51
|
Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep 2022; 42:231311. [PMID: 35579296 PMCID: PMC9208314 DOI: 10.1042/bsr20211699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic initiation factor 2B, eIF2B is a guanine nucleotide exchange, factor with a central role in coordinating the initiation of translation. During stress and disease, the activity of eIF2B is inhibited via the phosphorylation of its substrate eIF2 (p-eIF2α). A number of different kinases respond to various stresses leading to the phosphorylation of the alpha subunit of eIF2, and collectively this regulation is known as the integrated stress response, ISR. This targeting of eIF2B allows the cell to regulate protein synthesis and reprogramme gene expression to restore homeostasis. Advances within structural biology have furthered our understanding of how eIF2B interacts with eIF2 in both the productive GEF active form and the non-productive eIF2α phosphorylated form. Here, current knowledge of the role of eIF2B in the ISR is discussed within the context of normal and disease states focusing particularly on diseases such as vanishing white matter disease (VWMD) and permanent neonatal diabetes mellitus (PNDM), which are directly linked to mutations in eIF2B. The role of eIF2B in synaptic plasticity and memory formation is also discussed. In addition, the cellular localisation of eIF2B is reviewed and considered along with the role of additional in vivo eIF2B binding factors and protein modifications that may play a role in modulating eIF2B activity during health and disease.
Collapse
|
52
|
Zhang D, Liu Y, Zhu Y, Zhang Q, Guan H, Liu S, Chen S, Mei C, Chen C, Liao Z, Xi Y, Ouyang S, Feng XH, Liang T, Shen L, Xu P. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol 2022; 24:766-782. [PMID: 35501370 DOI: 10.1038/s41556-022-00894-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.
Collapse
Affiliation(s)
- Dan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yutong Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Hongxing Guan
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shengduo Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shasha Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chen Mei
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ying Xi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China. .,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
53
|
Boone M, Wang L, Lawrence RE, Frost A, Walter P, Schoof M. A point mutation in the nucleotide exchange factor eIF2B constitutively activates the integrated stress response by allosteric modulation. eLife 2022; 11:e76171. [PMID: 35416150 PMCID: PMC9132573 DOI: 10.7554/elife.76171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Previously we showed that translational control is primarily exerted through a conformational switch in eIF2's nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2 (Schoof et al. 2021). Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B's β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed A/I-State model of allosteric ISR regulation.
Collapse
Affiliation(s)
- Morgane Boone
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Rosalie E Lawrence
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Michael Schoof
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
54
|
Quwaider D, Corchete LA, Martín-Izquierdo M, Hernández-Sánchez JM, Rojas EA, Cardona-Benavides IJ, García-Sanz R, Herrero AB, Gutiérrez NC. RNA sequencing identifies novel regulated IRE1-dependent decay targets that affect multiple myeloma survival and proliferation. Exp Hematol Oncol 2022; 11:18. [PMID: 35361260 PMCID: PMC8969279 DOI: 10.1186/s40164-022-00271-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Background IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. Methods In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. Results Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4, PRDM1, IKZF1, KLF13, NOTCH1, ATR, DICER, RICTOR, CDK12, FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. Conclusion This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00271-4.
Collapse
Affiliation(s)
- Dalia Quwaider
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Marta Martín-Izquierdo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Elizabeta A Rojas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ignacio J Cardona-Benavides
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ramón García-Sanz
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Ana B Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Norma C Gutiérrez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain. .,Hematology Department, University Hospital of Salamanca, Salamanca, Spain. .,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain.
| |
Collapse
|
55
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang C, Gao L, Shang H, Xu JD. Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Front Mol Biosci 2022; 9:817392. [PMID: 35402506 PMCID: PMC8988245 DOI: 10.3389/fmolb.2022.817392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum, a vast reticular membranous network from the nuclear envelope to the plasma membrane responsible for the synthesis, maturation, and trafficking of a wide range of proteins, is considerably sensitive to changes in its luminal homeostasis. The loss of ER luminal homeostasis leads to abnormalities referred to as endoplasmic reticulum (ER) stress. Thus, the cell activates an adaptive response known as the unfolded protein response (UPR), a mechanism to stabilize ER homeostasis under severe environmental conditions. ER stress has recently been postulated as a disease research breakthrough due to its significant role in multiple vital cellular functions. This has caused numerous reports that ER stress-induced cell dysfunction has been implicated as an essential contributor to the occurrence and development of many diseases, resulting in them targeting the relief of ER stress. This review aims to outline the multiple molecular mechanisms of ER stress that can elucidate ER as an expansive, membrane-enclosed organelle playing a crucial role in numerous cellular functions with evident changes of several cells encountering ER stress. Alongside, we mainly focused on the therapeutic potential of ER stress inhibition in gastrointestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer. To conclude, we reviewed advanced research and highlighted future treatment strategies of ER stress-associated conditions.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
56
|
Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. eLife 2022; 11:e71705. [PMID: 35179490 PMCID: PMC8933008 DOI: 10.7554/elife.71705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses and is the key instigator of cell competition.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Chaitali Khan
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | | | - Jacky Chuen
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineThe BronxUnited States
- Department of Opthalmology and Visual Sciences, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
57
|
Zhang Q, Liu X, Piao C, Jiao Z, Ma Y, Wang Y, Liu T, Xu J, Wang H. Effect of conditioned medium from adipose derived mesenchymal stem cells on endoplasmic reticulum stress and lipid metabolism after hepatic ischemia reperfusion injury and hepatectomy in swine. Life Sci 2022; 289:120212. [PMID: 34896163 DOI: 10.1016/j.lfs.2021.120212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
AIMS Hepatic ischemia reperfusion injury (HIRI) is associated with liver failure after liver transplantation and hepatectomy. Thus, this study aims to explore the effect of conditioned medium from adipose derived stem cells (ADSC-CM) on endoplasmic reticulum stress (ERS) and lipid metabolism after HIRI combined with hepatectomy in miniature pigs. MAIN METHODS A model of HIRI combined with hepatectomy in miniature pigs was established. The expression of ERS-related proteins and lipid metabolism related genes, as well as triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL), very low density lipoprotein (VLDL) and acetyl-CoA carboxylase 1 (ACC1) level were measured in liver tissues. KEY FINDINGS Both ADSCs and ADSC-CM could improve the damage in the ultrastructure of hepatocytes. ADSC-CM significantly decreased the protein expression of GRP78, ATF6, XBP1, p-eIF2α, ATF4, p-JNK and CHOP. Oil red O staining revealed that the degree of hepatocyte steatosis was also significantly reduced after treatment with ADSC-CM. In addition, ADSC-CM remarkably decreased TG, TC, HDL and ACC1 level in liver tissues, while enhanced VLDL content. Finally, SREBP1, SCAP, FASN, ACC1, HMGCR and HMGCS1 mRNA expression was also markedly downregulated in liver tissues. SIGNIFICANCE Injection of ADSC-CM into the hepatic parenchymal could represent a novel cell-free therapeutic approach to improve HIRI combined with hepatectomy injury. The inhibition of ERS and the improvement of lipid metabolism in the hepatocytes might be a potential mechanism used by ADSC-CM to prevent liver injury from HIRI combined with hepatectomy.
Collapse
Affiliation(s)
- Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhihui Jiao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, PR China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiayuan Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
58
|
Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022; 10:biomedicines10010108. [PMID: 35052788 PMCID: PMC8773075 DOI: 10.3390/biomedicines10010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatitis and alcoholic pancreatitis are serious health concerns with an urgent need for effective treatment strategies. Alcohol is a known etiological factor for pancreatitis, including acute pancreatitis (AP) and chronic pancreatitis (CP). Excessive alcohol consumption induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) stress and adaptive unfolded protein response (UPR). ER stress results from the accumulation of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic pancreatitis. Here, we summarize the possible mechanisms by which ER stress contributes to alcoholic pancreatitis. We also discuss potential approaches targeting ER stress and UPR in developing novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Wen Wen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Jia Luo
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Correspondence: ; Tel.: +1-319-335-2256
| |
Collapse
|
59
|
Abstract
Wildtype or mutant proteins expressed beyond the capacity of a cell's protein folding system could be detrimental to general cellular function and survival. In response to misfolded protein overload in the endoplasmic reticulum (ER), eukaryotic cells activate the Unfolded Protein Response (UPR) that helps cells restore protein homeostasis in the endoplasmic reticulum (ER). As part of the UPR, cells attenuate general mRNA translation and activate transcription factors that induce stress-responsive gene expression.UPR signaling draws research interest in part because conditions that cause chronic protein misfolding in the ER or those that impair UPR signaling underlie several diseases including neurodegeneration, diabetes, and cancers. Model organisms are frequently employed in the field as the UPR pathways are generally well-conserved throughout phyla. Here, we introduce experimental procedures to detect UPR in Drosophila melanogaster.
