51
|
Belichenko VM, Khodyrev EV, Shoshenko CA. Aorta, pulmonary artery, and blood flows on them in chickens in the second half of embryogenesis and after hatching. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
52
|
Shi L, Goenezen S, Haller S, Hinds MT, Thornburg KL, Rugonyi S. Alterations in pulse wave propagation reflect the degree of outflow tract banding in HH18 chicken embryos. Am J Physiol Heart Circ Physiol 2013; 305:H386-96. [PMID: 23709601 DOI: 10.1152/ajpheart.00100.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic conditions play a critical role in embryonic cardiovascular development, and altered blood flow leads to congenital heart defects. Chicken embryos are frequently used as models of cardiac development, with abnormal blood flow achieved through surgical interventions such as outflow tract (OFT) banding, in which a suture is tightened around the heart OFT to restrict blood flow. Banding in embryos increases blood pressure and alters blood flow dynamics, leading to cardiac malformations similar to those seen in human congenital heart disease. In studying these hemodynamic changes, synchronization of data to the cardiac cycle is challenging, and alterations in the timing of cardiovascular events after interventions are frequently lost. To overcome this difficulty, we used ECG signals from chicken embryos (Hamburger-Hamilton stage 18, ∼3 days of incubation) to synchronize blood pressure measurements and optical coherence tomography images. Our results revealed that, after 2 h of banding, blood pressure and pulse wave propagation strongly depend on band tightness. In particular, while pulse transit time in the heart OFT of control embryos is ∼10% of the cardiac cycle, after banding (35% to 50% band tightness) it becomes negligible, indicating a faster OFT pulse wave velocity. Pulse wave propagation in the circulation is likewise affected; however, pulse transit time between the ventricle and dorsal aorta (at the level of the heart) is unchanged, suggesting an overall preservation of cardiovascular function. Changes in cardiac pressure wave propagation are likely contributing to the extent of cardiac malformations observed in banded hearts.
Collapse
Affiliation(s)
- Liang Shi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
53
|
Branum SR, Yamada-Fisher M, Burggren W. Reduced heart rate and cardiac output differentially affect angiogenesis, growth, and development in early chicken embryos (Gallus domesticus). Physiol Biochem Zool 2013; 86:370-82. [PMID: 23629887 DOI: 10.1086/670594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An increase in both vascular circumferential tension and shear stress in the developing vasculature of the chicken embryo has been hypothesized to stimulate angiogenesis in the developing peripheral circulation chorioallantoic membrane (CAM). To test this hypothesis, angiogenesis in the CAM, development, and growth were measured in the early chicken embryo, following acute and chronic topical application of the purely bradycardic drug ZD7288. At hour 56, ZD7288 reduced heart rate (f(H)) by ~30% but had no significant effect on stroke volume (~0.19 ± 0.2 μL), collectively resulting in a significant fall in cardiac output (CO) from ~27 ± 3 to 18 ± 2 μL min(-1). Mean f(H) at 72 h of development was similarly significantly lowered by acute ZD7288 treatment (250 μM) to 128 ± 0.3 beats min(-1), compared with 174.5 ± 0.3 and 174.7 ± 0.8 beats min(-1) in control and Pannett-Compton (P-C) saline-treated embryos, respectively. Chronic dosing with ZD7288-and the attendant decreases in f(H) and CO-did not change eye diameter or cervical flexion (key indicators of development rate) at 120 h but significantly reduced overall growth (wet and dry body mass decreased by 20%). CAM vessel density index (reflecting angiogenesis) measured 200-400 μm from the umbilical stalk was not altered, but ZD7288 reduced vessel numbers-and therefore vessel density-by 13%-16% more distally (500-600 μm from umbilical stalk) in the CAM. In the ZD7288-treated embryos, a decrease in vessel length was found within the second branch order (~300-400 μm from the umbilical stock), while a decrease in vessel diameter was found closer to the umbilical stock, beginning in the first branch order (~200-300 μm). Paradoxically, chronic application of P-C saline also reduced peripheral CAM vessel density index at 500 and 600 μm by 13% and 7%, respectively, likely from washout of local angiogenic factors. In summary, decreased f(H) with reduced CO did not slow development rate but reduced embryonic growth rate and angiogenesis in the CAM periphery. This study demonstrates for the first time that different processes in the ontogeny of the early vertebrate embryo (i.e., hypertrophic growth vs. development) have differential sensitivities to altered convective blood flow.
Collapse
Affiliation(s)
- Sylvia R Branum
- Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA.
| | | | | |
Collapse
|
54
|
Kowalski WJ, Dur O, Wang Y, Patrick MJ, Tinney JP, Keller BB, Pekkan K. Critical transitions in early embryonic aortic arch patterning and hemodynamics. PLoS One 2013; 8:e60271. [PMID: 23555940 PMCID: PMC3605337 DOI: 10.1371/journal.pone.0060271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/25/2013] [Indexed: 02/01/2023] Open
Abstract
Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a temporal window of increased vulnerability to aberrant aortic arch morphogenesis with the potential for profound effects on subsequent cardiovascular morphogenesis.
Collapse
Affiliation(s)
- William J. Kowalski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Onur Dur
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Yajuan Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Patrick
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Joseph P. Tinney
- Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
55
|
Rugonyi S. Strain-induced tissue growth laws: applications to embryonic cardiovascular development. JOURNAL OF APPLIED MECHANICAL ENGINEERING 2013; Suppl 11:001. [PMID: 25364643 PMCID: PMC4212269 DOI: 10.4172/2168-9873.s11-001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hemodynamic conditions play an essential role in the cardiovascular system, with abnormal blood flow conditions leading to growth and remodeling of cardiovascular walls. During embryonic development, altered hemodynamic conditions lead to congenital heart disease, which affects about 1% of newborn babies in developed countries. However, the mechanisms by which hemodynamic conditions affect cardiovascular development have not been fully elucidated. In this paper, we propose a model of cardiac growth in response to hemodynamic conditions, in which growth is modulated by a combination of wall strains and wall shear stresses. This is in contrast to previous models that proposed stress-induced growth laws. Because during embryonic development blood pressure increases over time, and this increase in blood pressure produces an increase in wall stresses, stress-induced growth laws would require time-dependent parameters. While blood pressure increases during development, cardiovascular walls become stiffer and thicker, and thus we postulate that instead strains experienced by cells remain approximately the same during development. This assumption motivated our cardioavascular model of strain-induced growth in response to hemodynamic conditions, which we implemented using finite element methods. Model simulations show that the proposed model results in tissue growth that is physiologically reasonable. Further, our analyses demonstrate that mechanical coupling - that results from residual stresses originating from differential tissue growth - may play a more important role in the modulation of cardiovascular tissue growth and remodeling than currently acknowledged.
Collapse
Affiliation(s)
- Sandra Rugonyi
- Oregon Health & Science University, Biomedical Engineering, 3303 SW Bond Ave., Mail Code: CH13B, Portland, OR 97239, Telephone: 1-503-418-9310,
| |
Collapse
|
56
|
Fluid flow forces and rhoA regulate fibrous development of the atrioventricular valves. Dev Biol 2013; 374:345-56. [DOI: 10.1016/j.ydbio.2012.11.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 02/05/2023]
|
57
|
Bokov P, Chironi G, Orobinskaia L, Flaud P, Simon A. Carotid circumferential wall stress homeostasis in early remodeling: theoretical approach and clinical application. JOURNAL OF CLINICAL ULTRASOUND : JCU 2012; 40:486-494. [PMID: 22886398 DOI: 10.1002/jcu.21952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
PURPOSE To assess the influence of cardiovascular risk factors on arterial wall growth and the remodeling process. METHODS In a theoretical part, we used a well-established relationship linking the rate of thickening of the arterial wall to the circumferential wall stress (CWS) increase. In a clinical part, we measured the intima-media thickness (IMT) in 166 subjects with increased cardiovascular risk score but no treatment for hypertension or hypercholesterolemia, no diabetes, and no cardiovascular disease. Far wall IMT and lumen diameter were measured along the right carotid artery by high-resolution ultrasonography and computerized image analysis. RESULTS A decreasing linear relationship between IMT and CWS was deduced from the theoretical model, implying that an increase in CWS would result in an IMT increase, and that the higher the IMT-CWS slope, the higher the thickening response. Subjects with advanced age, renal insufficiency, high 10-year Framingham risk, carotid atherosclerosis, and advanced atherosclerosis at other sites had sharper IMT-CWS slope (p < 0.05), in agreement with the homeostasis of CWS hypothesis. CONCLUSIONS The IMT increase responding to a CWS increase was greater in high-risk patients.
