51
|
Campbell BB, Galati MA, Stone SC, Riemenschneider AN, Edwards M, Sudhaman S, Siddaway R, Komosa M, Nunes NM, Nobre L, Morrissy AS, Zatzman M, Zapotocky M, Joksimovic L, Kalimuthu SN, Samuel D, Mason G, Bouffet E, Morgenstern DA, Aronson M, Durno C, Malkin D, Maris JM, Taylor MD, Shlien A, Pugh TJ, Ohashi PS, Hawkins CE, Tabori U. Mutations in the RAS/MAPK Pathway Drive Replication Repair-Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition. Cancer Discov 2021; 11:1454-1467. [PMID: 33563663 DOI: 10.1158/2159-8290.cd-20-1050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/02/2020] [Accepted: 02/04/2021] [Indexed: 01/13/2023]
Abstract
The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair-deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10-8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. SIGNIFICANCE: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Brittany B Campbell
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa A Galati
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simone C Stone
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexandra N Riemenschneider
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Komosa
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nuno M Nunes
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liana Nobre
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A Sorana Morrissy
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Zatzman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michal Zapotocky
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lazar Joksimovic
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sangeetha N Kalimuthu
- Department of Pathology, Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David Samuel
- Department of Hematology-Oncology, Valley Children's Hospital, Madera, California
| | - Gary Mason
- Department of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel A Morgenstern
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Malkin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia E Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
52
|
Afsari B, Kuo A, Zhang Y, Li L, Lahouel K, Danilova L, Favorov A, Rosenquist TA, Grollman AP, Kinzler KW, Cope L, Vogelstein B, Tomasetti C. Supervised mutational signatures for obesity and other tissue-specific etiological factors in cancer. eLife 2021; 10:61082. [PMID: 33491650 PMCID: PMC7872524 DOI: 10.7554/elife.61082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Determining the etiologic basis of the mutations that are responsible for cancer is one of the fundamental challenges in modern cancer research. Different mutational processes induce different types of DNA mutations, providing 'mutational signatures' that have led to key insights into cancer etiology. The most widely used signatures for assessing genomic data are based on unsupervised patterns that are then retrospectively correlated with certain features of cancer. We show here that supervised machine-learning techniques can identify signatures, called SuperSigs, that are more predictive than those currently available. Surprisingly, we found that aging yields different SuperSigs in different tissues, and the same is true for environmental exposures. We were able to discover SuperSigs associated with obesity, the most important lifestyle factor contributing to cancer in Western populations.
Collapse
Affiliation(s)
- Bahman Afsari
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Albert Kuo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - YiFan Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Lu Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Kamel Lahouel
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ludmila Danilova
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russian Federation
| | - Alexander Favorov
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, RAS, Moscow, Russian Federation
| | | | - Arthur P Grollman
- State University of New York at Stony Brook, Stony Brook, United States
| | - Ken W Kinzler
- Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, United States
| | - Leslie Cope
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Bert Vogelstein
- Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, United States
| | - Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| |
Collapse
|
53
|
Allio R, Nabholz B, Wanke S, Chomicki G, Pérez-Escobar OA, Cotton AM, Clamens AL, Kergoat GJ, Sperling FAH, Condamine FL. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat Commun 2021; 12:354. [PMID: 33441560 PMCID: PMC7806994 DOI: 10.1038/s41467-020-20507-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
The mega-diversity of herbivorous insects is attributed to their co-evolutionary associations with plants. Despite abundant studies on insect-plant interactions, we do not know whether host-plant shifts have impacted both genomic adaptation and species diversification over geological times. We show that the antagonistic insect-plant interaction between swallowtail butterflies and the highly toxic birthworts began 55 million years ago in Beringia, followed by several major ancient host-plant shifts. This evolutionary framework provides a valuable opportunity for repeated tests of genomic signatures of macroevolutionary changes and estimation of diversification rates across their phylogeny. We find that host-plant shifts in butterflies are associated with both genome-wide adaptive molecular evolution (more genes under positive selection) and repeated bursts of speciation rates, contributing to an increase in global diversification through time. Our study links ecological changes, genome-wide adaptations and macroevolutionary consequences, lending support to the importance of ecological interactions as evolutionary drivers over long time periods.
Collapse
Affiliation(s)
- Rémi Allio
- CNRS, IRD, EPHE, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - Benoit Nabholz
- CNRS, IRD, EPHE, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Guillaume Chomicki
- Department of Bioscience, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | | | - Adam M Cotton
- 86/2 Moo 5, Tambon Nong Kwai, Hang Dong, Chiang Mai, Thailand
| | - Anne-Laure Clamens
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Gaël J Kergoat
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, AB, Canada
| | - Fabien L Condamine
- CNRS, IRD, EPHE, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, AB, Canada.
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW To acquaint urologists with aristolochic acid nephropathy, an iatrogenic disease that poses a distinct threat to global public health. In China alone, 100 million people may currently be at risk. We illustrate the power of molecular epidemiology in establishing the cause of this disease. RECENT FINDINGS Molecular epidemiologic approaches and novel mechanistic information established a causative linkage between exposure to aristolochic acid and urothelial carcinomas of the bladder and upper urinary tract. Noninvasive tests are available that detect urothelial cancers through the genetic analysis of urinary DNA. Combined with cytology, some of these tests can detect 95% of patients at risk of developing bladder and/or upper urothelial tract cancer. Robust biomarkers, including DNA-adduct and mutational signature analysis, unequivocally identify aristolochic acid-induced tumours. The high mutational load associated with aristolochic acid-induced tumours renders them candidates for immune-checkpoint therapy. SUMMARY Guided by recent developments that facilitate early detection of urothelial cancers, the morbidity and mortality associated with aristolochic acid-induced bladder and upper tract urothelial carcinomas may be substantially reduced. The molecular epidemiology tools that define aristolochic acid-induced tumours may be applicable to other studies assessing potential environmental carcinogens.
Collapse
|
55
|
Chen CH, Grollman AP, Huang CY, Shun CT, Sidorenko VS, Hashimoto K, Moriya M, Turesky RJ, Yun BH, Tsai K, Wu S, Chuang PY, Tang CH, Yang WH, Tzai TS, Tsai YS, Dickman KG, Pu YS. Additive Effects of Arsenic and Aristolochic Acid in Chemical Carcinogenesis of Upper Urinary Tract Urothelium. Cancer Epidemiol Biomarkers Prev 2020; 30:317-325. [PMID: 33277322 DOI: 10.1158/1055-9965.epi-20-1090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aristolochic acids (AA) and arsenic are chemical carcinogens associated with urothelial carcinogenesis. Here we investigate the combined effects of AA and arsenic toward the risk of developing upper tract urothelial carcinoma (UTUC). METHODS Hospital-based (n = 89) and population-based (2,921 cases and 11,684 controls) Taiwanese UTUC cohorts were used to investigate the association between exposure to AA and/or arsenic and the risk of developing UTUC. In the hospital cohort, AA exposure was evaluated by measuring aristolactam-DNA adducts in the renal cortex and by identifying A>T TP53 mutations in tumors. In the population cohort, AA exposure was determined from prescription health insurance records. Arsenic levels were graded from 0 to 3 based on concentrations in well water and the presence of arseniasis-related diseases. RESULTS In the hospital cohort, 43, 26, and 20 patients resided in grade 0, 1+2, and 3 arseniasis-endemic areas, respectively. Aristolactam-DNA adducts were present in >90% of these patients, indicating widespread AA exposure. A>T mutations in TP53 were detected in 28%, 44%, and 22% of patients residing in grade 0, 1+2, and 3 arseniasis-endemic areas, respectively. Population studies revealed that individuals who consumed more AA-containing herbs had a higher risk of developing UTUC in both arseniasis-endemic and nonendemic areas. Logistic regression showed an additive effect of AA and arsenic exposure on the risk of developing UTUC. CONCLUSIONS Exposure to both AA and arsenic acts additively to increase the UTUC risk in Taiwan. IMPACT This is the first study to investigate the combined effect of AA and arsenic exposure on UTUC.
Collapse
Affiliation(s)
- Chung-Hsin Chen
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Keiji Hashimoto
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Masaaki Moriya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Byeong Hwa Yun
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Karen Tsai
- School of Medicine, Stony Brook University, Stony Brook, New York
| | - Stephanie Wu
- School of Medicine, Stony Brook University, Stony Brook, New York
| | - Po-Ya Chuang
- School of Health Care Administration, Taipei Medical University, Taipei, Taiwan
| | - Chao-Hsiun Tang
- School of Health Care Administration, Taipei Medical University, Taipei, Taiwan
| | - Wen-Horng Yang
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shin Tzai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Shyan Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York. .,Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
56
|
Ye J, Cai X, Zhou Q, Yan Z, Li K. Molecularly imprinted ratiometric fluorescent probe for visual and fluorescent determination of aristolochic acid I based on a Schiff-base fluorescent compound. Mikrochim Acta 2020; 187:623. [PMID: 33090285 DOI: 10.1007/s00604-020-04598-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
A molecularly imprinted ratiometric fluorescent probe (MIRF probe) was synthesized for the determination of aristolochic acid I (AAI) based on the Schiff-base fluorescent compound N,N'-bis(o-carboxybenzylidene)-p-4,4'-diaminobiphenyl (BDDB). The BDDB was immobilized in the silica nanoparticle (BDDB@SiO2) as an internal standard material. The blue-emitting BDDB@SiO2 and the yellow-emitting carbon quantum dots (y-CDs) were wrapped in the molecularly imprinted polymer (MIP) to provide a reliable reference signal at 440 nm and a fluorescent response signal at 530 nm at the excitation wavelength of 365 nm, respectively. In the preparation of the MIP of the MIRF probe, 4-vinylbenzoic acid as the functional monomer and AAI as the template molecule were used. An imprinting factor of 2.25 was obtained. Under the optimum conditions, the fluorescent response signal at 530 nm was quenched gradually by AAI in the range 1.0 to 120.0 μmol/L, while the reference signal at 440 nm remained unchanged. The limit of detection was 0.45 μmol/L, and the fluorescent color of the MIRF probe changed gradually from yellow to green to blue, which illustrated that the developed probe had a specific AAI recognition ability, a good anti-interference ability, and a sensitively visual determination ability. The probe was successfully applied to the AAI determination in traditional Chinese medicine (TCM) Asarum. The results showed that it had satisfactory recoveries (95.5-107.3%) and low relative standard deviations (2.0%). Furthermore, this method has a potential for the onsite naked eye determination of AAI in TCM samples.Graphical abstract.