Collapse
Affiliation(s)
- Hidetaka Katow
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
60
|
Chinese Herbal Medicine Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4963346. [PMID: 34917158 PMCID: PMC8670943 DOI: 10.1155/2021/4963346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia/reperfusion injury is the main cause of increased mortality and disability in cardiovascular diseases. The injury involves many pathological processes, such as oxidative stress, calcium homeostasis imbalance, inflammation, and energy metabolism disorders, and these pathological stimuli can activate endoplasmic reticulum stress. In the early stage of ischemia, endoplasmic reticulum stress alleviates the injury as an adaptive survival response, but the long-term stress on endoplasmic reticulum amplifies oxidative stress, inflammation, and calcium overload to accelerate cell damage and apoptosis. Therefore, regulation of endoplasmic reticulum stress may be a mechanism to improve ischemia/reperfusion injury. Chinese herbal medicine has a long history of clinical application and unique advantages in the treatment of ischemic heart diseases. This review focuses on the effect of Chinese herbal medicine on myocardial ischemia/reperfusion injury from the perspective of regulation of endoplasmic reticulum stress.
Collapse
|
61
|
Schoof M, Wang L, Cogan JZ, Lawrence RE, Boone M, Wuerth JD, Frost A, Walter P. Viral evasion of the integrated stress response through antagonism of eIF2-P binding to eIF2B. Nat Commun 2021; 12:7103. [PMID: 34876554 PMCID: PMC8651678 DOI: 10.1038/s41467-021-26164-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Viral infection triggers activation of the integrated stress response (ISR). In response to viral double-stranded RNA (dsRNA), RNA-activated protein kinase (PKR) phosphorylates the translation initiation factor eIF2, converting it from a translation initiator into a potent translation inhibitor and this restricts the synthesis of viral proteins. Phosphorylated eIF2 (eIF2-P) inhibits translation by binding to eIF2's dedicated, heterodecameric nucleotide exchange factor eIF2B and conformationally inactivating it. We show that the NSs protein of Sandfly Fever Sicilian virus (SFSV) allows the virus to evade the ISR. Mechanistically, NSs tightly binds to eIF2B (KD = 30 nM), blocks eIF2-P binding, and rescues eIF2B GEF activity. Cryo-EM structures demonstrate that SFSV NSs and eIF2-P directly compete, with the primary NSs contacts to eIF2Bα mediated by five 'aromatic fingers'. NSs binding preserves eIF2B activity by maintaining eIF2B's conformation in its active A-State.
Collapse
Affiliation(s)
- Michael Schoof
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - J Zachery Cogan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Rosalie E Lawrence
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Morgane Boone
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | | | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
62
|
Li L, Wen Y, Jiang L, Zhu YQ. Endoplasmic reticulum stress response mediated by the PERK-eIF2α-ATF4 pathway is involved in odontoblastic differentiation of human dental pulp cells. Arch Oral Biol 2021; 133:105312. [PMID: 34808514 DOI: 10.1016/j.archoralbio.2021.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE RNA-activated protein kinase-like ER-resident kinase (PERK) was a major transducer of Endoplasmic reticulum (ER) stress response and it directly phosphorylated α-subunit of eukaryotic initiation factor 2 (eIF2α), which specifically promoted the translation of activating transcription factor 4 (ATF4), an important transcription factor in cells' differentiation. The purpose of this study was to establish whether ER stress mediated by PERK-eIF2α-ATF4 pathway was involved in odontoblastic differentiation of human dental pulp cells (DPCs). METHODS DPCs were isolated from extracted teeth and cultured in odontogenic medium. A recombinant lentiviral vector was constructed to transfect DPCs for PERK knockdown. Alkaline phosphatase (ALP) and Alizarin red S staining were used to characterize the odontoblastic differentiation. Real-time polymerase chain reactions (RT-PCR) were performed to analyze the genes' expressions in DPCs' odontoblastic differentiation. The mRNA and protein levels of ER stress markers were examined by RT-PCR and western blot. RESULTS DPCs cultured in odontogenic media showed increased ALP activity and mineralized nodule formation. Notably, treatment with differentiation medium resulted in the up-regulation of genes, such as osteocalcin (OCN), bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP), splicing x-box binding protein-1 (sXBP1), ATF4 and glucose-regulated protein 78 (GRP78). Meanwhile, the expressions of PERK-eIF2α-ATF4 pathway proteins, phosphorylated PERK, phosphorylated eIF2α and ATF4, increased in odontoblastic induction cells compared with controls. Furthermore, inhibition of PERK (PERK knockdown) decreased ALP activity and matrix mineralization in DPCs accompanied by the decrease expression of phosphorylated eIF2α and ATF4. CONCLUSION These results suggested that PERK-eIF2α-ATF4 pathway was involved in the odontoblastic differentiation of DPCs.
Collapse
Affiliation(s)
- Lifen Li
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Yang Wen
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Long Jiang
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Ya-Qin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
63
|
Chen YM, Gabler NK, Burrough ER. Porcine epidemic diarrhea virus infection induces endoplasmic reticulum stress and unfolded protein response in jejunal epithelial cells of weaned pigs. Vet Pathol 2021; 59:82-90. [PMID: 34763602 DOI: 10.1177/03009858211048622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection leads to diarrhea and subsequently to decreased feed efficiency and growth in weaned pigs. Given that few studies have addressed the host-virus interaction in vivo, this study focused on endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in jejunal epithelial cells during PEDV infection. Eight-week-old pigs (n = 64) were orally inoculated with PEDV IN19338 strain (n = 40) or sham-inoculated (n = 24) and analyzed for PEDV viral RNA shedding using reverse transcription-quantitative polymerase chain reaction and for viral antigen within enterocytes using immunohistochemistry (IHC). ER stress was analyzed in a subset of 9 PEDV-inoculated pigs with diarrhea, detectable viral RNA, and viral antigen (PEDV-immunopositive pigs). Compared with control pigs, PEDV-immunopositive pigs had a reduced ratio of villus height to crypt depth in the jejunum (P = .002, n = 9 per group), consistent with intestinal injury. The protein levels of ATF6, IRE1, PERK, XBP1u, ATF4, GRP78, and caspase-3 were assessed in jejunal epithelial cells at the villus tips via IHC. Both ER stress and UPR were demonstrated in PEDV-immunopositive pigs by the increased expression of ATF6 (P = .047), IRE1 (P = .007), and ATF4 (P = .001). The expression of GRP78 (P = .024) and caspase-3 (P = .004) were also increased, indicating an accompanying increase in ER protein folding capacity and apoptosis. Overall, these results reveal that PEDV infection induces ER stress and UPR in intestinal epithelial cells of weaned pigs.
Collapse
|
64
|
Trouvé P, Férec C, Génin E. The Interplay between the Unfolded Protein Response, Inflammation and Infection in Cystic Fibrosis. Cells 2021; 10:2980. [PMID: 34831204 PMCID: PMC8616505 DOI: 10.3390/cells10112980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
In cystic fibrosis (CF), p.Phe508del is the most frequent mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The p.Phe508del-CFTR protein is retained in the ER and rapidly degraded. This retention likely triggers an atypical Unfolded Protein Response (UPR) involving ATF6, which reduces the expression of p.Phe508del-CFTR. There are still some debates on the role of the UPR in CF: could it be triggered by the accumulation of misfolded CFTR proteins in the endoplasmic reticulum as was proposed for the most common CFTR mutation p.Phe508del? Or, is it the consequence of inflammation and infection that occur in the disease? In this review, we summarize recent findings on UPR in CF and show how infection, inflammation and UPR act together in CF. We propose to rethink their respective role in CF and to consider them as a whole.
Collapse
Affiliation(s)
- Pascal Trouvé
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.F.); (E.G.)
| | | | | |
Collapse
|
65
|
Zhang F, Zeng QY, Xu H, Xu AN, Liu DJ, Li NZ, Chen Y, Jin Y, Xu CH, Feng CZ, Zhang YL, Liu D, Liu N, Xie YY, Yu SH, Yuan H, Xue K, Shi JY, Liu TX, Xu PF, Zhao WL, Zhou Y, Wang L, Huang QH, Chen Z, Chen SJ, Zhou XL, Sun XJ. Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discov 2021; 7:98. [PMID: 34697290 PMCID: PMC8547220 DOI: 10.1038/s41421-021-00332-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.