Collapse
Affiliation(s)
- Plamen Bokov
- Université Denis Diderot Paris 7, UFR Physique, Paris, France
| | | | | | | | | |
Collapse
|
58
|
Lucitti JL, Mackey JK, Morrison JC, Haigh JJ, Adams RH, Faber JE. Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metalloprotease family members 10 and 17. Circ Res 2012; 111:1539-50. [PMID: 22965144 DOI: 10.1161/circresaha.112.279109] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE The density of native (preexisting) collaterals varies widely and is a significant determinant of variation in severity of stroke, myocardial infarction, and peripheral artery disease. However, little is known about mechanisms responsible for formation of the collateral circulation in healthy tissues. OBJECTIVE We previously found that variation in vascular endothelial growth factor (VEGF) expression causes differences in collateral density of newborn and adult mice. Herein, we sought to determine mechanisms of collaterogenesis in the embryo and the role of VEGF in this process. METHODS AND RESULTS Pial collaterals begin forming between embryonic day 13.5 and 14.5 as sprout-like extensions from arterioles of existing cerebral artery trees. Global VEGF-A overexpressing mice (Vegf(hi/+)) formed more, and Vegf(lo/+) formed fewer, collaterals during embryogenesis, in association with differences in vascular patterning. Conditional global reduction of Vegf or Flk1 only during collaterogenesis significantly reduced collateral formation, but now without affecting vascular patterning, and the effects remained in adulthood. Endothelial-specific Vegf reduction had no effect on collaterogenesis. Endothelial-specific reduction of a disintegrin-and-metalloprotease-domain-10 (Adam10) and inhibition of γ-secretase increased collateral formation, consistent with their roles in VEGF-induced Notch1 activation and suppression of prosprouting signals. Endothelial-specific knockdown of Adam17 reduced collateral formation, consistent with its roles in endothelial cell migration and embryonic vascular stabilization, but not in activation of ligand-bound Notch1. These effects also remained in adulthood. CONCLUSIONS Formation of pial collaterals occurs during a narrow developmental window via a sprouting angiogenesis-like mechanism, requires paracrine VEGF stimulation of fetal liver kinase 1-Notch signaling, and adult collateral number is dependent on embryonic collaterogenesis.
Collapse
Affiliation(s)
- Jennifer L Lucitti
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
59
|
Li P, Yin X, Shi L, Rugonyi S, Wang RK. In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:96006-1. [PMID: 23085907 PMCID: PMC3434623 DOI: 10.1117/1.jbo.17.9.096006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 05/22/2023]
Abstract
During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.
Collapse
Affiliation(s)
- Peng Li
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
| | - Xin Yin
- Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239
| | - Liang Shi
- Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239
| | - Sandra Rugonyi
- Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195
- Address all correspondence to: Ruikang K. Wang, University of Washington, Department of Bioengineering, Seattle, Washington 98195. E-mail:
| |
Collapse
|
60
|
Buskohl PR, Jenkins JT, Butcher JT. Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves. Biomech Model Mechanobiol 2012; 11:1205-17. [PMID: 22869343 DOI: 10.1007/s10237-012-0424-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/23/2012] [Indexed: 11/27/2022]
Abstract
Embryonic heart valves develop under continuous and demanding hemodynamic loading. The particular contributions of fluid pressure and shear tractions in valve morphogenesis are difficult to decouple experimentally. To better understand how fluid loads could direct valve formation, we developed a computational model of avian embryonic atrioventricular (AV) valve (cushion) growth and remodeling using experimentally derived parameters for the blood flow and the cushion stiffness. Through an iterative scheme, we first solved the fluid loads on the axisymmetric AV canal and cushion model geometry. We then applied the fluid loads to the cushion and integrated the evolution equations to determine the growth and remodeling. After a set time of growth, we updated the fluid domain to reflect the change in cushion geometry and resolved for the fluid forces. The rate of growth and remodeling was assumed to be a function of the difference between the current stress and an isotropic homeostatic stress state. The magnitude of the homeostatic stress modulated the rate of volume addition during the evolution. We found that the pressure distribution on the AV cushion was sufficient to generate leaflet-like elongation in the direction of flow, through inducing tissue resorption on the inflow side of cushion and expansion on the outflow side. Conversely, shear tractions minimally altered tissue volume, but regulated the remodeling of tissue near the cushion surface, particular at the leading edge. Significant shear and circumferential residual stresses developed as the cushion evolved. This model offers insight into how natural and perturbed mechanical environments may direct AV valvulogenesis and provides an initial framework on which to incorporate more mechano-biological details.
Collapse
Affiliation(s)
- Philip R Buskohl
- Department of Mechanical and Aerospace Engineering, Cornell University, 306 Weill Hall, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
61
|
Buskohl PR, Sun MJ, Thompson RP, Butcher JT. Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves. PLoS One 2012; 7:e42527. [PMID: 22880017 PMCID: PMC3412853 DOI: 10.1371/journal.pone.0042527] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/09/2012] [Indexed: 01/08/2023] Open
Abstract
Embryonic heart valve primordia (cushions) maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV) cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ) and serotonin (5-HT) signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA) and extracellular matrix expression (col1α2) in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT), resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical remodeling of AV cushions during development.
Collapse
Affiliation(s)
- Philip R Buskohl
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | | | | | | |
Collapse
|
62
|
Liu A, Yin X, Shi L, Li P, Thornburg KL, Wang R, Rugonyi S. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One 2012; 7:e40869. [PMID: 22844414 PMCID: PMC3402486 DOI: 10.1371/journal.pone.0040869] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/18/2012] [Indexed: 11/28/2022] Open
Abstract
During developmental stages, biomechanical stimuli on cardiac cells modulate genetic programs, and deviations from normal stimuli can lead to cardiac defects. Therefore, it is important to characterize normal cardiac biomechanical stimuli during early developmental stages. Using the chicken embryo model of cardiac development, we focused on characterizing biomechanical stimuli on the Hamburger–Hamilton (HH) 18 chick cardiac outflow tract (OFT), the distal portion of the heart from which a large portion of defects observed in humans originate. To characterize biomechanical stimuli in the OFT, we used a combination of in vivo optical coherence tomography (OCT) imaging, physiological measurements and computational fluid dynamics (CFD) modeling. We found that, at HH18, the proximal portion of the OFT wall undergoes larger circumferential strains than its distal portion, while the distal portion of the OFT wall undergoes larger wall stresses. Maximal wall shear stresses were generally found on the surface of endocardial cushions, which are protrusions of extracellular matrix onto the OFT lumen that later during development give rise to cardiac septa and valves. The non-uniform spatial and temporal distributions of stresses and strains in the OFT walls provide biomechanical cues to cardiac cells that likely aid in the extensive differential growth and remodeling patterns observed during normal development.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xin Yin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Liang Shi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peng Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Kent L. Thornburg
- Heart Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
63
|
Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 2012; 11:1187-204. [PMID: 22760547 DOI: 10.1007/s10237-012-0414-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
64
|
Bharadwaj KN, Spitz C, Shekhar A, Yalcin HC, Butcher JT. Computational fluid dynamics of developing avian outflow tract heart valves. Ann Biomed Eng 2012; 40:2212-27. [PMID: 22535311 DOI: 10.1007/s10439-012-0574-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/11/2012] [Indexed: 11/28/2022]
Abstract
Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16-30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm(2) at HH16 to 671.24 dynes/cm(2) at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm(2) at HH16 to 136.50 dynes/cm(2) at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research.