Collapse
Affiliation(s)
- Jianping Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qing Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhihong Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
57
|
Wang Y, Zhang JX, Wang SF, Zhang Y, He HY. Expression of the epigenetic H3K27me3 modifier genes KDM6A and EZH2 in patients with upper tract urothelial carcinoma. Oncol Lett 2020; 20:349. [PMID: 33123260 DOI: 10.3892/ol.2020.12212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The development of upper tract urothelial carcinoma (UTUC) has been associated with the ingestion of aristolochic acid (AA) in Chinese herbs. The tumors are more malignant and patients have a worse prognosis in China compared with that in Western countries. Recently, whole-genome and exome sequencing of AA-associated UTUCs found that the most frequently mutated gene was lysine demethylase 6A (KDM6A). However, its biological role and clinical significance have not yet been defined in patients with UTUC in China. A total of 108 surgically resected UTUC samples were obtained. Using immunohistochemistry, the protein expression level of KDM6A in the tumors was investigated together with the clinical and pathological characteristics of the patients, including survival times. In the present study, the expression level of KDM6A was significantly lower in UTUC specimens compared with that in samples from the normal urothelium. Lower KDM6A expression was also found to be significantly associated with a higher tumor grade and shorter cancer-specific and disease-free survival times (P=0.023 and P=0.033, respectively). In addition, using immunohistochemical analysis, no positive association was found between KDM6A expression and the expression of H3K27me3 or histone-lysine N-methyltransferase EZH2, a histone methyltransferase that generates H3K27me3. The results of the present study indicated that decreased KDM6A expression level was significantly associated with tumor grade and decreased survival time in UTUC, suggesting that KDM6A expression could be used as a prognostic marker in patients with UTUC in China.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathology, Peking University Shougang Hospital, Beijing 100144, P.R. China.,Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100083, P.R. China
| | - Jin-Xia Zhang
- Department of Pathology, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Shu-Fang Wang
- Department of Pathology, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Yu Zhang
- Department of Pathology, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Hui-Ying He
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100083, P.R. China
| |
Collapse
|
58
|
Weng WH, Yu KJ, Li LC, Pang YJ, Chen YT, Pang ST, Chuang CK. Low PTEN expression and overexpression of phosphorylated Akt Ser473 and Akt Thr308 are associated with poor overall survival in upper tract urothelial carcinoma. Oncol Lett 2020; 20:347. [PMID: 33123258 PMCID: PMC7583738 DOI: 10.3892/ol.2020.12210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/27/2020] [Indexed: 01/13/2023] Open
Abstract
The PI3K/Akt signaling pathway serves an essential role in various cellular processes, including cell growth, survival, cell motility, angiogenesis and cell metabolism. Loss of PTEN expression and hyperactivation of Akt can result in tumorigenesis. Previous studies observed expression of the Akt protein and absence of the PTEN protein in bladder cancer and non-small cell lung carcinoma tissues. The aim of the present study was to evaluate the expression status and prognostic value of PTEN and the PI3K/Akt signaling pathway in Taiwanese patients with upper tract urothelial carcinoma (UTUC). Archival formalin-fixed, paraffin-embedded (FFPE) tissues from 65 UTUC cases were stained via immunohistochemistry for PTEN, phosphorylated (p)Akt serine (Ser)473 and pAkt threonine (Thr)308. The expression levels of each protein were significantly correlated with clinicopathological parameters. PTEN, pAktSer473 and pAktThr308 protein expression levels were higher in adjacent normal tissues compared with those in tumor tissues. Cytoplasmic PTEN protein expression levels were lower in high-stage tumors compared with those in low-stage tumors, and nuclear and cytoplasmic pAktThr308 protein expression levels were higher in high-grade tumors compared with those in low-grade tumors. Univariate analysis showed that high pathological tumor stage (pT2-4) [P=0.01; hazard ratio (HR)=3.40; 95% confidence interval (CI), 1.34-8.60], metastatic status (P=0.003; HR=3.55, 95% CI, 1.55-8.11), low cytoplasmic PTEN protein expression levels (P=0.016; HR=3.14; 95% CI, 1.24-7.95) and high cytoplasmic pAktSer473 protein expression levels (P=0.019, HR=2.71, 95% CI, 1.18-6.21) were predictive of poor overall survival. However, only metastatic status (P=0.031; HR=2.73; 95% CI, 1.10-6.78), low cytoplasmic PTEN protein expression levels (P=0.017; HR=3.29; 95% CI, 1.24-8.73) and high cytoplasmic pAktSer473 protein expression levels (P=0.027; HR=2.64; 95% CI, 1.12-6.23) remained significant in the multivariate analysis. Kaplan-Meier survival analysis showed that high T stage, metastasis, low expression levels of cytoplasmic PTEN protein and high expression levels of cytoplasmic pAktSer473 protein were significantly associated with poor survival (P=0.006, 0.001, 0.011 and 0.014, respectively). Co-expression of PTENlow/pAktSer473/high and pAktThr308/high phenotypes was associated with a less favorable overall survival (P=0.001). Overall, the present findings demonstrated that low expression levels of PTEN and high expression levels of pAktSer473 and pAktThr308 were predictors for poor overall survival in patients with UTUC.
Collapse
Affiliation(s)
- Wen-Hui Weng
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| | - Kai-Jie Yu
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C.,College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C.,Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, R.O.C
| | - Liang-Chen Li
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| | - Yeu-Jye Pang
- Department of Gastroenterology, Mater Misericordiae University Hospital, Dublin D07 R2WY, Ireland
| | - Ying-Tzu Chen
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| | - See-Tong Pang
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C.,Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, R.O.C
| | - Cheng-Keng Chuang
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan, R.O.C.,Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, R.O.C
| |
Collapse
|
59
|
GATA3 and APOBEC3B are prognostic markers in adrenocortical carcinoma and APOBEC3B is directly transcriptionally regulated by GATA3. Oncotarget 2020; 11:3354-3370. [PMID: 32934779 PMCID: PMC7486697 DOI: 10.18632/oncotarget.27703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Recent evidence has implicated APOBEC3B (Apolipoprotein B mRNA editing enzyme catalytic subunit 3B) as a source of mutations in breast, bladder, cervical, lung, head, and neck cancers. However, the role of APOBEC3B in adrenocortical carcinoma (ACC) and the mechanisms through which its expression is regulated in cancer are not fully understood. Here, we report that APOBEC3B is overexpressed in ACC and it regulates cell proliferation by inducing S phase arrest. We show high APOBEC3B expression is associated with a higher copy number gain/loss at chromosome 4 and 8 and TP53 mutation rate in ACC. GATA3 was identified as a positive regulator of APOBEC3B expression and directly binds the APOBEC3B promoter region. Both GATA3 and APOBEC3B expression levels were associated with patient survival. Our study provides novel insights into the function and regulation of APOBEC3B expression in addition to its known mutagenic ability.
Collapse
|
60
|
Hassler MR, Bray F, Catto JWF, Grollman AP, Hartmann A, Margulis V, Matin SF, Roupret M, Sfakianos JP, Shariat SF, Faltas BM. Molecular Characterization of Upper Tract Urothelial Carcinoma in the Era of Next-generation Sequencing: A Systematic Review of the Current Literature. Eur Urol 2020; 78:209-220. [PMID: 32571725 DOI: 10.1016/j.eururo.2020.05.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
CONTEXT While upper tract urothelial carcinoma (UTUC) share histological appearance with bladder cancer (BC), the former has differences in etiology and clinical phenotype consistent with characteristic molecular alterations. OBJECTIVE To systematically evaluate current genomic sequencing and proteomic data examining molecular alterations in UTUC. EVIDENCE ACQUISITION A systematic review using PubMed, Scopus, and Web of Science was performed in December 2019 according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. EVIDENCE SYNTHESIS A total of 46 publications were selected for inclusion in this report, including 13 studies assessing genome-wide alterations, 18 studies assessing gene expression or microRNA expression profiles, three studies assessing proteomics, one study assessing genome-wide DNA methylation, and 14 studies evaluating distinct pathway alteration patterns. Differences between sporadic and hereditary UTUC, and between UTUC and BC, as well as molecular profiles associated with exposure to aristolochic acid are highlighted. Molecular pathways relevant to UTUC biology, such as alterations in FGFR3, TP53, or microsatellite instability, are discussed. Our findings are limited by tumor and patient heterogeneity and different platforms used in the studies. CONCLUSIONS Molecular events in UTUC and BC can be shared or distinct. Consequently, molecular subtypes differ according to location. Further work is needed to define the epigenomic and proteomic features of UTUC, and understand the mechanisms by which they shape the clinical behavior of UTUC. PATIENT SUMMARY We report the current data on the molecular alterations specific to upper tract urothelial carcinoma (UTUC), resulting from novel genomic and proteomic technologies. Although UTUC biology is comparable with that of bladder cancer, the rates and UTUC-enriched alterations support its uniqueness and the need for precision medicine strategies for this rare tumor type.
Collapse
Affiliation(s)
- Melanie R Hassler
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Freddie Bray
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - James W F Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Arthur P Grollman
- Department of Pharmacological Sciences and Department of Medicine, Stony Brook University, Stony Brook, New York, NY, USA
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander Universität, Erlangen, Germany
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Surena F Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Morgan Roupret
- Urology, GRC n°5, Predictive Onco-Uro, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - John P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria; Department of Urology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA; Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan; European Association of Urology research foundation, Arnhem, Netherlands.
| | - Bishoy M Faltas
- Department of Urology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
61
|
Zhang ML, VandenBussche CJ, Hang JF, Miki Y, McIntire PJ, Peyton S, Vohra P. A review of urinary cytology in the setting of upper tract urothelial carcinoma. J Am Soc Cytopathol 2020; 10:29-35. [PMID: 32792229 DOI: 10.1016/j.jasc.2020.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022]
Abstract
Urothelial carcinomas of the upper urinary tract (UUT) are uncommon. Cytological examination of voided urine or washings from the UUT has been part of the standard workup for upper tract urothelial carcinoma (UTUC); however, its value remains controversial. The lack of uniform terminology and specific diagnostic criteria could also have contributed to the inferior performance of urinary cytology for detecting UTUC. The Paris System for Reporting Urinary Cytology (TPS) has provided a standardized reporting system for urinary cytology specimens with clearly defined cytomorphologic diagnostic criteria and found acceptance on an international level after its implementation in 2016. Recent studies have shown that TPS has led to improved diagnostic performance of urinary cytology; however, most of these studies had focused on the evaluation of lower urinary tract cytology specimens. Only a limited number of new research studies have analyzed the effect of TPS when applied to UUT cytology specimens. In the present report, we have summarized the current understanding and utility of UTUC, including its molecular biology, and reviewed the current literature.
