51
|
De Risi C, Pollini GP, Zanirato V. Recent Developments in General Methodologies for the Synthesis of α-Ketoamides. Chem Rev 2016; 116:3241-305. [DOI: 10.1021/acs.chemrev.5b00443] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Carmela De Risi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Gian Piero Pollini
- Istituto Universitario
di Studi Superiori “IUSS−Ferrara 1391”, Via delle Scienze 41/b, 44121 Ferrara, Italy
| | - Vinicio Zanirato
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| |
Collapse
|
52
|
Khalilieh S, Feng HP, Hulskotte EGJ, Wenning LA, Butterton JR. Clinical pharmacology profile of boceprevir, a hepatitis C virus NS3 protease inhibitor: focus on drug-drug interactions. Clin Pharmacokinet 2016; 54:599-614. [PMID: 25787025 DOI: 10.1007/s40262-015-0260-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Boceprevir is a potent, orally administered ketoamide inhibitor that targets the active site of the hepatitis C virus (HCV) non-structural (NS) 3 protease. The addition of boceprevir to peginterferon plus ribavirin resulted in higher rates of sustained virologic response (SVR) than for peginterferon plus ribavirin alone in phase III studies in both previously treated and untreated patients with HCV infection. Because boceprevir is metabolized by metabolic routes common to many other drugs, and is an inhibitor of cytochrome P450 (CYP) 3A4/5, there is a high potential for drug-drug interactions when boceprevir is administered with other therapies, particularly when treating patients with chronic HCV infection who are often receiving other medications concomitantly. Boceprevir is no longer widely used in the US or EU due to the introduction of second-generation treatments for HCV infection. However, in many other geographic regions, first-generation protease inhibitors such as boceprevir continue to form an important treatment option for patients with HCV infection. This review summarizes the interactions between boceprevir and other therapeutic agents commonly used in this patient population, indicating dose adjustment requirements where needed. Most drug interactions do not affect boceprevir plasma concentrations to a clinically meaningful extent, and thus efficacy is likely to be maintained when boceprevir is coadministered with the majority of other therapeutics. Overall, the drug-drug interaction profile of boceprevir suggests that this agent is suitable for use in a wide range of HCV-infected patients receiving concomitant therapies.
Collapse
Affiliation(s)
- Sauzanne Khalilieh
- Department of Clinical Pharmacology, Merck & Co., 1 Merck Drive, Kenilworth, NJ, 08889, USA
| | | | | | | | | |
Collapse
|
53
|
Guo Z, Prongay A, Tong X, Fischmann T, Bogen S, Velazquez F, Venkatraman S, Njoroge FG, Madison V. Computational Study of the Effects of Mutations A156T, D168V, and D168Q on the Binding of HCV Protease Inhibitors. J Chem Theory Comput 2015; 2:1657-63. [PMID: 26627036 DOI: 10.1021/ct600151y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of the resistance mutations A156T, D168V, and D168Q in HCV protease on the binding of SCH 6, SCH 503034, VX-950, BILN-2061, and compound 1 was evaluated using the free energy perturbation (FEP) approach. All the inhibitors are highly potent against the wild-type enzyme, but their activity was affected differently by the mutants. A156T reduced the activity of SCH 503034, BILN-2061, and VX950 drastically (200-1000-fold) but that of SCH 6 only moderately (27-fold). SCH 503034, SCH 6, and VX-950 were not affected by either mutation D168V or D168Q, but these mutations conferred a high level of resistance to BILN-2061. Comparison of BILN-2061 with its acyclic analogue compound 1 emphasized the importance of inhibitor flexibility in overcoming drug resistance arising from the D168Q mutation. The results from FEP calculations compared well with experimental binding potencies within an error of <1 kcal/mol. Structural analysis was carried out to relate the resistance profiles to the atomic changes in the mutants.
Collapse
Affiliation(s)
- Zhuyan Guo
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Andrew Prongay
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Xiao Tong
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Thierry Fischmann
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Stephane Bogen
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Francisco Velazquez
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Srikanth Venkatraman
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - F George Njoroge
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Vincent Madison
- Departments of Structural Chemistry, Medicinal Chemistry, and Antiviral Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| |
Collapse
|
54
|
Zhong QF, Liu R, Liu G. Structure-activity relationship studies on quinoxalin-2(1H)-one derivatives containing thiazol-2-amine against hepatitis C virus leading to the discovery of BH6870. Mol Divers 2015; 19:829-53. [PMID: 26205408 DOI: 10.1007/s11030-015-9610-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C virus infection represents a serious global public health problem, typically resulting in fibrosis, cirrhosis, and ultimately hepatocellular carcinoma. Based on our previous discovery of lead compound 2 (Liu et al. J Med Chem 54:5747-5768, 2011), 35 new quinoxalinone derivatives were explored in this study. Outline of the structure-activity relationships (SARs) revealed that compound BH6870 (36) showed high anti-HCV potency ([Formula: see text]) and a good cell safety index (SI [Formula: see text]). SARs analysis indicated that quinoxalin-2(1H)-one containing a 4-aryl-substituted thiazol-2-amine moiety was optimal for antiviral activity. Introducing a hydrogen-bond acceptor (such as ester or amide group) at the C-3 position of quinoxalin-2(1H)-one was beneficial for the antiviral potency, and especially, N,N-disubstituted amide was far superior to N-monosubstituted amide. Incorporation of more than one halogen (fluorine or chlorine atom) or a strong electron-withdrawing group on the benzene ring of the thiazole-phenyl moiety might reduce electron atmosphere density further and resulted in a dramatical loss of activity. The NH-group of the lactam moiety was clearly required for anti-HCV activity. Design and synthesis of quinoxalin-2(1H)-one derivatives as new non-nucleoside small-molecule HCV inhibitors. BH6870 (36), showing higher antiviral potency and a good cell safety index, was identified.
Collapse
Affiliation(s)
- Qi-Fei Zhong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2 Nanwei Rd., Xicheng Dist., Beijing, 100050, People's Republic of China
| | - Rui Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2 Nanwei Rd., Xicheng Dist., Beijing, 100050, People's Republic of China
| | - Gang Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2 Nanwei Rd., Xicheng Dist., Beijing, 100050, People's Republic of China.
- Tsinghua-Peking Center for Life Sciences and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China.
| |
Collapse
|
55
|
Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors. Antimicrob Agents Chemother 2015; 60:316-22. [PMID: 26503655 DOI: 10.1128/aac.01834-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4(+) T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF.
Collapse
|
56
|
Agrawal S, Cifelli S, Johnstone R, Pechter D, Barbey DA, Lin K, Allison T, Agrawal S, Rivera-Gines A, Milligan JA, Schneeweis J, Houle K, Struck AJ, Visconti R, Sills M, Wildey MJ. Utilizing Low-Volume Aqueous Acoustic Transfer with the Echo 525 to Enable Miniaturization of qRT-PCR Assay. ACTA ACUST UNITED AC 2015; 21:57-63. [PMID: 26460107 DOI: 10.1177/2211068215609315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Indexed: 10/23/2022]
Abstract
Quantitative reverse transcription PCR (qRT-PCR) is a valuable tool for characterizing the effects of inhibitors on viral replication. The amplification of target viral genes through the use of specifically designed fluorescent probes and primers provides a reliable method for quantifying RNA. Due to reagent costs, use of these assays for compound evaluation is limited. Until recently, the inability to accurately dispense low volumes of qRT-PCR assay reagents precluded the routine use of this PCR assay for compound evaluation in drug discovery. Acoustic dispensing has become an integral part of drug discovery during the past decade; however, acoustic transfer of microliter volumes of aqueous reagents was time consuming. The Labcyte Echo 525 liquid handler was designed to enable rapid aqueous transfers. We compared the accuracy and precision of a qPCR assay using the Labcyte Echo 525 to those of the BioMek FX, a traditional liquid handler, with the goal of reducing the volume and cost of the assay. The data show that the Echo 525 provides higher accuracy and precision compared to the current process using a traditional liquid handler. Comparable data for assay volumes from 500 nL to 12 µL allowed the miniaturization of the assay, resulting in significant cost savings of drug discovery and process streamlining.
