss
- Department of Psychology, Institute for Systems Research, Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
86
|
Abstract
In the present study, we investigated the oscillatory behavior of the auditory thalamic neurons through in vivo intracellular and extracellular recordings in anesthetized guinea pigs. Repeated acoustic stimulus and cortical electrical stimulation were applied to examine their modulatory effects on the thalamic oscillation. The time course of the spike frequency over each trial was obtained by summing all spikes in the onset period and/or the last time period of 100 or 200 msec in the raster display. Spectral analysis was made on the time course of the spike frequency. A slow-frequency oscillation ranging from 0.03 to 0.25 Hz (mean +/- SD, 0.11 +/- 0.05 Hz) was found in the medial geniculate body (MGB) together with a second rhythm of 5-10 Hz. The oscillation neurons had a mean auditory response latency of 17.3 +/- 0.3 msec, which was significantly longer than that of the non-oscillation neurons in lemniscal MGB (9.0 +/- 1.5 msec, p < 0.001, ANOVA) and similar to the non-oscillation neurons in the non-lemniscal MGB (17.6 +/- 5.4 msec, p = 0.811). They were located in the non-lemniscal nuclei of the auditory thalamus. Cortical stimulation altered the thalamic oscillation, leading to termination of the oscillation or to acceleration of the rhythm of the oscillation (the average rhythm changed from 0.07 +/- 0.03 to 0.11 +/- 0.04 Hz, n = 8, p = 0.066, t test). Acoustic stimulation triggered a more regular rhythm in the oscillation neurons. The present results suggest that only the non-lemniscal auditory thalamus is involved in the slow thalamocortical oscillation. The auditory cortex may control the oscillation of the auditory thalamic neurons.
Collapse
|
87
|
Suga N, Ma X. Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 2003; 4:783-94. [PMID: 14523378 DOI: 10.1038/nrn1222] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St Louis, Missouri 63130, USA.
| | | |
Collapse
|
88
|
Yan J. Canadian Association of Neuroscience Review: development and plasticity of the auditory cortex. Can J Neurol Sci 2003; 30:189-200. [PMID: 12945940 DOI: 10.1017/s0317167100002572] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The functions of the cerebral cortex are predominantly established during the critical period of development. One obvious developmental feature is its division into different functional areas that systematically represent different environmental information. This is the result of interactions between intrinsic (genetic) factors and extrinsic (environmental) factors. Following this critical period, the cerebral cortex attains its adult form but it will continue to adapt to environmental changes. Thus, the cerebral cortex is constantly adapting to the environment (plasticity) from its embryonic stages to the last minute of life. This review details important factors that contribute to the development and plasticity of the auditory cortex. The instructive role of thalamocortical innervation, the regulatory role of cholinergic projection of the basal forebrain and the potential role of the corticofugal modulation are presented.
Collapse
Affiliation(s)
- Jun Yan
- Department of Physiology and Biophysics, Neuroscience Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
89
|
Abstract
Although nearly half of the synaptic input to neurons in the dorsal thalamus comes from the cerebral cortex, the role of corticothalamic projections in sensory processing remains elusive. Although sensory afferents certainly establish the basic receptive field properties of thalamic neurons, increasing evidence indicates that feedback from the cortex plays a crucial role in shaping thalamic responses. Here, we review recent work on the corticothalamic pathways associated with the visual, auditory, and somatosensory systems. Collectively, these studies demonstrate that sensory responses of thalamic neurons result from dynamic interactions between feedforward and feedback pathways.
Collapse
Affiliation(s)
- Henry J Alitto
- Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95616, USA
| | | |
Collapse
|
90
|
Neuweiler G. Evolutionary aspects of bat echolocation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:245-56. [PMID: 12743729 DOI: 10.1007/s00359-003-0406-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Revised: 02/17/2003] [Accepted: 02/18/2003] [Indexed: 10/25/2022]
Abstract
This review is yet another attempt to explain how echolocation in bats or bat-like mammals came into existence. Attention is focused on neuronal specializations in the ascending auditory pathway of echolocating bats. Three different mechanisms are considered that may create a specific auditory sensitivity to echos: (1). time-windows of enhanced echo-processing opened by a corollary discharge of neuronal vocalization commands; (2). differentiation and expansion of ensembles of combination-sensitive neurons in the midbrain; and (3). corticofugal top-down modulations. The second part of the review interprets three different types of echolocation as adaptations to ecological niches, and presents the sophisticated cochlear specializations in constant-frequency/frequency-modulated bats as a case study of finely tuned differentiation. It is briefly discussed how a resonant mechanism in the inner ear of constant-frequency/frequency-modulated bats may have evolved in common mammalian cochlea.