Collapse
Affiliation(s)
- M Lisa Zhang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yurina Miki
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Patrick J McIntire
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Stephen Peyton
- Department of Anatomical Pathology, QML Pathology, Brisbane, Queensland, Australia
| | - Poonam Vohra
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
62
|
Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma. Cell 2020; 179:561-577.e22. [PMID: 31585088 DOI: 10.1016/j.cell.2019.08.052] [Citation(s) in RCA: 605] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/02/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
We performed the first proteogenomic characterization of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using paired tumor and adjacent liver tissues from 159 patients. Integrated proteogenomic analyses revealed consistency and discordance among multi-omics, activation status of key signaling pathways, and liver-specific metabolic reprogramming in HBV-related HCC. Proteomic profiling identified three subgroups associated with clinical and molecular attributes including patient survival, tumor thrombus, genetic profile, and the liver-specific proteome. These proteomic subgroups have distinct features in metabolic reprogramming, microenvironment dysregulation, cell proliferation, and potential therapeutics. Two prognostic biomarkers, PYCR2 and ADH1A, related to proteomic subgrouping and involved in HCC metabolic reprogramming, were identified. CTNNB1 and TP53 mutation-associated signaling and metabolic profiles were revealed, among which mutated CTNNB1-associated ALDOA phosphorylation was validated to promote glycolysis and cell proliferation. Our study provides a valuable resource that significantly expands the knowledge of HBV-related HCC and may eventually benefit clinical practice.
Collapse
|
63
|
A Multimodal Genotoxic Anticancer Drug Characterized by Pharmacogenetic Analysis in Caenorhabditis elegans. Genetics 2020; 215:609-621. [PMID: 32414869 PMCID: PMC7337070 DOI: 10.1534/genetics.120.303169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 01/05/2023] Open
Abstract
New anticancer therapeutics require extensive in vivo characterization to identify endogenous and exogenous factors affecting efficacy, to measure toxicity and mutagenicity, and to determine genotypes that result in therapeutic sensitivity or resistance. We used Caenorhabditis elegans as a platform with which to characterize properties of the anticancer therapeutic CX-5461. To understand the processes that respond to CX-5461-induced damage, we generated pharmacogenetic profiles for a panel of C. elegans DNA replication and repair mutants with common DNA-damaging agents for comparison with the profile of CX-5461. We found that multiple repair pathways, including homology-directed repair, microhomology-mediated end joining, nucleotide excision repair, and translesion synthesis, were needed for CX-5461 tolerance. To determine the frequency and spectrum of CX-5461-induced mutations, we used a genetic balancer to capture CX-5461-induced mutations. We found that CX-5461 is mutagenic, resulting in both large copy number variations and a high frequency of single-nucleotide variations (SNVs), which are consistent with the pharmacogenetic profile for CX-5461. Whole-genome sequencing of CX-5461-exposed animals found that CX-5461-induced SNVs exhibited a distinct mutational signature. We also phenocopied the CX-5461 photoreactivity observed in clinical trials and demonstrated that CX-5461 generates reactive oxygen species when exposed to UVA radiation. Together, the data from C. elegans demonstrate that CX-5461 is a multimodal DNA-damaging anticancer agent.
Collapse
|
64
|
Melki PN, Korenjak M, Zavadil J. Experimental investigations of carcinogen-induced mutation spectra: Innovation, challenges and future directions. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503195. [PMID: 32522347 DOI: 10.1016/j.mrgentox.2020.503195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/18/2022]
Abstract
Recent years have witnessed an expansion of mutagenesis research focusing on experimentally modeled genome-scale mutational signatures of carcinogens and of endogenous processes. Experimental mutational signatures can explain etiologic links to patterns found in human tumors that may be linked to same exposures, and can serve as biomarkers of exposure history and may even provide insights on causality. A number of innovative exposure models have been employed and reported, based on cells cultured in monolayers or in 3-D, on organoids, induced pluripotent stem cells, non-mammalian organisms, microorganisms and rodent bioassays. Here we discuss some of the latest developments and pros and cons of these experimental systems used in mutational signature analysis. Integrative designs that bring together multiple exposure systems (in vitro, in vivo and in silico pan-cancer data mining) started emerging as powerful tools to identify robust mutational signatures of the tested cancer risk agents. We further propose that devising a new generation of cell-based models is warranted to streamline systematic testing of carcinogen effects on the cell genomes, while seeking to increasingly supplant animal with non-animal systems to address relevant ethical issues and accentuate the 3R principles. We conclude that the knowledge accumulating from the growing body of signature modelling investigations has considerable power to advance cancer etiology studies and to support cancer prevention efforts through streamlined characterization of cancer-causing agents and the recognition of their specific effects.
Collapse
Affiliation(s)
- Pamela N Melki
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France.
| |
Collapse
|
65
|
The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J Hepatol 2020; 72:990-1002. [PMID: 32044402 DOI: 10.1016/j.jhep.2020.01.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Chronic liver disease and primary liver cancer are a massive global problem, with a future increase in incidences predicted. The most prevalent form of primary liver cancer, hepatocellular carcinoma, occurs after years of chronic liver disease. Mutations in the genome are a causative and defining feature of all cancers. Chronic liver disease, mostly at the cirrhotic stage, causes the accumulation of progressive mutations which can drive cancer development. Within the liver, a Darwinian process selects out dominant clones with selected driver mutations but also leaves a trail of passenger mutations which can be used to track the evolution of a tumour. Understanding what causes specific mutations and how they combine with one another to form cancer is a question at the heart of understanding, preventing and tackling liver cancer. Herein, we review the landscape of gene mutations in cirrhosis, especially those paving the way toward hepatocellular carcinoma development, that have been characterised by recent studies capitalising on technological advances in genomic sequencing. With these insights, we are beginning to understand how cancers form in the liver, particularly on the background of chronic liver disease. This knowledge may soon lead to breakthroughs in the way we detect, diagnose and treat this devastating disease.
Collapse
|
66
|
Boot A, Jiang N, Rozen SG. Toward clinical understanding of aristolochic acid upper-tract urothelial carcinoma. Am J Cancer Res 2020; 10:5578-5580. [PMID: 32373232 PMCID: PMC7196294 DOI: 10.7150/thno.46489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 01/27/2023] Open
Abstract
A cluster of patients poisoned by herbal medicine in the 1990s revealed that aristolochic acid (AA) causes kidney failure and upper tract urothelial carcinoma (UTUC). Recent research demonstrated that this was not an isolated incident; on the contrary, AA exposure is widespread in East Asia. This editorial highlights research by Lu and colleagues that investigates clinical characteristics of AA and non-AA UTUCs from 90 patients in Beijing based on the AA mutational signature. The study also detected AA mutations in non-tumor tissue of AA exposed patients and showed that AA mutations can be detected in urine, which might form the basis for non-invasive tests for AA exposure.
Collapse
|
67
|
Su YL, Luo HL, Huang CC, Liu TT, Huang EY, Sung MT, Lin JJ, Chiang PH, Chen YT, Kang CH, Cheng YT. Galectin-1 Overexpression Activates the FAK/PI3K/AKT/mTOR Pathway and Is Correlated with Upper Urinary Urothelial Carcinoma Progression and Survival. Cells 2020; 9:E806. [PMID: 32225123 PMCID: PMC7226470 DOI: 10.3390/cells9040806] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Galectin-1 (GAL1) is a β-galactoside-binding protein involved in multiple aspects of tumorigenesis. However, the biological role of GAL1 in upper tract urothelial carcinoma (UTUC) has not been entirely understood. Herein, we investigated the oncological effects of GAL1 expression in tumor specimens and identified related gene alterations through molecular analysis of GAL1. Clinical parameter data and tumor specimens were collected from 86 patients with pT3N0M0 UTUC who had undergone radical nephroureterectomy. We analyzed the difference in survival by using Kaplan-Meier analyses and Cox proportional regression models and in GAL1 expression by using immunohistochemical (IHC) methods. Public genomic data from the Cancer Genome Atlas (TCGA) and GSE32894 data sets were analyzed for comparison. Using four urothelial carcinoma (UC) cell lines (BFTC-909, T24, RT4, and J82) as in vitro models, we evaluated the functions of GAL1 in UC cell growth, invasiveness, and migration and its role in downstream signaling pathways. The study population was classified into two groups, GAL1-high (n = 35) and GAL1-low (GAL1 n = 51), according to IHC interpretation. Univariate analysis revealed that high GAL1 expression was significantly associated with poor recurrence-free survival (RFS; p = 0.028) and low cancer-specific survival (CSS; p = 0.025). Multivariate analysis revealed that GAL1-high was an independent predictive factor for RFS (hazard ratio (HR) 2.43; 95% confidence interval (CI) 1.17-5.05, p = 0.018) and CSS (HR 4.04; 95% CI 1.25-13.03, p = 0.019). In vitro studies revealed that GAL1 knockdown significantly reduced migration and invasiveness in UTUC (BFTC-909) and bladder cancer cells (T24). GAL1 knockdown significantly reduced protein levels of matrix metalloproteinase-2 (MMP-2) and MMP-9, which increased tissue inhibitor of metalloproteinase-1 (TIMP-1) and promoted epithelial-mesenchymal transition (EMT). Through gene expression microarray analysis of GAL1 vector and GAL1-KD cells, we identified multiple significant signaling pathways including p53, Forkhead box O (FOXO), and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT). We validated microarray results through immunoblotting, thus proving that downregulation of GAL1 reduced focal adhesion kinase (FAK), p-PI3K, p-AKT, and p-mTOR expression. We concluded that GAL1 expression was highly related to oncological survival in patients with locally advanced UTUC. GAL1 promoted UC invasion and metastasis by activating the FAK/PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
- Clinical Trial Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Ming-Tse Sung
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Jen-Jie Lin
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Po-Hui Chiang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Yen-Ta Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Chih-Hsiung Kang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Yuan-Tso Cheng
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
68
|
Lu H, Liang Y, Guan B, Shi Y, Gong Y, Li J, Kong W, Liu J, Fang D, Liu L, He Q, Shakeel M, Li X, Zhou L, Ci W. Aristolochic acid mutational signature defines the low-risk subtype in upper tract urothelial carcinoma. Theranostics 2020; 10:4323-4333. [PMID: 32292497 PMCID: PMC7150494 DOI: 10.7150/thno.43251] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
Rationale: Dietary exposure to aristolochic acids and similar compounds (collectively, AA) is a significant risk factor for nephropathy and subsequent upper tract urothelial carcinoma (UTUC). East Asian populations, who have a high prevalence of UTUC, have an unusual genome-wide AA-induced mutational pattern (COSMIC signature 22). Integrating mutational signature analysis with clinicopathological information may demonstrate great potential for risk ranking this UTUC subtype. Methods: We performed whole-genome sequencing (WGS) on 90 UTUC Chinese patients to extract mutational signatures. Genome sequencing data for urinary cell-free DNA from 26 UTUC patients were utilized to noninvasively identify the mutational signatures. Genome sequencing for primary tumors on 8 out of 26 patients was also performed. Metastasis-free survival (MFS) and cancer-specific survival (CSS) were measured using Kaplan-Meier methods. Results: Data analysis showed that a substantial proportion of patients harbored the AA mutational signature and were associated with AA-containing herbal drug intake, female gender, poor renal function, and multifocality. Field cancerization was found to partially contribute to multifocality. Nevertheless, AA Sig subtype UTUC patients exhibited favorable outcomes of CSS and MFS compared to the No-AA Sig subtype. Additionally, AA Sig subtype patients showed a higher tumor mutation burden, higher numbers of predicted neoantigens, and infiltrating lymphocytes, suggesting the potential for immunotherapy. We also confirmed the AA signature in AA-treated human renal tubular HK-2 cells. Notably, the AA subtype could be ascertained using a clinically applicable sequencing strategy (low coverage) in both primary tumors and urinary cell-free DNA as a basis for therapy selection. Conclusion: The AA mutational signature as a screening tool defines low-risk UTUC with therapeutic relevance. The AA mutational signature, as a molecular prognostic marker using either ureteroscopy and/or urinary cell-free DNA, is especially useful for diagnostic uncertainty when kidney-sparing treatment and/or immune checkpoint inhibitor therapy were considered.