Collapse
Affiliation(s)
- Sony Agrawal
- Merck Research Laboratories, Kenilworth, NJ, USA
| | | | | | | | | | - Karen Lin
- Merck Research Laboratories, Kenilworth, NJ, USA
| | | | - Shree Agrawal
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | - Kevin Houle
- Merck Research Laboratories, Kenilworth, NJ, USA
| | | | | | | | | |
Collapse
|
57
|
Gogineni V, Schinazi RF, Hamann MT. Role of Marine Natural Products in the Genesis of Antiviral Agents. Chem Rev 2015; 115:9655-706. [PMID: 26317854 PMCID: PMC4883660 DOI: 10.1021/cr4006318] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vedanjali Gogineni
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| | - Raymond F. Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University/Veterans Affairs Medical Center, 1760 Haygood Drive NE, Atlanta, Georgia 30322, United States
| | - Mark T. Hamann
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| |
Collapse
|
58
|
Bryan-Marrugo O, Ramos-Jiménez J, Barrera-Saldaña H, Rojas-Martínez A, Vidaltamayo R, Rivas-Estilla A. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. MEDICINA UNIVERSITARIA 2015. [DOI: 10.1016/j.rmu.2015.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
59
|
Abstract
The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
60
|
Li H, Scott JP, Chen CY, Journet M, Belyk K, Balsells J, Kosjek B, Baxter CA, Stewart GW, Wise C, Alam M, Song ZJ, Tan L. Synthesis of Bis-Macrocyclic HCV Protease Inhibitor MK-6325 via Intramolecular sp2–sp3 Suzuki–Miyaura Coupling and Ring Closing Metathesis. Org Lett 2015; 17:1533-6. [DOI: 10.1021/acs.orglett.5b00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hongmei Li
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Jeremy P. Scott
- Department of Process Chemistry, Merck Sharp & Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K
| | - Cheng-yi Chen
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Michel Journet
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Kevin Belyk
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Jaume Balsells
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Birgit Kosjek
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Carl A. Baxter
- Department of Process Chemistry, Merck Sharp & Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K
| | - Gavin W. Stewart
- Department of Process Chemistry, Merck Sharp & Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K
| | - Christopher Wise
- Department of Process Chemistry, Merck Sharp & Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K
| | - Mahbub Alam
- Department of Process Chemistry, Merck Sharp & Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, U.K
| | - Zhiguo Jake Song
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| | - Lushi Tan
- Department
of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New
Jersey 07065, United States
| |
Collapse
|
61
|
Rudd MT, Butcher JW, Nguyen KT, McIntyre CJ, Romano JJ, Gilbert KF, Bush KJ, Liverton NJ, Holloway MK, Harper S, Ferrara M, DiFilippo M, Summa V, Swestock J, Fritzen J, Carroll SS, Burlein C, DiMuzio JM, Gates A, Graham DJ, Huang Q, McClain S, McHale C, Stahlhut MW, Black S, Chase R, Soriano A, Fandozzi CM, Taylor A, Trainor N, Olsen DB, Coleman PJ, Ludmerer SW, McCauley JA. P2-quinazolinones and bis-macrocycles as new templates for next-generation hepatitis C virus NS3/4a protease inhibitors: discovery of MK-2748 and MK-6325. ChemMedChem 2015; 10:727-35. [PMID: 25759009 DOI: 10.1002/cmdc.201402558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 12/11/2022]
Abstract
With the goal of identifying inhibitors of hepatitis C virus (HCV) NS3/4a protease that are potent against a wide range of genotypes and clinically relevant mutant viruses, several subseries of macrocycles were investigated based on observations made during the discovery of MK-5172. Quinazolinone-containing macrocycles were identified as promising leads, and optimization for superior cross-genotype and mutant enzyme potency as well as rat liver and plasma concentrations following oral dosing, led to the development of MK-2748. Additional investigation of a series of bis-macrocycles containing a fused 18- and 15-membered ring system were also optimized for the same properties, leading to the discovery of MK-6325. Both compounds display the broad genotype and mutant potency necessary for clinical development as next-generation HCV NS3/4a protease inhibitors.
Collapse
Affiliation(s)
- Michael T Rudd
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA (USA).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Protease Inhibitors Block Multiple Functions of the NS3/4A Protease-Helicase during the Hepatitis C Virus Life Cycle. J Virol 2015; 89:5362-70. [PMID: 25740995 DOI: 10.1128/jvi.03188-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/23/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) NS3 is a multifunctional protein composed of a protease domain and a helicase domain linked by a flexible linker. Protease activity is required to generate viral nonstructural (NS) proteins involved in RNA replication. Helicase activity is required for RNA replication, and genetic evidence implicates the helicase domain in virus assembly. Binding of protease inhibitors (PIs) to the protease active site blocks NS3-dependent polyprotein processing but might impact other steps of the virus life cycle. Kinetic analyses of antiviral suppression of cell culture-infectious genotype 1a strain H77S.3 were performed using assays that measure different readouts of the viral life cycle. In addition to the active-site PI telaprevir, we examined an allosteric protease-helicase inhibitor (APHI) that binds a site in the interdomain interface. By measuring nucleotide incorporation into HCV genomes, we found that telaprevir inhibits RNA synthesis as early as 12 h at high but clinically relevant concentrations. Immunoblot analyses showed that NS5B abundance was not reduced until after 12 h, suggesting that telaprevir exerts a direct effect on RNA synthesis. In contrast, the APHI could partially inhibit RNA synthesis, suggesting that the allosteric site is not always available during RNA synthesis. The APHI and active-site PI were both able to block virus assembly soon (<12 h) after drug treatment, suggesting that they rapidly engage with and block a pool of NS3 involved in assembly. In conclusion, PIs and APHIs can block NS3 functions in RNA synthesis and virus assembly, in addition to inhibiting polyprotein processing. IMPORTANCE The NS3/4A protease of hepatitis C virus (HCV) is an important antiviral target. Currently, three PIs have been approved for therapy of chronic hepatitis C, and several others are in development. NS3-dependent cleavage of the HCV polyprotein is required to generate the mature nonstructural proteins that form the viral replicase. Inhibition of protease activity can block RNA replication by preventing expression of mature replicase components. Like many viral proteins, NS3 is multifunctional, but how PIs affect stages of the HCV life cycle beyond polyprotein processing has not been well studied. Using cell-based assays, we show here that PIs can directly inhibit viral RNA synthesis and also block a late stage in virus assembly/maturation at clinically relevant concentrations.
Collapse
|
63
|
Dienstag JL. Antiviral Drugs against Hepatitis Viruses. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:563-575.e3. [DOI: 10.1016/b978-1-4557-4801-3.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
64
|
Ishida YI, Takeshita M, Kataoka H. Functional foods effective for hepatitis C: Identification of oligomeric proanthocyanidin and its action mechanism. World J Hepatol 2014; 6:870-879. [PMID: 25544874 PMCID: PMC4269906 DOI: 10.4254/wjh.v6.i12.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/03/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of viral hepatitis and currently infects approximately 170 million people worldwide. An infection by HCV causes high rates of chronic hepatitis (> 75%) and progresses to liver cirrhosis and hepatocellular carcinoma ultimately. HCV can be eliminated by a combination of pegylated α-interferon and the broad-spectrum antiviral drug ribavirin; however, this treatment is still associated with poor efficacy and tolerability and is often accompanied by serious side-effects. While some novel direct-acting antivirals against HCV have been developed recently, high medical costs limit the access to the therapy in cost-sensitive countries. To search for new natural anti-HCV agents, we screened local agricultural products for their suppressive activities against HCV replication using the HCV replicon cell system in vitro. We found a potent inhibitor of HCV RNA expression in the extracts of blueberry leaves and then identified oligomeric proanthocyanidin as the active ingredient. Further investigations into the action mechanism of oligomeric proanthocyanidin suggested that it is an inhibitor of heterogeneous nuclear ribonucleoproteins (hnRNPs) such as hnRNP A2/B1. In this review, we presented an overview of functional foods and ingredients efficient for HCV infection, the chemical structural characteristics of oligomeric proanthocyanidin, and its action mechanism.