Collapse
Affiliation(s)
- Koonal N Bharadwaj
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853-7501, USA
| | | | | | | | | |
Collapse
|
65
|
Oosterbaan AM, Bon E, Steegers-Theunissen RPM, Van Der Steen AFW, Ursem NTC. Homocysteine exposure affects early hemodynamic parameters of embryonic chicken heart function. Anat Rec (Hoboken) 2012; 295:961-7. [PMID: 22528512 DOI: 10.1002/ar.22477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022]
Abstract
Maternal hyperhomocysteinemia has been associated with an increased risk of newborns with a congenital heart defect. This has been substantiated in the chicken embryo, as congenital heart defects have been induced after homocysteine treatment. Comparable heart defects are observed in venous clipping studies, a model of altered embryonic blood flow. Because of this overlap in heart defects, our aim was to test the hypothesis that homocysteine would cause alterations in embryonic heart function that precede the structural malformations previously described. Therefore, Doppler flow velocity waveforms were recorded in both primitive ventricles and the outflow tract of the embryonic heart of homocysteine treated and control chicken embryos at embryonic day 3.5. Homocysteine treatment consisted of 50 μL 0.05 M L-homocysteine thiolactone at 24, 48, and 72 hr. Homocysteine-treated embryos displayed significantly lower mean heart rates of 134 (SD 22) bpm, compared to 150 (14) bpm in control embryos. Homocysteine treatment caused an inhibiting effect on hemodynamic parameters, and altered heart function was presented by a shift in the proportions of the different wave times in percentage of total cycle time. Homocysteine induces changes in hemodynamic parameters of early embryonic chicken heart function. These changes may precede morphological changes and contribute to the development of CHD defects through alterations in shear stress and shear stress related genes, as seen before in venous clipping studies.
Collapse
Affiliation(s)
- Annelien M Oosterbaan
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
66
|
Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo. Biomech Model Mechanobiol 2012; 11:1057-73. [PMID: 22307681 DOI: 10.1007/s10237-012-0373-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/13/2012] [Indexed: 01/13/2023]
Abstract
In the early embryo, a series of symmetric, paired vessels, the aortic arches, surround the foregut and distribute cardiac output to the growing embryo and fetus. During embryonic development, the arch vessels undergo large-scale asymmetric morphogenesis to form species-specific adult great vessel patterns. These transformations occur within a dynamic biomechanical environment, which can play an important role in the development of normal arch configurations or the aberrant arch morphologies associated with congenital cardiac defects. Arrested migration and rotation of the embryonic outflow tract during late stages of cardiac looping has been shown to produce both outflow tract and several arch abnormalities. Here, we investigate how changes in flow distribution due to a perturbation in the angular orientation of the embryonic outflow tract impact the morphogenesis and growth of the aortic arches. Using a combination of in vivo arch morphometry with fluorescent dye injection and hemodynamics-driven bioengineering optimization-based vascular growth modeling, we demonstrate that outflow tract orientation significantly changes during development and that the associated changes in hemodynamic load can dramatically influence downstream aortic arch patterning. Optimization reveals that balancing energy expenditure with diffusive capacity leads to multiple arch vessel patterns as seen in the embryo, while minimizing energy alone led to the single arch configuration seen in the mature arch of aorta. Our model further shows the critical importance of the orientation of the outflow tract in dictating morphogenesis to the adult single arch and accurately predicts arch IV as the dominant mature arch of aorta. These results support the hypothesis that abnormal positioning of the outflow tract during early cardiac morphogenesis may lead to congenital defects of the great vessels due to altered hemodynamic loading.
Collapse
|
67
|
Gu S, Jenkins MW, Peterson LM, Doughman YQ, Rollins AM, Watanabe M. Optical coherence tomography captures rapid hemodynamic responses to acute hypoxia in the cardiovascular system of early embryos. Dev Dyn 2012; 241:534-44. [PMID: 22275053 DOI: 10.1002/dvdy.23727] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The trajectory to heart defects may start in tubular and looping heart stages when detailed analysis of form and function is difficult by currently available methods. We used a novel method, Doppler optical coherence tomography (OCT), to follow changes in cardiovascular function in quail embryos during acute hypoxic stress. Chronic fetal hypoxia is a known risk factor for congenital heart diseases (CHDs). Decreased fetal heart rates during maternal obstructive sleep apnea suggest that studying fetal heart responses under acute hypoxia is warranted. RESULTS We captured responses to hypoxia at the critical looping heart stages. Doppler OCT revealed detailed vitelline arterial pulsed Doppler waveforms. Embryos tolerated 1 hr of hypoxia (5%, 10%, or 15% O(2) ), but exhibited changes including decreased systolic and increased diastolic duration in 5 min. After 5 min, slower heart rates, arrhythmic events and an increase in retrograde blood flow were observed. These changes suggested slower filling of the heart, which was confirmed by four-dimensional Doppler imaging of the heart itself. CONCLUSIONS Doppler OCT is well suited for rapid noninvasive screening for functional changes in avian embryos under near physiological conditions. Analysis of the accessible vitelline artery sensitively reflected changes in heart function and can be used for rapid screening. Acute hypoxia caused rapid hemodynamic changes in looping hearts and may be a concern for increased CHD risk.
Collapse
Affiliation(s)
- Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
Abstract
The formation and remodeling of the embryonic valves is a complex and dynamic process that occurs within a constantly changing hemodynamic environment. Defects in embryonic and fetal valve remodeling are the leading cause of congenital heart defects, yet very little is known about how fibrous leaflet tissue is created from amorphous gelatinous masses called cushions. Microenvironmental cues such as mechanical forces and extracellular matrix composition play major roles in cell differentiation, but almost all research efforts in valvulogenesis center around genetics and molecular approaches. This review summarizes what is known about the dynamic mechanical and extracellular matrix microenvironment of the atrioventricular and semilunar valves during embryonic development and their possible guidance roles. A variety of new computational tools and sophisticated experimental techniques are progressing that enable precise microenvironmental alterations that are critical to complement genetic gain and loss of function approaches. Studies at the interface of mechanical and genetic signaling in embryonic valvulogenesis will likely pay significant dividends, not only in terms of increasing our mechanistic understanding, but also lead to the development of novel therapeutic strategies for patients with congenital valve abnormalities.