Collapse
|
69
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
70
|
Lu ZN, Luo Q, Zhao LN, Shi Y, Wang N, Wang L, Han ZG. The Mutational Features of Aristolochic Acid-Induced Mouse and Human Liver Cancers. Hepatology 2020; 71:929-942. [PMID: 31692012 DOI: 10.1002/hep.30863] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Aristolochic acid (AA) exposure has been statistically associated with human liver cancers. However, direct evidence of AA exposure-induced liver cancer is absent. This study aims to establish a direct causal relationship between AA exposure and liver cancers based on a mouse model and then explores the AA-mediated genomic alterations that could be implicated in human cancers with AA-associated mutational signature. APPROACH AND RESULTS We subjected mice, including phosphatase and tensin homolog (Pten)-deficient ones, to aristolochic acid I (AAI) alone or a combination of AAI and CCl4 . Significantly, AAI exposure induced mouse liver cancers, including hepatocellular carcinoma (HCC) and combined HCC and intrahepatic cholangiocarcinoma, in a dose-dependent manner. Moreover, AAI exposure also enhanced tumorigenesis in these CCl4 -treated or Pten-deficient mice. AAI led to DNA damage and AAI-DNA adduct that could initiate liver cancers through characteristic adenine-to-thymine transversions, as indicated by comprehensive genomic analysis, which revealed recurrent mutations in Harvey rat sarcoma virus oncogene. Interestingly, an AA-associated mutational signature was mainly implicated in human liver cancers, especially from China. Moreover, we detected the AAI-DNA adduct in 25.8% (16/62) of paratumor liver tissues from randomly selected Chinese patients with HCC. Furthermore, based on phylogenetic analysis, the characteristic mutations were found in the initiating malignant clones in the AA-implicated mouse and human liver cancers where the mutations of tumor protein p53 and Janus kinase 1 were prone to be significantly enriched in the AA-affected human tumors. CONCLUSIONS This study provides evidence for AA-induced liver cancer with the featured mutational processes during malignant clonal evolution, laying a solid foundation for the prevention and diagnosis of AA-associated human cancers, especially liver cancers.
Collapse
Affiliation(s)
- Zhao-Ning Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Nan Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
71
|
Luo HL, Ohyama C, Hatakeyama S, Wang HJ, Yoneyama T, Yang WC, Chuang YC, Chen YT, Lee WC, Cheng YT, Kang CH, Chiang PH. Unusual presentation of upper urinary tract urothelial carcinoma in Taiwan: Direct comparison from Taiwan-Japan UTUC Collaboration Cohort. Int J Urol 2020; 27:327-332. [PMID: 32100370 DOI: 10.1111/iju.14188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To carry out a comparison of upper urinary tract urothelial carcinoma characteristics and behavior between patients in Taiwan and Japan. METHODS A Taiwan urinary tract urothelial carcinoma cohort was obtained from Kaohsiung Chang Gung Memorial Hospital, and a Japan urinary tract urothelial carcinoma cohort from Hirosaki University Hospital. The inclusion criteria were urinary tract urothelial carcinoma patients who underwent radical nephroureterectomy. Those who received perioperative chemotherapy were excluded. Finally, 765 patients in the Taiwan cohort and 325 in the Japan cohort were analyzed. The end-point of this study was to study the natural course of urinary tract urothelial carcinoma within 5 years between these two groups. RESULTS The main finding was that urinary tract urothelial carcinoma patients in Taiwan were younger (P < 0.001), more were women (P < 0.001), with low-stage disease (P < 0.001), with more chronic kidney disease (P < 0.001), with less smoking history (P < 0.001), with more bladder cancer history (P = 0.002), with more multifocal (P < 0.001) and less high-grade disease (P = 0.015), as well as less lymphovascular invasion (P < 0.001) and more squamous differentiation (P < 0.001). However, the multivariate Cox regression analysis showed no racial difference in oncologic outcome, such as intravesical recurrence, systemic recurrence or cancer-specific death in primary and propensity-matched cohorts. Bladder cancer history was found to be the most important factor predicting intravesical recurrences, whereas stage was strongly associated with systemic recurrence and cancer specific mortality. CONCLUSIONS The clinical characteristics of urinary tract urothelial carcinoma in Taiwan are significantly different from those of urinary tract urothelial carcinoma in Japan. However, there is no racial difference in stage-specific oncologic outcome after standard nephroureterectomy.
Collapse
Affiliation(s)
- Hao Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chikara Ohyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hung Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tohru Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Wen Chou Yang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen Ta Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei Chin Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuan Tso Cheng
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih Hsiung Kang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po Hui Chiang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
72
|
Wang XM, Lu Y, Song YM, Dong J, Li RY, Wang GL, Wang X, Zhang SD, Dong ZH, Lu M, Wang SY, Ge LY, Luo GD, Ma RZ, George Rozen S, Bai F, Wu D, Ma LL. Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus. Nat Commun 2020; 11:739. [PMID: 32029730 PMCID: PMC7005298 DOI: 10.1038/s41467-020-14601-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with features that vary by ethnicity. A systematic characterization of the genomic landscape of Chinese ccRCC is lacking, and features of ccRCC associated with tumor thrombus (ccRCC-TT) remain poorly understood. Here, we applied whole-exome sequencing on 110 normal-tumor pairs and 42 normal-tumor-thrombus triples, and transcriptome sequencing on 61 tumor-normal pairs and 30 primary-thrombus pairs from 152 Chinese patients with ccRCC. Our analysis reveals that a mutational signature associated with aristolochic acid (AA) exposure is widespread in Chinese ccRCC. Tumors from patients with ccRCC-TT show a higher mutational burden and genomic instability; in addition, mutations in BAP1 and SETD2 are highly enriched in patients with ccRCC-TT. Moreover, patients with/without TT show distinct molecular characteristics. We reported the integrative genomic sequencing of Chinese ccRCC and identified the features associated with tumor thrombus, which may facilitate ccRCC diagnosis, prognosis and treatment. The genomic heterogeneity of clear cell renal cell carcinoma (ccRCC) across populations is poorly understood. Here, the authors analyse a cohort of Chinese ccRCC cases revealing a mutational signature associated with aristolochic acid exposure, and higher mutational burden and enrichment for BAP1 and SETD2 mutations in ccRCC cases associated with tumor thrombus.
Collapse
Affiliation(s)
- Xiang-Ming Wang
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yi-Meng Song
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Jun Dong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.,Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Ruo-Yan Li
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Guo-Liang Wang
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Xu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shu-Dong Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Zhou-Huan Dong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Min Lu
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China.,Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shi-Yu Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Li-Yuan Ge
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Guang-Da Luo
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.,Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Run-Zhuo Ma
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Steve George Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China.
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China.
| | - Lu-Lin Ma
- Biomedical Pioneering Innovation Center (BIOPIC) & Department of Urology, School of Life Sciences, Third Hospital, Peking University, Beijing, China.
| |
Collapse
|
73
|
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V, Getz G, Rozen SG, Stratton MR. The repertoire of mutational signatures in human cancer. Nature 2020; 578:94-101. [PMID: 32025018 PMCID: PMC7054213 DOI: 10.1038/s41586-020-1943-3] [Citation(s) in RCA: 2170] [Impact Index Per Article: 434.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.
Collapse
Affiliation(s)
- Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Mi Ni Huang
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Alvin Wei Tian Ng
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yang Wu
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Arnoud Boot
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Kyle R Covington
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA
| | - John R McPherson
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Radhakrishnan Sabarinathan
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ville Mustonen
- Department of Computer Science, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steven G Rozen
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- SingHealth, Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore.
| | | |
Collapse
|
74
|
Rebouissou S, Nault JC. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol 2020; 72:215-229. [PMID: 31954487 DOI: 10.1016/j.jhep.2019.08.017] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) arises from hepatocytes through the sequential accumulation of multiple genomic and epigenomic alterations resulting from Darwinian selection. Genes from various signalling pathways such as telomere maintenance, Wnt/β-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase are frequently mutated in HCC. Several subclasses of HCC have been identified based on transcriptomic dysregulation and genetic alterations that are closely related to risk factors, pathological features and prognosis. Undoubtedly, integration of data obtained from both preclinical models and human studies can help to accelerate the identification of robust predictive biomarkers of response to targeted biotherapy and immunotherapy. The aim of this review is to describe the main advances in HCC in terms of molecular biology and to discuss how this knowledge could be used in clinical practice in the future.
