51
|
|
52
|
A purified capsular polysaccharide markedly inhibits inflammatory response during endotoxic shock. Infect Immun 2012; 81:90-8. [PMID: 23090956 DOI: 10.1128/iai.00553-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Capsular material of the opportunistic fungus Cryptococcus neoformans is composed mainly of a polysaccharide named glucuronoxylomannan (GXM). In this study, the effects of GXM were analyzed in an in vivo experimental system of lipopolysaccharide (LPS)-induced shock. Endotoxic shock was induced in mice by a single intraperitoneal injection of LPS from Escherichia coli. GXM treatment reduced the mortality of mice at early stages. Mice treated with LPS alone showed markedly increased plasma levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6, whereas mice that were also treated with GXM showed significantly lower plasma levels of these cytokines. This effect was related to a marked suppression of Akt and IκBα activation. Importantly, the inhibitory effect of GXM on proinflammatory cytokine secretion was reproduced by treatment with wortmannin, an inhibitor of the Akt transcription pathway. Our results indicate that GXM has a beneficial effect on endotoxic shock, resulting in a significant increase in the rate of survival by dampening the hyperinflammatory response.
Collapse
|
53
|
David SA. Antimicrobial peptides for gram-negative sepsis: a case for the polymyxins. Front Immunol 2012; 3:252. [PMID: 22912638 PMCID: PMC3419356 DOI: 10.3389/fimmu.2012.00252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sunil A David
- Department of Medicinal Chemistry, University of Kansas Lawrence, KS, USA
| |
Collapse
|
54
|
Venkateswararao E, Sharma VK, Lee KC, Sharma N, Park SH, Kim Y, Jung SH. A SAR study on a series of synthetic lipophilic chalcones as Inhibitor of transcription factor NF-κB. Eur J Med Chem 2012; 54:379-86. [DOI: 10.1016/j.ejmech.2012.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 01/30/2023]
|
55
|
Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Ihara H, Ikeda Y, Kimoto M. Multiple potential regulatory sites of TLR4 activation induced by LPS as revealed by novel inhibitory human TLR4 mAbs. Int Immunol 2012; 24:495-506. [PMID: 22499954 DOI: 10.1093/intimm/dxs053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recognition of LPS by the toll-like receptor 4 (TLR4)/MD-2 complex is a trigger of innate immune defense against bacterial invasion. However, excessive immune activation by this receptor complex causes septic shock and autoimmunity. Manipulation of TLR4 signaling represents a potential therapy that would avoid the detrimental consequences of unnecessary immune responses. In this study, we established two novel mAbs that inhibit LPS-induced human TLR4 activation. HT52 and HT4 mAbs inhibited LPS-induced nuclear factor-κB activation in TLR4/MD-2-expressing Ba/F3-transfected cells and cytokine production and up-regulation of CD86 in the human cell line U373 and PBMCs. These inhibitory activities were stronger than that of HTA125 mAb, which we previously reported. Immunofluorescent and biochemical studies using TLR4 deletion mutants revealed that HT52 and HT4 recognized spatially distinct regions on TLR4 irrespective of MD-2 association. The HT52 and HTA125 epitopes were localized within aa 50-190, while the HT4 epitope was formed only by the full length of TLR4. In addition, we demonstrated that HT52 and HT4 failed to compete with LPS for binding to TLR4/MD-2 but inhibited LPS-induced TLR4 internalization. Inhibitory activities were not due to the interaction with the Fcγ receptor CD32. Our finding that binding of mAbs to at least two distinct regions on TLR4 inhibits LPS-dependent activation provides a novel method for manipulating TLR4 activation and also a rationale for designing drugs targeted to TLR4.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Department of Immunology, Saga Medical School, Saga 849-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
56
|
Oliver R, Staples KJ, Heckels J, Rossetti C, Molteni M, Christodoulides M. Coadministration of the cyanobacterial lipopolysaccharide antagonist CyP with antibiotic inhibits cytokine production by an in vitro meningitis model infected with Neisseria meningitidis. J Antimicrob Chemother 2012; 67:1145-54. [PMID: 22334603 DOI: 10.1093/jac/dks031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES In this study, the objective was to determine the anti-inflammatory properties of CyP, a cyanobacterial lipopolysaccharide (LPS) antagonist, used in combination with antibiotic chemotherapy during infection of an in vitro meningitis model infected with Neisseria meningitidis (meningococcus). METHODS Monocultures of human meningioma cells and meningioma-primary human macrophage co-cultures were infected with meningococci (10(2)-10(8) cfu/monolayer) or treated with isolated outer membranes or purified LPS (0.1-100 ng/monolayer) from N. meningitidis. CyP (1-20 μg/monolayer) was added at intervals from t = 0 to 4 h, with and without benzylpenicillin (1-20 μg/monolayer). The antagonistic effect of CyP and its adjunctive properties to benzylpenicillin administration was determined by measuring cytokine levels in culture supernatants after 24 h. RESULTS CyP significantly inhibited (P < 0.05) the secretion of interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and RANTES ('regulated upon activation, normal T cell expressed and secreted') (overall reduction levels from 50% to >95%) by meningioma cell lines and meningioma-macrophage co-cultures challenged with either live meningococci or bacterial components. Inhibition was effective when CyP was added within 2 h of challenge (P < 0.05) and was still pronounced by 4 h. In the co-culture model, CyP alone partially inhibited IL-1β secretion, but did not prevent tumour necrosis factor (TNF)-α secretion, whereas penicillin alone inhibited IL-1β and TNF-α but conversely did not reduce MCP-1 and RANTES secretion. However, coadministration of CyP and penicillin in both models had an additive effect and restored the overall inhibitory profile. CONCLUSIONS CyP inhibits cytokine production in an in vitro meningitis model and augments the anti-inflammatory response when combined with benzylpenicillin. Administration of an LPS antagonist with antibiotic merits consideration in the emergency treatment of patients presenting with meningococcal infection.
Collapse
Affiliation(s)
- Rebecca Oliver
- Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | |
Collapse
|
57
|
Fukase K, Fujimoto Y, Shimoyama A, Tanaka K. Synthesis of Bacterial Glycoconjugates and Their Bio-functional Studies in Innate Immunity. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
58
|
Gambuzza M, Licata N, Palella E, Celi D, Foti Cuzzola V, Italiano D, Marino S, Bramanti P. Targeting Toll-like receptors: Emerging therapeutics for multiple sclerosis management. J Neuroimmunol 2011; 239:1-12. [DOI: 10.1016/j.jneuroim.2011.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/09/2011] [Accepted: 08/10/2011] [Indexed: 12/16/2022]
|
59
|
Tidswell M, LaRosa SP. Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis. Expert Rev Anti Infect Ther 2011; 9:507-20. [PMID: 21609262 DOI: 10.1586/eri.11.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human innate immune system initiates inflammation in response to bacterial molecules, particularly Gram-negative bacterial endotoxin. The steps by which endotoxin exposure leads to systemic inflammation include binding to Toll-like receptor-4 that specifically recognizes endotoxin and subsequently triggers cellular and molecular inflammatory responses. Severe sepsis is a systemic inflammatory response to infection that induces organ dysfunction and threatens a person's survival. Severe sepsis is frequently associated with increased blood levels of endotoxin. It is a significant medical problem that effects approximately 700,000 patients every year in the USA, resulting in 250,000 deaths. Eritoran tetrasodium is a nonpathogenic analog of bacterial endotoxin that antagonizes inflammatory signaling by the immune receptor Toll-like receptor-4. Eritoran is being evaluated for the treatment of patients with severe sepsis.