Collapse
Affiliation(s)
- Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ai-Ning Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dian-Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Zhe Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chang-Zhou Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Liang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yin-Yin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yuan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yi Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xi Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Fei Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiu-Hua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
66
|
Brown B, Mitra S, Roach FD, Vasudevan D, Ryoo HD. The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila. eLife 2021; 10:74047. [PMID: 34605405 PMCID: PMC8514241 DOI: 10.7554/elife.74047] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2α to initiate the Unfolded Protein Response (UPR). eIF2α phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5’ leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell-type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2α phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5’ leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.
Collapse
Affiliation(s)
- Brian Brown
- NYU Grossman School of Medicine, New York, United States
| | - Sahana Mitra
- NYU Grossman School of Medicine, New York, United States
| | | | | | - Hyung Don Ryoo
- NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
67
|
He Z, Lieu L, Dong Y, Afrin S, Chau D, Kabahizi A, Wallace B, Cao J, Hwang ES, Yao T, Huang Y, Okolo J, Cheng B, Gao Y, Hu L, Williams KW. PERK in POMC neurons connects celastrol with metabolism. JCI Insight 2021; 6:145306. [PMID: 34549728 PMCID: PMC8492333 DOI: 10.1172/jci.insight.145306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
ER stress and activation of the unfolded protein response in the periphery as well as the central nervous system have been linked to various metabolic abnormalities. Chemically lowering protein kinase R–like ER kinase (PERK) activity within the hypothalamus leads to decreased food intake and body weight. However, the cell populations required in this response remain undefined. In the current study, we investigated the effects of proopiomelanocortin-specific (POMC-specific) PERK deficiency on energy balance and glucose metabolism. Male mice deficient for PERK in POMC neurons exhibited improvements in energy balance on a high-fat diet, showing decreased food intake and body weight, independent of changes in glucose and insulin tolerances. The plant-based inhibitor of PERK, celastrol, increases leptin sensitivity, resulting in decreased food intake and body weight in a murine model of diet-induced obesity (DIO). Our data extend these observations by demonstrating that celastrol-induced improvements in leptin sensitivity and energy balance were attenuated in mice with PERK deficiency in POMC neurons. Altogether, these data suggest that POMC-specific PERK deficiency in male mice confers protection against DIO, possibly providing a new therapeutic target for the treatment of diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Zhenyan He
- Department of Neurosurgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Linh Lieu
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Yanbin Dong
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Institute of Gastroenterology and.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sadia Afrin
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Dominic Chau
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Anita Kabahizi
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Briana Wallace
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Jianhong Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Eun-Sang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jennifer Okolo
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Bo Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yong Gao
- Laboratory Department, Affiliated Hospital of Binzhou Medical College, Shandong, China
| | - Ling Hu
- Institute of Gastroenterology and.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
68
|
Paul BD. Signaling Overlap between the Golgi Stress Response and Cysteine Metabolism in Huntington's Disease. Antioxidants (Basel) 2021; 10:antiox10091468. [PMID: 34573100 PMCID: PMC8465517 DOI: 10.3390/antiox10091468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is caused by expansion of polyglutamine repeats in the protein huntingtin, which affects the corpus striatum of the brain. The polyglutamine repeats in mutant huntingtin cause its aggregation and elicit toxicity by affecting several cellular processes, which include dysregulated organellar stress responses. The Golgi apparatus not only plays key roles in the transport, processing, and targeting of proteins, but also functions as a sensor of stress, signaling through the Golgi stress response. Unlike the endoplasmic reticulum (ER) stress response, the Golgi stress response is relatively unexplored. This review focuses on the molecular mechanisms underlying the Golgi stress response and its intersection with cysteine metabolism in HD.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
69
|
Derisbourg MJ, Hartman MD, Denzel MS. Perspective: Modulating the integrated stress response to slow aging and ameliorate age-related pathology. NATURE AGING 2021; 1:760-768. [PMID: 35146440 PMCID: PMC7612338 DOI: 10.1038/s43587-021-00112-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy aging requires the coordination of numerous stress signaling pathways that converge on the protein homeostasis network. The Integrated Stress Response (ISR) is activated by diverse stimuli, leading to phosphorylation of the eukaryotic translation initiation factor elF2 in its α-subunit. Under replete conditions, elF2 orchestrates 5' cap-dependent mRNA translation and is thus responsible for general protein synthesis. elF2α phosphorylation, the key event of the ISR, reduces global mRNA translation while enhancing the expression of a signature set of stress response genes. Despite the critical role of protein quality control in healthy aging and in numerous longevity pathways, the role of the ISR in longevity remains largely unexplored. ISR activity increases with age, suggesting a potential link with the aging process. Although decreased protein biosynthesis, which occurs during ISR activation, have been linked to lifespan extension, recent data show that lifespan is limited by the ISR as its inhibition extends survival in nematodes and enhances cognitive function in aged mice. Here we survey how aging affects the ISR, the role of the ISR in modulating aging, and pharmacological interventions to tune the ISR. Finally, we will explore the ISR as a plausible target for clinical interventions in aging and age-related disease.
Collapse
Affiliation(s)
| | | | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
70
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
71
|
Hartwick Bjorkman S, Oliveira Pereira R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid Redox Signal 2021; 35:252-269. [PMID: 33599550 PMCID: PMC8262388 DOI: 10.1089/ars.2020.8220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Mitochondria-derived reactive oxygen species (mtROS) are by-products of normal physiology that may disrupt cellular redox homeostasis on a regular basis. Nonetheless, failure to resolve sustained mitochondrial stress to mitigate high levels of mtROS might contribute to the etiology of numerous pathological conditions, such as obesity, insulin resistance, and cardiovascular disease (CVD). Recent Advances: Notably, recent studies have demonstrated that moderate mitochondrial stress might result in the induction of different stress response pathways that ultimately improve the organism's ability to deal with subsequent stress, a process termed mitohormesis. mtROS have been shown to play a key role in regulating this adaptation. Critical Issue: mtROS regulate the convergence of different signaling pathways that, when disturbed, might impair cardiometabolic health. Conversely, mtROS seem to be required to mediate activation of prosurvival pathways, contributing to improved cardiometabolic fitness. In the present review, we will primarily focus on the role of mtROS in the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and examine the role of endoplasmic reticulum (ER) stress in coordinating the convergence of ER stress and oxidative stress signaling through activation of Nrf2 and activating transcription factor 4 (ATF4). Future Directions: The mechanisms underlying cardiometabolic protection in response to mitochondrial stress have only started to be investigated. Integrated understanding of how mtROS and ER stress cooperatively promote activation of prosurvival pathways might shed mechanistic insight into the role of mitohormesis in mediating cardiometabolic protection and might inform future therapeutic avenues for the treatment of metabolic diseases contributing to CVD. Antioxid. Redox Signal. 35, 252-269.
Collapse
Affiliation(s)
- Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
72
|
Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, Aliyu IM, Danraka RN, Amin A, Bala AA, Ahmad WANW, Rasool AHG, Mustafa MR, Mokhtar SS. Current Status of Endoplasmic Reticulum Stress in Type II Diabetes. Molecules 2021; 26:4362. [PMID: 34299638 PMCID: PMC8307902 DOI: 10.3390/molecules26144362] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/10/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) plays a multifunctional role in lipid biosynthesis, calcium storage, protein folding, and processing. Thus, maintaining ER homeostasis is essential for cellular functions. Several pathophysiological conditions and pharmacological agents are known to disrupt ER homeostasis, thereby, causing ER stress. The cells react to ER stress by initiating an adaptive signaling process called the unfolded protein response (UPR). However, the ER initiates death signaling pathways when ER stress persists. ER stress is linked to several diseases, such as cancer, obesity, and diabetes. Thus, its regulation can provide possible therapeutic targets for these. Current evidence suggests that chronic hyperglycemia and hyperlipidemia linked to type II diabetes disrupt ER homeostasis, thereby, resulting in irreversible UPR activation and cell death. Despite progress in understanding the pathophysiology of the UPR and ER stress, to date, the mechanisms of ER stress in relation to type II diabetes remain unclear. This review provides up-to-date information regarding the UPR, ER stress mechanisms, insulin dysfunction, oxidative stress, and the therapeutic potential of targeting specific ER stress pathways.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Pulau Pinang, Malaysia;
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
| | - Abubakar Ibrahim Jatau
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Aishatu Shehu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna 800241, Kaduna, Nigeria;
| | - Ibrahim Muazzamu Aliyu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Rabi’u Nuhu Danraka
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria 810107, Kaduna, Nigeria; (A.S.); (I.M.A.); (R.N.D.)