Collapse
Affiliation(s)
- Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, F-75006 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, F-75006 Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
75
|
Petljak M, Alexandrov LB, Brammeld JS, Price S, Wedge DC, Grossmann S, Dawson KJ, Ju YS, Iorio F, Tubio JMC, Koh CC, Georgakopoulos-Soares I, Rodríguez-Martín B, Otlu B, O'Meara S, Butler AP, Menzies A, Bhosle SG, Raine K, Jones DR, Teague JW, Beal K, Latimer C, O'Neill L, Zamora J, Anderson E, Patel N, Maddison M, Ng BL, Graham J, Garnett MJ, McDermott U, Nik-Zainal S, Campbell PJ, Stratton MR. Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. Cell 2020; 176:1282-1294.e20. [PMID: 30849372 PMCID: PMC6424819 DOI: 10.1016/j.cell.2019.02.012] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 09/19/2018] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
Abstract
Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers. Annotation of mutational signatures across 1,001 cancer cell lines and 577 PDXs Activities of mutational processes determined over time in cancer cell lines APOBEC-associated mutagenesis is often ongoing and can be episodic Detection of mutational signatures by single-cell sequencing
Collapse
Affiliation(s)
- Mia Petljak
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ludmil B Alexandrov
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan S Brammeld
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Stacey Price
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - David C Wedge
- Oxford Big Data Institute, Old Road Campus, Oxford OX3 7LF, UK; Oxford NIHR Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Sebastian Grossmann
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kevin J Dawson
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Francesco Iorio
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jose M C Tubio
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Mobile Genomes and Disease, Molecular Medicine and Chronic Diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo 36310, Spain
| | - Ching Chiek Koh
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Bernardo Rodríguez-Martín
- Mobile Genomes and Disease, Molecular Medicine and Chronic Diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo 36310, Spain
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah O'Meara
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Adam P Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Shriram G Bhosle
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - David R Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kathryn Beal
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jorge Zamora
- Mobile Genomes and Disease, Molecular Medicine and Chronic Diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo 36310, Spain
| | - Elizabeth Anderson
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Nikita Patel
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Mark Maddison
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jennifer Graham
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Mathew J Garnett
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ultan McDermott
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Serena Nik-Zainal
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
76
|
Wang L, Rasul A, Liu Z, Pan Y, Wang W, Li J, Li X. The Loss of Masculine With Declined Serum DHT Is Associated With High Risk of Hepatocellular Carcinoma in Chinese Men. Front Endocrinol (Lausanne) 2020; 11:362. [PMID: 32695068 PMCID: PMC7339940 DOI: 10.3389/fendo.2020.00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a male-predominant cancer. However, the relationship between 5α-dihydrotestosterone (DHT), the active form of testosterone, and HCC risk has not been established yet. Methods: We performed a serum epidemiological study in the Chinese population. From 2010 to 2012, 106 male HCC patients and 318 age-matched controls were detected for their serum DHT and estradiol (E2). The odds ratios (ORs) and 95% confidence interval (CI) were estimated by logistic regression analysis with adjustment for potential risk factors. Bivariate Pearson correlations between hormone concentrations and liver function index were investigated. Results: Serum DHT levels were lower (to 1/3 of control), and E2 levels were higher (to 1.5-fold of control) in HCC patients. Compared with the low DHT level, men with a medium level had an adjusted multiple OR of 0.15 (95% CI 0.05-0.43, p trend < 0.01), and men with a high level had an OR of 0.05 (95% CI 0.01-0.21, p trend < 0.01). Notably, DHT concentration, but not E2, is correlated with liver injury. Conclusion: The data suggest that serum DHT is closely associated with HCC risk, providing a reference in order to accurately predict liver cancer and study the pathogenesis of this disease.
Collapse
Affiliation(s)
- Lichun Wang
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Azhar Rasul
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zili Liu
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ying Pan
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Weihua Wang
- Department of Urology Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Li
- Department of Prosthodontics, Dental Hospital of Jilin University, Changchun, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jiang Li
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Xiaomeng Li
| |
Collapse
|
77
|
Sidorenko VS. Biotransformation and Toxicities of Aristolochic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:139-166. [PMID: 32383120 DOI: 10.1007/978-3-030-41283-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
78
|
Okuno Y, Bonala R, Attaluri S, Johnson F, Grollman AP, Sidorenko VS, Oda Y. Bioactivation mechanisms of N-hydroxyaristolactams: Nitroreduction metabolites of aristolochic acids. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:792-806. [PMID: 31374128 PMCID: PMC6899766 DOI: 10.1002/em.22321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Aristolochic acids (AAs) are human nephrotoxins and carcinogens found in concoctions of Aristolochia plants used in traditional medicinal practices worldwide. Genotoxicity of AAs is associated with the formation of active species catalyzed by metabolic enzymes, the full repertoire of which is unknown. Recently, we provided evidence that sulfonation is important for bioactivation of AAs. Here, we employ Salmonella typhimurium umu tester strains expressing human N-acetyltransferases (NATs) and sulfotransferases (SULTs), to study the role of conjugation reactions in the genotoxicities of N-hydroxyaristolactams (AL-I-NOH and AL-II-NOH), metabolites of AA-I and AA-II. Both N-hydroxyaristolactams show stronger genotoxic effects in umu strains expressing human NAT1 and NAT2, than in the parent strain. Additionally, AL-I-NOH displays increased genotoxicity in strains expressing human SULT1A1 and SULT1A2, whereas AL-II-NOH shows enhanced genotoxicity in SULT1A1/2 and SULT1A3 strains. 2,6-Dichloro-4-nitrophenol, SULTs inhibitor, reduced umuC gene expression induced by N-hydroxyaristolactams in SULT1A2 strain. N-hydroxyaristolactams are also mutagenic in parent strains, suggesting that an additional mechanism(s) may contribute to their genotoxicities. Accordingly, using putative SULT substrates and inhibitors, we found that cytosols obtained from human kidney HK-2 cells activate N-hydroxyaristolactams in aristolactam-DNA adducts with the limited involvement of SULTs. Removal of low-molecular-weight reactants in the 3.5-10 kDa range inhibits the formation of aristolactam-DNA by 500-fold, which could not be prevented by the addition of cofactors for SULTs and NATs. In conclusion, our results demonstrate that the genotoxicities of N-hydroxyaristolactams depend on the cell type and involve not only sulfonation but also N,O-acetyltransfer and an additional yet unknown mechanism(s). Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of TechnologyWakayama College77 Noshima, Nada, Gobo‐shi, Wakayama644‐0023Japan
- Department of Material Science and Engineering, Material Science and EngineeringWakayama National College of Technology, Gobo‐shiWakayama644‐0023Japan
| | - Radha Bonala
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
| | - Sivaprasad Attaluri
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
| | - Francis Johnson
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
- Department of ChemistryStony Brook UniversityStony BrookNew York11794USA
| | - Arthur P. Grollman
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
- Department of MedicineStony Brook UniversityStony BrookNew York11794USA
| | | | - Yoshimitsu Oda
- Institute of Life and Environmental SciencesOsaka Shin‐Ai College6‐2‐28 Tsurumi, Tsurumi‐ku, Osaka538‐0053Japan
| |
Collapse
|
79
|
Affiliation(s)
- Jyoti Nangalia
- From the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, and Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, the Department of Haematology, University of Cambridge, and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge - all in the United Kingdom
| | - Peter J Campbell
- From the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, and Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, the Department of Haematology, University of Cambridge, and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge - all in the United Kingdom
| |
Collapse
|
80
|
Sborchia M, De Prez EG, Antoine MH, Bienfait L, Indra R, Valbuena G, Phillips DH, Nortier JL, Stiborová M, Keun HC, Arlt VM. The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro. Arch Toxicol 2019; 93:3345-3366. [PMID: 31602497 PMCID: PMC6823306 DOI: 10.1007/s00204-019-02578-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. The tumour suppressor TP53 is a critical gene in carcinogenesis and frequently mutated in AA-induced urothelial tumours. We investigated the impact of p53 on AAI-induced nephrotoxicity and DNA damage in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with 3.5 mg/kg body weight (bw) AAI daily for 2 or 6 days. Renal histopathology showed a gradient of intensity in proximal tubular injury from Trp53(+/+) to Trp53(-/-) mice, especially after 6 days. The observed renal injury was supported by nuclear magnetic resonance (NMR)-based metabonomic measurements, where a consistent Trp53 genotype-dependent trend was observed for urinary metabolites that indicate aminoaciduria (i.e. alanine), lactic aciduria (i.e. lactate) and glycosuria (i.e. glucose). However, Trp53 genotype had no impact on AAI-DNA adduct levels, as measured by 32P-postlabelling, in either target (kidney and bladder) or non-target (liver) tissues, indicating that the underlying mechanisms of p53-related AAI-induced nephrotoxicity cannot be explained by differences in AAI genotoxicity. Performing gas chromatography-mass spectrometry (GC-MS) on kidney tissues showed metabolic pathways affected by AAI treatment, but again Trp53 status did not clearly impact on such metabolic profiles. We also cultured primary mouse embryonic fibroblasts (MEFs) derived from Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice and exposed them to AAI in vitro (50 µM for up to 48 h). We found that Trp53 genotype impacted on the expression of NAD(P)H:quinone oxidoreductase (Nqo1), a key enzyme involved in AAI bioactivation. Nqo1 induction was highest in Trp53(+/+) MEFs and lowest in Trp53(-/-) MEFs; and it correlated with AAI-DNA adduct formation, with lowest adduct levels being observed in AAI-exposed Trp53(-/-) MEFs. Overall, our results clearly demonstrate that p53 status impacts on AAI-induced renal injury, but the underlying mechanism(s) involved remain to be further explored. Despite the impact of p53 on AAI bioactivation and DNA damage in vitro, such effects were not observed in vivo.