Collapse
Affiliation(s)
- Mark Tidswell
- Adult Critical Care Division, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA.
| | | |
Collapse
|
60
|
DeMarco ML, Woods RJ. From agonist to antagonist: structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins. Mol Immunol 2011; 49:124-33. [PMID: 21924775 DOI: 10.1016/j.molimm.2011.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 11/17/2022]
Abstract
The human immune response to an infection by Gram-negative bacteria involves detection of lipopolysaccharides (LPS), also known as endotoxins, which comprise the bacterial outer cell wall. Distinct from mammalian glycolipid structures, LPS have a conserved chemical pattern that is recognized by the pattern recognition receptor complex formed by myeloid differentiation protein 2 (MD-2) and toll-like receptor 4 (TLR4). A remarkable immune-mediated structure-toxicity relationship has been defined that relates to the number of acyl chains in the endotoxin. While there is a clear correlation between endotoxin acylation and elicited agonist or antagonist responses, the 3D structural basis of this relationship remains unclear. In order to explore, at atomic-resolution, the effects of a range of chemically distinct endotoxins on the structure and dynamics of their MD-2·endotoxin complexes, we examined a series of variably acylated lipid A molecules from Escherichia coli and Neisseria meningitidis in complex with human MD-2. Through the application of molecular dynamics simulations, in concert with experimental data, we have identified specific structural and dynamic features of the MD-2-endotoxin complexes that may control dimerization of TLR4 molecules. As dimerization is central to the release of downstream chemical mediators, the results provide a structural foundation for the ability of endotoxins to act as either agonists or antagonists of the TLR4 pathway.
Collapse
Affiliation(s)
- Mari L DeMarco
- Complex Carbohydrate Research Center, University of Georgia, GA 30602, USA.
| | | |
Collapse
|
61
|
Liu X, Zheng X, Wang N, Cao H, Lu Y, Long Y, Zhao K, Zhou H, Zheng J. Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is a potential candidate for sepsis treatment. Br J Pharmacol 2011; 162:1274-90. [PMID: 21108626 DOI: 10.1111/j.1476-5381.2010.01114.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Lipopolysaccharides (LPS) and oligodeoxynucleotides containing CpG motifs (CpG DNA) are important pathogenic molecules for the induction of sepsis, and thus are drug targets for sepsis treatment. The present drugs for treating sepsis act only against either LPS or CpG DNA. Hence, they are not particularly efficient at combating sepsis as the latter two molecules usually cooperate during sepsis. In this study, a natural alkaloid compound kukoamine B (KB) is presented as a potent dual inhibitor for both LPS and CpG DNA. EXPERIMENTAL APPROACH The affinities of KB for LPS and CpG DNA were assessed using biosensor technology. Direct interaction of KB with LPS and CpG DNA were evaluated using neutralization assays. Selective inhibitory activities of KB on pro-inflammatory signal transduction and cytokine expression induced by LPS and CpG DNA were analysed by cellular assays. Protective effects of KB in a sepsis model in mice were elucidated by determining survival and circulatory LPS and tumour necrosis factor-alpha (TNF-α) concentrations. KEY RESULTS KB had high affinities for LPS and CpG DNA. It neutralized LPS and CpG DNA and prevented them from interacting with mouse macrophages. KB selectively inhibited LPS- and CpG DNA-induced signal transduction and expression of pro-inflammatory mediators without interfering with signal pathways or cell viability in macrophages. KB protected mice challenged with heat-killed Escherichia coli, and reduced the circulatory levels of LPS and TNF-α. CONCLUSIONS AND IMPLICATIONS This is the first report of a novel dual inhibitor of LPS and CpG DNA. KB is worthy of further investigation as a potential candidate to treat sepsis.
Collapse
Affiliation(s)
- Xin Liu
- Medical Research Center, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Peri F, Piazza M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv 2011; 30:251-60. [PMID: 21664961 DOI: 10.1016/j.biotechadv.2011.05.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/27/2011] [Accepted: 05/18/2011] [Indexed: 01/04/2023]
Abstract
Early recognition of invading bacteria by the innate immune system has a crucial function in antibacterial defense by triggering inflammatory responses that prevent the spread of infection and suppress bacterial growth. Toll-like receptor 4 (TLR4), the innate immunity receptor of bacterial endotoxins, plays a pivotal role in the induction of inflammatory responses. TLR4 activation by bacterial lipopolysaccharide (LPS) is achieved by the coordinate and sequential action of three other proteins, LBP, CD14 and MD-2 receptors, that bind lipopolysaccharide (LPS) and present it to TLR4 by forming the activated (TLR4-MD-2-LPS)(2) complex. Small molecules active in modulating the TLR4 activation process have great pharmacological interest as vaccine adjuvants, immunotherapeutics or antisepsis and anti-inflammatory agents. In this review we present natural and synthetic molecules active in inhibiting TLR4-mediated LPS signalling in humans and their therapeutic potential. New pharmacological applications of TLR4 antagonists will be also presented related to the recently discovered role of TLR4 in the insurgence and progression of neuropathic pain and sterile inflammations.
Collapse
Affiliation(s)
- Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| | | |
Collapse
|
63
|
Yang FL, Yang YL, Wu SH. Structure and function of glycolipids in thermophilic bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:367-80. [PMID: 21618118 DOI: 10.1007/978-1-4419-7877-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | |
Collapse
|
64
|
Coffey TJ, Werling D. Therapeutic targeting of the innate immune system in domestic animals. Cell Tissue Res 2011; 343:251-61. [PMID: 20953632 DOI: 10.1007/s00441-010-1054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/08/2010] [Indexed: 12/23/2022]
Abstract
Since first being described in the fruit fly Drosophila melanogaster, the knowledge regarding Toll-like receptors (TLRs) has transformed our understanding of immunology. TLRs are a family of conserved pattern recognition receptors (PRR) that recognise specific microbial-associated molecular patterns and allow the cell to distinguish between self and non-self materials. The very property of the TLRs, to link innate and adaptive immunity, offers a novel opportunity to develop vaccines that engage TLR signalling. The presence of TLR ligands as adjuvants in conjunction with a vaccine is shown to increase the efficacy and response to the immunisation with a particular antigen. Here, we focus on the findings pertaining to TLR ligands as adjuvants and discuss the importance of these studies in the development of an optimal vaccine in farm and companion animals.