Collapse
Affiliation(s)
- G Neuweiler
- Department of Biology II, University of Munich (LMU), Luisenstrasse 14, 80333 München, Germany.
| |
Collapse
|
91
|
He J. Corticofugal modulation on both ON and OFF responses in the nonlemniscal auditory thalamus of the guinea pig. J Neurophysiol 2003; 89:367-81. [PMID: 12522186 DOI: 10.1152/jn.00593.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticofugal modulation on both ON and OFF responses in various nuclei in the medial geniculate body (MGB) was examined by locally activating the auditory cortex and looking for effects on the neuronal responses to acoustic stimuli. In contrast with a major corticofugal facilitatory effect on the ON neurons in the lemniscal nucleus of the MGB of the guinea pigs, of 132 ON neurons tested in three conditions with cortical activation through each of three implanted electrodes, the majority of the tested conditions (319/396) that were sampled from the nonlemniscal nuclei of the MGB received inhibitory modulation from the activated cortex. This inhibitory effect was >50% for 99 cases while the auditory cortex was activated. Most of the OFF and ON-OFF MGB neurons (44/54) showed a facilitatory effect of 111.4 +/- 99.9%, and three showed a small inhibitory effect of 25.7 +/- 5.8% on their OFF responses. Thirty neurons in the border region between the lemniscal and nonlemniscal MGB showed mainly facilitatory corticofugal effects on both ON and OFF responses. Meanwhile, cortical stimulation induced almost exclusive inhibitory effects on the ON response and facilitatory effects on the OFF response in the MGcm. It is suggested that the OFF response is produced as a disinhibition from the inhibitory input of the auditory stimulus. The present results provide a possible explanation for selective gating of the auditory information through the lemniscal MGB while switching off other unwanted sensory signals and the interference from the limbic system, leaving the other auditory cortex prepared to process only the auditory signal.
Collapse
Affiliation(s)
- Jufang He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University Hung Hom, Kowloon, China.
| |
Collapse
|
92
|
Ma X, Suga N. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. J Neurophysiol 2003; 89:90-103. [PMID: 12522162 DOI: 10.1152/jn.00968.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Auditory conditioning (associative learning) or focal electric stimulation of the primary auditory cortex (AC) evokes reorganization (plasticity) of the cochleotopic (frequency) map of the inferior colliculus (IC) as well as that of the AC. The reorganization results from shifts in the best frequencies (BFs) and frequency-tuning curves of single neurons. Since the importance of the cholinergic basal forebrain for cortical plasticity and the importance of the somatosensory cortex and the corticofugal auditory system for collicular and cortical plasticity have been demonstrated, Gao and Suga proposed a hypothesis that states that the AC and corticofugal system play an important role in evoking auditory collicular and cortical plasticity and that auditory and somatosensory signals from the cerebral cortex to the basal forebrain play an important role in augmenting collicular and cortical plasticity. To test their hypothesis, we studied whether the amount and the duration of plasticity of both collicular and cortical neurons evoked by electric stimulation of the AC or by acoustic stimulation were increased by electric stimulation of the basal forebrain and/or the somatosensory cortex. In adult big brown bats (Eptesicus fuscus), we made the following major findings. 1) Collicular and cortical plasticity evoked by electric stimulation of the AC is augmented by electric stimulation of the basal forebrain. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 2) Collicular and cortical plasticity evoked by AC stimulation is augmented by somatosensory cortical stimulation mimicking fear conditioning. The amount of augmentation is larger for cortical plasticity than for collicular plasticity. 3) Collicular and cortical plasticity evoked by both AC and basal forebrain stimulations is further augmented by somatosensory cortical stimulation. 4) A lesion of the basal forebrain tends to reduce collicular and cortical plasticity evoked by AC stimulation. The reduction is small and statistically insignificant for collicular plasticity but significant for cortical plasticity. 5) The lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. 6) Collicular and cortical plasticity evoked by repetitive acoustic stimuli is augmented by basal forebrain and/or somatosensory cortical stimulation. However, the lesion of the basal forebrain eliminates the augmentation of collicular and cortical plasticity that otherwise would be evoked by somatosensory cortical stimulation. These findings support the hypothesis proposed by Gao and Suga.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
93
|
Gerstein GL, Kirkland KL, Musial PG, Talwar SK. Recordings, behaviour and models related to corticothalamic feedback. Philos Trans R Soc Lond B Biol Sci 2002; 357:1835-41. [PMID: 12626016 PMCID: PMC1693072 DOI: 10.1098/rstb.2002.1166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we review recent work on aspects of corticothalamic interactions in the auditory and in the visual systems. There are gross similarities in the arrangements of these systems, but considerable contrasts in the processing computations and in the effects of corticothalamic feedback.