Collapse
Affiliation(s)
- Mateja Sborchia
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Eric G De Prez
- Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Marie-Hélène Antoine
- Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Lucie Bienfait
- Department of Pathology, Erasme University Hospital, 1070, Brussels, Belgium
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University Prague, 128 40, Prague, Czech Republic
| | - Gabriel Valbuena
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Joëlle L Nortier
- Laboratory of Experimental Nephrology, Department of Experimental Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University Prague, 128 40, Prague, Czech Republic
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
| |
Collapse
|
81
|
Korenjak M, Zavadil J. Experimental identification of cancer driver alterations in the era of pan-cancer genomics. Cancer Sci 2019; 110:3622-3629. [PMID: 31594033 PMCID: PMC6890429 DOI: 10.1111/cas.14210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Rapidly accumulating data from large-scale cancer genomics studies have been generating important information about genes and their somatic alterations underlying cell transformation, cancer onset and tumor progression. However, these events are usually defined by using computational techniques, whereas the understanding of their actual functional roles and impact typically warrants validation by experimental means. Critical information has been obtained from targeted genetic perturbation (gene knockout) studies conducted in animals, yet these investigations are cost-prohibitive and time-consuming. In addition, the 3R principles (replacement, reduction, refinement) have been set in place to reduce animal use burden and are increasingly observed in many areas of biomedical research. Consequently, the focus has shifted to new designs of innovative cell-based experimental models of cell immortalization and transformation in which the critical cancer driver events can be introduced by mutagenic insult and studied functionally, at the level of critical phenotypic readouts. From these efforts, primary cell-based selective barrier-bypass models of cell immortalization have emerged as an attractive system that allows studies of the functional relevance of acquired mutations as well as their role as candidate cancer driver events. In this review, we provide an overview of various experimental systems linking carcinogen exposure-driven cell transformation with the study of cancer driver events. We further describe the advantages and disadvantages of the currently available cell-based models while outlining future directions for in vitro modeling and functional testing of cancer driver events.
Collapse
Affiliation(s)
- Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
82
|
Chen CN, Tsai YT, Lai JN. 8 years post-marketing surveillance between Asari Radix and hepatocellular carcinoma: Nationwide population-based evidence against an association. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112094. [PMID: 31323301 DOI: 10.1016/j.jep.2019.112094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asari Radix (Xixin, Asarum heterotropoides Fr. Schmidt var. mandshuricum Kitag., Asarum sieboldii Miq., or Asarum sieboldii Miq. var. seoulense Nakai, Asarum spp.) is the only herbal medicine containing aristolochic acid that can be used in medical practice. However, scientific evidence regarding its safe use in relation to hepatocellular carcinoma (HCC) is lacking. AIM OF THE STUDY The aim of this study was to use post-marketing surveillance to provide a scientific understanding of the relationship between Asari Radix and the development of HCC and suggest the maximum allowable amount of Asari Radix. MATERIALS AND METHODS A retrospective, population-based cohort study was conducted, with patients randomly selected and divided into three cohorts: a non-hepatitis B virus (HBV)/hepatitis C virus (HCV) cohort, a HBV cohort, and a HCV cohort. Data were retrieved from the National Health Insurance Research Database of Taiwan from January 1, 1997 to December 31, 2013. The study period covered the initial 10 years of exposure to persistent HBV or HCV, followed by exposure to Asari Radix for an additional 8 years. RESULTS After propensity score matching, 106,942, 3818, and 928 patients were included in the non-HBV/HCV, HBV, and HCV cohorts, respectively. These cohorts included 75, 50, and 42 HCCs and 1,564,943, 30,956, and 6938 person-years, respectively. All hazard ratios of exposure to 1-30 g, 31-60 g, 61-100 g, and 101-200 g of Asari Radix in these three cohorts showed negative associations between Asari Radix exposure and HCC development. Furthermore, the three cohorts demonstrated that exposure to under 200 g of Asari Radix was safe. CONCLUSIONS Post-marketing surveillance showed that Asari Radix has no relationship with HCC development at an intake of under 200 g. The study is persuasive in furthering our knowledge of the maximum allowable amount of Asari Radix.
Collapse
Affiliation(s)
- Chin-Nu Chen
- Department of Public Health, China Medical University, Taichung, Taiwan; Taiwan Association for Traditional Chinese Medicine of Family, Taiwan.
| | - Yueh-Ting Tsai
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.
| | - Jung-Nien Lai
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
83
|
Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, Sanders MA, Ellis P, Alder C, Hooks Y, Abascal F, Stratton MR, Martincorena I, Hoare M, Campbell PJ. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 2019; 574:538-542. [PMID: 31645727 PMCID: PMC6837891 DOI: 10.1038/s41586-019-1670-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 09/12/2019] [Indexed: 12/22/2022]
Abstract
The most common causes of chronic liver disease are excess alcohol intake, viral hepatitis and non-alcoholic fatty liver disease, with the clinical spectrum ranging in severity from hepatic inflammation to cirrhosis, liver failure or hepatocellular carcinoma (HCC). The genome of HCC exhibits diverse mutational signatures, resulting in recurrent mutations across more than 30 cancer genes1-7. Stem cells from normal livers have a low mutational burden and limited diversity of signatures8, which suggests that the complexity of HCC arises during the progression to chronic liver disease and subsequent malignant transformation. Here, by sequencing whole genomes of 482 microdissections of 100-500 hepatocytes from 5 normal and 9 cirrhotic livers, we show that cirrhotic liver has a higher mutational burden than normal liver. Although rare in normal hepatocytes, structural variants, including chromothripsis, were prominent in cirrhosis. Driver mutations, such as point mutations and structural variants, affected 1-5% of clones. Clonal expansions of millimetres in diameter occurred in cirrhosis, with clones sequestered by the bands of fibrosis that surround regenerative nodules. Some mutational signatures were universal and equally active in both non-malignant hepatocytes and HCCs; some were substantially more active in HCCs than chronic liver disease; and others-arising from exogenous exposures-were present in a subset of patients. The activity of exogenous signatures between adjacent cirrhotic nodules varied by up to tenfold within each patient, as a result of clone-specific and microenvironmental forces. Synchronous HCCs exhibited the same mutational signatures as background cirrhotic liver, but with higher burden. Somatic mutations chronicle the exposures, toxicity, regeneration and clonal structure of liver tissue as it progresses from health to disease.
Collapse
Affiliation(s)
- Simon F Brunner
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Nicola D Roberts
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Luke A Wylie
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Luiza Moore
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sarah J Aitken
- CRUK Cambridge Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Davies
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mathijs A Sanders
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pete Ellis
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Chris Alder
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Yvette Hooks
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Federico Abascal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | - Matthew Hoare
- CRUK Cambridge Institute, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
- Department of Haematology and Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
84
|
Chen CJ, Yang YH, Lin MH, Lee CP, Tsan YT, Lai MN, Yang HY, Doyle P, Ho WC, Chen PC. Herbal Medicine Containing Aristolochic Acid and the Risk of Primary Liver Cancer in Patients with Hepatitis C Virus Infection. Cancer Epidemiol Biomarkers Prev 2019; 28:1876-1883. [PMID: 31409611 DOI: 10.1158/1055-9965.epi-19-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We investigated the association between taking herbal medicine (HM) containing aristolochic acid (AA) and the risk of primary liver cancer (PLC) among patients with hepatitis C virus (HCV) infection. METHODS This is a prospective study for the long-term follow-up of a nationwide population-based cohort of patients ages 18 years or older diagnosed with HCV infection during 1997 to 2010. A total of 223,467 HCV-infected patients were identified using the National Health Insurance Research Database in Taiwan. The use of HM containing AA was evaluated among patients who had visited traditional Chinese medicine clinics beginning from 1997 to 1 year prior to the diagnosis of PLC or dates censored (2003). We tracked each individual patient from 1997 to 2013 to identify incident cases of PLC since 1999. RESULTS During the follow-up period of 3,052,132 person-years, we identified 25,502 PLC cases; this corresponded to an overall incidence rate of 835.5 PLCs per 100,000 person-years. The adjusted HRs were 1.21 [95% confidence interval (CI), 1.18-1.24], 1.48 (95% CI, 1.37-1.59), 1.50 (95% CI, 1.34-1.68), and 1.88 (95% CI, 1.61-2.19) for estimated AA usage groups: 1 to 250, 251 to 500, 501 to 1,000, and more than 1,000 mg, respectively, relative to no AA exposure (reference group). CONCLUSIONS The current findings suggest that among HCV-positive patients, increasing exposure to AA poses an increased risk of acquiring PLC. IMPACT AA may increase the risk of PLC in HCV-positive populations.
Collapse
Affiliation(s)
- Chi-Jen Chen
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Health Informatics and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hung Lin
- Health Informatics and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Chuan-Pin Lee
- Health Informatics and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Yu-Tse Tsan
- Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Nan Lai
- Department of Statistics, Feng Chia University, Taichung, Taiwan
| | - Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pat Doyle
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan. .,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Innovation and Policy Centre for Population Health and Sustainable Environment, National Taiwan University College of Public Health, Taipei, Taiwan.,Office of Occupational Safety and Health, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
85
|
Yang HY, Yang CC, Wu CY, Wang LJ, Lu KL. Aristolochic Acid and Immunotherapy for Urothelial Carcinoma: Directions for unmet Needs. Int J Mol Sci 2019; 20:ijms20133162. [PMID: 31261684 PMCID: PMC6650931 DOI: 10.3390/ijms20133162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Urothelial carcinoma of the bladder (UCB) and upper tracts (UTUC) used to share management with similar principles. However, their genetic and epigenetic differences along with different responses to immunotherapy were recently identified, which are reminiscent of their distinct etiologies. Different from the variety of environmental factors relating to UCB, UTUC is best known for its close relationship with exposure to aristolochic acid (AA). AA is believed to cause its carcinogenicity through forming DNA adducts of deoxyadenosine-aristolactam, as well as A:T → T:A transversions in the TP53 tumor suppressor gene. Since recent findings suggested that cancers with higher somatic mutations are associated with better treatment responses upon immune checkpoint blockade, UTUC and AA-related biomarkers reasonably serve as good candidates, as well as a potential prognostic predictor for the flourishing immunotherapy. This review covers the current state of the literature on the clinical response of UTUC and UCB receiving immunotherapy and points out directions for refinement regarding patient selection.
Collapse
Affiliation(s)
- Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Li-Jen Wang
- Department of Medical Imaging and Radiological Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Kun-Lin Lu
- Department of Medical Education, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
| |
Collapse
|
86
|
Han J, Xian Z, Zhang Y, Liu J, Liang A. Systematic Overview of Aristolochic Acids: Nephrotoxicity, Carcinogenicity, and Underlying Mechanisms. Front Pharmacol 2019; 10:648. [PMID: 31244661 PMCID: PMC6580798 DOI: 10.3389/fphar.2019.00648] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Aristolochic acids (AAs) are a group of toxins commonly present in the plants of genus Aristolochia and Asarum, which are spread all over the world. Since the 1990s, AA-induced nephropathy (AAN) and upper tract urothelial carcinoma (UTUC) have been reported in many countries. The underlying mechanisms of AAN and AA-induced UTUC have been extensively investigated. AA-derived DNA adducts are recognized as specific biomarkers of AA exposure, and a mutational signature predominantly characterized by A→T transversions has been detected in AA-induced UTUC tumor tissues. In addition, various enzymes and organic anion transporters are involved in AA-induced adverse reactions. The progressive lesions and mutational events initiated by AAs are irreversible, and no effective therapeutic regimen for AAN and AA-induced UTUC has been established until now. Because of several warnings on the toxic effects of AAs by the US Food and Drug Administration and the regulatory authorities of some other countries, the sale and use of AA-containing products have been banned or restricted in most countries. However, AA-related adverse events still occur, especially in the Asian and Balkan regions. Therefore, the use of AA-containing herbal remedies and the consumption of food contaminated by AAs still carry high risk. More strict precautions should be taken to protect the public from AA exposure.