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin 240103, Kwara, Nigeria;
- Membrane Traffic Group, Instituto Gulbenkian de Ciencia, 2784-156 Lisbon, Portugal
| | - Auwal Adam Bala
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Dutse 720281, Jigawa, Nigeria;
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University Kano, Kano 700241, Kano, Nigeria
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (S.M.); (A.K.A.); (A.H.G.R.)
| |
Collapse
|
73
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
74
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
75
|
Shao M, Shi R, Gao ZX, Gao SS, Li JF, Li H, Cui SZ, Hu WM, Chen TY, Wu GR, Zhang J, Xu J, Sy MS, Li C. Crizotinib and Doxorubicin Cooperatively Reduces Drug Resistance by Mitigating MDR1 to Increase Hepatocellular Carcinoma Cells Death. Front Oncol 2021; 11:650052. [PMID: 34094940 PMCID: PMC8170002 DOI: 10.3389/fonc.2021.650052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
As the sixth most lethal cancers worldwide, hepatocellular carcinoma (HCC) has been treated with doxorubicin (Dox) for decades. However, chemotherapy resistance, especially for Dox is an even more prominent problem due to its high cardiotoxicity. To find a regimen to reduce Dox resistance, and identify the mechanisms behind it, we tried to identify combination of drugs that can overcome drug resistance by screening tyrosine kinase inhibitor(s) with Dox with various HCC cell lines in vitro and in vivo. We report here that combination of Crizo and Dox has a synergistic effect on inducing HCC cell death. Accordingly, Crizo plus Dox increases Dox accumulation in nucleus 3-16 times compared to Dox only; HCC cell death enhanced at least 50% in vitro and tumor weights reduced ranging from 35 to 65%. Combining these two drugs reduces multiple drug resistance 1 (MDR1) protein as a result of activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), which phosphorylates eIF2α, leading to protein translational repression. Additionally, PERK stimulation activates C-Jun terminal kinase (JNK), resulting in accumulation of unfused autophagosome to enhance autophagic cell death via Poly-ADP-ribosyltransferase (PARP-1) cleavage. When the activity of PERK or JNK is blocked, unfused autophagosome is diminished, cleaved PARP-1 is reduced, and cell death is abated. Therefore, Crizo plus Dox sensitize HCC drug resistance by engaging PERK-p- eIF2α-MDR1, and kill HCC cells by engaging PERK-JNK- autophagic cell death pathways. These newly discovered mechanisms of Crizo plus Dox not only provide a potential treatment for HCC but also point to an approach to overcome MDR1 related drug resistance in other cancers.
Collapse
Affiliation(s)
- Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Run Shi
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Xing Gao
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shan-Shan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jing-Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei-Min Hu
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Tian-Yun Chen
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gui-Ru Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
76
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
77
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
78
|
Calvo V, Surguladze D, Li AH, Surman MD, Malibhatla S, Bandaru M, Jonnalagadda SK, Adarasandi R, Velmala M, Singireddi DRP, Velpuri M, Nareddy BR, Sastry V, Mandati C, Guguloth R, Siddiqui S, Patil BS, Chad E, Wolfley J, Gasparek J, Feldman K, Betzenhauser M, Wiens B, Koszelak-Rosenblum M, Zhu G, Du H, Rigby AC, Mulvihill MJ. Discovery of 2-amino-3-amido-5-aryl-pyridines as highly potent, orally bioavailable, and efficacious PERK kinase inhibitors. Bioorg Med Chem Lett 2021; 43:128058. [PMID: 33895276 DOI: 10.1016/j.bmcl.2021.128058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of the three endoplasmic reticulum (ER) transmembrane sensors of the unfolded protein response (UPR) that regulates protein synthesis, alleviates cellular ER stress and has been implicated in tumorigenesis and prolonged cancer cell survival. In this study, we report a series of 2-amino-3-amido-5-aryl-pyridines that we have identified as potent, selective, and orally bioavailable PERK inhibitors. Amongst the series studied herein, compound (28) a (R)-2-Amino-5-(4-(2-(3,5-difluorophenyl)-2-hydroxyacetamido)-2-ethylphenyl)-N-isopropylnicotinamide has demonstrated potent biochemical and cellular activity, robust pharmacokinetics and 70% oral bioavailability in mice. Given these data, this compound (28) was studied in the 786-O renal cell carcinoma xenograft model. We observed dose-dependent, statistically significant tumor growth inhibition, supporting the use of this tool compound in additional mechanistic studies.
Collapse
Affiliation(s)
- Veronica Calvo
- HiberCell Inc. 619 West 54th Street, New York, NY 10019, USA
| | | | - An-Hu Li
- HiberCell Inc. 619 West 54th Street, New York, NY 10019, USA
| | | | - Srikanth Malibhatla
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Madhavarao Bandaru
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | | | - Ravi Adarasandi
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Madhusudhan Velmala
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | | | - Mahendar Velpuri
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Bhaskar Reddy Nareddy
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Visweswara Sastry
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Chiranjeevi Mandati
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Rambabu Guguloth
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Shapi Siddiqui
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Basanagoud S Patil
- AMRI, Plot #9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Elena Chad
- AMRI, 1001 Main Street, Buffalo, NY 14203, USA
| | | | | | | | | | - Brent Wiens
- AMRI, 1001 Main Street, Buffalo, NY 14203, USA
| | | | - Guangyu Zhu
- AMRI, 1001 Main Street, Buffalo, NY 14203, USA
| | - Hongwen Du
- Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, China
| | - Alan C Rigby
- HiberCell Inc. 619 West 54th Street, New York, NY 10019, USA
| | | |
Collapse
|
79
|
Knowles A, Campbell S, Cross N, Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front Microbiol 2021; 12:645161. [PMID: 33967983 PMCID: PMC8100032 DOI: 10.3389/fmicb.2021.645161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host immune activation forms a vital line of defence against bacterial pathogenicity. However, just as hosts have evolved immune responses, bacteria have developed means to escape, hijack and subvert these responses to promote survival. In recent years, a highly conserved group of signalling cascades within the host, collectively termed the integrated stress response (ISR), have become increasingly implicated in immune activation during bacterial infection. Activation of the ISR leads to a complex web of cellular reprogramming, which ultimately results in the paradoxical outcomes of either cellular homeostasis or cell death. Therefore, any pathogen with means to manipulate this pathway could induce a range of cellular outcomes and benefit from favourable conditions for long-term survival and replication. This review aims to outline what is currently known about bacterial manipulation of the ISR and present key hypotheses highlighting areas for future research.
Collapse
Affiliation(s)
- Alex Knowles
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Susan Campbell
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neil Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
80
|
Wang P, Han L, Yu M, Cao Z, Li X, Shao Y, Zhu G. The Prognostic Value of PERK in Cancer and Its Relationship With Immune Cell Infiltration. Front Mol Biosci 2021; 8:648752. [PMID: 33937330 PMCID: PMC8085429 DOI: 10.3389/fmolb.2021.648752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein that functions as an endoplasmic reticulum (ER) stress sensor to regulate global protein synthesis. Recent research studies suggest that PERK, as an important receptor protein of unfolded protein response, is involved in the pathogenesis of many cancers. This study aimed to investigate PERK expression and its relationship with prognosis in pan-cancer and attempted to explore the relevant mechanism of PERK involved in the regulation of cancer pathogenesis. Methods: The Oncomine and TIMER databases were used to analyze the expression of PERK between pan-cancer samples and normal samples. Survival analysis was performed using the PrognoScan, Kaplan–Meier (K-M) plotter, and UALCAN databases. Gene set enrichment analysis (GSEA) was used to perform the functional enrichment analysis of the PERK gene in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), and thyroid carcinoma (THCA). The TIMER database was used to investigate the correlation between PERK expression and tumor-infiltrating immune cells and analyze the relationship of PERK with marker genes of immune cells which were downloaded from the CellMarker database in BRCA, HNSC, and THCA. Results: PERK was differentially expressed in various cancers, such as breast cancer, liver cancer, lung cancer, gastric carcinoma, lymphoma, thyroid cancer, leukemia, and head and neck squamous cell carcinomas. The high expression of PERK was associated with a poor prognosis in KIRP, LGG, BRCA, and THCA and with a favorable prognosis in HNSC. The results of GSEA indicated that PERK was mainly enriched in immune-related signaling pathways in BRCA, HNSC, and THCA. Moreover, PERK expression was significant positively correlated with infiltrating levels of macrophages and dendritic cells and was strongly associated with a variety of immune markers, especially macrophage mannose receptor 1 (MRC1, also called CD206) and T-helper cells (Th). Conclusion: The high expression of PERK could promote the infiltration of multiple immune cells in the tumor microenvironment and could deteriorate the outcomes of patients with breast and thyroid cancers, suggesting that PERK as well as tumor-infiltrating immune cells could be taken as potential biomarkers of prognosis.