Collapse
Affiliation(s)
- Tracey J Coffey
- Bovine Genomics Group, Institute for Animal Health, Compton, RG20 7NN, UK
| | | |
Collapse
|
65
|
Kaeothip S, Paranjape G, Terrill SE, Bongat AFG, Udan MLD, Kamkhachorn T, Johnson HL, Nichols MR, Demchenko AV. Development of LPS antagonistic therapeutics: synthesis and evaluation of glucopyranoside-spacer-amino acid motifs. RSC Adv 2011. [DOI: 10.1039/c1ra00145k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
66
|
Liu X, Zheng X, Long Y, Cao H, Wang N, Lu Y, Zhao K, Zhou H, Zheng J. Dual targets guided screening and isolation of Kukoamine B as a novel natural anti-sepsis agent from traditional Chinese herb Cortex lycii. Int Immunopharmacol 2011; 11:110-20. [DOI: 10.1016/j.intimp.2010.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/16/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
67
|
Sprong T, Ley PVD, Abdollahi-Roodsaz S, Joosten L, Meer JVD, Netea M, Deuren MV. Neisseria meningitidis lipid A mutant LPSs function as LPS antagonists in humans by inhibiting TLR 4-dependent cytokine production. Innate Immun 2010; 17:517-25. [PMID: 21088052 DOI: 10.1177/1753425910383999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipopolysaccharide is a major constituent of the outer membrane of Gram-negative bacteria and important in the induction of pro-inflammatory responses. Recently, novel LPS species derived from Neisseria meningitidis H44/76 by insertional inactivation of the lpxL1 and lpxL2 genes have been created with a lipid A portion consisting of five (penta-acylated lpxL1) or four (tetra-acylated lpxL2) fatty acids connected to the glucosamine backbone instead of six fatty acids in the wild-type LPS. We show that these mutant LPS-types are poor inducers of cytokines (tumor-necrosis factor-α, IL-1β, IL-10, IL-RA) in human mononuclear cells. Both penta- and tetra-acylated meningococcal LPSs were able to inhibit cytokine production by wild-type Escherichia coli or meningococcal LPS. Binding of FITC-labelled E. coli LPS TLR4 transfected Chinese hamster ovary (CHO) cells was inhibited by both mutant LPS-types. Experiments with CHO fibroblasts transfected with human CD14 and TLR4 showed that the antagonizing effect was dependent on the expression of human TLR4. In contrast to the situation in humans, lpxL1 LPS has agonistic activity for cytokine production in peritoneal macrophages of DBA mice, and exacerbated arthritis in murine collagen induced arthritis model. N. meningitidis lipid A mutant LPSs lpxL1 and lpxL2 function as LPS antagonists in humans by inhibiting TLR4-dependent cytokine production but have agonistic activity in mice.
Collapse
Affiliation(s)
- Tom Sprong
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
68
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
69
|
Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm 2010; 2010:568396. [PMID: 20396414 PMCID: PMC2855078 DOI: 10.1155/2010/568396] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/02/2010] [Indexed: 01/08/2023] Open
Abstract
Despite a decrease in mortality over the last decade, sepsis remains the tenth leading causes of death in western countries and one of the most common cause of death in intensive care units. The recent discovery of Toll-like receptors and their downstream signalling pathways allowed us to better understand the pathophysiology of sepsis-related disorders. Particular attention has been paid to Toll-like receptor 4, the receptor for Gram-negative bacteria outer membrane lipopolysaccharide or endotoxin. Since most of the clinical trial targeting single inflammatory cytokine in the treatment of sepsis failed, therapeutic targeting of Toll-like receptor 4, because of its central role, looks promising. The purpose of this paper is to focus on the recent data of various drugs targeting TLR4 expression and pathway and their potential role as adjunctive therapy in severe sepsis and septic shock.
Collapse
|
70
|
Kalluri MD, Datla P, Bellary A, Basha K, Sharma A, Sharma A, Singh S, Upadhyay S, Rajagopal V. Novel synthetic gluco-disaccharide RSCL-0409 - a lipopolysaccharide-induced Toll-like receptor-mediated signalling antagonist. FEBS J 2010; 277:1639-52. [DOI: 10.1111/j.1742-4658.2010.07589.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
71
|
Bryant CE, Spring DR, Gangloff M, Gay NJ. The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol 2010; 8:8-14. [PMID: 19946286 DOI: 10.1038/nrmicro2266] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS), which is produced by Gram-negative bacteria, is a powerful activator of innate immune responses. LPS binds to the proteins Toll-like receptor 4 (TLR4) and MD2 to activate pro-inflammatory signalling pathways. The TLR4-MD2 receptor complex is crucial for the host recognition of Gram-negative bacterial infection, and pathogens have devised many strategies to evade or manipulate TLR4-MD2 activity. The TLR4-MD2 signalling pathway is therefore potentially an important therapeutic target. This Progress article focuses on recent exciting data that have revealed the structural basis of TLR4-MD2 recognition of LPS.
Collapse
Affiliation(s)
- Clare E Bryant
- Clare E. Bryant is at the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | | | | | | |
Collapse
|
72
|
Kusumoto S. Synthesis and Functional Study of Bacterial Glycoconjugates Triggering the Innate Immune System of Higher Animals. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
73
|
Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, Hazeki O, Akira S, Iizawa Y, Ii M. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 2009; 157:1250-62. [PMID: 19563534 PMCID: PMC2743844 DOI: 10.1111/j.1476-5381.2009.00297.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/17/2009] [Accepted: 03/10/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE TAK-242, a novel synthetic small-molecule, suppresses production of multiple cytokines by inhibiting Toll-like receptor (TLR) 4 signalling. In this study, we investigated the target molecule of TAK-242 and examined its therapeutic effect in a mouse sepsis model. EXPERIMENTAL APPROACH Binding assay with [(3)H]-TAK-242 and nuclear factor-kappaB reporter assay were used to identify the target molecule and binding site of TAK-242. Bacillus calmette guerin (BCG)-primed mouse sepsis model using live Escherichia coli was used to estimate the efficacy of TAK-242 in sepsis. KEY RESULTS TAK-242 strongly bound to TLR4, but binding to TLR2, 3, 5, 9, TLR-related adaptor molecules and MD-2 was either not observed or marginal. Mutational analysis using TLR4 mutants indicated that TAK-242 inhibits TLR4 signalling by binding to Cys747 in the intracellular domain of TLR4. TAK-242 inhibited MyD88-independent pathway as well as MyD88-dependent pathway and its inhibitory effect was largely unaffected by lipopolysaccharide (LPS) concentration and types of TLR4 ligands. TAK-242 had no effect on the LPS-induced conformational change of TLR4-MD-2 and TLR4 homodimerization. In mouse sepsis model, although TAK-242 alone did not affect bacterial counts in blood, if co-administered with ceftazidime it inhibited the increases in serum cytokine levels and improved survival of mice. CONCLUSIONS AND IMPLICATIONS TAK-242 suppressed TLR4 signalling by binding directly to a specific amino acid Cys747 in the intracellular domain of TLR4. When co-administered with antibiotics, TAK-242 showed potent therapeutic effects in an E. coli-induced sepsis model using BCG-primed mice. Thus, TAK-242 may be a promising therapeutic agent for sepsis.