Collapse
Affiliation(s)
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
69
|
Buskohl PR, Gould RA, Butcher JT. Quantification of embryonic atrioventricular valve biomechanics during morphogenesis. J Biomech 2011; 45:895-902. [PMID: 22169154 DOI: 10.1016/j.jbiomech.2011.11.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2011] [Indexed: 02/01/2023]
Abstract
Tissue assembly in the developing embryo is a rapid and complex process. While much research has focused on genetic regulatory machinery, understanding tissue level changes such as biomechanical remodeling remains a challenging experimental enigma. In the particular case of embryonic atrioventricular valves, micro-scale, amorphous cushions rapidly remodel into fibrous leaflets while simultaneously interacting with a demanding mechanical environment. In this study we employ two microscale mechanical measurement systems in conjunction with finite element analysis to quantify valve stiffening during valvulogenesis. The pipette aspiration technique is compared to a uniaxial load deformation, and the analytic expression for a uniaxially loaded bar is used to estimate the nonlinear material parameters of the experimental data. Effective modulus and strain energy density are analyzed as potential metrics for comparing mechanical stiffness. Avian atrioventricular valves from globular Hamburger-Hamilton stages HH25-HH34 were tested via the pipette method, while the planar HH36 leaflets were tested using the deformable post technique. Strain energy density between HH25 and HH34 septal leaflets increased 4.6±1.8 fold (±SD). The strain energy density of the HH36 septal leaflet was four orders of magnitude greater than the HH34 pipette result. Our results establish morphological thresholds for employing the micropipette aspiration and deformable post techniques for measuring uniaxial mechanical properties of embryonic tissues. Quantitative biomechanical analysis is an important and underserved complement to molecular and genetic experimentation of embryonic morphogenesis.
Collapse
Affiliation(s)
- Philip R Buskohl
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
70
|
Al-Roubaie S, Jahnsen ED, Mohammed M, Henderson-Toth C, Jones EAV. Rheology of embryonic avian blood. Am J Physiol Heart Circ Physiol 2011; 301:H2473-81. [PMID: 21963831 DOI: 10.1152/ajpheart.00475.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shear stress, a mechanical force created by blood flow, is known to affect the developing cardiovascular system. Shear stress is a function of both shear rate and viscosity. While established techniques for measuring shear rate in embryos have been developed, the viscosity of embryonic blood has never been known but always assumed to be like adult blood. Blood is a non-Newtonian fluid, where the relationship between shear rate and shear stress is nonlinear. In this work, we analyzed the non-Newtonian behavior of embryonic chicken blood using a microviscometer and present the apparent viscosity at different hematocrits, different shear rates, and at different stages during development from 4 days (Hamburger-Hamilton stage 22) to 8 days (about Hamburger-Hamilton stage 34) of incubation. We chose the chicken embryo since it has become a common animal model for studying hemodynamics in the developing cardiovascular system. We found that the hematocrit increases with the stage of development. The viscosity of embryonic avian blood in all developmental stages studied was shear rate dependent and behaved in a non-Newtonian manner similar to that of adult blood. The range of shear rates and hematocrits at which non-Newtonian behavior was observed is, however, outside the physiological range for the larger vessels of the embryo. Under low shear stress conditions, the spherical nucleated blood cells that make up embryonic blood formed into small aggregates of cells. We found that the apparent blood viscosity decreases at a given hematocrit during embryonic development, not due to changes in protein composition of the plasma but possibly due to the changes in cellular composition of embryonic blood. This decrease in apparent viscosity was only visible at high hematocrit. At physiological values of hematocrit, embryonic blood viscosity did not change significantly with the stage of development.
Collapse
Affiliation(s)
- Sarah Al-Roubaie
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
71
|
Lee SJ, Yeom E, Ha H, Nam KH. Cardiac outflow and wall motion in hypothermic chick embryos. Microvasc Res 2011; 82:296-303. [PMID: 21971263 DOI: 10.1016/j.mvr.2011.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/01/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Cardiac outflow in the early developmental stage of a chick embryo is known to be highly variable depending on environmental temperature. To investigate the effects of environmental hypothermia on the blood flow in the outflow tract (OFT) of chick embryonic hearts, microscopic flow images were consecutively captured from chick embryos at HH stage 17 (2.5 days of incubation) at room temperature. Instantaneous velocity field information of blood flow in OFT was obtained using a micro-particle image velocimetry technique. The cyclic variations of the OFT vessel diameter and wall thickness were simultaneously measured. The experimental results show that environmental hypothermia causes bradycardia with a decrease in peak velocity during systole and the occurrence of backflow during diastole in the OFT. These abnormal phenomena seem to be attributed to the suppression of myocardial wall motion under hypothermic conditions.
Collapse
Affiliation(s)
- Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea.
| | | | | | | |
Collapse
|
72
|
Garita B, Jenkins MW, Han M, Zhou C, Vanauker M, Rollins AM, Watanabe M, Fujimoto JG, Linask KK. Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am J Physiol Heart Circ Physiol 2011; 300:H879-91. [PMID: 21239637 PMCID: PMC3064308 DOI: 10.1152/ajpheart.00433.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/05/2011] [Indexed: 11/22/2022]
Abstract
Analyses of form-function relationships during heart looping are directly related to technological advances. Recent advances in four-dimensional optical coherence tomography (OCT) permit observations of cardiac dynamics at high-speed acquisition rates and high resolution. Real-time observation of the avian stage 13 looping heart reveals that interactions between the endocardial and myocardial compartments are more complex than previously depicted. Here we applied four-dimensional OCT to elucidate the relationships of the endocardium, myocardium, and cardiac jelly compartments in a single cardiac cycle during looping. Six cardiac levels along the longitudinal heart tube were each analyzed at 15 time points from diastole to systole. Using image analyses, the organization of mechanotransducing molecules, fibronectin, tenascin C, α-tubulin, and nonmuscle myosin II was correlated with specific cardiac regions defined by OCT data. Optical coherence microscopy helped to visualize details of cardiac architectural development in the embryonic mouse heart. Throughout the cardiac cycle, the endocardium was consistently oriented between the midline of the ventral floor of the foregut and the outer curvature of the myocardial wall, with multiple endocardial folds allowing high-volume capacities during filling. The cardiac area fractional shortening is much higher than previously published. The in vivo profile captured by OCT revealed an interaction of the looping heart with the extra-embryonic splanchnopleural membrane providing outside-in information. In summary, the combined dynamic and imaging data show the developing structural capacity to accommodate increasing flow and the mechanotransducing networks that organize to effectively facilitate formation of the trabeculated four-chambered heart.
Collapse
Affiliation(s)
- Barbara Garita
- Department of Pediatrics, The Children’s Research Institute, University of South Florida and All Children’s Hospital, St. Petersburg, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
In this study, we develop an innovative approach to rigorously quantify the evolving hemodynamic environment of the atrioventricular (AV) canal of avian embryos. Ultrasound generated velocity profiles were imported into Micro-Computed Tomography generated anatomically precise cardiac geometries between Hamburger-Hamilton (HH) stages 17 and 30. Computational fluid dynamic simulations were then conducted and iterated until results mimicked in vivo observations. Blood flow in tubular hearts (HH17) was laminar with parallel streamlines, but strong vortices developed simultaneous with expansion of the cushions and septal walls. For all investigated stages, highest wall shear stresses (WSS) are localized to AV canal valve-forming regions. Peak WSS increased from 19.34 dynes/cm(2) at HH17 to 287.18 dynes/cm(2) at HH30, but spatiotemporally averaged WSS became 3.62 dynes/cm(2) for HH17 to 9.11 dynes/cm(2) for HH30. Hemodynamic changes often preceded and correlated with morphological changes. These results establish a quantitative baseline supporting future hemodynamic analyses and interpretations.
Collapse
Affiliation(s)
- Huseyin C. Yalcin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
- Department of Mechanical Engineering, Dogus University, Istanbul, Turkey
| | - Akshay Shekhar
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Tim C. McQuinn
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | |
Collapse
|
74
|
Tobita K, Liu X, Lo CW. Imaging modalities to assess structural birth defects in mutant mouse models. ACTA ACUST UNITED AC 2010; 90:176-84. [PMID: 20860057 DOI: 10.1002/bdrc.20187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assessment of structural birth defects (SBDs) in animal models usually entails conducting detailed necropsy for anatomical defects followed by histological analysis for tissue defects. Recent advances in new imaging technologies have provided the means for rapid phenotyping of SBDs, such as using ultra-high frequency ultrasound biomicroscopy, optical coherence tomography, micro-CT, and micro-MRI. These imaging modalities allow the detailed assessment of organ/tissue structure, and with ultrasound biomicroscopy, structure and function of the cardiovascular system also can be assessed noninvasively, allowing the longitudinal tracking of the fetus in utero. In this review, we briefly discuss the application of these state-of-the-art imaging technologies for phenotyping of SBDs in rodent embryos and fetuses, showing how these imaging modalities may be used for the detection of a wide variety of SBDs.