Collapse
|
65
|
Lampa A, Alogheli H, Ehrenberg AE, Åkerblom E, Svensson R, Artursson P, Danielson UH, Karlén A, Sandström A. Vinylated linear P2 pyrimidinyloxyphenylglycine based inhibitors of the HCV NS3/4A protease and corresponding macrocycles. Bioorg Med Chem 2014; 22:6595-6615. [PMID: 25456385 DOI: 10.1016/j.bmc.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/04/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
With three recent market approvals and several inhibitors in advanced stages of development, the hepatitis C virus (HCV) NS3/4A protease represents a successful target for antiviral therapy against hepatitis C. As a consequence of dealing with viral diseases in general, there are concerns related to the emergence of drug resistant strains which calls for development of inhibitors with an alternative binding-mode than the existing highly optimized ones. We have previously reported on the use of phenylglycine as an alternative P2 residue in HCV NS3/4A protease inhibitors. Herein, we present the synthesis, structure-activity relationships and in vitro pharmacokinetic characterization of a diverse series of linear and macrocyclic P2 pyrimidinyloxyphenylglycine based inhibitors. With access to vinyl substituents in P3, P2 and P1' positions an initial probing of macrocyclization between different positions, using ring-closing metathesis (RCM) could be performed, after addressing some synthetic challenges. Biochemical results from the wild type enzyme and drug resistant variants (e.g., R155 K) indicate that P3-P1' macrocyclization, leaving the P2 substituent in a flexible mode, is a promising approach. Additionally, the study demonstrates that phenylglycine based inhibitors benefit from p-phenylpyrimidinyloxy and m-vinyl groups as well as from the combination with an aromatic P1 motif with alkenylic P1' elongations. In fact, linear P2-P1' spanning intermediate compounds based on these fragments were found to display promising inhibitory potencies and drug like properties.
Collapse
Affiliation(s)
- Anna Lampa
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Hiba Alogheli
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Angelica E Ehrenberg
- Department of Chemistry-BMC, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Eva Åkerblom
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Richard Svensson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Uppsala University, A Node of the Chemical Biology Consortium Sweden (CBCS), Box 580, SE-751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Uppsala University, A Node of the Chemical Biology Consortium Sweden (CBCS), Box 580, SE-751 23 Uppsala, Sweden
| | - U Helena Danielson
- Department of Chemistry-BMC, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
66
|
Issur M, Götte M. Resistance patterns associated with HCV NS5A inhibitors provide limited insight into drug binding. Viruses 2014; 6:4227-41. [PMID: 25384189 PMCID: PMC4246218 DOI: 10.3390/v6114227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Direct-acting antivirals (DAAs) have significantly improved the treatment of infection with the hepatitis C virus. A promising class of novel antiviral agents targets the HCV NS5A protein. The high potency and broad genotypic coverage are favorable properties. NS5A inhibitors are currently assessed in advanced clinical trials in combination with viral polymerase inhibitors and/or viral protease inhibitors. However, the clinical use of NS5A inhibitors is also associated with new challenges. HCV variants with decreased susceptibility to these drugs can emerge and compromise therapy. In this review, we discuss resistance patterns in NS5A with focus prevalence and implications for inhibitor binding.
Collapse
Affiliation(s)
- Moheshwarnath Issur
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Matthias Götte
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
67
|
Khawaja A, Vopalensky V, Pospisek M. Understanding the potential of hepatitis C virus internal ribosome entry site domains to modulate translation initiation via their structure and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:211-24. [PMID: 25352252 PMCID: PMC4361049 DOI: 10.1002/wrna.1268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022]
Abstract
Translation initiation in the hepatitis C virus (HCV) occurs through a cap-independent mechanism that involves an internal ribosome entry site (IRES) capable of interacting with and utilizing the eukaryotic translational machinery. In this review, we focus on the structural configuration of the different HCV IRES domains and the impact of IRES primary sequence variations on secondary structure conservation and function. In some cases, multiple mutations, even those scattered across different domains, led to restoration of the translational activity of the HCV IRES, although the individual occurrences of these mutations were found to be deleterious. We propose that such observation may be attributed to probable long-range inter- and/or intra-domain functional interactions. The precise functioning of the HCV IRES requires the specific interaction of its domains with ribosomal subunits and a subset of eukaryotic translation initiation factors (eIFs). The structural conformation, sequence preservation and variability, and translational machinery association with the HCV IRES regions are also thoroughly discussed, along with other factors that can affect and influence the formation of translation initiation complexes. WIREs RNA 2015, 6:211–224. doi: 10.1002/wrna.1268
Collapse
Affiliation(s)
- Anas Khawaja
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | | | | |
Collapse
|
68
|
Wang H, Geng L, Chen BZ, Ji M. Computational study on the molecular mechanisms of drug resistance of Narlaprevir due to V36M, R155K, V36M+R155K, T54A, and A156T mutations of HCV NS3/4A protease. Biochem Cell Biol 2014; 92:357-69. [DOI: 10.1139/bcb-2014-0039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Narlaprevir is a novel NS3/4A protease inhibitor of hepatitis C virus (HCV), and it has been tested in a phase II clinical trial recently. However, distinct drug-resistance of Narlaprevir has been discovered. In our study, the molecular mechanisms of drug-resistance of Narlaprevir due to the mutations V36M, R155K, V36M+R155K, T54A, and A156T of NS3/4A protease have been investigated by molecular dynamics (MD) simulations, free energy calculations, and free energy decomposition analysis. The predicted binding free energies of Narlaprevir towards the wild-type and five mutants show that the mutations V36M, R155K, and T54A lead to low-level drug resistance and the mutations V36M+R155K and A156T lead to high-level drug resistance, which is consistent with the experimental data. The analysis of the individual energy terms indicates that the van der Waals contribution is important for distinguishing the binding affinities of these six complexes. These findings again show that the combination of different molecular modeling techniques is an efficient way to interpret the molecular mechanism of drug-resistance. Our work mainly elaborates the molecular mechanism of drug-resistance of Narlaprevir and further provides valuable information for developing novel, safer, and more potent HCV antiviral drugs in the near future.
Collapse
Affiliation(s)
- Huiqun Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| | - Lingling Geng
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| | - Bo-Zhen Chen
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| | - Mingjuan Ji
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| |
Collapse
|
69
|
Aloia AL, Eyre NS, Black S, Bent SJ, Gaeguta A, Guo Z, Narayana SK, Chase R, Locarnini S, Carr JM, Howe JA, Beard MR. Generation of a chimeric hepatitis C replicon encoding a genotype-6a NS3 protease and assessment of boceprevir (SCH503034) sensitivity and drug-associated mutations. Antivir Ther 2014; 20:271-80. [PMID: 25222708 DOI: 10.3851/imp2850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genotype (gt)6 HCV is common amongst HCV-positive populations of the Asia-Pacific region but cell culture models for this gt have only recently been developed. Boceprevir (SCH503034) is a clinically available inhibitor of the HCV NS3 protein. We investigated the efficacy of boceprevir for inhibiting replication of a chimeric gt1b replicon encoding a gt6a NS3 protease and defined the development of mutations in the protease when boceprevir treatment was applied. METHODS We constructed a chimeric gt1b subgenomic replicon encoding a gt6 NS3 protease (NS3p) sequence (gt6NS3p_gt1b). The boceprevir EC50 value against replication of this replicon was determined using quantitative reverse transcriptase PCR. Next-generation sequencing was used to identify nucleotide changes associated with boceprevir resistance. The replication capacities of chimeric replicons containing mutations associated with boceprevir resistance were determined by colony formation efficiency assays. RESULTS The boceprevir EC50 value for the gt6NS3p_gt1b replicon was 535 ±79 nM. Boceprevir-resistant gt6NS3p_gt1b replicon cell lines could be selected and they demonstrated drug-associated amino acid changes that have previously been reported in other HCV gts. Interestingly, no mutations were observed at A156, a position defined for boceprevir resistance in gt1 NS3p, while mutation at N122, which is rarely reported in boceprevir-resistant gt1 proteases, was frequently observed. Re-introduction of these mutations into the chimeric replicon altered their replication capacity, ranging from complete abolishment of replication (A156T) to increasing replication capacity (V36A, N122S). This report provides the first characterization of gt6 HCV resistance to boceprevir. CONCLUSIONS A chimeric HCV replicon encoding gt6 NS3 protease is sensitive to boceprevir and develops drug-resistant mutations at amino acid sites previously reported for other gts. Mutation at N122 also appears to be associated with boceprevir resistance in the gt6 NS3 protease.