Collapse
Affiliation(s)
- G L Gerstein
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
94
|
Abstract
This report describes a projection from the amygdala, a forebrain center mediating emotional expression, to the inferior colliculus (IC), the midbrain integration center of the ascending auditory system. In the IC of mustached bats (Pteronotus parnellii) and pallid bats (Antrozous pallidus), we placed deposits of retrograde tracers at physiologically defined sites and then searched for retrogradely labeled somata in the forebrain. Labeling was most sensitive in experiments using cholera toxin B-subunit as tracer. We consistently observed retrograde labeling in a single amygdalar subdivision, the magnocellular subdivision of the basal nucleus (Bmg). The Bmg is distinctive across mammals, containing the largest cells in the amygdala and the most intense acetylcholinesterase staining. Labeled amygdalar cells occurred ipsilateral and contralateral to IC deposits, but ipsilateral labeling was greater, averaging 72%. Amygdalar labeling was observed after tracer deposits throughout the IC, including its central nucleus (ICC). In comparison, labeling in the auditory cortex (layer V) was heavily ipsilateral (averaging 92%). Cortical labeling depended on the location of IC deposits: dorsomedial deposits resulted in the most labeled cells, whereas ventrolateral deposits labeled few or no cortical cells. Cortical labeling occurred after several deposits in the ICC. Across experiments, the average number of labeled cells in the amygdala was similar to that in the auditory cortex, indicating that the amygdalocollicular projection is significant. The results demonstrate a direct, widespread projection from the basal amygdala to the IC. They also suggest the presence of a rapid thalamoamygdalocollicular feedback circuit that may impose emotional content onto processing of sensory stimuli at a relatively low level of an ascending sensory pathway.
Collapse
|
95
|
Xiao Z, Suga N. Reorganization of the cochleotopic map in the bat's auditory system by inhibition. Proc Natl Acad Sci U S A 2002; 99:15743-8. [PMID: 12419852 PMCID: PMC137786 DOI: 10.1073/pnas.242606699] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2002] [Indexed: 11/18/2022] Open
Abstract
The central auditory system of the mustached bat shows two types of reorganization of cochleotopic (frequency) maps: expanded reorganization resulting from shifts in the best frequencies (BFs) of neurons toward the BF of repetitively stimulated cortical neurons (hereafter centripetal BF shifts) and compressed reorganization resulting from the BF shifts of neurons away from the BF of the stimulated cortical neurons (hereafter centrifugal BF shifts). Facilitation and inhibition evoked by the corticofugal system have been hypothesized to be respectively related to centripetal and centrifugal BF shifts. If this hypothesis is correct, bicuculline (an antagonist of inhibitory GABA-A receptors) applied to cortical neurons would change centrifugal BF shifts into centripetal BF shifts. In the mustached bat, electric stimulation of cortical Doppler-shifted constant-frequency neurons, which are highly specialized for frequency analysis, evokes the centrifugal BF shifts of ipsilateral collicular and cortical Doppler-shifted constant-frequency neurons and contralateral cochlear hair cells. Bicuculline applied to the stimulation site changed the centrifugal BF shifts into centripetal BF shifts. On the other hand, electric stimulation of neurons in the posterior division of the auditory cortex, which are not particularly specialized for frequency analysis, evokes centripetal BF shifts of cortical neurons located near the stimulated cortical neurons. Bicuculline applied to the stimulation site augmented centripetal BF shifts but did not change the direction of the shifts. These observations support the hypothesis and indicate that centripetal and centrifugal BF shifts are both based on a single mechanism consisting of two components: facilitation and inhibition.