Collapse
Affiliation(s)
- Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania 15224, USA.
| | | | | |
Collapse
|
75
|
Kim JS, Min J, Recknagel AK, Riccio M, Butcher JT. Quantitative Three-Dimensional Analysis of Embryonic Chick Morphogenesis Via Microcomputed Tomography. Anat Rec (Hoboken) 2010. [DOI: 10.1002/ar.21276] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
76
|
Männer J, Wessel A, Yelbuz TM. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 2010; 239:1035-46. [PMID: 20235196 DOI: 10.1002/dvdy.22265] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The heart is the first organ to function in vertebrate embryos. The human heart, for example, starts beating around the 21st embryonic day. During the initial phase of its pumping action, the embryonic heart is seen as a pulsating blood vessel that is built up by (1) an inner endothelial tube lacking valves, (2) a middle layer of extracellular matrix, and (3) an outer myocardial tube. Despite the absence of valves, this tubular heart generates unidirectional blood flow. This fact poses the question how it works. Visual examination of the pulsating embryonic heart tube shows that its pumping action is characterized by traveling mechanical waves sweeping from its venous to its arterial end. These traveling waves were traditionally described as myocardial peristaltic waves. It has, therefore, been speculated that the tubular embryonic heart works as a technical peristaltic pump. Recent hemodynamic data from living embryos, however, have shown that the pumping function of the embryonic heart tube differs in several respects from that of a technical peristaltic pump. Some of these data suggest that embryonic heart tubes work as valveless "Liebau pumps." In the present study, a review is given on the evolution of the two above-mentioned theories of early cardiac pumping mechanics. We discuss pros and cons for both of these theories. We show that the tubular embryonic heart works neither as a technical peristaltic pump nor as a classic Liebau pump. The question regarding how the embryonic heart tube works still awaits an answer.
Collapse
Affiliation(s)
- Jörg Männer
- Department of Anatomy and Cell Biology, Georg-August-University of Göttingen, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
77
|
Yalcin HC, Shekhar A, Nishimura N, Rane AA, Schaffer CB, Butcher JT. Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects. Am J Physiol Heart Circ Physiol 2010; 299:H1728-35. [PMID: 20709864 DOI: 10.1152/ajpheart.00495.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic heart formation is driven by complex feedback between genetic and hemodynamic stimuli. Clinical congenital heart defects (CHD), however, often manifest as localized microtissue malformations with no underlying genetic mutation, suggesting that altered hemodynamics during embryonic development may play a role. An investigation of this relationship has been impaired by a lack of experimental tools that can create locally targeted cardiac perturbations. Here we have developed noninvasive optical techniques that can modulate avian cardiogenesis to dissect relationships between alterations in mechanical signaling and CHD. We used two-photon excited fluorescence microscopy to monitor cushion and ventricular dynamics and femtosecond pulsed laser photoablation to target micrometer-sized volumes inside the beating chick hearts. We selectively photoablated a small (∼100 μm radius) region of the superior atrioventricular (AV) cushion in Hamburger-Hamilton 24 chick embryos. We quantified via ultrasound that the disruption causes AV regurgitation, which resulted in a venous pooling of blood and severe arterial constriction. At 48 h postablation, quantitative X-ray microcomputed tomography imaging demonstrated stunted ventricular growth and pronounced left atrial dilation. A histological analysis demonstrated that the laser ablation produced defects localized to the superior AV cushion: a small quasispherical region of cushion tissue was completely obliterated, and the area adjacent to the myocardial wall was less cellularized. Both cushions and myocardium were significantly smaller than sham-operated controls. Our results highlight that two-photon excited fluorescence coupled with femtosecond pulsed laser photoablation should be considered a powerful tool for studying hemodynamic signaling in cardiac morphogenesis through the creation of localized microscale defects that may mimic clinical CHD.
Collapse
Affiliation(s)
- Huseyin C Yalcin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
78
|
Yao J, Maslov KI, Shi Y, Taber LA, Wang LV. In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. OPTICS LETTERS 2010; 35:1419-21. [PMID: 20436589 PMCID: PMC2916025 DOI: 10.1364/ol.35.001419] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A method is proposed to measure transverse blood flow by using photoacoustic Doppler broadening of bandwidth. By measuring bovine blood flowing through a plastic tube, the linear dependence of the broadening on the flow speed was validated. The blood flow of the microvasculature in a mouse ear and a chicken embryo (stage 16) was also studied.
Collapse
Affiliation(s)
- Junjie Yao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Konstantin I. Maslov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yunfei Shi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Larry A. Taber
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lihong V. Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
79
|
Sedmera D. Factors in ventricular and atrioventricular valve growth: An embryologist's perspective. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2010.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
80
|
Männer J, Thrane L, Norozi K, Yelbuz TM. In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function. Dev Dyn 2010; 238:3273-84. [PMID: 19924823 DOI: 10.1002/dvdy.22159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cardiac cycle-related deformations of tubular embryonic hearts were traditionally described as concentric narrowing and widening of a tube of circular cross-section. Using optical coherence tomography (OCT), we have recently shown that, during the cardiac cycle, only the myocardial tube undergoes concentric narrowing and widening while the endocardial tube undergoes eccentric narrowing and widening, having an elliptic cross-section at end-diastole and a slit-shaped cross-section at end-systole. Due to technical limitations, these analyses were confined to early stages of ventricular development (chick embryos, stages 10-13). Using a modified OCT-system, we now document, for the first time, the cyclic changes in cross-sectional shape of beating embryonic ventricles at stages 14 to 17. We show that during these stages (1) a large area of diminished cardiac jelly appears at the outer curvature of the ventricular region associated with formation of endocardial pouches; (2) the ventricular endocardial lumen acquires a bell-shaped cross-section at end-diastole and becomes compressed like a fireplace bellows during systole; (3) the contracting portions of the embryonic ventricles display stretching along its baso-apical axis at end-systole. The functional significance of our data is discussed with respect to early cardiac pumping function.
Collapse
Affiliation(s)
- Jörg Männer
- Department of Anatomy and Embryology, Georg-August-University of Göttingen, Göttingen, Germany.
| | | | | | | |
Collapse
|
81
|
Interactive effects of temperature and hypoxia on heart rate and oxygen consumption of the 3-day old chicken embryo. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:301-8. [DOI: 10.1016/j.cbpa.2009.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/30/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022]
|
82
|
|
83
|
Liu A, Wang R, Thornburg KL, Rugonyi S. Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:044020. [PMID: 19725731 DOI: 10.1117/1.3184462] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Four-dimensional (4-D) imaging of the embryonic heart allows study of cardiac morphology and function in vivo during development. However, 4-D imaging of the embryonic heart using current techniques, including optical coherence tomography (OCT), is limited by the rate of image acquisition. Here, we present a nongated 4-D imaging strategy combined with an efficient postacquisition synchronization procedure that circumvents limitations on acquisition rate. The 4-D imaging strategy acquires a time series of images in B mode at several different locations along the heart, rendering out-of-phase image sequences. Then, our synchronization procedure uses similarity of local structures to find the phase shift between neighboring image sequences, employing M-mode images (extracted from the acquired B-mode images) to achieve computational efficiency. Furthermore, our procedure corrects the phase shifts by considering the phase lags introduced by peristaltic-like contractions of the embryonic heart wall. We applied the 4-D imaging strategy and synchronization procedure to reconstruct the cardiac outflow tract (OFT) of a chick embryo, imaged with OCT at early stages of development (Hamburger-Hamilton stage 18). We showed that the proposed synchronization procedure achieves efficiency without sacrificing accuracy and that the reconstructed 4-D images properly captured the dynamics of the OFT wall motion.