Collapse
Affiliation(s)
- Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Liying Han
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Moxin Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Zhengyu Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Xiaoning Li
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yunxia Shao
- Department of Nephrology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| |
Collapse
|
81
|
Ji C, Yi H, Huang J, Zhang W, Zheng M. Propofol alleviates inflammation and apoptosis in HCY‑induced HUVECs by inhibiting endoplasmic reticulum stress. Mol Med Rep 2021; 23:333. [PMID: 33760174 PMCID: PMC7974316 DOI: 10.3892/mmr.2021.11972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic vascular inflammatory disease, and is associated with oxidative stress and endothelial dysfunction. Homocysteine (HCY) can cause damage to endothelial cells via the enhancement of the endoplasmic reticulum stress (ERS) pathway. Propofol has a protective effect on endothelial injury and can suppress inflammation and oxidation. The purpose of the present study was to investigate the protective effect of propofol on HCY-induced inflammation and apoptosis of human umbilical vein endothelial cells (HUVECs). HCY was used to establish the endothelial injury model. Cell Counting Kit-8 assays and flow cytometry were used to detect cell viability and apoptosis, respectively. Then, ELISA was performed to examine the expression levels of inflammatory cytokines, and the expression levels of proteins related to inflammation, apoptosis and ERS were determined via western blotting. Results showed that propofol increased cell viability, suppressed NF-κB signaling pathway activation and decreased the expression levels of inflammatory factors in HUVECs induced by HCY. Moreover, propofol could inhibit the expression of proteins involved in ERS, including ER chaperone BiP (Bip), C/EBP-homologous protein, protein kinase R-like ER kinase and inositol-requiring 1α, and reduce cell apoptosis of HCY-induced HUVECs. However, the overexpression of Bip could reactivate ERS and the NF-κB signaling pathway, as well as promote inflammation and cell apoptosis, when compared with HCY-treated groups. In conclusion, propofol can ameliorate inflammation and cell apoptosis of HUVECs induced by HCY via inhibiting ERS, which may provide a novel insight into the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Cunliang Ji
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hu Yi
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jing Huang
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Wenzhong Zhang
- School of Safety Engineering, North China Institute of Science and Technology, Langfang, Hebei 065201, P.R. China
| | - Mingzhi Zheng
- Department of Anesthesiology, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine CSU, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
82
|
Schoof M, Boone M, Wang L, Lawrence R, Frost A, Walter P. eIF2B conformation and assembly state regulate the integrated stress response. eLife 2021; 10:e65703. [PMID: 33688831 PMCID: PMC7990499 DOI: 10.7554/elife.65703] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
The integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2's nucleotide exchange factor eIF2B, a twofold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B's α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-electron microscopy structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into 'conjoined tetramers' with diminished substrate binding and enzymatic activity. Canonical eIF2-P-driven ISR activation thus arises due to this change in eIF2B's conformational state.
Collapse
Affiliation(s)
- Michael Schoof
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Morgane Boone
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Rosalie Lawrence
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
83
|
Circadian Misalignment Induced by Chronic Night Shift Work Promotes Endoplasmic Reticulum Stress Activation Impacting Directly on Human Metabolism. BIOLOGY 2021; 10:biology10030197. [PMID: 33807589 PMCID: PMC7998626 DOI: 10.3390/biology10030197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The demands of modern society have made shift work a necessity. Night work is associated with an increased risk of metabolic problems such as obesity and diabetes, which is mainly due to the misalignment of circadian rhythms that play a crucial role in many biological processes. This study performed clinical, anthropometric, and molecular analyses on 40 hospital workers who work day or night. We demonstrated that night workers had increased glucose levels, triglycerides, waist circumference, and blood pressure compared to day workers. Surprisingly, we report that night workers have significant changes in the expression of circadian clock genes and an up-regulation of genes related to endoplasmic reticulum stress (ERS). These findings provide new insights into the effects of night shift work on the expression of circadian cycle genes and ERS activation, leading to metabolic stress and the development of metabolic diseases associated with night work. Abstract Night work has become necessary in our modern society. However, sleep deprivation induces a circadian misalignment that effectively contributes to the development of diseases associated with metabolic syndrome, such as obesity and diabetes. Here, we evaluated the pattern of circadian clock genes and endoplasmic reticulum stress (ERS) genes in addition to metabolic and anthropometric measures in subjects that work during a nocturnal period compared with day workers. We study 20 night workers (NW) and 20 day workers (DW) submitted to a work schedule of 12 h of work for 36 h of rest for at least 5 years in a hospital. The present report shows that NW have increased fasting blood glucose, glycated hemoglobin (HbA1c), triglycerides, and low-density lipoprotein (LDL)-cholesterol levels, and lower high-density lipoprotein (HDL)-cholesterol levels compared to DW. In addition, we observed that waist circumference (WC), waist–hip ratio (WHR), and systemic blood pressure are also increased in NW. Interestingly, gene expression analysis showed changes in CLOCK gene expression in peripheral blood mononuclear cells (PBMC) samples of NW compared to the DW, evidencing a peripheral circadian misalignment. This metabolic adaptation was accompanied by the up-regulation of many genes of ERS in NW. These findings support the hypothesis that night shift work results in disturbed glycemic and lipid control and affects the circadian cycle through the deregulation of peripheral CLOCK genes, which is possibly due to the activation of ERS. Thus, night work induces important metabolic changes that increase the risk of developing metabolic syndrome.
Collapse
|
84
|
Zhu Y, Li Y, Bai B, Shang C, Fang J, Cong J, Li W, Li S, Song G, Liu Z, Zhao J, Li X, Zhu G, Jin N. Effects of Apoptin-Induced Endoplasmic Reticulum Stress on Lipid Metabolism, Migration, and Invasion of HepG-2 Cells. Front Oncol 2021; 11:614082. [PMID: 33718168 PMCID: PMC7952871 DOI: 10.3389/fonc.2021.614082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the effects of Apoptin-induced endoplasmic reticulum (ER) stress on lipid metabolism, migration and invasion of HepG-2 cells, and preliminarily explored the relationship between endoplasmic reticulum stress, lipid metabolism, migration, and invasion. The effects of Apoptin on ER function and structure in HepG-2 cells were determined by flow cytometry, fluorescence staining and western blotting by assessing the expression levels of ER stress related proteins. The effects of Apoptin on HepG-2 cells' lipid metabolism were determined by western blot analysis of the expression levels of triglyceride, cholesterol, and lipid metabolism related enzymes. The effects of Apoptin on HepG-2 cells' migration and invasion were studied using migration and invasion assays and by Western-blot analysis of the expression of proteins involved in migration and invasion. The in vivo effects of endoplasmic reticulum stress on lipid metabolism, migration and invasion of HepG-2 cells were also investigated by immunohistochemistry analysis of tumor tissues from HepG2 cells xenografted nude mice models. Both in vitro and in vivo experiments showed that Apoptin can cause a strong and lasting ER stress response, damage ER functional structure, significantly change the expression levels of lipid metabolism related enzymes and reduce the migration and invasion abilities of HepG-2 cells. Apoptin can also affect HepG-2 cells' lipid metabolism through endoplasmic reticulum stress and the abnormal expression of enzymes closely related to tumor migration and invasion. These results also showed that lipid metabolism may be one of the main inducements that reduce HepG-2 cells' migration and invasion abilities.
