51
|
Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021; 9:biomedicines9091085. [PMID: 34572271 PMCID: PMC8469189 DOI: 10.3390/biomedicines9091085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
Collapse
|
52
|
Virdee SS, Bashir N, Camilleri J, Cooper PR, Tomson P. Exploiting dentine matrix proteins in cell-free approaches for periradicular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:707-732. [PMID: 34309453 PMCID: PMC9419954 DOI: 10.1089/ten.teb.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recent discovery of mesenchymal stem cells within periapical lesions (PL-MSC) has presented novel opportunities for managing periradicular diseases in adult teeth by way of enhancing tissue regeneration. This discovery coincides with the current paradigm shift toward biologically driven treatment strategies in endodontics, which have typically been reserved for non-vital immature permanent teeth. One such approach that shows promise is utilizing local endogenous non-collagenous dentine extracellular matrix components (dECM) to recruit and upregulate the intrinsic regenerative capacity of PL-MSCs in situ. At picogram levels, these morphogens have demonstrated tremendous ability to enhance the cellular activities in in vitro and in vivo animal studies that would otherwise be necessary for periradicular regeneration. Briefly, these include proliferation, viability, migration, differentiation, and mineralization. Therefore, topical application of dECMs during ortho- or retrograde root canal treatment could potentially enhance and sustain the regenerative mechanisms within diseased periapical tissues that are responsible for attaining favorable clinical and radiographic outcomes. This would provide many advantages when compared with conventional antimicrobial-only therapies for apical periodontitis (AP), which do not directly stimulate healing and have had stagnant success rates over the past five decades despite significant advances in operative techniques. The aim of this narrative review was to present the novel concept of exploiting endogenous dECMs as clinical tools for treating AP in mature permanent teeth. A large scope of literature was summarized to discuss the issues associated with conventional treatment modalities; current knowledge surrounding PL-MSCs; composition of the dECM; inductive potentials of dECM morphogens in other odontogenic stem cell niches; how treatment protocols can be adapted to take advantage of dECMs and PL-MSCs; and finally, the challenges currently impeding successful clinical translation alongside directions for future research.
Collapse
Affiliation(s)
- Satnam Singh Virdee
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Nasir Bashir
- University of Birmingham, 1724, School of Dentistry, Birmingham Dental Hospital and School of Dentistry, 5 Mill Pool Way, Edgbaston, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7SA;
| | - Josette Camilleri
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Paul R Cooper
- University of Otago, 2495, Faculty of Dentistry, Dunedin, New Zealand;
| | - Phillip Tomson
- University of Birmingham College of Medical and Dental Sciences, 150183, School of Dentistry, Institute of Clinical Sciences, 5 Mill Pool Way, Edgbaston, Birmingham, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7EG.,University of Birmingham;
| |
Collapse
|
53
|
Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Dental Pulp Stem Cells (DPSCs) Display a Similar Profile with Pericytes. Stem Cells Int 2021; 2021:8859902. [PMID: 34349804 PMCID: PMC8328701 DOI: 10.1155/2021/8859902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Pericytes play an important role in forming functional blood vessels and establishing stable and effective microcirculation, which is crucial for vascular tissue engineering. The slow ex vivo expansion rate, limited proliferative capacity, and variability of tissue-specific phenotypes would hinder experimental studies and clinical translation of primary pericytes. In this study, the angiogenic and pericyte functions of stem cells from human exfoliated deciduous teeth (SHEDs) and postnatal human dental pulp stem cells (DPSCs) were investigated. Methods Osteogenic and adipogenic induction assays were performed to evaluate the mesenchymal potential of SHEDs, DPSCs, and pericytes. An in vitro Matrigel angiogenesis assay was conducted to reveal the ability of SHEDs, DPSCs, and pericytes to stabilize vascular-like structures. Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to evaluate mRNA expression. Flow cytometry, western blotting, and immunostaining were used to assess the protein expression. Wound healing and transwell assays were performed to evaluate the migration ability of SHEDs, DPSCs, and pericytes. Results The osteogenic and adipogenic induction assays showed that SHEDs, DPSCs, and pericytes exhibited similar stem cell characteristics. The mRNA expression levels of PDGFR-β, α-SMA, NG2, and DEMSIN in SHEDs and DPSCs cultured in EC medium were significantly higher than those in the control groups on day 7 (P < 0.05), but significantly higher than those in the pericytes group on day 14 (P < 0.05). Flow cytometry showed that high proportions of SHEDs and DPSCs were positive for various pericyte markers on day 7. The DPSCs, SHEDs, and pericytes displayed strong migration ability; however, there was no significant difference among the groups (P > 0.05). Conclusion The SHEDs and DPSCs display a profile similar to that of pericytes. Our study lays a solid theoretical foundation for the clinical use of dental pulp stem cells as a potential candidate to replace pericytes.