Collapse
Affiliation(s)
- Aiping Liu
- Oregon Health & Science University, School of Medicine, Division of Biomedical Engineering, 3303 SW Bond Ave., Mail Code CH13B, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
84
|
Oosterbaan AM, Ursem NTC, Struijk PC, Bosch JG, van der Steen AFW, Steegers EAP. Doppler flow velocity waveforms in the embryonic chicken heart at developmental stages corresponding to 5-8 weeks of human gestation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2009; 33:638-644. [PMID: 19434670 DOI: 10.1002/uog.6362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVES To obtain Doppler velocity waveforms from the early embryonic chicken heart by means of ultrasound biomicroscopy and to compare these waveforms at different stages of embryonic development. METHODS We collected cardiac waveforms using high-frequency Doppler ultrasound with a 55-MHz transducer at Hamburger-Hamilton (HH) stages 18, 21 and 23, which are comparable to humans at 5 to 8 weeks of gestation. Waveforms were obtained at the inflow tract, the primitive left ventricle, the primitive right ventricle and at the outflow tract in 10 different embryos per stage. M-mode recordings were collected to study opening and closure of the cushions. By exploring the temporal relationship between the waveforms, using a secondary Doppler device, cardiac cycle events were outlined. RESULTS Our results demonstrate that stage- and location-dependent intracardiac blood flow velocity waveforms can be obtained in the chicken embryo. The blood flow profiles assessed at the four locations in the embryonic heart demonstrated an increase in peak velocity with advancing developmental stage. In the primitive ventricle the 'passive' (P) filling peak decreased whereas the 'active' (A) filling peak increased, resulting in a decrease in P to A ratio with advancing developmental stage. M-mode recordings demonstrated that the fractional closure time of the atrioventricular cushions increased from 20% at stage HH 18 to 60% at stage HH 23. CONCLUSION High-frequency ultrasound biomicroscopy can be used to define flow velocity waveforms in the embryonic chicken heart. This may contribute to an understanding of Doppler signals derived from valveless embryonic human hearts at 5 to 8 weeks of gestation, prior to septation.
Collapse
Affiliation(s)
- A M Oosterbaan
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
85
|
Hu N, Christensen DA, Agrawal AK, Beaumont C, Clark EB, Hawkins JA. Dependence of Aortic Arch Morphogenesis on Intracardiac Blood Flow in the Left Atrial Ligated Chick Embryo. Anat Rec (Hoboken) 2009; 292:652-60. [DOI: 10.1002/ar.20885] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
86
|
Poelma C, Van der Heiden K, Hierck BP, Poelmann RE, Westerweel J. Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 2009; 7:91-103. [PMID: 19401309 DOI: 10.1098/rsif.2009.0063] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In order to study the role of blood-tissue interaction in the developing chicken embryo heart, detailed information about the haemodynamic forces is needed. In this study, we present the first in vivo measurements of the three-dimensional distribution of wall shear stress (WSS) in the outflow tract (OFT) of an embryonic chicken heart. The data are obtained in a two-step process: first, the three-dimensional flow fields are measured during the cardiac cycle using scanning microscopic particle image velocimetry; second, the location of the wall and the WSS are determined by post-processing flow velocity data (finding velocity gradients at locations where the flow approaches zero). The results are a three-dimensional reconstruction of the geometry, with a spatial resolution of 15-20 microm, and provides detailed information about the WSS in the OFT. The most significant error is the location of the wall, which results in an estimate of the uncertainty in the WSS values of 20 per cent.
Collapse
Affiliation(s)
- C Poelma
- Laboratory for Aero and Hydrodynamics, Delft University of Technology, Leeghwaterstraat 21, 2628 CA Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
87
|
Belichenko VM, Shoshenko KA. Circulatory system in chicken skeletal muscle in the second half of embryogenesis: Shape, blood flow, and vascular reactivity. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409020052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
88
|
Wang Y, Dur O, Patrick MJ, Tinney JP, Tobita K, Keller BB, Pekkan K. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng 2009; 37:1069-81. [PMID: 19337838 DOI: 10.1007/s10439-009-9682-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/17/2009] [Indexed: 12/20/2022]
Abstract
Morphogenesis of the "immature symmetric embryonic aortic arches" into the "mature and asymmetric aortic arches" involves a delicate sequence of cell and tissue migration, proliferation, and remodeling within an active biomechanical environment. Both patient-derived and experimental animal model data support a significant role for biomechanical forces during arch development. The objective of the present study is to quantify changes in geometry, blood flow, and shear stress patterns (WSS) during a period of normal arch morphogenesis. Composite three-dimensional (3D) models of the chick embryo aortic arches were generated at the Hamburger-Hamilton (HH) developmental stages HH18 and HH24 using fluorescent dye injection, micro-CT, Doppler velocity recordings, and pulsatile subject-specific computational fluid dynamics (CFD). India ink and fluorescent dyes were injected into the embryonic ventricle or atrium to visualize right or left aortic arch morphologies and flows. 3D morphology of the developing great vessels was obtained from polymeric casting followed by micro-CT scan. Inlet aortic arch flow and cerebral-to-lower body flow split was obtained from 20 MHz pulsed Doppler velocity measurements and literature data. Statistically significant variations of the individual arch diameters along the developmental timeline are reported and correlated with WSS calculations from CFD. CFD simulations quantified pulsatile blood flow distribution from the outflow tract through the aortic arches at stages HH18 and HH24. Flow perfusion to all three arch pairs are correlated with the in vivo observations of common pharyngeal arch defect progression. The complex spatial WSS and velocity distributions in the early embryonic aortic arches shifted between stages HH18 and HH24, consistent with increased flow velocities and altered anatomy. The highest values for WSS were noted at sites of narrowest arch diameters. Altered flow and WSS within individual arches could be simulated using altered distributions of inlet flow streams. Thus, inlet flow stream distributions, 3D aortic sac and aortic arch geometries, and local vascular biologic responses to spatial variations in WSS are all likely to be important in the regulation of arch morphogenesis.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Biomedical Engineering, Carnegie Mellon University, 2100 Doherty Hall, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Davis A, Izatt J, Rothenberg F. Quantitative measurement of blood flow dynamics in embryonic vasculature using spectral Doppler velocimetry. Anat Rec (Hoboken) 2009; 292:311-9. [PMID: 19248163 PMCID: PMC2918287 DOI: 10.1002/ar.20808] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The biophysical effects of blood flow are known to influence the structure and function of adult cardiovascular systems. Similar effects on the maturation of the cardiovascular system have been difficult to directly and non-invasively measure due to the small size of the embryo. Optical coherence tomography (OCT) has been shown to provide high spatial and temporal structural imaging of the early embryonic chicken heart. We have developed an extension of Doppler OCT, called spectral Doppler velocimetry (SDV), that will enable direct, non-invasive quantification of blood flow and shear rate from the early embryonic cardiovascular system. Using this technique, we calculated volumetric flow rate and shear rate from chicken embryo vitelline vessels. We present blood flow dynamics and spatial velocity profiles from three different vessels in the embryo as well as measurements from the outflow tract of the embryonic heart tube. This technology can potentially provide spatial mapping of blood flow and shear rate in embryonic cardiovascular structures, producing quantitative measurements that can be correlated with gene expression and normal and abnormal morphology.