Collapse
Affiliation(s)
- Amanda L Aloia
- School of Molecular and Biomedical Science, Adelaide, The University of Adelaide and Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
McGivern DR, Masaki T, Williford S, Ingravallo P, Feng Z, Lahser F, Asante-Appiah E, Neddermann P, Francesco RD, Howe AY, Lemon SM. Kinetic analyses reveal potent and early blockade of hepatitis C virus assembly by NS5A inhibitors. Gastroenterology 2014; 147:453-62.e7. [PMID: 24768676 PMCID: PMC4107048 DOI: 10.1053/j.gastro.2014.04.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/21/2014] [Accepted: 04/09/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS All-oral regimens combining different classes of direct-acting antivirals (DAA) are highly effective for treatment of patients with chronic hepatitis C. NS5A inhibitors will likely form a component of future interferon-sparing treatment regimens. However, despite their potential, the detailed mechanism of action of NS5A inhibitors is unclear. To study their mechanisms, we compared their kinetics of antiviral suppression with those of other classes of DAA, using the hepatitis C virus genotype 1a cell culture-infectious virus H77S.3. METHODS We performed detailed kinetic analyses of specific steps in the hepatitis C virus life cycle using cell cultures incubated with protease inhibitors, polymerase inhibitors, or NS5A inhibitors. Assays were designed to measure active viral RNA synthesis and steady-state RNA abundance, polyprotein synthesis, virion assembly, and infectious virus production. RESULTS Despite their high potency, NS5A inhibitors were slow to inhibit viral RNA synthesis compared with protease or polymerase inhibitors. By 24 hours after addition of an NS5A inhibitor, polyprotein synthesis was reduced <50%, even at micromolar concentrations. In contrast, inhibition of virus release by NS5A inhibitors was potent and rapid, with onset of inhibition as early as 2 hours. Cells incubated with NS5A inhibitors were rapidly depleted of intracellular infectious virus and RNA-containing hepatitis C virus particles, indicating a block in virus assembly. CONCLUSIONS DAAs that target NS5A rapidly inhibit intracellular assembly of genotype 1a virions. They also inhibit formation of functional replicase complexes, but have no activity against preformed replicase, thereby resulting in slow shut-off of viral RNA synthesis.
Collapse
Affiliation(s)
- David R. McGivern
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA,To whom correspondence should be addressed: David R. McGivern, Ph.D., 8.001A Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-9958; Fax: 919-843-7240, , Stanley M. Lemon, M.D., 8.034 Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-1848; Fax: 919-843-7240,
| | - Takahiro Masaki
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Sara Williford
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | - Zongdi Feng
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | - Petra Neddermann
- Fondazione I.N.G.M., Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
| | | | - Anita Y. Howe
- Merck Research Laboratory, Kenilworth, NJ 07033, USA
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA,To whom correspondence should be addressed: David R. McGivern, Ph.D., 8.001A Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-9958; Fax: 919-843-7240, , Stanley M. Lemon, M.D., 8.034 Burnett-Womack CB #7292, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292 USA, Tel: 919-843-1848; Fax: 919-843-7240,
| |
Collapse
|
71
|
Pharmacokinetic and pharmacodynamic interactions between the hepatitis C virus protease inhibitor, boceprevir, and the oral contraceptive ethinyl estradiol/norethindrone. Eur J Clin Pharmacol 2014; 70:1107-13. [PMID: 24992979 DOI: 10.1007/s00228-014-1711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/15/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE The purpose of this study was to examine drug interactions between boceprevir, a hepatitis C virus NS3/4A protease inhibitor, and a combined oral contraceptive containing ethinyl estradiol (EE) and norethindrone (NE). METHODS A single-center, open-label study was conducted in 20 healthy female volunteers. In three consecutive 28-day treatment periods, subjects received EE/NE (0.035 mg/1 mg; 21 days on, 7 days off). During period 3, subjects also received boceprevir (800 mg three times daily) for 28 days. RESULTS Coadministration of boceprevir with EE/NE did not affect NE AUC0-24 but slightly reduced NE C max. Geometric mean ratios (GMRs) for NE AUC0-24 and C max with EE/NE alone and EE/NE plus boceprevir were 0.96 (90% confidence interval (CI), 0.87-1.06) and 0.83 (90% CI, 0.76-0.90). Coadministration of boceprevir with EE/NE reduced EE AUC0-24 and C max by 26 and 21%, with GMRs of 0.74 (90% CI, 0.68-0.80) and 0.79 (90% CI, 0.75-0.84). Boceprevir had no effect on mid-cycle luteinizing hormone (LH), follicle-stimulating hormone (FSH), or sex hormone-binding globulin levels, and progesterone concentrations remained <1 ng/ml during the luteal phase. Adverse events reported in this study were consistent with the well-established safety profile of boceprevir. CONCLUSION Serum progesterone, LH, and FSH levels indicate that ovulation was suppressed during coadministration of boceprevir with EE/NE. Coadministration of boceprevir with combined oral contraceptives containing EE and ≥1 mg of NE is therefore unlikely to alter contraceptive effectiveness. The ovulation suppression activity of oral contraceptives containing lower doses of NE, and of other forms of hormonal contraception during coadministration with boceprevir, has not been established.
Collapse
|
72
|
Bilar JM, Carvalho-Filho RJ, Mota CFMGP, Fucuta PDS, Ferraz MLCG. Acute pancreatitis associated with boceprevir: a case report. Braz J Infect Dis 2014; 18:454-456. [PMID: 24833196 PMCID: PMC9427521 DOI: 10.1016/j.bjid.2014.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 11/21/2022] Open
Abstract
Approximately 170 million people are infected with hepatitis C, and the sustained virological response rate to treatment with pegylated interferon and ribavirin is 30-50%. In an attempt to improve the chances of cure, boceprevir is being added to therapy, but it is associated with an increased incidence of adverse events. We herein report a case of acute pancreatitis developed during treatment with pegylated interferon, ribavirin and boceprevir. Boceprevir was the most likely cause of drug-associated pancreatitis after the most common causes were ruled out, since this adverse event had not occurred when the patient had previously been exposed to pegylated interferon and ribavirin and there was no recurrence of the episode of pancreatitis when these two drugs were reintroduced. Acute pancreatitis is a rare adverse event associated with boceprevir therapy, but a potentially fatal event. Sequential determination of pancreatic enzymes should be considered during hepatitis C treatment with boceprevir.
Collapse
|
73
|
Resistance to hepatitis C virus protease inhibitors. Curr Opin Virol 2014; 8:16-21. [PMID: 24852142 DOI: 10.1016/j.coviro.2014.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 12/31/2022]
Abstract
Significant scientific advances have enabled the development of new classes of antivirals for the treatment of HCV. Protease inhibitors were the first approved, achieving substantially higher response rates, with shorter treatment durations, in the majority of genotype 1 infected patients. However, in patients who fail treatment, drug resistant variants frequently emerge. The pattern of resistant variants observed is a result of the specific inhibitor, viral subtype, and level of drug selective pressure. Data suggest the replacement of these variants over time; however, retreatment of these patients is an area of needed investigation. As multiple drug classes progress in development, combinations of agents improve treatment success, increase the genetic barrier to resistance, and provide shorter treatment durations for diverse patient populations.
Collapse
|
74
|
Ivanisenko NV, Mishchenko EL, Akberdin IR, Demenkov PS, Likhoshvai VA, Kozlov KN, Todorov DI, Gursky VV, Samsonova MG, Samsonov AM, Clausznitzer D, Kaderali L, Kolchanov NA, Ivanisenko VA. A new stochastic model for subgenomic hepatitis C virus replication considers drug resistant mutants. PLoS One 2014; 9:e91502. [PMID: 24643004 PMCID: PMC3958367 DOI: 10.1371/journal.pone.0091502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/12/2014] [Indexed: 12/17/2022] Open
Abstract
As an RNA virus, hepatitis C virus (HCV) is able to rapidly acquire drug resistance, and for this reason the design of effective anti-HCV drugs is a real challenge. The HCV subgenomic replicon-containing cells are widely used for experimental studies of the HCV genome replication mechanisms, for drug testing in vitro and in studies of HCV drug resistance. The NS3/4A protease is essential for virus replication and, therefore, it is one of the most attractive targets for developing specific antiviral agents against HCV. We have developed a stochastic model of subgenomic HCV replicon replication, in which the emergence and selection of drug resistant mutant viral RNAs in replicon cells is taken into account. Incorporation into the model of key NS3 protease mutations leading to resistance to BILN-2061 (A156T, D168V, R155Q), VX-950 (A156S, A156T, T54A) and SCH 503034 (A156T, A156S, T54A) inhibitors allows us to describe the long term dynamics of the viral RNA suppression for various inhibitor concentrations. We theoretically showed that the observable difference between the viral RNA kinetics for different inhibitor concentrations can be explained by differences in the replication rate and inhibitor sensitivity of the mutant RNAs. The pre-existing mutants of the NS3 protease contribute more significantly to appearance of new resistant mutants during treatment with inhibitors than wild-type replicon. The model can be used to interpret the results of anti-HCV drug testing on replicon systems, as well as to estimate the efficacy of potential drugs and predict optimal schemes of their usage.