Collapse
|
54
|
da Silva AAF, Rinco UGR, Jacob RGM, Sakai VT, Mariano RC. The effectiveness of hydroxyapatite-beta tricalcium phosphate incorporated into stem cells from human exfoliated deciduous teeth for reconstruction of rat calvarial bone defects. Clin Oral Investig 2021; 26:595-608. [PMID: 34169375 DOI: 10.1007/s00784-021-04038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effects of stem cells from the pulp of human exfoliated deciduous teeth (SHED) on biphasic calcium phosphate granules (BCP) to repair rat calvarial defects as compared to autogenous bone grafting. MATERIALS AND METHODS A defect with a 6-mm diameter was produced on the calvaria of 50 rats. BCP granules were incorporated into SHED cultures grown for 7 days in conventional (CM) or osteogenic (OM) culture media. The animals were allocated into 5 groups of 10, namely: clot, autogenous bone, BCP, BCP+SHED in CM (BCP-CM), and BCP+SHED in OM (BCP-OM). The presence of newly formed bone and residual biomaterial particles was assessed by histometric analysis after 4 and 8 weeks. RESULTS The autogenous group showed the largest newly formed bone area at week 8 and in the entire experimental period, with a significant difference in relation to the other groups (P < 0.05). At week 8, BCP-CM and BCP-OM groups showed homogeneous new bone formation (P = 0.13). When considering the entire experimental period, the BCP group had the highest percentage of residual particle area, with no significant difference from the BCP-CM group (P = 0.06) and with a significant difference from the BCP-OM group (P = 0.01). BCP-CM and BCP-OM groups were homogeneous throughout the experimental period (P = 0.59). CONCLUSIONS BCP incorporated into SHED cultures showed promising outcomes, albeit less pronounced than autogenous grafting, for the repair of rat calvarial defects. CLINICAL RELEVANCE BCP incorporated into SHED cultures showed to be an alternative in view of the disadvantages to obtain autogenous bone graft.
Collapse
Affiliation(s)
- Alexandre Augusto Ferreira da Silva
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil.
| | - Ugo Guilherme Roque Rinco
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil
| | - Ricardo Garcia Mureb Jacob
- Faculty of Dentistry, José do Rosário Vellano University, Rodovia MG-179 Km 0, s/n -37130-000, Bairro Trevo, Alfenas, MG, Brazil
| | - Vivien Thiemy Sakai
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil
| | - Ronaldo Célio Mariano
- Faculty of Dentistry, Department of Clinic and Surgery, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700 - 37130-001, Cenro, Alfenas, MG, Brazil
| |
Collapse
|
55
|
Zhang Z, Oh M, Sasaki JI, Nör JE. Inverse and reciprocal regulation of p53/p21 and Bmi-1 modulates vasculogenic differentiation of dental pulp stem cells. Cell Death Dis 2021; 12:644. [PMID: 34168122 PMCID: PMC8225874 DOI: 10.1038/s41419-021-03925-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Dental pulp stem cells (DPSC) are capable of differentiating into vascular endothelial cells. Although the capacity of vascular endothelial growth factor (VEGF) to induce endothelial differentiation of stem cells is well established, mechanisms that maintain stemness and prevent vasculogenic differentiation remain unclear. Here, we tested the hypothesis that p53 signaling through p21 and Bmi-1 maintains stemness and inhibits vasculogenic differentiation. To address this hypothesis, we used primary human DPSC from permanent teeth and Stem cells from Human Exfoliated Deciduous (SHED) teeth as models of postnatal mesenchymal stem cells. DPSC seeded in biodegradable scaffolds and transplanted into immunodeficient mice generated mature human blood vessels invested with smooth muscle actin-positive mural cells. Knockdown of p53 was sufficient to induce vasculogenic differentiation of DPSC (without vasculogenic differentiation medium containing VEGF), as shown by increased expression of endothelial markers (VEGFR2, Tie-2, CD31, VE-cadherin), increased capillary sprouting in vitro; and increased DPSC-derived blood vessel density in vivo. Conversely, induction of p53 expression with small molecule inhibitors of the p53-MDM2 binding (MI-773, APG-115) was sufficient to inhibit VEGF-induced vasculogenic differentiation. Considering that p21 is a major downstream effector of p53, we knocked down p21 in DPSC and observed an increase in capillary sprouting that mimicked results observed when p53 was knocked down. Stabilization of ubiquitin activity was sufficient to induce p53 and p21 expression and reduce capillary sprouting. Interestingly, we observed an inverse and reciprocal correlation between p53/p21 and the expression of Bmi-1, a major regulator of stem cell self-renewal. Further, direct inhibition of Bmi-1 with PTC-209 resulted in blockade of capillary-like sprout formation. Collectively, these data demonstrate that p53/p21 functions through Bmi-1 to prevent the vasculogenic differentiation of DPSC.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Min Oh