Collapse
Affiliation(s)
- K Takashima
- Pharmaceutical Research Division, Pharmacology Research Laboratories I, Takeda Pharmaceutical Company Limited, 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Piazza M, Rossini C, Della Fiorentina S, Pozzi C, Comelli F, Bettoni I, Fusi P, Costa B, Peri F. Glycolipids and benzylammonium lipids as novel antisepsis agents: synthesis and biological characterization. J Med Chem 2009; 52:1209-13. [PMID: 19161283 DOI: 10.1021/jm801333m] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New glycolipids and a benzylammonium lipid were rationally designed by varying the chemical structure of a D-glucose-derived hit compound active as lipid A antagonist. We report the synthesis of these compounds, their in vitro activity as lipid A antagonists on HEK cells, and the capacity to inhibit LPS-induced septic shock in vivo. The lack of toxicity and the good in vivo activity suggest the use of some compounds of the panel as hits for antisepsis drug development.
Collapse
Affiliation(s)
- Matteo Piazza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
O'Neill LAJ, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 2009; 61:177-97. [PMID: 19474110 PMCID: PMC2846156 DOI: 10.1124/pr.109.001073] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since first being described in the fruit fly Drosophila melanogaster, Toll-like receptors (TLRs) have proven to be of great interest to immunologists and investigators interested in the molecular basis to inflammation. They recognize pathogen-derived factors and also products of inflamed tissue, and trigger signaling pathways that lead to activation of transcription factors such as nuclear factor-kappaB and the interferon regulatory factors. These in turn lead to induction of immune and inflammatory genes, including such important cytokines as tumor necrosis factor-alpha and type I interferon. Much evidence points to a role for TLRs in immune and inflammatory diseases and increasingly in cancer. Examples include clear roles for TLR4 in sepsis, rheumatoid arthritis, ischemia/reperfusion injury, and allergy. TLR2 has been implicated in similar pathologic conditions and also in systemic lupus erythematosus (SLE) and tumor metastasis. TLR7 has also been shown to be important in SLE. TLR5 has been shown to be radioprotective. Recent advances in our understanding of signaling pathways activated by TLRs, structural insights into TLRs bound to their ligands and antagonists, and approaches to inhibit TLRs (including antibodies, peptides, and small molecules) are providing possiblemeans by which to interfere with TLRs clinically. Here we review these recent advances and speculate about whether manipulating TLRs is likely to be successful in fighting off different diseases.
Collapse
Affiliation(s)
- Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland.
| | | | | |
Collapse
|
76
|
A novel lipopolysaccharide-antagonizing aptamer protects mice against endotoxemia. Biochem Biophys Res Commun 2009; 382:140-4. [PMID: 19265672 DOI: 10.1016/j.bbrc.2009.02.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 02/26/2009] [Indexed: 11/21/2022]
Abstract
A growing number of researchers have recognized the importance of using lipopolysaccharide (LPS) as target for the prevention and treatment of sepsis. However, no drugs targeting LPS have been applied clinically. In this study, LPS-inhibiting aptamers were screened by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), and their therapeutic effects for experimental sepsis were observed. After 12 rounds of screening, 46 sequences were obtained. Primary structure analysis indicated that they had identical sequences, partly conserved sequences, or non-conserved sequences. Secondary structure analysis showed these sequences usually contained hairpin or stem-loop structures. Aptamer 19 significantly decreased NF-kappaB activation of monocytes challenged by LPS and reduced the IL-1 and TNF-alpha concentration in the media of LPS-challenged monocytes. Furthermore, aptamer 19 significantly increased the survival rate of mice with endotoxemia. The results suggest that a novel LPS antagonizing aptamer was obtained by SELEX, which successfully treated experimental sepsis.
Collapse
|
77
|
Coban C, Ishii KJ, Akira S. Immune interventions of human diseases through toll-like receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:63-80. [PMID: 20047036 DOI: 10.1007/978-1-4419-1132-2_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) are the immune sensors for infections, triggering robust innate immune activation followed by protective adaptive immunity against various infectious diseases. Recent evidence, however, has suggested that TLRs are involved in the pathogenesis of many diseases, including not only infectious diseases but also autoimmune diseases, allergy and atherosclerosis. Therefore, prophylactic or therapeutic application of TLR-based immune interventions should be potent, but their safety must be demonstrated using experimental animal models as well as human resources, including analysis of single nucleotide polymorphisms. Here, we focus on recent advances in understanding of the protective and pathogenic roles of TLRs in human diseases.
Collapse
Affiliation(s)
- Cevayir Coban
- Department of Host Defense and 21st Century COE Program Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
78
|
|
79
|
|
80
|
Brandenburg K, Seydel U. Conformation and Supramolecular Structure of Lipid A. LIPID A IN CANCER THERAPY 2009; 667:25-38. [DOI: 10.1007/978-1-4419-1603-7_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
81
|
Anti-inflammatory effect of buckwheat sprouts in lipopolysaccharide-activated human colon cancer cells and mice. Biosci Biotechnol Biochem 2008; 72:3148-57. [PMID: 19060399 DOI: 10.1271/bbb.80324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In conducting an in vitro screening of ethanol extracts from various natural foods using a human colon cancer cell line (CoLoTC cells), an extract of buckwheat sprouts (ExtBS) was found to express significant anti-inflammatory activity. The anti-inflammatory activity of ExtBS was confirmed by oral administration of lipopolysaccharide (LPS) to mice. Inflammatory cytokines (interleukin 6 and tumor necrosis factor alpha) were markedly up-regulated in the spleen and liver from LPS-administrated mice, and combinatory treatment with LPS and ExtBS decreased up-regulation of them in both cytokines. Both serum cytokine levels corresponded to their gene expressions in tissues, but no anti-inflammatry effect in mice was observed when ExtBS was treated intraperitoneally. ExtBS oral administration also showed protective activity as to hepatic injury induced by galactosamine/LPS treatment. Based on these data, we suggest that ExtBS contains anti-inflammatory compounds.