Collapse
Affiliation(s)
- Nikita V. Ivanisenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Elena L. Mishchenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Pavel S. Demenkov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vitaly A. Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Konstantin N. Kozlov
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Dmitry I. Todorov
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
- Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
| | - Vitaly V. Gursky
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
- Theoretical Department, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St.Petersburg, Russia
| | - Maria G. Samsonova
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Alexander M. Samsonov
- Department of Computational Biology, St. Petersburg State Polytechnical University, St. Petersburg, Russia
- Theoretical Department, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St.Petersburg, Russia
| | - Diana Clausznitzer
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Lars Kaderali
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Nikolay A. Kolchanov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vladimir A. Ivanisenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- PB-soft Llc, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
75
|
Verpaalen B, Neyts J, Delang L. Are statins a viable option for the treatment of infections with the hepatitis C virus? Antiviral Res 2014; 105:92-9. [PMID: 24613180 DOI: 10.1016/j.antiviral.2014.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022]
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors that are widely used for the treatment of hypercholesterolemia. Besides their cholesterol-lowering effect, statins have been reported to have antiviral activity against a variety of viruses, including hepatitis C virus (HCV). Several statins inhibit the in vitro replication of subgenomic HCV replicons and also suppress in vitro RNA replication of infectious HCV. The precise mechanism of the anti-HCV activity of statins has not yet been defined. Recent studies suggest that the antiviral effect may result from the inhibition of geranylgeranylation of cellular proteins, rather than the inhibition of cholesterol synthesis. Despite the antiviral effect observed in vitro, statin monotherapy seems to be insufficient for the treatment of chronic HCV infection. However, several prospective and retrospective studies have demonstrated that the addition of statins to IFN-α and ribavirin therapy increases SVR, RVR, and EVR rates without the occurrence of additional adverse events. These clinical data, together with the excellent safety profile and low cost, suggest that statins may play a role in HCV therapy until more potent and safe direct-acting antivirals become available. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Ben Verpaalen
- Rega Institute for Medical Research, KU Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Belgium.
| | - Leen Delang
- Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
76
|
The competitive binding between inhibitors and substrates of HCV NS3/4A protease: A general mechanism of drug resistance. Antiviral Res 2014; 103:60-70. [DOI: 10.1016/j.antiviral.2014.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 11/19/2022]
|
77
|
Svahn Gustafsson S, Ehrenberg A, Schmuck B, Anwar MI, Danielson UH. Identification of weak points of hepatitis C virus NS3 protease inhibitors using surface plasmon resonance biosensor-based interaction kinetic analysis and genetic variants. J Med Chem 2014; 57:1802-11. [PMID: 24512311 DOI: 10.1021/jm401690f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To aid the design of next generation hepatitis C virus (HCV) drugs, the kinetics of the interactions between NS3 protease inhibitors and enzyme from genotypes 1a, 1b, and 3a have been characterized. The linear mechanism-based inhibitors VX-950 (telaprevir) and SCH 503034 (boceprevir) benefited from covalent adduct formation. However, the apparent affinities were rather weak (VX-950, K(D)* of 340, 8.5, and 1000 nM for genotypes 1a, 1b and 3a, respectively; SCH 503034, K(D)* of 90 and 3.9 nM for 1b and 3a, respectively). The non-mechanism-based macrocyclic inhibitors BILN-2016 (ciluprevir) and ITMN-191 (danoprevir) had faster association and slower dissociation kinetics, indicating that rigidification is kinetically favorable. ITMN-191 had nanomolar affinities for all genotypes (K(D)* of 0.13, 1.6, and 0.52 nM), suggesting that a broad spectrum drug is conceivable. The data show that macrocyclic scaffolds and mechanism-based inhibition are advantageous but that there is considerable room for improvement of the kinetics of HCV protease targeted drugs.
Collapse
|
78
|
Scola PM, Wang AX, Good AC, Sun LQ, Combrink KD, Campbell JA, Chen J, Tu Y, Sin N, Venables BL, Sit SY, Chen Y, Cocuzza A, Bilder DM, D’Andrea S, Zheng B, Hewawasam P, Ding M, Thuring J, Li J, Hernandez D, Yu F, Falk P, Zhai G, Sheaffer AK, Chen C, Lee MS, Barry D, Knipe JO, Li W, Han YH, Jenkins S, Gesenberg C, Gao Q, Sinz MW, Santone KS, Zvyaga T, Rajamani R, Klei HE, Colonno RJ, Grasela DM, Hughes E, Chien C, Adams S, Levesque PC, Li D, Zhu J, Meanwell NA, McPhee F. Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. J Med Chem 2014; 57:1708-29. [DOI: 10.1021/jm401840s] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul M. Scola
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Alan Xiangdong Wang
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew C. Good
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Li-Qiang Sun
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Keith D. Combrink
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey A. Campbell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yong Tu
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brian L. Venables
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Anthony Cocuzza
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Donna M. Bilder
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Stanley D’Andrea
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Barbara Zheng
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Piyasena Hewawasam
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Min Ding
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jan Thuring
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jianqing Li
- Department
of Discovery Chemical Synthesis, Bristol-Myers Squibb Research and Development, P.O.
Box 4000, Princeton, New Jersey 08543, United States
| | - Dennis Hernandez
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Fei Yu
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Paul Falk
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Guangzhi Zhai
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy K. Sheaffer
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Chaoqun Chen
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Min S. Lee
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Diana Barry
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jay O. Knipe
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wenying Li
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yong-Hae Han
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Susan Jenkins
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Christoph Gesenberg
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Qi Gao
- Department of Pharmaceutical Development, Bristol-Myers Squibb Research and Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael W. Sinz
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S. Santone
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Tatyana Zvyaga
- Department of
Lead Discovery and Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ramkumar Rajamani
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Herbert E. Klei
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Richard J. Colonno
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dennis M. Grasela
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Eric Hughes
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Caly Chien
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Stephen Adams
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Paul C. Levesque
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Danshi Li
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jialong Zhu
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Fiona McPhee
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
79
|
Rosenquist Å, Samuelsson B, Johansson PO, Cummings MD, Lenz O, Raboisson P, Simmen K, Vendeville S, de Kock H, Nilsson M, Horvath A, Kalmeijer R, de la Rosa G, Beumont-Mauviel M. Discovery and Development of Simeprevir (TMC435), a HCV NS3/4A Protease Inhibitor. J Med Chem 2014; 57:1673-93. [DOI: 10.1021/jm401507s] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Maxwell D. Cummings
- Janssen Research & Development, LLC, Spring House, Pennsylvania 19002, United States
| | - Oliver Lenz
- Janssen Infectious Diseases BVBA, Beerse 2340, Belgium
| | | | - Kenny Simmen
- Janssen Infectious Diseases BVBA, Beerse 2340, Belgium
| | | | - Herman de Kock
- Galapagos NV Generaal De Wittelaan, L11A3-2800, Mechelen, Belgium
| | | | | | | | - Guy de la Rosa
- Janssen Global Services, LLC, Titusville, New Jersey 08560, United States
| | | |
Collapse
|
80
|
Ivanisenko NV, Mishchenko EL, Akberdin IR, Demenkov PS, Likhoshvai VA, Kozlov KN, Todorov DI, Samsonova MG, Samsonov AM, Kolchanov NA, Ivanisenko VA. Replication of the subgenomic hepatitis C virus replicon in the presence of the NS3 protease inhibitors: a stochastic model. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350913050059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
81
|
Paintsil E, Cheng YC. Antiviral Agents☆. REFERENCE MODULE IN BIOMEDICAL SCIENCES 2014. [PMCID: PMC7150273 DOI: 10.1016/b978-0-12-801238-3.02387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antiviral agents are drugs approved in the USA by the Food and Drug Administration (FDA) for the treatment or control of viral infections. Available antiviral agents mainly target stages in the viral life cycle. The target stages in the viral life cycle are; viral attachment to host cell, uncoating, synthesis of viral mRNA, translation of mRNA, replication of viral RNA and DNA, maturation of new viral proteins, budding, release of newly synthesized virus, and free virus in body fluids. Two important factors that can limit the utility of antiviral drugs are toxicity and the development of resistance to the antiviral agent by the virus. In addition, host phenotypic behaviors toward antiviral drugs because of either genomic or epigenetic factors could limit the efficacy of an antiviral agent in an individual. This article summarizes the most relevant pharmacologic and clinical properties of current antiviral agents, and targets for novel antiviral agents.