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Jun-Ichi Sasaki
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Jacques E Nör
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
56
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
58
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
59
|
Aquino JB, Sierra R, Montaldo LA. Diverse cellular origins of adult blood vascular endothelial cells. Dev Biol 2021; 477:117-132. [PMID: 34048734 DOI: 10.1016/j.ydbio.2021.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
During embryonic stages, vascular endothelial cells (ECs) originate from the mesoderm, at specific extraembryonic and embryonic regions, through a process called vasculogenesis. In the adult, EC renewal/replacement mostly depend on local resident ECs or endothelial progenitor cells (EPCs). Nevertheless, contribution from circulating ECs/EPCs was also reported. In addition, cells lacking from EC/EPC markers with in vitro extended plasticity were shown to originate endothelial-like cells (ELCs). Most of these cells consist of mesenchymal stromal progenitors, which would eventually get mobilized from the bone marrow after injury. Based on that, current knowledge on different mouse and human bone marrow stromal cell (BM-SC) subpopulations, able to contribute with mesenchymal stromal/stem cells (MSCs), is herein reviewed. Such analyses underline an unexpected heterogeneity among sinusoidal LepR+ stromal/CAR cells. For instance, in a recent report a subgroup of LepR+ stromal/CAR progenitors, which express GLAST and is traced in Wnt1Cre;R26RTom mice, was found to contribute with ELCs in vivo. These GLAST + Wnt1+ BM-SCs were shown to get mobilized to the peripheral blood and to contribute with liver regeneration. Other sources of ELCs, such as adipose, neural and dental pulp tissues, were also published. Finally, mechanisms likely involved in the enhanced cellular plasticity properties of bone marrow/adipose tissue stromal cells, able to originate ELCs, are assessed. In the future, strategies to analyze the in vivo expression profile of stromal cells, with MSC properties, in combination with screening of active genomic regions at the single cell-level, during early postnatal development and/or after injury, will likely help understanding properties of these ELC sources.
Collapse
Affiliation(s)
- Jorge B Aquino
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina.
| | - Romina Sierra
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| | - Laura A Montaldo
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| |
Collapse
|
60
|
Hashim SNM, Yusof MFH, Zahari W, Noordin KBAA, Akamatsu T, Azlina A. Amniotic membrane matrix effects on calcineurin-NFAT-related gene expressions of SHED treated with VEGF for endothelial differentiation. In Vitro Cell Dev Biol Anim 2021; 57:560-570. [PMID: 34021476 DOI: 10.1007/s11626-021-00588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/02/2021] [Indexed: 11/26/2022]
Abstract
The nuclear factor of activated T-cell (NFAT) signaling pathway is involved in angiogenesis following initiation by vascular endothelial growth factor (VEGF). A number of angiogenic genes have been associated with calcineurin in the NFAT pathway, forming a calcineurin-NFAT pathway. This study aims to investigate the involvement of four angiogenic genes within the calcineurin-NFAT pathway in the endothelial-like differentiation of stem cells from human exfoliated deciduous teeth (SHED) cultured on a human amniotic membrane (HAM) induced by VEGF. SHED were induced with VEGF for 24 h, then cultured on the stromal side of HAM. The cells were then further induced with VEGF until days 1 and 14. To understand the role of calcineurin, its potent inhibitor, cyclosporin A (CsA), was added into the culture. Results from SEM and H&E analyses showed SHED grew on HAM surface. Gene expression study of Cox-2 showed a drastically reduced expression with CsA treatment indicating Cox-2 involvement in the calcineurin-NFAT pathway. Meanwhile, IL-8 was probably controlled by another pathway as it showed no CsA inhibition. In contrast, high expression of ICAM-1 and RCAN1.4 by VEGF and CsA implied that these genes were not controlled by the calcineurin-NFAT-dependent pathway. In conclusion, the results of this study suggest the involvement of Cox-2 in the calcineurin-NFAT-dependent pathway while RCAN1.4 was controlled by NFAT molecule in endothelial-like differentiation of SHED cultured on HAM with VEGF induction.