Collapse
Affiliation(s)
- Zhongju Xiao
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
96
|
Abstract
The descending (corticofugal) auditory system adjusts and improves auditory signal processing in the subcortical auditory nuclei. The auditory cortex and corticofugal system evoke small, short-term changes of the subcortical auditory nuclei in response to a sound repetitively delivered to an animal. These changes are specific to the parameters characterizing the sound. When the sound becomes significant to the animal through conditioning (associative learning), the changes are augmented and the cortical changes become long-term. There are two types of reorganizations: expanded reorganization resulting from centripetal shifts in tuning curves of neurons toward the values of the parameters characterizing a sound and compressed reorganization resulting from centrifugal shifts in tuning curves of neurons away from these values. The two types of reorganizations are based on a single mechanism consisting of two components: facilitation and inhibition.
Collapse
Affiliation(s)
- Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
97
|
He J, Yu YQ, Xiong Y, Hashikawa T, Chan YS. Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig. J Neurophysiol 2002; 88:1040-50. [PMID: 12163552 DOI: 10.1152/jn.2002.88.2.1040] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the point-to-point modulatory effects from the auditory cortex to the thalamus in the guinea pig. Corticofugal modulation on thalamic neurons was studied by electrical activation of the auditory cortex. The modulation effect was sampled along the frontal or sagittal planes of the auditory thalamus, focusing on the ventral division (MGv) of the medial geniculate body (MGB). Electrical activation was targeted at the anterior and dorsocaudal auditory fields, to which the MGv projects and from which it assumptively receives reciprocal projections. Of the 101 MGv neurons examined by activation of the auditory cortex through passing pulse trains of 100-200 microA current into one after another of the three implanted electrodes (101 neurons x 3 stimulation sites = 303 cases), 208 cases showed a facilitatory effect, 85 showed no effect, and only 10 cases (7 neurons) showed an inhibitory effect. Among the cases of facilitation, 63 cases showed a facilitatory effect >100%, and 145 cases showed a facilitatory effect from 20-100%. The corticofugal modulatory effect on the MGv of the guinea pig showed a widespread, strong facilitatory effect and very little inhibitory effect. The MGv neurons showed the greatest facilitations to stimulation by the cortical sites, with the closest correspondence in BF. Six of seven neurons showed an elevation of the rate-frequency functions when the auditory cortex was activated. The comparative results of the corticofugal modulatory effects on the MGv of the guinea pig and the cat, together with anatomical findings, hint that the strong facilitatory effect is generated through the strong corticothalamic direct connection and that the weak inhibitory effect might be mainly generated via the interneurons of the MGv. The temporal firing pattern of neuronal response to auditory stimulus was also modulated by cortical stimulation. The mean first-spike latency increased significantly from 15.7 +/- 5.3 ms with only noise-burst stimulus to 18.3 +/- 4.9 ms (n = 5, P < 0.01, paired t-test), while the auditory cortex was activated with a train of 10 pulses. Taking these results together with those of previous experiments conducted on the cat, we speculate that the relatively weaker inhibitory effect compared with that in the cat could be due to the smaller number of interneurons in the guinea pig MGB. The corticofugal modulation of the firing pattern of the thalamic neurons might enable single neurons to encode more auditory information using not only the firing rate but also the firing pattern.
Collapse
Affiliation(s)
- Jufang He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | | | | | | | | |
Collapse
|
98
|
Abstract
An understanding of the neural mechanisms responsible for auditory information processing is incomplete without a careful examination of substantial descending pathways. This study focuses on the functional role of corticofugal projections. Our work with the house mouse reveals that the focal electrical stimulation of the primary auditory cortex leads to profound changes in auditory response properties in the central nucleus of the inferior colliculus of the midbrain. Cortical stimulation does not impact on the collicular best frequencies when the best frequencies of stimulated cortical neurons and recorded collicular neurons are similar. Rather, collicular best frequencies are shifted toward the stimulated cortical best frequencies when cortical and collicular frequencies are different. Such a shift is unrelated to the differences in minimum thresholds between cortical and collicular neurons. In addition to frequency-specific shifts in collicular best frequencies, cortical stimulation elevates collicular minimum thresholds and reduces both dynamic ranges and response magnitudes if cortical and collicular best frequencies are different. If cortical and collicular best frequencies are similar but minimum thresholds are different, collicular minimum thresholds are shifted toward the stimulated cortical thresholds; dynamic ranges and response magnitudes may either increase or decrease in this scenario. Our results suggest that the corticofugal adjustment has a centre-surround organization with regard to both cortical best frequencies and cortical minimum thresholds. The midbrain processing of sound components in the centre of cortical feedback is largely enhanced while processing in the surround is suppressed.