Collapse
|
82
|
Molla RA, Iqubal MA, Ghosh K, Roy AS, Kamaluddin K, Islam SM. Mesoporous poly-melamine-formaldehyde stabilized palladium nanoparticle (Pd@mPMF) catalyzed mono and double carbonylation of aryl halides with amines. RSC Adv 2014. [DOI: 10.1039/c4ra07554d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new mesoporous polymer stabilized Pd nano (mPMF–Pd0) has been synthesized and well characterized. The catalytic performance of this complex has been tested for mono and double carbonylation of aryl halides with amines.
Collapse
Affiliation(s)
| | | | - Kajari Ghosh
- Department of Chemistry
- University of Kalyani
- Nadia 741235, India
| | | | | | | |
Collapse
|
83
|
Evolution and emergence of a new era of antiviral treatment for chronic hepatitis C infection. Int J Antimicrob Agents 2014; 43:17-25. [DOI: 10.1016/j.ijantimicag.2013.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 12/20/2022]
|
84
|
Identification of novel small molecules as inhibitors of hepatitis C virus by structure-based virtual screening. Int J Mol Sci 2013; 14:22845-56. [PMID: 24264035 PMCID: PMC3856094 DOI: 10.3390/ijms141122845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/30/2022] Open
Abstract
Hepatitis C virus (HCV) NS3/NS4A serine protease is essential for viral replication, which is regarded as a promising drug target for developing direct-acting anti-HCV agents. In this study, sixteen novel compounds with cell-based HCV replicon activity ranging from 3.0 to 28.2 μM (IC50) were successfully identified by means of structure-based virtual screening. Compound 5 and compound 11, with an IC50 of 3.0 μM and 5.1 μM, respectively, are the two most potent molecules with low cytotoxicity.
Collapse
|
85
|
In vitro phenotypic characterization of hepatitis C virus NS3 protease variants observed in clinical studies of telaprevir. Antimicrob Agents Chemother 2013; 57:6236-45. [PMID: 24100495 DOI: 10.1128/aac.01578-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telaprevir is a linear, peptidomimetic small molecule that inhibits hepatitis C virus (HCV) replication by specifically inhibiting the NS3·4A protease. In phase 3 clinical studies, telaprevir in combination with peginterferon and ribavirin (PR) significantly improved sustained virologic response (SVR) rates in genotype 1 chronic HCV-infected patients compared with PR alone. In patients who do not achieve SVR after treatment with telaprevir-based regimens, variants with mutations in the NS3·4A protease region have been observed. Such variants can contribute to drug resistance and limit the efficacy of treatment. To gain a better understanding of the viral resistance profile, we conducted phenotypic characterization of the variants using HCV replicons carrying site-directed mutations. The most frequently observed (significantly enriched) telaprevir-resistant variants, V36A/M, T54A/S, R155K/T, and A156S, conferred lower-level resistance (3- to 25-fold), whereas A156T and V36M+R155K conferred higher-level resistance (>25-fold) to telaprevir. Rarely observed (not significantly enriched) variants included V36I/L and I132V, which did not confer resistance to telaprevir; V36C/G, R155G/I/M/S, V36A+T54A, V36L+R155K, T54S+R155K, and R155T+D168N, which conferred lower-level resistance to telaprevir; and A156F/N/V, V36A+R155K/T, V36M+R155T, V36A/M+A156T, T54A+A156S, T54S+A156S/T, and V36M+T54S+R155K, which conferred higher-level resistance to telaprevir. All telaprevir-resistant variants remained fully sensitive to alpha interferon, ribavirin, and HCV NS5B nucleoside and nonnucleoside polymerase inhibitors. In general, the replication capacity of telaprevir-resistant variants was lower than that of the wild-type replicon.
Collapse
|
86
|
Giordanetto F, Kihlberg J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem 2013; 57:278-95. [PMID: 24044773 DOI: 10.1021/jm400887j] [Citation(s) in RCA: 416] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrocycles are ideal in efforts to tackle "difficult" targets, but our understanding of what makes them cell permeable and orally bioavailable is limited. Analysis of approximately 100 macrocyclic drugs and clinical candidates revealed that macrocycles are predominantly used for infectious disease and in oncology and that most belong to the macrolide or cyclic peptide class. A significant number (N = 34) of these macrocycles are administered orally, revealing that oral bioavailability can be obtained at molecular weights up to and above 1 kDa and polar surface areas ranging toward 250 Å(2). Moreover, insight from a group of "de novo designed" oral macrocycles in clinical studies and understanding of how cyclosporin A and model cyclic hexapeptides cross cell membranes may unlock wider opportunities in drug discovery. However, the number of oral macrocycles is still low and it remains to be seen if they are outliers or if macrocycles will open up novel oral druggable space.
Collapse
Affiliation(s)
- Fabrizio Giordanetto
- Cardiovascular and Metabolic Disorders Research Area, AstraZeneca R&D Mölndal , SE-431 83 Mölndal, Sweden
| | | |
Collapse
|
87
|
Howe AYM, Venkatraman S. The Discovery and Development of Boceprevir: A Novel, First-generation Inhibitor of the Hepatitis C Virus NS3/4A Serine Protease. J Clin Transl Hepatol 2013; 1:22-32. [PMID: 26357603 PMCID: PMC4548358 DOI: 10.14218/jcth.2013.002xx] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
An estimated 2-3% of the world's population is infected with hepatitis C virus (HCV), making it a major global health problem. Consequently, over the past 15 years, there has been a concerted effort to understand the pathophysiology of HCV infection and the molecular virology of replication, and to utilize this knowledge for the development of more effective treatments. The virally encoded non-structural serine protease (NS3) is required to process the HCV polyprotein and release the individual proteins that form the viral RNA replication machinery. Given its critical role in the replication of HCV, the NS3 protease has been recognized as a potential drug target for the development of selective HCV therapies. In this review, we describe the key scientific discoveries that led to the approval of boceprevir, a first-generation, selective, small molecule inhibitor of the NS3 protease. We highlight the early studies that reported the crystal structure of the NS3 protease, its role in the processing of the HCV polyprotein, and the structural requirements critical for substrate cleavage. We also consider the novel attributes of the NS3 protease-binding pocket that challenged development of small molecule inhibitors, and the studies that ultimately yielded milligram quantities of this enzyme in a soluble, tractable form suitable for inhibitor screening programs. Finally, we describe the discovery of boceprevir, from the early chemistry studies, through the development of high-throughput assays, to the phase III clinical development program that ultimately provided the basis for approval of this drug. This latest phase in the development of boceprevir represents the culmination of a major global effort to understand the pathophysiology of HCV and develop small molecule inhibitors for the NS3 protease.