Collapse
|
82
|
Uchiyama A, Kim JS, Kon K, Jaeschke H, Ikejima K, Watanabe S, Lemasters JJ. Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 2008; 48:1644-54. [PMID: 18846543 PMCID: PMC2579320 DOI: 10.1002/hep.22498] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Iron overload exacerbates various liver diseases. In hepatocytes, a portion of non-heme iron is sequestered in lysosomes and endosomes. The precise mechanisms by which lysosomal iron participates in hepatocellular injury remain uncertain. Here, our aim was to determine the role of intracellular movement of chelatable iron in oxidative stress-induced killing to cultured hepatocytes from C3Heb mice and Sprague-Dawley rats. Mitochondrial polarization and chelatable iron were visualized by confocal microscopy of tetramethylrhodamine methylester (TMRM) and quenching of calcein, respectively. Cell viability and hydroperoxide formation (a measure of lipid peroxidation) were measured fluorometrically using propidium iodide and chloromethyl dihydrodichlorofluorescein, respectively. After collapse of lysosomal/endosomal acidic pH gradients with bafilomycin (50 nM), an inhibitor of the vacuolar proton-pumping adenosine triphosphatase, cytosolic calcein fluorescence became quenched. Deferoxamine mesylate and starch-deferoxamine (1 mM) prevented bafilomycin-induced calcein quenching, indicating that bafilomycin induced release of chelatable iron from lysosomes/endosomes. Bafilomycin also quenched calcein fluorescence in mitochondria, which was blocked by 20 microM Ru360, an inhibitor of the mitochondrial calcium uniporter, consistent with mitochondrial iron uptake by the uniporter. Bafilomycin alone was not sufficient to induce mitochondrial depolarization and cell killing, but in the presence of low-dose tert-butylhydroperoxide (25 microM), bafilomycin enhanced hydroperoxide generation, leading to mitochondrial depolarization and subsequent cell death. CONCLUSION Taken together, the results are consistent with the conclusion that bafilomycin induces release of chelatable iron from lysosomes/endosomes, which is taken up by mitochondria. Oxidative stress and chelatable iron thus act as two "hits" synergistically promoting toxic radical formation, mitochondrial dysfunction, and cell death. This pathway of intracellular iron translocation is a potential therapeutic target against oxidative stress-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Akira Uchiyama
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Asai Y. Cryoprotective Effects of Saccharides on the Freeze-Drying of Sonicated Vesicles of the Novel Lipid A Analog, E5531. Pharm Dev Technol 2008; 11:229-33. [PMID: 16749533 DOI: 10.1080/10837450600561430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A sonicated dispersion of the novel lipid A analog, E5531, was feeze-dried in the presence of various additives such as saccharides and polyalcohols, and their cryoprotective effects were investigated. Fusion of the vesicles was examined by measuring fluorescence energy transfer and size distribution. Cryoprotective ability differed among the addtive species. The addition of polyalcohols led to considerable fusion. Although monosaccharides, similar to disaccharides, completely prevented the fusion of the vesicles during lyophilization, they showed far less ability to retain the entrapped calcein in the vesicles compared to disaccharides. Differential scanning calorimetry heating profiles of vesicles that had been lyophilized with various additives were obtained. Disaccharides and monosaccharides again resulted in markedly different thermal properties of the vesicles. This variety in cryoprotective ability of saccharide species can be attributed to differences in their interaction with the E5531 head group.
Collapse
Affiliation(s)
- Yasuyuki Asai
- Formulation Research Laboratory Kawashima Eisai Co., Ltd. 1 Takahaya-machi, Kawashima-cho, Hashima-gun, Gifu 501-6195, Japan.
| |
Collapse
|
84
|
Zhang Y, Gaekwad J, Wolfert MA, Boons GJ. Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4. Org Biomol Chem 2008; 6:3371-81. [PMID: 18802645 PMCID: PMC2793594 DOI: 10.1039/b809090d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetra-acylated lipid As derived from Porphyromonas gingivalis LPS have been synthesized using a key disaccharide intermediate functionalized with levulinate (Lev), allyloxycarbonate (Alloc) and anomeric dimethylthexylsilyl (TDS) as orthogonal protecting groups and 9-fluorenylmethoxycarbamate (Fmoc) and azido as amino protecting groups. Furthermore, an efficient cross-metathesis has been employed for the preparation of the unusual branched R-(3)-hydroxy-13-methyltetradecanic acid and (R)-3-hexadecanoyloxy-15-methylhexadecanoic acid of P. gingivalis lipid A. Biological studies have shown that the synthetic lipid As cannot activate human and mouse TLR2 and TLR4 to produce cytokines. However, it has been found that the compounds are potent antagonist of cytokine secretion by human monocytic cells induced by enteric LPS.
Collapse
Affiliation(s)
- Yanghui Zhang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Jidnyasa Gaekwad
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
85
|
Bazin HG, Murray TJ, Bowen WS, Mozaffarian A, Fling SP, Bess LS, Livesay MT, Arnold JS, Johnson CL, Ryter KT, Cluff CW, Evans JT, Johnson DA. The 'Ethereal' nature of TLR4 agonism and antagonism in the AGP class of lipid A mimetics. Bioorg Med Chem Lett 2008; 18:5350-4. [PMID: 18835160 DOI: 10.1016/j.bmcl.2008.09.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 12/01/2022]
Abstract
To overcome the chemical and metabolic instability of the secondary fatty acyl residues in the AGP class of lipid A mimetics, the secondary ether lipid analogs of the potent TLR4 agonist CRX-527 (2) and TLR4 antagonist CRX-526 (3) were synthesized and evaluated along with their ester counterparts for agonist/antagonist activity in both in vitro and in vivo models. Like CRX-527, the secondary ether lipid 4 showed potent agonist activity in both murine and human models. Ether lipid 5, on the other hand, showed potent TLR4 antagonist activity similar to CRX-526 in human cell assays, but did not display any antagonist activity in murine models and, in fact, was weakly agonistic. Glycolipids 2, 4, and 5 were synthesized via a new highly convergent method utilizing a common advanced intermediate strategy. A new method for preparing (R)-3-alkyloxytetradecanoic acids, a key component of ether lipids 4 and 5, is also described.
Collapse
Affiliation(s)
- Hélène G Bazin
- GlaxoSmithKline Biologicals, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Figueiredo MD, Moore JN, Vandenplas ML, Sun WC, Murray TF. Effects of the second-generation synthetic lipid A analogue E5564 on responses to endotoxin in [corrected] equine whole blood and monocytes. Am J Vet Res 2008; 69:796-803. [PMID: 18518661 DOI: 10.2460/ajvr.69.6.796] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate proinflammatory effects of the second-generation synthetic lipid A analogue E5564 on equine whole blood and isolated monocytes and to determine the ability of E5564 to prevent LPS (lipopolysaccharide)-induced procoagulant activity (PCA); tumor necrosis factor (TNF)-alpha production; and mRNA expression of TNF-alpha, interleukin (IL)-1beta, IL-6, and IL-10 by equine monocytes. SAMPLE POPULATION Venous blood samples obtained from 19 healthy horses. PROCEDURES Whole blood and monocytes were incubated with Escherichia coli O111:B4 LPS, E5564, or E5564 plus E coli O111:B4 LPS. Whole blood and cell supernatants were assayed for TNF-alpha, and cell lysates were assayed to determine PCA. Expression of mRNA for TNF-alpha, IL-1beta, IL-6, and IL-10 by monocytes was determined by use of real-time quantitative PCR assay. RESULTS Minimal proinflammatory effects were detected in whole blood and monocytes. In addition, E5564 inhibited LPS-induced PCA and TNF-alpha production in a concentration-dependent manner. Furthermore, E5564 significantly inhibited LPS-induced mRNA expression of TNF-alpha, IL-1beta, and IL-10 and decreased LPS-induced expression of IL-6. CONCLUSIONS AND CLINICAL RELEVANCE The second-generation synthetic lipid A analogue E5564 lacked agonist activity in equine whole blood and monocytes and was a potent antagonist of enteric LPS. Therefore, E5564 appeared to be the first lipid A analogue that has potential as an effective therapeutic agent in horses with endotoxemia.