Collapse
Affiliation(s)
- Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yiquan Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Bing Bai
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Chao Shang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Jinbo Fang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Jianan Cong
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Wenjie Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Shanzhi Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Gaojie Song
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Zirui Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Jin Zhao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xiao Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Guangze Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Ningyi Jin
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
85
|
Chu HS, Peterson C, Jun A, Foster J. Targeting the integrated stress response in ophthalmology. Curr Eye Res 2021; 46:1075-1088. [PMID: 33474991 DOI: 10.1080/02713683.2020.1867748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: To summarize the Integrated Stress Response (ISR) in the context of ophthalmology, with special interest on the cornea and anterior segment. Results: The ISR is a powerful and conserved signaling pathway that allows for cells to respond to a diverse array of both intracellular and extracellular stressors. The pathway is classically responsible for coordination of the cellular response to amino acid starvation, ultraviolet light, heme dysregulation, viral infection, and unfolded protein. Under normal circumstances, it is considered pro-survival and a necessary mechanism through which protein translation is controlled. However, in cases of severe or prolonged stress the pathway can promote apoptosis, and loss of normal cellular phenotype. The activation of this pathway culminates in the global inhibition of cap-dependent protein translation and the canonical expression of the activating transcription factor 4 (ATF4). Conclusion:The eye is uniquely exposed to ISR responsive stressors due to its environmental exposure and relative isolation from the circulatory system which are necessary for its function. We will discuss how this pathway is critical for the proper function of the tissue, its role in development, as well as how targeting of the pathway could alleviate key aspects of diverse ophthalmic diseases.
Collapse
Affiliation(s)
- Hsiao-Sang Chu
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Cornelia Peterson
- Department of Molecular & Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Albert Jun
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - James Foster
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
86
|
Gupta S, Mishra A, Singh S. Cardinal role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death & DNA fragmentation: Implication of PERK:IRE1α:ATF6 axis in Parkinson's pathology. Cell Signal 2021; 81:109922. [PMID: 33484794 DOI: 10.1016/j.cellsig.2021.109922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
The study was conducted to assess the role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death employing various interventions (YM08, 4μ8C, AEBSF, salubrinal, ursolic acid) of endoplasmic reticulum (ER) stress signaling. The protein level of all the ER stress related signaling factors (GRP78, IRE1α, ATF6, eIF2α, ATF4, XBP-1, GADD153) were estimated after 3 and 7 day of experiment initiation. Findings with single administration of interventions showed that salubrinal exhibited significant protection against rotenone induced adverse alterations in comparison to other interventions. Therefore, further study was expanded with repeat dose of salubrinal. Rotenone administration in rat brain caused the significant biochemical alterations, dose dependent progressive neuronal apoptosis and altered neuronal morphology which was significantly attenuated with salubrinal treatment. In conclusion, findings showed that rotenone administration caused the dose dependent progressive neuronal death including cardinal role of eIF2α, suggesting the potential pharmacological utilization of salubrinal or salubrinal like molecules in therapeutics of Parkinson's diseases.
Collapse
Affiliation(s)
- Sonam Gupta
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Drug Research Institute, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan 342011, India
| | - Sarika Singh
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Drug Research Institute, India.
| |
Collapse
|
87
|
Kim K, Park JE, Yeom J, Park N, Trần TXT, Kang MJ. Tissue-specific roles of GCN2 in aging and autosomal dominant retinitis pigmentosa. Biochem Biophys Res Commun 2020; 533:1054-1060. [PMID: 33019980 DOI: 10.1016/j.bbrc.2020.09.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022]
Abstract
The organisms have the capacity to sense and adapt to their surroundings for their life in a dynamic environment. In response to amino acid starvation, cells activate a rectifying physiological program, termed the integrated stress response (ISR), to restore cellular homeostasis. General controlled non-repressed (GCN2) kinase is a master regulator of the ISR and modulates protein synthesis in response to amino acid starvation. We previously established the GCN2/ATF4/4E-BP pathway in development and aging. Here, we investigated the tissue-specific roles of GCN2 upon dietary restriction of amino acid in a Drosophila model. The knockdown of GCN2 in the gut and fat body, an energy sensing organ in Drosophila, abolished the beneficial effect of GCN2 in lifespan extension upon dietary restriction of amino acids. Proteome analysis in an autosomal dominant retinitis pigmentosa (ADRP) model showed that dietary restriction of amino acids regulates the synthesis of proteins in several pathways, including mitochondrial translation, mitochondrial gene expression, and regulation of biological quality, and that gcn2-mutant flies have reduced levels of these mitochondria-associated proteins, which may contribute to retinal degeneration in ADRP. These results indicate that the tissue-specific regulation of GCN2 contributes to normal physiology and ADRP progression.
Collapse
Affiliation(s)
- Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jung-Eun Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Nayoung Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Thị-Xuân Thùy Trần
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, 43 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
88
|
Zhou R, Ma Y, Tao Z, Qiu S, Gong Z, Tao L, Zhu Y. Melatonin Inhibits Glucose-Induced Apoptosis in Osteoblastic Cell Line Through PERK-eIF2α-ATF4 Pathway. Front Pharmacol 2020; 11:602307. [PMID: 33390989 PMCID: PMC7772242 DOI: 10.3389/fphar.2020.602307] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is a common disease resulting in deteriorated microarchitecture and decreased bone mass. In type 2 diabetes patients, the incidence of osteoporosis is significantly higher accompanied by increased apoptosis of osteoblasts. In this study, using the osteoblastic cell line MC3T3-E1, we show that high glucose reduces cell viability and induces apoptosis. Also, high glucose leads to endoplasmic reticulum (ER) stress (ERS) via an increase in calcium flux and upregulation of the ER chaperone binding immunoglobulin protein (BiP). Moreover, it induces post-translational activation of eukaryotic initiation factor 2 alpha (eIF2α) which functions downstream of PKR-like ER kinase (PERK). This subsequently leads to post-translational activation of the transcription factor 4 (ATF4) and upregulation of C/EBP-homologous protein (CHOP) which is an ER stress-induced regulator of apoptosis, as well as downstream effectors DNAJC3, HYOU1, and CALR. Interestingly, melatonin treatment significantly alleviates the high-glucose induced changes in cell growth, apoptosis, and calcium influx by inhibiting the PERK-eIF2α-ATF4-CHOP signaling pathway. Additionally, the MC3T3-E1 cells engineered to express a phosphodead eIF2α mutant did not show high glucose induced ER stress, confirming that melatonin protects osteoblasts against high-glucose induced changes by decreasing ER-stress induced apoptosis by impacting the PERK-eIF2α-ATF4-CHOP signaling pathway. The protective of melatonin against high glucose-induced ER stress and apoptosis was attenuated when the cells were pre-treated with a melatonin receptor antagonist, indicating that the effect of melatonin was mediated via the melatonin receptors in this context. These findings lay the provide mechanistic insights of melatonin’s protective action on osteoblasts and will be potentially be useful in ongoing pre-clinical and clinical studies to evaluate melatonin as a therapeutic option for diabetic osteoporosis.
Collapse
Affiliation(s)
- Renyi Zhou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengbo Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Zunlei Gong
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
89
|
Liu Y, Tan Z, Yang Y. Negative feedback and modern anti-cancer strategies targeting the ER stress response. FEBS Lett 2020; 594:4247-4265. [PMID: 33206409 DOI: 10.1002/1873-3468.14000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress is a cell state in which misfolded or unfolded proteins are aberrantly accumulated in the ER. ER stress induces an evolutionarily conserved adaptive response, named the ER stress response, that deploys a self-regulated machinery to maintain cellular proteostasis. However, compared to its well-established canonical activation mechanism, the negative feedback mechanisms regulating the ER stress response remain unclear and no accepted methods or markers have been established. Several studies have documented that both endogenous and exogenous insults can induce ER stress in cancer. Based on this evidence, small molecule inhibitors targeting ER stress response have been designed to kill cancer cells, with some of them showing excellent curative effects. Here, we review recent advances in our understanding of negative feedback of the ER stress response and compare the markers used to date. We also summarize therapeutic inhibitors targeting ER stress response and highlight the promises and challenges ahead.
Collapse
Affiliation(s)
- Yaofu Liu
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhenzhi Tan
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| |
Collapse
|
90
|
da Costa CA, Manaa WE, Duplan E, Checler F. The Endoplasmic Reticulum Stress/Unfolded Protein Response and Their Contributions to Parkinson's Disease Physiopathology. Cells 2020; 9:cells9112495. [PMID: 33212954 PMCID: PMC7698446 DOI: 10.3390/cells9112495] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial age-related movement disorder in which defects of both mitochondria and the endoplasmic reticulum (ER) have been reported. The unfolded protein response (UPR) has emerged as a key cellular dysfunction associated with the etiology of the disease. The UPR involves a coordinated response initiated in the endoplasmic reticulum that grants the correct folding of proteins. This review gives insights on the ER and its functioning; the UPR signaling cascades; and the link between ER stress, UPR activation, and physiopathology of PD. Thus, post-mortem studies and data obtained by either in vitro and in vivo pharmacological approaches or by genetic modulation of PD causative genes are described. Further, we discuss the relevance and impact of the UPR to sporadic and genetic PD pathology.