Collapse
|
88
|
Imran M, Manzoor S, Khattak NM, Khalid M, Ahmed QL, Parvaiz F, Tariq M, Ashraf J, Ashraf W, Azam S, Ashraf M. Current and future therapies for hepatitis C virus infection: from viral proteins to host targets. Arch Virol 2013; 159:831-46. [DOI: 10.1007/s00705-013-1803-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
|
89
|
Bailey MD, Bordeleau J, Garneau M, Leblanc M, Lemke CT, O’Meara J, White PW, Llinàs-Brunet M. Peptide backbone replacement of hepatitis C virus NS3 serine protease C-terminal cleavage product analogs: Discovery of potent succinamide inhibitors. Bioorg Med Chem Lett 2013; 23:4447-52. [DOI: 10.1016/j.bmcl.2013.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/03/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
|
90
|
Bailey MD, Halmos T, Lemke CT. Discovery of novel P2 substituted 4-biaryl proline inhibitors of hepatitis C virus NS3 serine protease. Bioorg Med Chem Lett 2013; 23:4436-40. [DOI: 10.1016/j.bmcl.2013.05.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
|
91
|
Ali A, Aydin C, Gildemeister R, Romano KP, Cao H, Özen A, Soumana D, Newton A, Petropoulos CJ, Huang W, Schiffer CA. Evaluating the role of macrocycles in the susceptibility of hepatitis C virus NS3/4A protease inhibitors to drug resistance. ACS Chem Biol 2013; 8:1469-78. [PMID: 23594083 DOI: 10.1021/cb400100g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus (HCV) infects an estimated 150 million people worldwide and is the major cause of viral hepatitis, cirrhosis, and liver cancer. The available antiviral therapies, which include PEGylated interferon, ribavirin, and one of the HCV NS3/4A protease inhibitors telaprevir or boceprevir, are ineffective for some patients and cause severe side effects. More potent NS3/4A protease inhibitors are in clinical development, but the long-term effectiveness of these drugs is challenged by the development of drug resistance. Here, we investigated the role of macrocycles in the susceptibility of NS3/4A protease inhibitors to drug resistance in asunaprevir, danoprevir, vaniprevir, and MK-5172, with similar core structures but varied P2 moieties and macrocyclizations. Linear and macrocyclic analogues of these drugs were designed, synthesized, and tested against wild-type and drug-resistant variants R155K, V36M/R155K, A156T, and D168A in enzymatic and antiviral assays. Macrocyclic inhibitors were generally more potent, but the location of the macrocycle was critical for retaining activity against drug-resistant variants: the P1-P3 macrocyclic inhibitors were less susceptible to drug resistance than the linear and P2-P4 macrocyclic analogues. In addition, the heterocyclic moiety at P2 largely determined the inhibitor resistance profile, susceptibility to drug resistance, and the extent of modulation by the helicase domain. Our findings suggest that to design robust inhibitors that retain potency to drug-resistant NS3/4A protease variants, inhibitors should combine P1-P3 macrocycles with flexible P2 moieties that optimally contact with the invariable catalytic triad of this enzyme.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Cihan Aydin
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Reinhold Gildemeister
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | | | - Hong Cao
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ayşegül Özen
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Djade Soumana
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Alicia Newton
- Monogram Biosciences, South San Francisco, California 94080, United States
| | | | - Wei Huang
- Monogram Biosciences, South San Francisco, California 94080, United States
| | - Celia A. Schiffer
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
92
|
Analysis of boceprevir resistance associated amino acid variants (RAVs) in two phase 3 boceprevir clinical studies. Virology 2013; 444:329-36. [PMID: 23876458 DOI: 10.1016/j.virol.2013.06.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/10/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND We investigated the frequency of RAVs among patients failing to achieve SVR in two clinical trials. We also investigated the impact of interferon responsiveness on RAVs and specific baseline RAVs relationship with boceprevir treatment failure. METHODS Data are from 1020 patients enrolled into either SPRINT-2 or RESPOND-2; patients received a 4-week PR lead-in prior to receiving boceprevir or placebo. RAVs were analyzed via population-based sequence analysis of the NS3 protease gene (success rate of >90% at a virus level of ≥ 10,000IU/mL) RESULTS: The high SVR rate in patients who received boceprevir resulted in a low rate of RAVs; 7% was detected at baseline in all patients, which rose to 15% after treatment. However, RAVs were detected in 53% of patients that failed to achieve SVR, which declined to 22.8% 6-14 months following cessation of boceprevir therapy. Baseline RAVs alone were not predictive of virologic outcome; poor interferon responsiveness was highly predictive of non-SVR. RAVs were more frequently detected in poor interferon responders. CONCLUSIONS We detected no association between the presence of baseline amino acid variants at boceprevir resistance-associated loci and outcome in the context of good IFN response.
Collapse
|
93
|
Silva MO, Treitel M, Graham DJ, Curry S, Frontera MJ, McMonagle P, Gupta S, Hughes E, Chase R, Lahser F, Barnard RJO, Howe AYM, Howe JA. Antiviral activity of boceprevir monotherapy in treatment-naive subjects with chronic hepatitis C genotype 2/3. J Hepatol 2013; 59:31-7. [PMID: 23454058 DOI: 10.1016/j.jhep.2013.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS To examine the antiviral activity of boceprevir, a hepatitis C virus (HCV) protease inhibitor, in HCV genotype (G) 2/3-infected patients. METHODS We assessed boceprevir and telaprevir activity against an HCV G2 and G3 isolates enzyme panel, in replicon, and in phenotypic cell-based assays. Additionally, a phase I study evaluated the antiviral activity of boceprevir monotherapy (200mg BID, 400mg BID, or 400mg TID) vs. placebo for 14 days in HCV G2/3 treatment-naive patients. RESULTS Boceprevir and telaprevir similarly inhibited G1 and G2 NS3/4A enzymes and replication in G1 and G2 replicon and cell-based assays. However, telaprevir demonstrated lower potency than boceprevir against HCV G3a enzyme (Ki=75 nM vs. 17 nM), in the G3a replicon assay (EC₅₀=953 nM vs. 159 nM), and against HCV G3a NS3 isolates (IC₅₀=3312 nM vs. 803 nM) in the cell-based assay. In HCV G2/3-infected patients, boceprevir (400 mg TID) resulted in a maximum mean decrease in HCV RNA of -1.60 log vs. -0.21 log with placebo. CONCLUSIONS In vitro, boceprevir is more active than telaprevir against the HCV G3 NS3/4A enzyme in cell-based and biochemical assays and against G3 isolates in replicon assays. In HCV G2/3-infected treatment-naive patients, decreases in HCV RNA levels with boceprevir (400 mg TID) were comparable to those observed with the same dose in HCV treatment-experienced G1-infected patients.
Collapse
|
94
|
McCauley JA, Rudd MT, Liverton NJ. HCV NS3/4a Protease Inhibitors: Simeprevir (TMC‐435350), Vaniprevir (MK‐7009) and MK‐5172. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatitis C virus (HCV) infection continues to represent a major health issue, with estimates of 130–170 million people infected worldwide. Recent developments in the HCV NS3/4a protease inhibitor area have significantly improved treatment options for patients. However, a more dramatic paradigm shift in the treatment of HCV infection appears all but certain in coming years, with a move to all oral combination therapy with direct‐acting antivirals (DAAs). HCV protease inhibitors have the potential to play a significant role in these DAA combination therapies. This chapter discusses in detail the design and discovery of three HCV NS3/4a protease inhibitors in clinical development: simeprevir (TMC‐435350), vaniprevir (MK‐7009) and MK‐5172.
Collapse
Affiliation(s)
- John A. McCauley
- Department of Medicinal Chemistry Merck Research Laboratories, West Point, PA 19486 USA
| | - Michael T. Rudd
- Department of Medicinal Chemistry Merck Research Laboratories, West Point, PA 19486 USA
| | - Nigel J. Liverton
- Department of Medicinal Chemistry Merck Research Laboratories, West Point, PA 19486 USA
| |
Collapse
|
95
|
Garnock-Jones KP. Boceprevir: a review of its use in the management of chronic hepatitis C genotype 1 infection. Drugs 2013; 72:2431-56. [PMID: 23231027 DOI: 10.2165/11209560-000000000-00000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Boceprevir (Victrelis®) is an inhibitor of the hepatitis C virus (HCV) non-structural protein NS3-4A serine protease and is used in combination with pegylated interferon (peginterferon)-alpha and ribavirin in the treatment of adults with chronic HCV (chronic hepatitis C) genotype 1 infection. Of the various genotypes of HCV, genotype 1 is one of the least responsive to interferon and ribavirin-based therapy, and thus most in need of novel treatments. This article reviews the available pharmacological properties of boceprevir and its clinical efficacy and tolerability in the treatment of chronic hepatitis C genotype 1 infection in adult patients who are either treatment-naive or have failed previous standard therapy. Boceprevir, when co-administered with peginterferon-alpha and ribavirin in patients with chronic hepatitis C genotype 1 infection who were treatment-naive or had previously not fully responded to or had relapsed following treatment, was associated with a significantly higher sustained virological response rate (defined as the proportion of patients with an undetectable plasma HCV RNA level at week 24 of the follow-up period [week 72 overall]) [primary endpoint] than peginterferon-alpha-2b and ribavirin alone, regardless of the boceprevir administration regimen, in the phase III SPRINT-2 (treatment-naive patients) and RESPOND-2 (previously treated patients) trials. There was no significant difference between full-duration (44 weeks) and response-guided (24 or 32 weeks followed by follow-up or peginterferon-alpha-2b plus ribavirin alone) boceprevir regimen recipients with regard to sustained virological response rate. All patients received an initial 4-week lead-in treatment period before the comparative treatment period began. Overall, boceprevir is generally well tolerated when administered concomitantly with peginterferon-alpha plus ribavirin in patients with chronic hepatitis C genotype 1 infection. The most common adverse events in any treatment group were flu-like symptoms, which are typically reported in patients receiving peginterferon-ribavirin therapy. The addition of boceprevir to peginterferon-alpha and ribavirin is associated with an increased risk of anaemia and neutropenia. In conclusion, boceprevir in combination with peginterferon-alpha and ribavirin is an effective and generally well tolerated treatment for treatment-naive or previously treated adult patients with chronic hepatitis C genotype 1 infection. The drug is associated with higher sustained virological response rates in these patients, in whom treatment with interferon and ribavirin alone may not be successful. Thus, boceprevir in combination with peginterferon-alpha and ribavirin is a valuable new treatment option for use in patients with chronic hepatitis C genotype 1 infection.