Collapse
Affiliation(s)
- Jun Yan
- Department of Physiology and Biophysics, Neuroscience Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive, N.W., Calgary, Alberta, T2N 4N1, Canada.
| | | |
Collapse
|
99
|
Jen PHS, Zhou X, Zhang J, Chen QC, Sun X. Brief and short-term corticofugal modulation of acoustic signal processing in the bat midbrain. Hear Res 2002; 168:196-207. [PMID: 12117521 DOI: 10.1016/s0378-5955(02)00358-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article reviews our recent studies of brief and short-term corticofugal modulation of signal processing in the central nucleus of the inferior colliculus (ICc) by electrical stimulation in the primary auditory cortex (AC). When cortical electrical stimulation was synchronized with an acoustic stimulus, auditory responses of ICc neurons were either inhibited or facilitated and the modulative effect typically vanished within 5-10 s after the stimulation. When cortical electrical stimulation synchronized with an acoustic stimulus was repetitively delivered for 30 min, corticofugal modulation of collicular responses typically persisted up to 40 min after the stimulation. In the frequency domain, cortical electrical stimulation decreased the excitatory frequency tuning curves (FTCs) and asymmetrically increased the lateral inhibitory FTCs of corticofugally inhibited ICc neurons but produced the opposite effect on corticofugally facilitated ICc neurons. Cortical electrical stimulation facilitated auditory responses of neurons in the external nucleus of the inferior colliculus (ICx) while electrical stimulation in the ICx decreased auditory responses of ICc neurons. Auditory responses of simultaneously recorded ICx and ICc neurons varied in opposite ways during cortical electrical stimulation or drug application to recorded ICx neurons. In the amplitude domain, cortical electrical stimulation compressed rate-amplitude functions so as to increase the slope of rate-amplitude functions of ICc neurons. This modulative effect decreased with increasing stimulus amplitude. The possible biological relevance of these findings is discussed.
Collapse
Affiliation(s)
- Philip H-S Jen
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
100
|
Goldstein-Daruech N, Pedemonte M, Inderkum A, Velluti RA. Effects of excitatory amino acid antagonists on the activity of inferior colliculus neurons during sleep and wakefulness. Hear Res 2002; 168:174-80. [PMID: 12117519 DOI: 10.1016/s0378-5955(02)00364-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contribution of N-methyl-D-aspartate to the response to sound of guinea pig inferior colliculus neurons was analyzed by recording single-unit activity before and after iontophoretic injection of a receptor specific antagonist, 2-amino-5-phosphonovaleric acid (AP5), during the sleep-waking cycle. The AP5 produced a significant firing decrease in most of the units recorded, while some neurons exhibited a particular decrease in the later part of the response. A latency reduction in one out of three units in paradoxical sleep was observed. A low proportion of them exhibited a significant firing increase. These actions were observed in wakefulness (W) as well as during sleep phases. We compared the action of kynurenic acid (Kyn) and the electrical stimulation of the auditory cortex on the same inferior colliculus neuron in anesthetized animals and during W. Both Kyn iontophoresis and cortical stimulation evoked similar changes, decreased firing rate in most inferior colliculus units, whereas a low proportion of them increased their discharge, in anesthetized guinea pigs and in W. Ascending as well as descending - efferent - glutamatergic fibers impinging on inferior colliculus neurons contribute to sound-evoked responses. The enhanced unitary activity observed in some neurons with after glutamatergic receptor blocking may indicate that polysynaptic pathways involving inhibitory neurons decreased their activity. These effects were observed in anesthetized and in behaving animals.
Collapse
Affiliation(s)
- Natalia Goldstein-Daruech
- Neurofisiología, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11800, Montevideo, Uruguay
| | | | | | | |
Collapse
|