Collapse
|
91
|
Grandjean JMD, Wiseman RL. Small molecule strategies to harness the unfolded protein response: where do we go from here? J Biol Chem 2020; 295:15692-15711. [PMID: 32887796 PMCID: PMC7667976 DOI: 10.1074/jbc.rev120.010218] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) plays a central role in regulating endoplasmic reticulum (ER) and global cellular physiology in response to pathologic ER stress. The UPR is comprised of three signaling pathways activated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Once activated, these proteins initiate transcriptional and translational signaling that functions to alleviate ER stress, adapt cellular physiology, and dictate cell fate. Imbalances in UPR signaling are implicated in the pathogenesis of numerous, etiologically-diverse diseases, including many neurodegenerative diseases, protein misfolding diseases, diabetes, ischemic disorders, and cancer. This has led to significant interest in establishing pharmacologic strategies to selectively modulate IRE1, ATF6, or PERK signaling to both ameliorate pathologic imbalances in UPR signaling implicated in these different diseases and define the importance of the UPR in diverse cellular and organismal contexts. Recently, there has been significant progress in the identification and characterization of UPR modulating compounds, providing new opportunities to probe the pathologic and potentially therapeutic implications of UPR signaling in human disease. Here, we describe currently available UPR modulating compounds, specifically highlighting the strategies used for their discovery and specific advantages and disadvantages in their application for probing UPR function. Furthermore, we discuss lessons learned from the application of these compounds in cellular and in vivo models to identify favorable compound properties that can help drive the further translational development of selective UPR modulators for human disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
92
|
FABP3-mediated membrane lipid saturation alters fluidity and induces ER stress in skeletal muscle with aging. Nat Commun 2020; 11:5661. [PMID: 33168829 PMCID: PMC7653047 DOI: 10.1038/s41467-020-19501-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Sarcopenia is characterized by decreased skeletal muscle mass and function with age. Aged muscles have altered lipid compositions; however, the role and regulation of lipids are unknown. Here we report that FABP3 is upregulated in aged skeletal muscles, disrupting homeostasis via lipid remodeling. Lipidomic analyses reveal that FABP3 overexpression in young muscles alters the membrane lipid composition to that of aged muscle by decreasing polyunsaturated phospholipid acyl chains, while increasing sphingomyelin and lysophosphatidylcholine. FABP3-dependent membrane lipid remodeling causes ER stress via the PERK-eIF2α pathway and inhibits protein synthesis, limiting muscle recovery after immobilization. FABP3 knockdown induces a young-like lipid composition in aged muscles, reduces ER stress, and improves protein synthesis and muscle recovery. Further, FABP3 reduces membrane fluidity and knockdown increases fluidity in vitro, potentially causing ER stress. Therefore, FABP3 drives membrane lipid composition-mediated ER stress to regulate muscle homeostasis during aging and is a valuable target for sarcopenia. Ageing leads to a loss of muscle mass and strength, called sarcopenia. Here, the authors show that fatty acid binding protein 3 (FABP3), a lipid chaperone, drives age-dependent lipidome remodeling in skeletal muscle and deteriorates muscle mass and contractility by modulating membrane fluidity and ER stress signaling.
Collapse
|
93
|
Song C, Chen J, Li X, Yang R, Cao X, Zhou L, Zhou Y, Ying H, Zhang Q, Sun Y. Limonin ameliorates dextran sulfate sodium-induced chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling. Int Immunopharmacol 2020; 90:107161. [PMID: 33168409 DOI: 10.1016/j.intimp.2020.107161] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammation regulated by intricate mechanisms. Limonin, a natural tetracyclic triterpenoid compound, possesses multiple bioactivities including anti-inflammation, anti-cancer and so on. However, the therapeutic potential and the underlying mechanism of limonin on IBD remain unclear. Here, we probe into the effect of limonin on chronic colitis induced by dextran sulfate sodium (DSS) and illustrated the potential mechanisms. We found that limonin relieved the risk and severity of DSS-induced chronic colitis in mice through various aspects including increasing body weight and colon length, decreasing the mortality rate, inhibiting MPO activity and improving colon pathology. Limonin also decreased the production of proinflammatory cytokines TNF-α, IL-1β, IL-6 and the expression of inflammatory proteins COX-2, iNOS in colon tissues from DSS-induced colitis mice. Moreover, limonin attenuated DSS-induced chronic colitis by inhibiting PERK-ATF4-CHOP pathway of endoplasmic reticulum (ER) stress and NF-κB signaling. In vitro, limonin not only decreased LPS-induced higher production of pro-inflammatory cytokines and inflammatory proteins mentioned above by inhibiting NF-κB signaling in macrophage cells RAW264.7, but also suppressed PERK-ATF4-CHOP pathway of ER stress. In summary, our study demonstrated that limonin mitigated DSS-induced chronic colitis via inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling. All of this study provides the possibility for limonin as an effective drug for chronic colitis of IBD in the future.
Collapse
Affiliation(s)
- Changqin Song
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, People's Republic of China
| | - Runyu Yang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaomei Cao
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, People's Republic of China
| | - Lvqi Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yanfen Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
94
|
Ozon ZA, Alikasifoglu A, Kandemir N, Aydin B, Gonc EN, Karaosmanoglu B, Celik NB, Eroglu-Ertugrul NG, Taskiran EZ, Haliloglu G, Oguz KK, Kiper PO, Yalnizoglu D, Utine GE, Alikasifoglu M. Novel insights into diabetes mellitus due to DNAJC3-defect: Evolution of neurological and endocrine phenotype in the pediatric age group. Pediatr Diabetes 2020; 21:1176-1182. [PMID: 32738013 DOI: 10.1111/pedi.13098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/11/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A number of inborn errors of metabolism caused by abnormal protein trafficking that lead to endoplasmic reticulum storage diseases (ERSD) have been defined in the last two decades. One such disorder involves biallelic mutations in the gene encoding endoplasmic reticulum resident co-chaperone DNAJC3 (P58IPK ) that leads to diabetes in the second decade of life, in addition to multiple endocrine dysfunction and nervous system involvement. OBJECTIVE The aim of this study was to define the natural history of this new form of diabetes, especially the course of abnormalities related to glucose metabolism. METHODS Whole-exome and Sanger sequencing was used to detect DNAJC3 defect in two patients. Detailed analysis of their clinical history as well as biochemical, neurological and radiological studies were carried out to deduce natural history of neurological and endocrine phenotype. RESULTS DNAJC3 defect led to beta-cell dysfunction causing hyperinsulinemichypoglycemia around 2 years of age in both patients, which evolved into diabetes with insulin deficiency in the second decade of life, probably due to beta cell loss. Endocrine phenotype involved severe early-onset growth failure due to growth hormone deficiency, and hypothyroidism of central origin. Neurological phenotype involved early onset sensorineural deafness discovered around 5 to 6 years, and neurodegeneration of central and peripheral nervous system in the first two decades of life. CONCLUSION Biallelic loss-of-function in the ER co-chaperone DNAJC3 leads to a new form of diabetes with early onset hyperinsulinemic hypoglycemia evolving into insulin deficiency as well as severe growth failure, hypothyroidism and diffuse neurodegeneration.
Collapse
Affiliation(s)
- Z Alev Ozon
- Department of Pediatrics, Division of Endocrinology, Hacettepe University, Ankara, Turkey
| | - Ayfer Alikasifoglu
- Department of Pediatrics, Division of Endocrinology, Hacettepe University, Ankara, Turkey
| | - Nurgun Kandemir
- Department of Pediatrics, Division of Endocrinology, Hacettepe University, Ankara, Turkey
| | - Busra Aydin
- Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| | - E Nazli Gonc
- Department of Pediatrics, Division of Endocrinology, Hacettepe University, Ankara, Turkey
| | | | - Nur Berna Celik
- Department of Pediatrics, Division of Endocrinology, Hacettepe University, Ankara, Turkey
| | | | - Ekim Z Taskiran
- Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Neurology, Hacettepe University, Ankara, Turkey
| | | | - Pelin Ozlem Kiper
- Department of Pediatrics, Division of Genetics, Hacettepe University, Ankara, Turkey
| | - Dilek Yalnizoglu
- Department of Pediatrics, Division of Neurology, Hacettepe University, Ankara, Turkey
| | - Gulen Eda Utine
- Department of Pediatrics, Division of Genetics, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
95
|
Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, Paton AW, Paton JC, Schröder M. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Mol Biol Cell 2020; 31:2597-2629. [PMID: 32877278 PMCID: PMC7851869 DOI: 10.1091/mbc.e18-01-0013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells. [Media: see text].