Collapse
|
96
|
Delaney WE. Molecular virology of chronic hepatitis B and C: parallels, contrasts and impact on drug development and treatment outcome. Antiviral Res 2013; 99:34-48. [PMID: 23602852 DOI: 10.1016/j.antiviral.2013.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/29/2013] [Accepted: 04/09/2013] [Indexed: 12/17/2022]
Abstract
Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) are highly prevalent worldwide, causing significant liver disease and thus representing high unmet medical needs. Accordingly, substantial pharmaceutical and clinical research efforts have been made to develop and improve treatments for these viruses. While HBV and HCV are both hepatotropic viruses that can cause similar disease in chronically infected patients, they belong to different viral families. There are substantial differences in the molecular virology of HBV and HCV that have profound implications for therapeutic strategy. In particular, HBV has a long-lived nuclear form of its genome (covalently closed circular DNA) that is able to persist in the face of potent inhibition of viral replication. In contrast, HCV does not have a long-lived genome form and depends on active replication to maintain infection; HCV is therefore much more susceptible to eradication by potent antiviral agents. Additional differences between HBV and HCV with therapeutic implications include the size, structure and heterogeneity of their respective viral genomes. These factors influence the number of targets available for therapeutic intervention, response to therapy among viral genotypes and the emergence of viral resistance. Substantial progress has been made in treating each infection, but unique challenges remain. In this review, key differences in the molecular virology of hepatitis B and C will be presented, highlighting their impact on antiviral therapy (particularly with respect to direct-acting antivirals) and the challenges they present to the cure of each disease.
Collapse
|
97
|
Gising J, Belfrage AK, Alogheli H, Ehrenberg A, Åkerblom E, Svensson R, Artursson P, Karlén A, Danielson UH, Larhed M, Sandström A. Achiral pyrazinone-based inhibitors of the hepatitis C virus NS3 protease and drug-resistant variants with elongated substituents directed toward the S2 pocket. J Med Chem 2013; 57:1790-801. [PMID: 23517538 DOI: 10.1021/jm301887f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we describe the design, synthesis, inhibitory potency, and pharmacokinetic properties of a novel class of achiral peptidomimetic HCV NS3 protease inhibitors. The compounds are based on a dipeptidomimetic pyrazinone glycine P3P2 building block in combination with an aromatic acyl sulfonamide in the P1P1' position. Structure-activity relationship data and molecular modeling support occupancy of the S2 pocket from elongated R(6) substituents on the 2(1H)-pyrazinone core and several inhibitors with improved inhibitory potency down to Ki = 0.11 μM were identified. A major goal with the design was to produce inhibitors structurally dissimilar to the di- and tripeptide-based HCV protease inhibitors in advanced stages of development for which cross-resistance might be an issue. Therefore, the retained and improved inhibitory potency against the drug-resistant variants A156T, D168V, and R155K further strengthen the potential of this class of inhibitors. A number of the inhibitors were tested in in vitro preclinical profiling assays to evaluate their apparent pharmacokinetic properties. The various R(6) substituents were found to have a major influence on solubility, metabolic stability, and cell permeability.
Collapse
Affiliation(s)
- Johan Gising
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Moreau B, O’Meara JA, Bordeleau J, Garneau M, Godbout C, Gorys V, Leblanc M, Villemure E, White PW, Llinàs-Brunet M. Discovery of Hepatitis C Virus NS3-4A Protease Inhibitors with Improved Barrier to Resistance and Favorable Liver Distribution. J Med Chem 2013; 57:1770-6. [DOI: 10.1021/jm400121t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Benoît Moreau
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Jeff A. O’Meara
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Josée Bordeleau
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Michel Garneau
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Cedrickx Godbout
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Vida Gorys
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Mélissa Leblanc
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Elisia Villemure
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Peter W. White
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| | - Montse Llinàs-Brunet
- Department of Medicinal Chemistry and ‡Department of Biological
Sciences, Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval,
Quebec H7S 2G5, Canada
| |
Collapse
|
99
|
Pharmacokinetic evaluation of the interaction between hepatitis C virus protease inhibitor boceprevir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and pravastatin. Antimicrob Agents Chemother 2013; 57:2582-8. [PMID: 23529734 DOI: 10.1128/aac.02347-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Boceprevir is a potent orally administered inhibitor of hepatitis C virus and a strong, reversible inhibitor of CYP3A4, the primary metabolic pathway for many 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Thus, the aim of the present study was to investigate drug-drug interactions between atorvastatin or pravastatin and boceprevir. We conducted a single-center, open-label, fixed-sequence, one-way-crossover study with 20 healthy adult volunteers. Subjects received single-dose atorvastatin (40 mg) or pravastatin (40 mg) on day 1, followed by boceprevir (800 mg three times daily) for 7 to 10 days. Repeat single doses of atorvastatin or pravastatin were administered in the presence of steady-state boceprevir. Atorvastatin exposure increased in the presence of boceprevir, with atorvastatin area under the concentration-time curve from time zero to infinity after single dosing (AUC(inf)) increasing 2.3-fold (90% confidence interval [CI], 1.85, 2.90) and maximum observed concentration in plasma (Cmax) 2.7-fold (90% CI, 1.81, 3.90). Pravastatin exposure was slightly increased in the presence of boceprevir, with pravastatin AUC(inf) increasing 1.63-fold (90% CI, 1.03, 2.58) and C(max) 1.49-fold (90% CI, 1.03, 2.14). Boceprevir exposure was generally unchanged when the drug was coadministered with atorvastatin or pravastatin. All adverse events were mild and consistent with the known safety profile of boceprevir. The observed 130% increase in AUC of atorvastatin supports the use of the lowest possible effective dose of atorvastatin when coadministered with boceprevir, without exceeding a maximum daily dose of 40 mg. The observed 60% increase in pravastatin AUC with boceprevir coadministration supports the initiation of pravastatin treatment at the recommended dose when coadministered with boceprevir, with close clinical monitoring.
Collapse
|
100
|
Jothimani D, Chandy GM, Conjeevaram H. A new era in the treatment of chronic hepatitis C infection. Indian J Gastroenterol 2013; 32:71-9. [PMID: 23054947 DOI: 10.1007/s12664-012-0254-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/02/2012] [Indexed: 02/04/2023]
Abstract
Treatment of chronic hepatitis C virus (HCV) infection has evolved over the past three decades. At the start, treatment involved interferon monotherapy followed by combination therapy using interferon and ribavirin, and subsequently evolved to pegylated interferon (Peg-IFN) and ribavirin. In genotype 1 infection, rates of sustained virological response (SVR) are approximately 45 % with Peg-IFN and ribavirin, whereas SVR rates in genotypes 2 and 3 infections are as high as 70 % to 80 %. Side effects and cost related to these drugs are important concerns, particularly in countries like India where patients have to bear their health expenses. In the recent past, there has been a significant change in course with the on-going search and the development of more effective drugs in the management of HCV infection. Telaprevir and Boceprevir are two new potent protease inhibitors (direct acting antiviral or DAA agents) which, when administered with Peg-IFN and ribavirin, have shown to result significantly higher SVR rates in phase 3 studies in patients with genotype 1 infection, both in treatment naïve patients (up to 75 %) and those with previously failed therapy. Several other new antiviral agents some in combination with Peg-IFN and ribavirin and some in combination without Peg-IFN (IFN-free regimens) are currently being tested in patients with genotype 1, 2 and 3 infections and are expected to dramatically change the armamentarium of HCV therapy in the coming years.
Collapse
Affiliation(s)
- Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Global Hospitals and Health City, 439 Cheran Nagar, Perumbakkam, Chennai 600 100, Tamil Nadu, India.
| | | | | |
Collapse
|