Collapse
Affiliation(s)
- Monica D Figueiredo
- Department of Physiology and Pharmacology and Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7385, USA
| | | | | | | | | |
Collapse
|
87
|
Fukase Y, Fujimoto Y, Adachi Y, Suda Y, Kusumoto S, Fukase K. Synthesis ofRubrivivax gelatinosusLipid A and Analogues for Investigation of the Structural Basis for Immunostimulating and Inhibitory Activities. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.796] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
88
|
Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res 2008; 25:1751-61. [PMID: 18493843 PMCID: PMC2469272 DOI: 10.1007/s11095-008-9571-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/13/2008] [Indexed: 02/06/2023]
Abstract
Sepsis remains the most common cause of death in intensive care units in the USA, with a current estimate of at least 750,000 cases per year, and 215,000 deaths annually. Despite extensive research still we do not quite understand the cellular and molecular mechanisms that are involved in triggering and propagation of septic injury. Endotoxin (lipopolysaccharide from Gram-negative bacteria, or LPS) has been implicated as a major cause of this syndrome. Inflammatory shock as a consequence of LPS release remains a serious clinical concern. In humans, inflammatory responses to LPS result in the release of cytokines and other cell mediators from monocytes and macrophages, which can cause fever, shock, organ failure and death. A number of different approaches have been investigated to try to treat and/or prevent the septic shock associated with infections caused by Gram-negative bacteria, including blockage of one or more of the cytokines induced by LPS. Recently several novel amphipathic compounds have been developed as direct LPS antagonists at the LPS receptor, TLR4. This review article will outline the current knowledge on the TLR4-LPS synthesis and discuss the signaling, in vitro pre-clinical and in vivo clinical evaluation of TLR4 antagonists and their potential use in sepsis and a variety of diseases such as atherosclerosis as well as hepatic and renal malfunction.
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW The intention of this article is to review endotoxin, host response to endotoxin, clinical significance of endotoxemia, past failed therapies targeting endotoxin, current therapeutic efforts in this area and the authors' opinion on the future of such therapy. RECENT FINDINGS Endotoxin or lipopolysaccharide is implicated in the activation of cytokine release with the potential to lead to severe sepsis. Therapies targeting endotoxin are very appealing and remain a matter of study and debate. Antiendotoxin antibody studies did not show consistent benefit to warrant its approval for use. Lipid A analog, phospholipid emulsion, and ethyl pyruvate are currently being evaluated for potential clinical use. Polymyxin B as an antiendotoxin strategy has an unacceptable toxicity profile for routine use as an intravenous agent and its use in plasmapheris is too cumbersome. Curcumin and lipopolysaccharide binding peptides, although having a potentially desirable effect on ameliorating endotoxin toxicity, remain to be shown effective in clinical trials. The development of a vaccine against endotoxin carries promise. SUMMARY The benefits of therapies targeting endotoxin remain to be elucidated. Clinical trials targeting populations with documented endotoxemia are more likely to provide an adequate test of this therapeutic approach. Prophylaxis of high-risk populations should also be considered.
Collapse
|
90
|
Andolfi A, Cimmino A, Cantore PL, Iacobellis NS, Evidente A. Bioactive and Structural Metabolites of Pseudomonas and Burkholderia Species Causal Agents of Cultivated Mushrooms Diseases. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1177/1177391x0800200004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pseudomonas tolaasii, P. reactans and Burkholderia gladioli pv. agaricicola, are responsible of diseases on some species of cultivated mushrooms. The main bioactive metabolites produced by both Pseudomonas strains are the lipodepsipeptides (LDPs) tolaasin I and II and the so called White Line Inducing Principle (WLIP), respectively, LDPs which have been extensively studied for their role in the disease process and for their biological properties. In particular, their antimicrobial activity and the alteration of biological and model membranes (red blood cell and liposomes) was established. In the case of tolaasin I interaction with membranes was also related to the tridimensional structure in solution as determined by NMR combined with molecular dynamic calculation techniques. Recently, five news minor tolaasins, tolaasins A-E, were isolated from the culture filtrates of P. tolaasii and their chemical structure was determined by extensive use of NMR and MS spectroscopy. Furthermore, their antimicrobial activity was evaluated on target micro-organisms (fungi–-including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.–-chromista, yeast and bacteria). The Gram positive bacteria resulted the most sensible and a significant structure-activity relationships was apparent. The isolation and structure determination of bioactive metabolites produced by B. gladioli pv. agaricicola are still in progress but preliminary results indicate their peptide nature. Furthermore, the exopolysaccharide (EPS) from the culture filtrates of B. gladioli pv. agaricicola, as well as the O-chain and lipid A, from the lipo-polysaccharide (LPS) of the three bacteria, were isolated and the structures determined.
Collapse
Affiliation(s)
- Anna Andolfi
- Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Alessio Cimmino
- Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Pietro Lo Cantore
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Nicola Sante Iacobellis
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Evidente
- Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
91
|
A cyanobacterial lipopolysaccharide antagonist inhibits cytokine production induced by Neisseria meningitidis in a human whole-blood model of septicemia. Infect Immun 2008; 76:3156-63. [PMID: 18443097 DOI: 10.1128/iai.00110-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septicemia caused by Neisseria meningitidis is characterized by increasing levels of meningococcal lipopolysaccharide (Nm-LPS) and cytokine production in the blood. We have used an in vitro human whole-blood model of meningococcal septicemia to investigate the potential of CyP, a selective Toll-like receptor 4 (TLR4)-MD-2 antagonist derived from the cyanobacterium Oscillatoria planktothrix FP1, for reducing LPS-mediated cytokine production. CyP (> or = 1 microg/ml) inhibited the secretion of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1beta (IL-1beta), and IL-6 (by >90%) and chemokines IL-8 and monocyte chemoattractant protein 1 (by approximately 50%) induced by the treatment of blood with pure Nm-LPS, by isolated outer membranes, and after infection with live meningococci of different serogroups. In vitro studies with human dendritic cells and TLR4-transfected Jurkat cells demonstrated that CyP competitively inhibited Nm-LPS interactions with TLR4 and subsequent NF-kappaB activation. These data demonstrate that CyP is a potent antagonist of meningococcal LPS and could be considered a new adjunctive therapy for treating septicemia.