Collapse
Affiliation(s)
- Anjul Davis
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Joseph Izatt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Florence Rothenberg
- Division of Cardiovascular Diseases, University of Cincinatti, Cincinatti, Ohio
| |
Collapse
|
90
|
Davis AM, Rothenberg FG, Shepherd N, Izatt JA. In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2008; 25:3134-43. [PMID: 19037405 DOI: 10.1364/josaa.25.003134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Progress toward understanding embryonic heart development has been hampered by the inability to image embryonic heart structure and simultaneously measure blood flow dynamics in vivo. We have developed a spectral domain optical coherence tomography system for in vivo volumetric imaging of the chicken embryo heart. We have also developed a technique called spectral Doppler velocimetry (SDV) for quantitative measurement of blood flow dynamics. We present in vivo volume images of the embryonic heart from initial tube formation to development of endocardial cushions of the same embryo over several stages of development. SDV measurements reveal the influence of heart tube structure on blood flow dynamics.
Collapse
Affiliation(s)
- A M Davis
- Biomedical Engineering Department, Duke University, 136 Hudson Hall, 3000 Science Drive, Durham, North Carolina 27708, USA.
| | | | | | | |
Collapse
|
91
|
Männer J, Thrane L, Norozi K, Yelbuz TM. High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography. Dev Dyn 2008; 237:953-61. [PMID: 18330931 DOI: 10.1002/dvdy.21483] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The embryonic heart tube consists of an outer myocardial tube, a middle layer of cardiac jelly, and an inner endocardial tube. It is said that tubular hearts pump the blood by peristaltoid contractions. The traditional concept of cardiac peristalsis sees the cyclic deformations of pulsating heart tubes as concentric narrowing and widening of tubes of circular cross-section. We have visualized the cross-sectional deformations of contracting embryonic hearts in chick embryos (HH-stages 9-17) using real-time high-resolution optical coherence tomography. Cardiac contractions are detected from HH-stage 10 onward. During the cardiac cycle, the myocardial tube undergoes concentric narrowing and widening while the endocardial tube undergoes eccentric narrowing and widening, having an elliptic cross-section at end-diastole and a slit-shaped cross-section at end-systole. The eccentric deformation of the endocardial tube is the consequence of an uneven distribution of the cardiac jelly. Our data show that the cyclic deformations of pulsating embryonic heart tubes run other than originally thought. There is evidence that heart tubes of elliptic cross-section might pump blood with a higher mechanical efficiency than those of circular-cross section. The uneven distribution of cardiac jelly seems to prefigure the future AV and cono-truncal endocardial cushions.
Collapse
Affiliation(s)
- Jörg Männer
- Department of Anatomy and Embryology, Georg-August-University of Göttingen, Germany.
| | | | | | | |
Collapse
|
92
|
Abstract
This article concerns the development of myocardial architecture--crucial for contractile performance of the heart and its conduction system, essential for generation and coordinated spread of electrical activity. Topics discussed include molecular determination of cardiac phenotype (contractile and conducting), remodeling of ventricular wall architecture and its blood supply, and relation of trabecular compaction to noncompaction cardiomyopathy. Illustrated are the structure and function of the tubular heart, time course of trabecular compaction, and development of multilayered spiral systems of the compact layer.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Animal Physiology and Genetics, Prague, Czech Republic.
| | | |
Collapse
|
93
|
McQuinn TC, Bratoeva M, Dealmeida A, Remond M, Thompson RP, Sedmera D. High-frequency ultrasonographic imaging of avian cardiovascular development. Dev Dyn 2008; 236:3503-13. [PMID: 17948299 DOI: 10.1002/dvdy.21357] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The chick embryo has long been a favorite model system for morphologic and physiologic studies of the developing heart, largely because of its easy visualization and amenability to experimental manipulations. However, this advantage is diminished after 5 days of incubation, when rapidly growing chorioallantoic membranes reduce visibility of the embryo. Using high-frequency ultrasound, we show that chick embryonic cardiovascular structures can be readily visualized throughout the period of Stages 9-39. At most stages of development, a simple ex ovo culture technique provided the best imaging opportunities. We have measured cardiac and vascular structures, blood flow velocities, and calculated ventricular volumes as early as Stage 11 with values comparable to those previously obtained using video microscopy. The endocardial and myocardial layers of the pre-septated heart are readily seen as well as the acellular layer of the cardiac jelly. Ventricular inflow in the pre-septated heart is biphasic, just as in the mature heart, and is converted to a monophasic (outflow) wave by ventricular contraction. Although blood has soft-tissue density at the ultrasound resolutions and developmental stages examined, its movement allowed easy discrimination of perfused vascular structures throughout the embryo. The utility of such imaging was demonstrated by documenting changes in blood flow patterns after experimental conotruncal banding.
Collapse
Affiliation(s)
- Tim C McQuinn
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Groenendijk BCW, Van der Heiden K, Hierck BP, Poelmann RE. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology (Bethesda) 2008; 22:380-9. [PMID: 18073411 DOI: 10.1152/physiol.00023.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, the role of wall shear stress in the chicken embryonic heart is analyzed to determine its effect on cardiac development through regulating gene expression. Therefore, background information is provided for fluid dynamics, normal chicken and human heart development, cardiac malformations, cardiac and vitelline blood flow, and a chicken model to induce cardiovascular anomalies. A set of endothelial shear stress-responsive genes coding for endothelin-1 (ET-1), lung Krüppel-like factor (LKLF/KLF2), and endothelial nitric oxide synthase (eNOS/NOS-3) are active in development and are specifically addressed.
Collapse
|
95
|
Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J. Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physiol (1985) 2008; 104:766-72. [PMID: 18187612 DOI: 10.1152/japplphysiol.00870.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryonic stem (ES) cells are exposed to fluid-mechanical forces, such as cyclic strain and shear stress, during the process of embryonic development but much remains to be elucidated concerning the role of fluid-mechanical forces in ES cell differentiation. Here, we show that cyclic strain induces vascular smooth muscle cell (VSMC) differentiation in murine ES cells. Flk-1-positive (Flk-1+) ES cells seeded on flexible silicone membranes were subjected to controlled levels of cyclic strain and examined for changes in cell proliferation and expression of various cell lineage markers. When exposed to cyclic strain (4-12% strain, 1 Hz, 24 h), the Flk-1+ ES cells significantly increased in cell number and became oriented perpendicular to the direction of strain. There were dose-dependent increases in the VSMC markers smooth muscle alpha-actin and smooth muscle-myosin heavy chain at both the protein and gene expression level in response to cyclic strain, whereas expression of the vascular endothelial cell marker Flk-1 decreased, and there were no changes in the other endothelial cell markers (Flt-1, VE-cadherin, and platelet endothelial cell adhesion molecule 1), the blood cell marker CD3, or the epithelial marker keratin. The PDGF receptor beta (PDGFR beta) kinase inhibitor AG-1296 completely blocked the cyclic strain-induced increase in cell number and VSMC marker expression. Cyclic strain immediately caused phosphorylation of PDGFR beta in a dose-dependent manner, but neutralizing antibody against PDGF-BB did not block the PDGFR beta phosphorylation. These results suggest that cyclic strain activates PDGFR beta in a ligand-independent manner and that the activation plays a critical role in VSMC differentiation from Flk-1+ ES cells.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Dept. of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Groenendijk BCW, Stekelenburg-de Vos S, Vennemann P, Wladimiroff JW, Nieuwstadt FTM, Lindken R, Westerweel J, Hierck BP, Ursem NTC, Poelmann RE. The Endothelin-1 Pathway and the Development of Cardiovascular Defects in the Haemodynamically Challenged Chicken Embryo. J Vasc Res 2007; 45:54-68. [PMID: 17901707 DOI: 10.1159/000109077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 06/03/2007] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND/AIMS Ligating the right lateral vitelline vein of chicken embryos (venous clip) results in cardiovascular malformations. These abnormalities are similar to malformations observed in knockout mice studies of components of the endothelin-1 (ET-1)/endothelin-converting enzyme-1/endothelin-A receptor pathway. In previous studies we demonstrated that cardiac ET-1 expression is decreased 3 h after clipping, and ventricular diastolic filling is disturbed after 2 days. Therefore, we hypothesise that ET-1-related processes are involved in the development of functional and morphological cardiovascular defects after venous clip. METHODS In this study, ET-1 and endothelin receptor antagonists (BQ-123, BQ-788 and PD145065) were infused into the HH18 embryonic circulation. Immediate haemodynamic effects on the embryonic heart and extra-embryonic vitelline veins were examined by Doppler and micro-particle image velocimetry. Ventricular diastolic filling characteristics were studied at HH24, followed by cardiovascular morphologic investigation (HH35). RESULTS ET-1 and its receptor antagonists induced haemodynamic effects at HH18. At HH24, a reduced diastolic ventricular passive filling component was demonstrated, which was compensated by an increased active filling component. Thinner ventricular myocardium was shown in 42% of experimental embryos. CONCLUSION We conclude that cardiovascular malformations after venous clipping arise from a combination of haemodynamic changes and altered gene expression patterns and levels, including those of the endothelin pathway.