Collapse
Affiliation(s)
- Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
87
|
Ouyang L, Zhang Q, Ma G, Zhu L, Wang Y, Chen Z, Wang Y, Zhao L. New Dual-Spectroscopic Strategy for the Direct Detection of Aristolochic Acids in Blood and Tissue. Anal Chem 2019; 91:8154-8161. [PMID: 31140784 DOI: 10.1021/acs.analchem.9b00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aristolochic acids (AAs) contained in herbal plants are implicated in multiple organ injuries and have a high mutational burden in upper tract urothelial cancers. The currently available techniques for monitoring AAs include LC (liquid chromatography) and LC/MS (mass spectrometry), but the application of these approaches are limited due to the complex sample preparation and derivatization steps. Therefore, there is an urgent need to develop efficient methods for identifying and quantifying AAs. Here, we present a new dual-spectroscopic approach for the direct detection of AAs from blood and tissue samples; the detection of aristolochic acid I (AAI) is performed by surface-enhanced Raman spectroscopy (SERS), and its bioproduct, aristololactam (AAT), is detected by fluorescence spectroscopy based on their distinctive spectral response. Furthermore, a graphene assisted enrichment coupled with a magnetic retrieval strategy was developed to enhance SERS sensitivity toward AAI. Our method was successfully applied to directly determine both AAI and AAT from the blood, liver, and kidney of rats. The potential for real-world application was demonstrated by continuously monitoring AAI and AAT in rat blood and tissues after AAI feeding. The results showed that AAI was gradually metabolized to AAT and transported to different organs. It was found that the metabolism of AAI took place in the kidney, but AAT residue was detected in both liver and kidney, which might be related to long-term toxicity and gene mutation. The proposed dual-spectroscopic strategy is applicable to long-term toxicology research and to the direct diagnosis of AAI-induced organ injury.
Collapse
Affiliation(s)
- Lei Ouyang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Huazhong University of Science and Technology , Wuhan 430074 , China.,Shenzhen Institute of Huazhong University of Science and Technology , Shenzhen 518000 , China
| | - Qian Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Guina Ma
- Radiology Department, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Huazhong University of Science and Technology , Wuhan 430074 , China.,Shenzhen Institute of Huazhong University of Science and Technology , Shenzhen 518000 , China
| | - Youqin Wang
- Department of Pediatric, Renmin Hospital , Hubei University of Medicine , Shiyan 442000 , China
| | - Zhilin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Yuling Wang
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
88
|
Propensity-Matched Survival Analysis of Upper Urinary Tract Urothelial Carcinomas between End-Stage Renal Disease with and without Kidney Transplantation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2979142. [PMID: 31058186 PMCID: PMC6463629 DOI: 10.1155/2019/2979142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022]
Abstract
Urothelial carcinoma is the most common cancer following kidney transplantation (KT) in Taiwan. Unusual presentation of upper urinary tract urothelial carcinoma (UTUC) is noted in Taiwan and China. As the post-KT-UTUC oncological course is not fully understood, the aim of this study is to identify postulated significant differences for the clinical cancer course of UTUC among end-stage renal disease (ESRD) patients with and without KT. From 2005 January to 2016 March, 194 ESRD patients underwent radical nephroureterectomy due to UTUC in our hospital. The parameters were obtained from the chart record and pathology report. SPSS version 21 software was used for all statistical analyses. Unequal matching created study groups wherein a 0.2 caliper width was performed for adjusting these confounding pathological factors. Propensity score-matching cohort was performed for each population first, and then for all the study patients. We observed that the average age of UTUC in ESRD patients after KT was younger than in those without KT. The pathological factors such as stage, bladder cancer history, papillary structure, lymphovascular invasion, and variant histology were equal in these two groups. However, younger onset (p<0.001), more multifocal tumors, and carcinomas in situ were observed in post-KT UTUC (p<0.001 and 0.006, respectively). After adjustment of pathological factors by propensity score-matched analysis, the 5-year systemic UTUC recurrence was significantly more in ESRD after KT compared with ESRD without KT (p=0.03). No obvious difference in 5-year cancer related death could be observed between these two groups (p=0.314). Post-kidney transplantation upper urinary tract urothelial carcinoma in Taiwan is relatively common, has younger onset, and is associated with aggressive pathological features. The oncologic outcome of UTUC after KT is poor in our observation, even after propensity scored-matched analysis. It indicates the immunosuppression status is still associated with more malignant UTUC behavior.
Collapse
|
89
|
Zhou Q, Pei J, Poon J, Lau AY, Zhang L, Wang Y, Liu C, Huang L. Worldwide research trends on aristolochic acids (1957-2017): Suggestions for researchers. PLoS One 2019; 14:e0216135. [PMID: 31048858 PMCID: PMC6497264 DOI: 10.1371/journal.pone.0216135] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Aristolochic acids and their derivatives are components of many traditional medicines that have been used for thousands of years, particularly in Asian countries. To study the trends of research into aristolochic acids and provide suggestions for future study, we performed the following work. In this paper, we performed a bibliometric analysis using CiteSpace and HistCite software. We reviewed the three phases of the development of aristolochic acids by using bibliometrics. In addition, we performed a longitudinal review of published review articles over 60 years: 1,217 articles and 189 review articles on the history of aristolochic acid research published between 1957 and 2017 were analyzed. The performances of relevant countries, institutions, and authors are presented; the evolutionary trends of different categories are revealed; the history of research into aristolochic acids is divided into three phases, each of which has unique characteristics; and a roadmap of the historical overview of aristolochic acid research is finally established. Finally, five pertinent suggestions for future research into aristolochic acid are offered: (1) The study of the antitumor efficacy of aristolochic acids is of value; (2) The immune activity of aristolochic acids should be explored further; (3) Researchers should perform a thorough overview of the discovery of naturally occurring aristolochic acids; (4) More efforts should be directed toward exploring the correlation between aristolochic acid mutational signature and various cancers; (5) Further efforts should be devoted to the research and review work related to analytical chemistry. Our study is expected to benefit researchers in shaping future research directions.
Collapse
Affiliation(s)
- Qiang Zhou
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Josiah Poon
- School of Information Technologies, The University of Sydney, Sydney, Australia.,Analytic and Clinical Cooperative Laboratory of Integrative Medicine, Chinese University of Hong Kong and The University of Sydney, Sydney, Australia
| | - Alexander Y Lau
- Analytic and Clinical Cooperative Laboratory of Integrative Medicine, Chinese University of Hong Kong and The University of Sydney, Sydney, Australia.,Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Yuhua Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chang Liu
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linfang Huang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
90
|
Zhivagui M, Ng AWT, Ardin M, Churchwell MI, Pandey M, Renard C, Villar S, Cahais V, Robitaille A, Bouaoun L, Heguy A, Guyton KZ, Stampfer MR, McKay J, Hollstein M, Olivier M, Rozen SG, Beland FA, Korenjak M, Zavadil J. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res 2019; 29:521-531. [PMID: 30846532 PMCID: PMC6442384 DOI: 10.1101/gr.242453.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Humans are frequently exposed to acrylamide, a probable human carcinogen found in commonplace sources such as most heated starchy foods or tobacco smoke. Prior evidence has shown that acrylamide causes cancer in rodents, yet epidemiological studies conducted to date are limited and, thus far, have yielded inconclusive data on association of human cancers with acrylamide exposure. In this study, we experimentally identify a novel and unique mutational signature imprinted by acrylamide through the effects of its reactive metabolite glycidamide. We next show that the glycidamide mutational signature is found in a full one-third of approximately 1600 tumor genomes corresponding to 19 human tumor types from 14 organs. The highest enrichment of the glycidamide signature was observed in the cancers of the lung (88% of the interrogated tumors), liver (73%), kidney (>70%), bile duct (57%), cervix (50%), and, to a lesser extent, additional cancer types. Overall, our study reveals an unexpectedly extensive contribution of acrylamide-associated mutagenesis to human cancers.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alvin W T Ng
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Manuraj Pandey
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Claire Renard
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Stephanie Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Liacine Bouaoun
- Environment and Radiation Section, International Agency for Research on Cancer, Lyon 69008, France
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center, New York University, Langone Medical Center, New York, New York 10016, USA
| | - Kathryn Z Guyton
- IARC Monographs Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Monica Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
- Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds LS2 9JT, United Kingdom
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| |
Collapse
|
91
|
The impact of national viral hepatitis therapy program and hepatitis B vaccination program on mortality from acute and chronic viral hepatitis in Taiwan. Hepatol Int 2019; 13:157-164. [PMID: 30706354 DOI: 10.1007/s12072-019-09931-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND In Taiwan, the national hepatitis B virus vaccination program and national viral hepatitis therapy program were implemented to control the infections of hepatitis viruses and their progressive illnesses. Studies have evaluated the impacts of two national health programs on many liver-related diseases, but not on acute and chronic viral hepatitis. The purpose of this study was to evaluate the impact on the mortality of acute and chronic viral hepatitis. METHODS Poisson regression models were used to estimate the adjusted rate ratios of the different period groups and corresponding 95% confidence intervals for childhood, adulthood and elderhood, and to estimate the adjusted rate ratios of vaccinated cohorts and corresponding 95% confidence intervals. RESULTS Compared with period of 2000-2003, the adjusted rate ratios for period groups of 2008-2011 and 2012-2015 reported a significantly increasing risk of acute and chronic viral hepatitis mortality, except for the childhood and female adulthood. For population without vaccination, the adjusted rate ratios of acute and chronic viral hepatitis B mortality were 0.99 (95% CIs 0.88-1.12), 1.30 (95% CIs 1.17-1.45) and 1.42 (95% CIs 1.28-1.55) for periods of 2004-2007, 2008-2011 and 2012-2015, respectively, comparing with unimplemented period of national viral hepatitis therapy program. Compared with 1967-1983 cohorts, the adjusted rate ratio of 1984-2000 cohorts was 0.46 (95% CIs 0.28-0.75), and the adjusted rate ratios were 0.49 (95% CIs 0.28-0.87) and 0.35 (95% CIs 0.11-1.05) for male and female, respectively. CONCLUSION This study revealed the significantly higher mortality rates of acute and chronic viral hepatitis during the implemented period of national viral hepatitis therapy program, comparing the unimplemented period. Such ineffectiveness may be attributable to the low coverage rate. The national vaccination program was currently an effective strategy for controlling the mortality of viral hepatitis.