Collapse
|
92
|
Yang FL, Hua KF, Yang YL, Zou W, Chen YP, Liang SM, Hsu HY, Wu SH. TLR-independent induction of human monocyte IL-1 by phosphoglycolipids from thermophilic bacteria. Glycoconj J 2007; 25:427-39. [PMID: 18161025 DOI: 10.1007/s10719-007-9088-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/04/2007] [Accepted: 11/07/2007] [Indexed: 12/12/2022]
Abstract
The structures of phosphoglycolipids PGL1 and PGL2 from the thermophilic bacteria Meiothermus taiwanensis, Meiothermus ruber, Thermus thermophilus, and Thermus oshimai are determined recently (Yang et al. in J Lipid Res. 47:1823-1932, 2006). These bacteria belong to Gram-negative bacteria that do not contain lipopolysaccharide, but high amounts of phosphoglycolipids and glycoglycerolipids. Here we show that PGL1/PGL2 mixture (PGL1: PGL2 = 10:1 ~ 10:2) from M. taiwanensis and T. oshimai, but not T. thermophilus and M. ruber, up-regulate interleukin-1beta (IL-1beta) production in human THP-1 monocytes and blood-isolated primary monocytes. PGL2 was purified after phospholipase A2 hydrolysis of PGL1 in the PGL1/PGL2 mixture followed by column chromatography. PGL2 did not induce proIL-1 production, even, partially (35-40%) inhibited PGL1-mediated proIL-1 production, showing that PGL1 is the main inducer of proIL-1 production in PGL1/PGL2 mixture. The production of proIL-1 stimulated by phosphoglycolipids was strongly inhibited by specific PKC-alpha, MEK1/2, and JNK inhibitors, but not by p38-specific inhibitor. The intracellular calcium influx was involved in phosphoglycolipids-mediated proIL-1 production. Using blocking antibody and Toll-like receptor (TLR)-linked NF-kappaB luciferase assays, we found that the cellular receptor(s) for phosphoglycolipids on proIL-1 production was TLR-independent. Further, phosphoglycolipids isolated from T. thermophilus and M. ruber did not induce proIL-1 production, even though T. thermophilus possess more PGL1 than PGL2 (6:4). Specially, the fatty acid composition of phosphoglycolipids from both T. thermophilus and M. ruber consists of a low percentage of C15 (<10%) and a high percentage of C17 (>75%). It suggests, the C15 percentage of PGL may play a critical role in PGL-mediated proIL-1 induction.
Collapse
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Faunce CA, Reichelt H, Quitschau P, Paradies HH. Ordering of lipid A-monophosphate clusters in aqueous solutions. J Chem Phys 2007; 127:115103. [PMID: 17887884 DOI: 10.1063/1.2768524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this investigation, a study of the self-assembly of electrostatically stabilized aqueous dispersions of nanometric lipid A-monophosphate clusters from Escherichia coli was carried out in three different volume-fraction regimes. The experimental techniques used in the investigation were osmotic pressure, static and quasielastic light scattering, scanning electron microscopy and transmission electron microscopy, and small-angle x-ray scattering. Experiments were carried out at low ionic strength (I=0.1-5.0 mM NaCl) at 25 degrees C. At volume fractions between 1.5x10(-4)<or=phi<or=5.4x10(-4), the lipid A-monophosphate clusters had an average rms hydrodynamic diameter of d=7.5 nm, and a weighted-average molecular weight of (1.78+/-0.23)x10(5) g mol(-1). Quasielastic light scattering (LS) experiments yield similar values for the particle size and particle size distribution compared to electron microscopy, small-angle x-ray scattering, and LS experiments. When the volume fraction was increased to a higher regime 5.4x10(-4)<or=phi<or=9.50x10(-4), much larger clusters of lipid A monophosphate formed. The clusters detected in this volume-fraction range were assembled from between 8 and 52 of the d=7.5 nm clusters and the assemblies are densely packed in such a way that colloidal crystals composed of the monodisperse microspheres are in physical contact with their nearest neighbors. Clusters that formed in volume fractions between 10.0x10(-4)<or=phi<or=40.0x10(-4) revealed a weighted-average molecular weight of (10.15+/-0.17)x10(6) g mol(-1) and a hydrodynamic diameter of approximately d=70.6 nm. The crossover volume fraction between the small and the large clusters appeared at phicr=5.05x10(-4). In the intermediate volume-fraction range, the scattered intensity I(Q) vs Q curves (light and x rays) showed asymptotic behavior. From the asymptotic curves, the scattered intensity, the relationship between the average mass and radius, and the fractal dimension df were determined. The df value, which was evaluated from the expression I(Q) proportional, RGdf, was found to be 1.67+/-0.03, a value that was virtually independent of the ionic strength (0.1-5.0 mM NaCl) at 25 degrees C. Even at a very low ionic strength (I=0.10 mM NaCl), lipid A monophosphate formed a number of differently shaped clusters. Electron microscope images showed that two types of self-assembled clusters existed at the lowest volume-fraction range studied and also dominated the images taken at the higher volume-fraction regimes. One type of cluster showed a cubic morphology and a size variation of 50-100 nm, while another type took on the appearance of a quadratic cylinder, with dimensions of 50x150 nm2. The other clusters appeared in various shapes: dimers, trimers, and distorted tetramers, which were quite different from the ones previously observed for lipid A diphosphate. Small-angle x-ray diffraction experiments on lipid A-monophosphate clusters suspended in water, containing 5 mM NaCl (25 degrees C), indicated the existence of long-range order of d=7.5 nm. At low polydispersity, two distinct types of lipid A-monophosphate colloidal clusters were able to form at low polydispersity and were subsequently identified using light scattering, small-angle x-ray scattering, and selected-area electron diffraction. From an analysis of experimental results obtained from these clusters, distinct peaks could be assigned to a body-centered cubic (bcc) lattice, with a=49.5+/-1.8 nm. The solution structure found for lipid A diphosphate at volume fractions of 3.75x10(-4)<or=phi<or=4.15x10(-4) also exhibited a (bcc)-type lattice; however, a=36.1 nm [C. A. Faunceet al. J. Phys. Chem. 107, 2214 (2003)]. Using the particle and cluster properties determined from small-angle x-ray scattering, light scattering, and osmotic-pressure measurements as a function of volume fraction, good agreement was found between the directly measured osmotic-pressure values and those calculated from scattering experiments.
Collapse
Affiliation(s)
- Chester A Faunce
- Institute for Materials Research, Joule Physics Laboratory, The University of Salford, Salford M5 4WT, United Kingdom
| | | | | | | |
Collapse
|
94
|
Zhang Y, Wolfert MA, Boons GJ. The influence of the long chain fatty acid on the antagonistic activities of Rhizobium sin-1 lipid A. Bioorg Med Chem 2007; 15:4800-12. [PMID: 17513113 PMCID: PMC1950268 DOI: 10.1016/j.bmc.2007.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/23/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
The lipid A from nitrogen-fixing bacterial species Rhizobium sin-1 is structurally unusual due to lack of phosphates and the presence of a 2-aminogluconolactone and a very long chain fatty acid, 27-hydroxyoctacosanoic acid (27OHC28:0), moiety. This structurally unusual lipid A can antagonize TNF-alpha production by human monocytes induced by Escherichia coli LPS. To establish the relevance of the unusual long chain 27-hydroxyoctacosanoic acid for antagonistic properties, a highly convergent strategy for the synthesis of several derivatives of the lipid A of R. sin-1 has been developed. Compound 1 is a natural R. sin-1 lipid A having a 27-hydroxyoctacosanoic acid at C-2', compound 2 contains an octacosanoic acid moiety at this position, and compound 3 is modified by a short chain tetradecanoic acid. Cellular activation studies with a human monocytic cell line have shown that the octacosanoic acid is important for optimal antagonistic properties. The hydroxyl of the natural 27-hydroxyoctacosanoic moiety does, however, not account for inhibitory activity. The resulting structure-activity relationships are important for the design of compounds for the treatment of septic shock.