Collapse
Affiliation(s)
- Max Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Samantha Dainty
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Natalie Strudwick
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adina D. Mihai
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Jamie N. Watson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Robina Dendooven
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Martin Schröder
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| |
Collapse
|
96
|
Characterization of a PERK Kinase Inhibitor with Anti-Myeloma Activity. Cancers (Basel) 2020; 12:cancers12102864. [PMID: 33028016 PMCID: PMC7601861 DOI: 10.3390/cancers12102864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Due to increased immunoglobulin production and uncontrolled proliferation, multiple myeloma (MM) plasma cells develop a phenotype of deregulated unfolded protein response (UPR). The eIF2-alpha kinase 3 [EIF2αK3, protein kinase R (PKR)-like ER kinase (PERK)], the third known sensor of endoplasmic reticulum (ER) stress, is a serine-threonine kinase and, like the other two UPR-related proteins, i.e., IRE1 and ATF6, it is bound to the ER membrane. MM, like other tumors showing uncontrolled protein secretion, is highly dependent to UPR for survival; thus, inhibition of PERK can be an effective strategy to suppress growth of malignant plasma cells. Here, we have used GSK2606414, an ATP-competitive potent PERK inhibitor, and found significant anti-proliferative and apoptotic effects in a panel of MM cell lines. These effects were accompanied by the downregulation of key components of the PERK pathway as well as of other UPR elements. Consistently, PERK gene expression silencing significantly increased cell death in MM cells, highlighting the importance of PERK signaling in MM biology. Moreover, GSK2606414, in combination with the proteasome inhibitor bortezomib, exerted an additive toxic effect in MM cells. Overall, our data suggest that PERK inhibition could represent a novel combinatorial therapeutic approach in MM.
Collapse
|
97
|
Vasudevan D, Neuman SD, Yang A, Lough L, Brown B, Bashirullah A, Cardozo T, Ryoo HD. Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nat Commun 2020; 11:4677. [PMID: 32938929 PMCID: PMC7495428 DOI: 10.1038/s41467-020-18453-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
The Integrated Stress Response (ISR) helps metazoan cells adapt to cellular stress by limiting the availability of initiator methionyl-tRNA for translation. Such limiting conditions paradoxically stimulate the translation of ATF4 mRNA through a regulatory 5' leader sequence with multiple upstream Open Reading Frames (uORFs), thereby activating stress-responsive gene expression. Here, we report the identification of two critical regulators of such ATF4 induction, the noncanonical initiation factors eIF2D and DENR. Loss of eIF2D and DENR in Drosophila results in increased vulnerability to amino acid deprivation, susceptibility to retinal degeneration caused by endoplasmic reticulum (ER) stress, and developmental defects similar to ATF4 mutants. eIF2D requires its RNA-binding motif for regulation of 5' leader-mediated ATF4 translation. Consistently, eIF2D and DENR deficient human cells show impaired ATF4 protein induction in response to ER stress. Altogether, our findings indicate that eIF2D and DENR are critical mediators of ATF4 translational induction and stress responses in vivo.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amy Yang
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lea Lough
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Brian Brown
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
98
|
ER Stress-Induced Secretion of Proteins and Their Extracellular Functions in the Heart. Cells 2020; 9:cells9092066. [PMID: 32927693 PMCID: PMC7563782 DOI: 10.3390/cells9092066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a result of conditions that imbalance protein homeostasis or proteostasis at the ER, for example ischemia, and is a common event in various human pathologies, including the diseased heart. Cardiac integrity and function depend on the active secretion of mature proteins from a variety of cell types in the heart, a process that requires an intact ER environment for efficient protein folding and trafficking to the secretory pathway. As a consequence of ER stress, most protein secretion by the ER secretory pathway is decreased. Strikingly, there is a select group of proteins that are secreted in greater quantities during ER stress. ER stress resulting from the dysregulation of ER Ca2+ levels, for instance, stimulates the secretion of Ca2+-binding ER chaperones, especially GRP78, GRP94, calreticulin, and mesencephalic astrocyte-derived neurotrophic factor (MANF), which play a multitude of roles outside the cell, strongly depending on the cell type and tissue. Here we review current insights in ER stress-induced secretion of proteins, particularly from the heart, and highlight the extracellular functions of these proteins, ranging from the augmentation of cardiac cell viability to the modulation of pro- and anti-apoptotic, oncogenic, and immune-stimulatory cell signaling, cell invasion, extracellular proteostasis, and more. Many of the roles of ER stress-induced protein secretion remain to be explored in the heart. This article is part of a special issue entitled “The Role of Proteostasis Derailment in Cardiac Diseases.”
Collapse
|
99
|
Wang S, Ma X, Wang H, He H. Induction of the Unfolded Protein Response during Bovine Alphaherpesvirus 1 Infection. Viruses 2020; 12:v12090974. [PMID: 32887282 PMCID: PMC7552016 DOI: 10.3390/v12090974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes great economic losses in the cattle industry. Herpesvirus infection generally induces endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in infected cells. However, it is not clear whether ER stress and UPR can be induced by BoHV-1 infection. Here, we found that ER stress induced by BoHV-1 infection could activate all three UPR sensors (the activating transcription factor 6 (ATF6), the inositol-requiring enzyme 1 (IRE1), and the protein kinase RNA-like ER kinase (PERK)) in MDBK cells. During BoHV-1 infection, the ATF6 pathway of UPR did not affect viral replication. However, both knockdown and specific chemical inhibition of PERK attenuated the BoHV-1 proliferation, and chemical inhibition of PERK significantly reduced the viral replication at the post-entry step of the BoHV-1 life cycle. Furthermore, knockdown of IRE1 inhibits BoHV-1 replication, indicating that the IRE1 pathway may promote viral replication. Further study revealed that BoHV-1 replication was enhanced by IRE1 RNase activity inhibition at the stage of virus post-entry in MDBK cells. Furthermore, IRE1 kinase activity inhibition and RNase activity enhancement decrease BoHV1 replication via affecting the virus post-entry step. Our study revealed that BoHV-1 infection activated all three UPR signaling pathways in MDBK cells, and BoHV-1-induced PERK and IRE1 pathways may promote viral replication. This study provides a new perspective for the interactions of BoHV-1 and UPR, which is helpful to further elucidate the mechanism of BoHV-1 pathogenesis.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| |
Collapse
|
100
|
Chen Q, Men Y, Wang D, Xu D, Liu S, Xiao S, Fang L. Porcine reproductive and respiratory syndrome virus infection induces endoplasmic reticulum stress, facilitates virus replication, and contributes to autophagy and apoptosis. Sci Rep 2020; 10:13131. [PMID: 32753633 PMCID: PMC7403369 DOI: 10.1038/s41598-020-69959-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
During viral infection, the host cell synthesizes high amounts of viral proteins, which often causes stress to the endoplasmic reticulum (ER). To manage abnormal ER stress, mammalian cells trigger a response called the unfolded protein response (UPR). Previous studies have indicated that porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has been devastating the swine industry worldwide, can induce ER stress and activate UPR, however, the activation pathways and the biological significance requires further investigation. In this study, we demonstrated that, among the three types of UPR pathways, PRRSV infection induced PERK and IRE1 pathways, but not the ATF6 pathway. Furthermore, the induction of UPR promoted PRRSV replication. We also found that PRRSV-induced UPR, particularly the PERK pathway, was involved in the induction of autophagy, a cellular degradation process that can alleviate cell stress. Besides, we also provided insights into the ER stress-mediated apoptosis in response to PRRSV infection. PRRSV infection induced the expression of the transcription factor CHOP, which activated caspase 3 and PARP led to ER stress-mediated apoptosis. Using 3-Methyladenine (3-MA) to inhibit autophagy, the increased ER stress and cell apoptosis were observed in the PRRSV infected cell. Taken together, our results revealed the associations of ER stress, autophagy, and apoptosis during PRRSV infection, helping us to further understand how PRRSV interacts with host cells.
Collapse
Affiliation(s)
- Quangang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanjuan Men
- School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Deqin Xu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Suyan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|