Collapse
|
92
|
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70:151-171. [PMID: 30266282 DOI: 10.1016/j.jhep.2018.09.014] [Citation(s) in RCA: 2242] [Impact Index Per Article: 373.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Liver disease accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1million due to viral hepatitis and hepatocellular carcinoma. Cirrhosis is currently the 11th most common cause of death globally and liver cancer is the 16th leading cause of death; combined, they account for 3.5% of all deaths worldwide. Cirrhosis is within the top 20 causes of disability-adjusted life years and years of life lost, accounting for 1.6% and 2.1% of the worldwide burden. About 2 billion people consume alcohol worldwide and upwards of 75 million are diagnosed with alcohol-use disorders and are at risk of alcohol-associated liver disease. Approximately 2 billion adults are obese or overweight and over 400 million have diabetes; both of which are risk factors for non-alcoholic fatty liver disease and hepatocellular carcinoma. The global prevalence of viral hepatitis remains high, while drug-induced liver injury continues to increase as a major cause of acute hepatitis. Liver transplantation is the second most common solid organ transplantation, yet less than 10% of global transplantation needs are met at current rates. Though these numbers are sobering, they highlight an important opportunity to improve public health given that most causes of liver diseases are preventable.
Collapse
Affiliation(s)
| | | | - John Eaton
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
93
|
Dhanasekaran R, Nault JC, Roberts LR, Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology 2019; 156:492-509. [PMID: 30404026 PMCID: PMC6340723 DOI: 10.1053/j.gastro.2018.11.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is poorly understood, but recent advances in genomics have increased our understanding of the mechanisms by which hepatitis B virus, hepatitis C virus, alcohol, fatty liver disease, and other environmental factors, such as aflatoxin, cause liver cancer. Genetic analyses of liver tissues from patients have provided important information about tumor initiation and progression. Findings from these studies can potentially be used to individualize the management of HCC. In addition to sorafenib, other multi-kinase inhibitors have been approved recently for treatment of HCC, and the preliminary success of immunotherapy has raised hopes. Continued progress in genomic medicine could improve classification of HCCs based on their molecular features and lead to new treatments for patients with liver cancer.
Collapse
Affiliation(s)
| | - Jean-Charles Nault
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Europeen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
94
|
Su SY, Chiang CJ, Yang YW, Lee WC. Secular trends in liver cancer incidence from 1997 to 2014 in Taiwan and projection to 2035: An age-period-cohort analysis. J Formos Med Assoc 2019; 118:444-449. [DOI: 10.1016/j.jfma.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
|
95
|
Hung MH, Wang XW. Molecular Alterations and Heterogeneity in Hepatocellular Carcinoma. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Xiong G, Yao L, Hong P, Yang L, Ci W, Liu L, He Q, Gong K, Li X, Zhou L. Aristolochic acid containing herbs induce gender-related oncological differences in upper tract urothelial carcinoma patients. Cancer Manag Res 2018; 10:6627-6639. [PMID: 30584358 PMCID: PMC6284533 DOI: 10.2147/cmar.s178554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background In China, upper tract urothelial carcinoma (UTUC) is less prevalent but more malignant in males. This study investigates the prognostic factors and causes of gender-based differences in Chinese populations. Methods Between 1999 and 2011, 687 UTUC patients who underwent surgery were utilized for this study. We evaluated the differences in oncological characteristics, epigenetic biomarkers, cancer-specific survival (CSS), bladder recurrence (BR) rate, and contralateral upper tract recurrence (CUTR) rate. Smoking history, benzene exposure history, and the history of using aristolochic acid (AA) containing herbs were analyzed in detail. Results Compared with male patients, female patients showed poorer renal function, lower proportions of tumor stage III/IV, and smaller tumor diameters. The CSS in male patients was lower than that in female patients. Significant gender-related differences were observed concerning various prognostic factors. In female patients, poorer survival rates were attributed to the primary tumor location in the ureter, large diameter primary tumors, severe chronic kidney disease, papillary tumor architecture, high tumor stages, positive N status, and methylated ABCC6 promoters. In male patients, older age, ipsilateral hydronephrosis, large tumor diameters, sessile tumor architecture, high tumor stages, and methylated TMEFF2 promoters were associated with higher cancer-specific mortality. AA might be the main cause of these gender-based differences. The AA-induced UTUC patients presented smaller tumor diameters, lower tumor stages, fewer positive N statuses, more multifocal tumors, lower methylation indices, and poorer renal function. Although AA-induced UTUC patients exhibited better survival rates, BR and CUTR rates were significantly worse. Conclusion In China, there exist significant AA-induced differences between male and female UTUC patients. The bladders and contralateral upper urinary tracts of AA-induced UTUC patients should be carefully monitored after surgery.
Collapse
Affiliation(s)
- Gengyan Xiong
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| | - Peng Hong
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| | - Li Yang
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Weimin Ci
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Libo Liu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| | - Qun He
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China, ;
| |
Collapse
|
97
|
Phillips DH. Mutational spectra and mutational signatures: Insights into cancer aetiology and mechanisms of DNA damage and repair. DNA Repair (Amst) 2018; 71:6-11. [PMID: 30236628 PMCID: PMC6219445 DOI: 10.1016/j.dnarep.2018.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reporter gene assays, in which a single mutation from each experiment can contribute to the assembly of a mutation spectrum for an agent, have provided the basis for understanding the mutational processes induced by mutagenic agents and for providing clues to the origins of mutations in human tumours. More recently exome and whole genome sequencing of human tumours has revealed distinct patterns of mutation that could provide additional clues for the causative origins of cancer. This can be tested by examining the mutational signatures induced in experimental systems by putative cancer-causing agents. Such signatures are now being generated in vitro in a number of different mutagen-exposed cellular systems. Results reveal that mutagens induce characteristic mutation signatures that, in some cases, match signatures found in human tumours. Proof of principle has been established with mutational signatures generated by simulated sunlight and aristolochic acid, which match those signatures found in human melanomas and urothelial cancers, respectively. In an analysis of somatic mutations in cancers for which tobacco smoking confers an elevated risk, it was found that smoking is associated with increased mutation burdens of multiple different mutational signatures, which contribute to different extents in different tissues. One of these signatures, mainly found in tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA editing by APOBEC cytidine deaminases and of an endogenous clock-like mutational process. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load although direct evidence for this mechanism is lacking in some cancer types. Thus, next generation sequencing of exomes or whole genomes is providing new insights into processes underlying the causes of human cancer.
Collapse
Affiliation(s)
- David H Phillips
- MRC-PHE Centre for Environment and Health, King's College London, UK; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health England, Department of Analytical, Environmental and Forensic Sciences, School of Public Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| |
Collapse
|
98
|
Shao IH, Chang YH, Pang ST. Recent advances in upper tract urothelial carcinomas: From bench to clinics. Int J Urol 2018; 26:148-159. [PMID: 30372791 DOI: 10.1111/iju.13826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Urothelial carcinoma in the upper tract is rare and often discussed separately. Many established risk factors were identified for the disease, including genetic and external risk factors. Radiographic survey, endoscopic examination and urine cytology remained the most important diagnostic modalities. In localized upper tract urothelial carcinomas, radical nephroureterectomy with bladder cuff excision are the gold standard for large, high-grade and suspected invasive tumors of the renal pelvis and proximal ureter, whereas kidney-sparing surgeries should be considered in patients with low-risk disease. Advances in technology have given endoscopic surgery an important role, not only in diagnosis, but also in treatment. Although platinum-based combination chemotherapy is efficacious in advanced or metastatic disease, current established chemotherapy regimens are toxic and lack a sustained response. Immune checkpoint inhibitors have led to a new era of treatment for advanced or metastatic urothelial carcinomas. The remarkable results achieved thus far show that immunotherapy will likely be the future treatment paradigm. The combination of immune checkpoint inhibitors and other agents is another inspiring avenue to explore that could benefit even more patients. With respect to the high incidence rate and different clinical appearance of upper tract urothelial carcinomas in Taiwan, a possible correlation exists between exposure to certain external risk factors, such as arsenic in drinking water and aristolochic acid in Chinese herbal medicine. As more gene sequencing differences between upper tract urothelial carcinomas and various disease causes are detailed, this has warranted the era of individualized screening and treatment for the disease.
Collapse
Affiliation(s)
- I-Hung Shao
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
99
|
A comparison between the effects of ochratoxin A and aristolochic acid on the inflammation and oxidative stress in the liver and kidney of weanling piglets. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1147-1156. [DOI: 10.1007/s00210-018-1538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
100
|
Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, Hopkins N. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32:868-902. [PMID: 29945886 PMCID: PMC6075032 DOI: 10.1101/gad.314849.118] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Annually, there are 1.6 million new cases of cancer and nearly 600,000 cancer deaths in the United States alone. The public health burden associated with these numbers has motivated enormous research efforts into understanding the root causes of cancer. These efforts have led to the recognition that between 40% and 45% of cancers are associated with preventable risk factors and, importantly, have identified specific molecular mechanisms by which these exposures modify human physiology to induce or promote cancer. The increasingly refined knowledge of these mechanisms, which we summarize here, emphasizes the need for greater efforts toward primary cancer prevention through mitigation of modifiable risk factors. It also suggests exploitable avenues for improved secondary prevention (which includes the development of therapeutics designed for cancer interception and enhanced techniques for noninvasive screening and early detection) based on detailed knowledge of early neoplastic pathobiology. Such efforts would complement the current emphasis on the development of therapeutic approaches to treat established cancers and are likely to result in far greater gains in reducing morbidity and mortality.
Collapse
Affiliation(s)
- Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Eward M Scolnick
- Eli and Edythe L. Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Medical Sciences Division, Oxford OX3 7LF, United Kingdom
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, University of Texas M.D. Anderson Cancer Center, Houston Texas 77030, USA
| | - Nancy Hopkins
- Koch Institute for Integrative Cancer Research, Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|