Collapse
Affiliation(s)
- Yanghui Zhang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
95
|
Azuma M, Matsuo A, Fujimoto Y, Fukase K, Hazeki K, Hazeki O, Matsumoto M, Seya T. Inhibition of lipid A-mediated type I interferon induction by Bactericidal/permeability-increasing protein (BPI). Biochem Biophys Res Commun 2007; 354:574-8. [PMID: 17239348 DOI: 10.1016/j.bbrc.2007.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 01/05/2007] [Indexed: 11/24/2022]
Abstract
Lipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3. Here we showed that chemically synthesized TLR4-agonistic lipid A analogues but not antagonistic lipid A activate IFN-beta promoter in TLR4-expressing HEK293 cells. The amplitude of IFN-beta promoter activation was in parallel with that of NF-kappaB. LPS-binding protein (LBP) was required for efficient IFN-beta induction in this system, and this LBP activity was antagonized by bactericidal/permeability-increasing protein (BPI). Thus, we first show that BPI blocks the TLR4 responses by exogenous administration of BPI to lipid A-sensitive cells. Although the functional mechanism whereby extra-cellular BPI modulates the intra-cellular signal pathways selected by the TLR adaptors, MyD88 and TICAM-1 (TRIF), remains unknown, we infer that the lipid A portion of LPS participates in LBP-amplified IFN-beta induction and that BPI binding to LPS leads to inhibition of the activation of NF-kappaB and IFN-beta by LPS or agonistic lipid A via TLR4 in an extrinsic mode. BPI may serve as a therapeutic potential against endotoxin shock by acting as a regulator for the MyD88- and TICAM-1 pathways in the LPS-TLR4 signaling.
Collapse
Affiliation(s)
- Masahiro Azuma
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Bryant CE, Ouellette A, Lohmann K, Vandenplas M, Moore JN, Maskell DJ, Farnfield BA. The cellular Toll-like receptor 4 antagonist E5531 can act as an agonist in horse whole blood. Vet Immunol Immunopathol 2007; 116:182-9. [PMID: 17320193 DOI: 10.1016/j.vetimm.2007.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/09/2007] [Accepted: 01/24/2007] [Indexed: 11/24/2022]
Abstract
Sepsis and endotoxaemia are important causes of morbidity and mortality in humans. Research on sepsis focuses on rodent models most of which are poorly responsive to lipopolysaccharide (LPS), and thus do not mimic very well the high sensitivity of humans. Therefore, there is a need to develop more clinically relevant models. Horses suffer from a similar endotoxaemic syndrome to humans with high morbidity and mortality. LPS analogues that act as antagonists at Toll-like receptor 4 (TLR4) are being developed as novel treatments for endotoxaemia. Due to differences in recognition of ligands by TLR4 from different mammalian species, individual LPS molecules may act as agonists in some species and antagonists in others. The synthetic lipid A analogue E5531 is an antagonist at TLR4 in humans and mice, but its effects at TLR4 from other species are unknown. In the studies reported here, Escherichia coli LPS is a full agonist on equine bone marrow macrophage-like cells and its effects are antagonised by E5531. Similarly, E. coli LPS is an agonist and E5531 an antagonist on monocytes isolated from peripheral blood of healthy horses and human embryonic kidney (HEK) cells, transiently transfected to express horse TLR4 and its associated cell surface proteins MD2 and CD14. In contrast, both E. coli LPS and E5531 behave as agonists in horse whole blood by inducing production of equivalent amounts of the inflammatory mediator prostaglandin. This finding suggests that modification of E5531 may occur in whole blood, for example, deacylation, which alters its activity. This comparative study has revealed a novel pharmacological action of E5531 and emphasises the importance of extending studies of this nature beyond the normal rodent models.
Collapse
Affiliation(s)
- Clare E Bryant
- Department of Veterinary Medicine, The University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
97
|
Ortega-Muñoz M, Morales-Sanfrutos J, Perez-Balderas F, Hernandez-Mateo F, Giron-Gonzalez MD, Sevillano-Tripero N, Salto-Gonzalez R, Santoyo-Gonzalez F. Click multivalent neoglycoconjugates as synthetic activators in cell adhesion and stimulation of monocyte/machrophage cell lines. Org Biomol Chem 2007; 5:2291-301. [PMID: 17609761 DOI: 10.1039/b706331h] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The efficient synthesis of fluorescent and non-fluorescent multivalent neoglycoconjugates is described by means of the Cu(i) catalyzed azide-alkyne 1,3-dipolar cycloaddition ("click-chemistry"). A well-defined glycopolymer, glycocyclodextrin or glycocluster architecture displaying galactose or lactose epitopes has been chosen. Cellular assays using U-937 and RAW 264.7 monocyte/macrophage cells showed that these glycocompounds have the capability to act as synthetic activators mimicking the lipopolysaccharide (LPS) effects. Thus, the click compounds promote cell adhesion and stimulation of monocytes, measured as an increase in the amount of TNFalpha, facilitating their differentiation to macrophages.
Collapse
Affiliation(s)
- Mariano Ortega-Muñoz
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología. Universidad de Granada, E-18071-Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
The Toll family of class I transmembrane receptors recognizes and responds to diverse structures associated with pathogenic microorganisms. These receptors mediate initial responses in innate immunity and are required for the development of the adaptive immune response. Toll receptor signaling pathways are also implicated in serious autoimmune diseases such as endotoxic shock and thus are important therapeutic targets. In this review we discuss how microbial structures as different as nucleic acids and lipoproteins can be recognized by the extracellular domains of Toll receptors. We review recent evidence that the mechanism of signal transduction is complex and involves sequential changes in the conformation of the receptor induced by binding of the ligand. Finally, we assess the emerging area of cross talk in the Toll pathways. Recent work suggests that signaling through TLR4 in response to endotoxin is modified by inputs from at least two other pathways acting through beta2 integrins and protein kinase Cepsilon.
Collapse
Affiliation(s)
- Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
| | | |
Collapse
|
99
|
Abstract
The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
100
|
Vorobeva EV, Krasikova IN, Solov'eva TF. Influence of lipopolysaccharides and lipids A from some marine bacteria on spontaneous and Escherichia coli LPS-induced TNF-alpha release from peripheral human blood cells. BIOCHEMISTRY (MOSCOW) 2006; 71:759-66. [PMID: 16903830 DOI: 10.1134/s000629790607008x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Some endotoxic properties of lipopolysaccharides (LPS) and lipids A (LA) from the marine bacteria Marinomonas communis ATCC 27118(T), Marinomonas mediterranea ATCC 700492(T), and Chryseobacterium indoltheticum CIP 103168(T) were studied. The preparations tested were shown to have high 50% lethal doses (4 microg per mouse for LPS from M. mediterranea and more than 12 microg per mouse for two other LPS and LA from C. indoltheticum) and were moderate (371 +/- 37 pg/ml at 10 microg/ml of C. indoltheticum LPS), weak (148 +/- 5 pg/ml at 1 microg/ml of M. mediterranea LPS), and zero (LA and LPS from M. communis and LA from C. indoltheticum) inducers of tumor necrosis factor alpha (TNF-alpha) release from peripheral human blood cells. The capacity of the LA and LPS samples from marine bacteria to inhibit TNF-alpha release induced by LPS from Escherichia coli O55 : B5 (10 ng/ml) was also studied.
Collapse
Affiliation(s)
- E V Vorobeva
- Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | | | | |
Collapse
|