Collapse
Affiliation(s)
- Bianca C W Groenendijk
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Lee JY, Ji HS, Lee SJ. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos. Physiol Meas 2007; 28:1149-62. [PMID: 17906384 DOI: 10.1088/0967-3334/28/10/002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hemodynamic characteristics of blood flow are important in the diagnosis of circulatory diseases, since such diseases are related to wall shear stress of cardiovascular vessels. In chicken embryos at early stages of development, it is possible to directly visualize blood flow inside blood vessels. We therefore employed a micro-PIV technique to assess blood flow in extraembryonic venous and arterial blood vessels of chicken embryos, using red blood cells (RBCs) as tracers and obtaining flow images of RBCs using a high-speed CMOS camera. The mean velocity field showed non-Newtonian flow characteristics. The blood flow in two venous vessels merged smoothly into the Y-shaped downstream vein without any flow separation or secondary flow. Vorticity was high in the inner regions, where the radius of curvature varied greatly. A periodic variation of temporally resolved velocity signals, due to beating of the heart, was observed in arterial blood vessels. The pulsating frequency was obtained by fast Fourier transform analysis using the measured velocity data. The measurement technique used here was useful in analyzing the hemodynamic characteristics of in vivo blood flow in chicken embryos.
Collapse
Affiliation(s)
- Jung Yeop Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea
| | | | | |
Collapse
|
98
|
Schröder H. Function and form--a chicken and egg situation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2007; 30:252-3. [PMID: 17721911 DOI: 10.1002/uog.5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- H Schröder
- Department of Obstetrics and Fetal Medicine Experimental Fetal-Maternal Medicine, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany.
| |
Collapse
|
99
|
Stekelenburg-de Vos S, Steendijk P, Ursem NTC, Wladimiroff JW, Poelmann RE. Systolic and diastolic ventricular function in the normal and extra-embryonic venous clipped chicken embryo of stage 24: a pressure-volume loop assessment. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2007; 30:325-31. [PMID: 17721868 DOI: 10.1002/uog.5137] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
OBJECTIVES Fluid mechanical forces affect cardiac development. In the chicken embryo, permanent obstruction of the right lateral vitelline vein by clipping reduces the mechanical load on the embryonic myocardium, which has been shown to induce a spectrum of outflow tract anomalies. Insight into the effects of this intervention on the mechanical function of the developing myocardium could contribute to a better understanding of the relationship between hemodynamics and cardiac morphogenesis. We aimed to explore the effects of clipping on intrinsic systolic and diastolic ventricular function at stage 24 in the chicken embryo METHODS Cardiac pressure-volume relationships enable load-independent quantification of intrinsic ventricular systolic and diastolic properties. We determined ventricular function by pressure-volume loop analysis of in-ovo stage-24 chicken embryos (n = 15) 2 days after venous obstruction at 2.5 days of incubation (stage 17, venous clipped embryos). Control embryos (n = 15) were used for comparison. RESULTS End-systolic volume was significantly higher in clipped embryos (0.36 +/- 0.02 microL vs. 0.29 +/- 0.02 microL, P = 0.002). End-systolic and end-diastolic pressure were also increased compared with control animals (2.93 +/- 0.07 mmHg vs. 2.70 +/- 0.08 mmHg, P = 0.036 and 1.15 +/- 0.06 mmHg vs. 0.82 +/- 0.05 mmHg, P < 0.001, respectively). No significant differences were demonstrated for other baseline hemodynamic parameters. Analysis of pressure-volume relationships showed a significantly lower end-systolic elastance in the clipped embryos (slope of end-systolic pressure-volume relationship: 2.91 +/- 0.24 mmHg/microL vs. 7.53 +/- 0.66 mmHg/microL, P < 0.005) indicating reduced contractility. Diastolic stiffness was significantly increased in the clipped embryos (slope of end-diastolic pressure-volume relationship: 1.54 +/- 0.21 vs. 0.60 +/- 0.08, P < 0.005), indicating reduced compliance. CONCLUSION Venous obstruction apparently interferes with normal myocardial development, resulting in impaired intrinsic systolic and diastolic ventricular function. These changes in ventricular function may precede morphological derangements observed in later developmental stages.
Collapse
Affiliation(s)
- S Stekelenburg-de Vos
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
100
|
Butcher JT, Sedmera D, Guldberg RE, Markwald RR. Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography. Dev Dyn 2007; 236:802-9. [PMID: 17013892 DOI: 10.1002/dvdy.20962] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We present a method to generate quantitative embryonic cardiovascular volumes at extremely high resolution without tissue shrinkage using micro-computed tomography (Micro-CT). A CT dense polymer (Microfil, Flow Tech, Inc.) was used to perfuse avian embryonic hearts from Hamburger and Hamilton stage (HH) 15 through HH36, which solidified to create a cast within the luminal space. Hearts were then scanned at 10.5 mum(3) voxel resolution using a VivaCT scanner, digital slices were contoured for regions of interest, and computational analysis was conducted to quantify morphogenetic parameters. The three-dimensional morphology was compared with that of scanning electron microscopy (SEM) images and serial section reconstruction of similarly staged hearts. We report that Microfil-perfused hearts swelled to maximum end-diastolic volume with negligible shrinking after polymerization. Comparison to SEM revealed good agreement of cardiac chamber proportions and intracardiac tissue structures (i.e., valves and septa) at the stages of development assessed. Quantification of changes in chamber volume over development revealed several notable results that confirm earlier hypotheses. Heart chamber volumes grow over two orders of magnitude during the 1-week developmental period analyzed. The atrioventricular canal comprised a significant proportion of the early heart volume. While left atrium/left ventricular volume ratios approached 1 in later development, right atrium/right ventricle ratios increase to over 2.5. Quantification of trabeculation patterns confirmed that the right and left ventricles are similarly trabeculated before HH27, after which the right ventricle became quantitatively coarser than that of the left ventricle. These results demonstrate that Micro-CT can be used to image and quantify cardiovascular structures during development.
Collapse
Affiliation(s)
- Jonathan T Butcher
- Cardiovascular Developmental Biology Center, Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|