Collapse
Affiliation(s)
- Siti Nurnasihah Md Hashim
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Fuad Hilmi Yusof
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wafa' Zahari
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Tetsuya Akamatsu
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial & Social Sciences, Tokushima University, Tokushima-shi, Tokushima, 770-8513, Japan
| | - Ahmad Azlina
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
61
|
Cui D, Yu S, Zhou X, Liu Y, Gan L, Pan Y, Zheng L, Wan M. Roles of Dental Mesenchymal Stem Cells in the Management of Immature Necrotic Permanent Teeth. Front Cell Dev Biol 2021; 9:666186. [PMID: 34095133 PMCID: PMC8170050 DOI: 10.3389/fcell.2021.666186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries and trauma always lead to pulp necrosis and subsequent root development arrest of young permanent teeth. The traditional treatment, apexification, with the absence of further root formation, results in abnormal root morphology and compromises long-term prognosis. Regeneration endodontics procedures (REPs) have been developed and considered as an alternative strategy for management of immature permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free REPs, including revascularization and cell homing with molecules recruiting endogenous mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing optimistic periapical lesion healing and continued root development. However, the regenerated pulp-dentin complex is still absent in these cases. Dental MSCs, as one of the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental MSC-based REPs have presented promising potential with pulp-dentin regeneration in large animal studies and clinical trials via cell transplantation. In the present review, we summarize current understanding of the biological basis of clinical treatments for immature necrotic permanent teeth and the roles of dental MSCs during this process and update the progress of MSC-based REPs in the administration of immature necrotic permanent teeth.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
62
|
Multipotent stem cells from apical pulp of human deciduous teeth with immature apex. Tissue Cell 2021; 71:101556. [PMID: 34082260 DOI: 10.1016/j.tice.2021.101556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/09/2023]
Abstract
Isolation of high-quality human postnatal stem cells from accessible sources is an important goal for dental tissue engineering. Stem cells from developing organs are a better cell source but are hard to obtain. With extensive caries that are difficult to restore, the extracted deciduous tooth with an immature apex is a developing organ for investigation. In the present study, a cell population from the tip of apical pulp of human deciduous teeth with an immature apex was isolated and termed apical pulp-derived cells of deciduous teeth (De-APDCs). De-APDCs expressed STRO-1, CD44, CD90 and CD105 but not CD34 or CD45. Furthermore, De-APDCs demonstrated a significantly higher clonogenic and proliferative ability and osteo/dentinogenic differentiation capacity than dental pulp cells from exfoliated deciduous teeth (De-DPCs) (P < 0.05). Differentiation potential toward adipogenic, neurogenic and chondrogenic lineages was also observed in induced De-APDCs. In addition, after De-APDCs were seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds and transplanted into nude mice, they were able to regenerate dentin/pulp-like structures aligned with human odontoblast-like cells. In conclusion, De-APDCs, which are derived from a developing tissue, represent an accessible and prospective cell source for tooth regeneration.
Collapse
|
63
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
64
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
65
|
Jochums A, Volk J, Perduns R, Plum M, Schertl P, Bakopoulou A, Geurtsen W. Influence of 2-hydroxyethyl methacrylate (HEMA) exposure on angiogenic differentiation of dental pulp stem cells (DPSCs). Dent Mater 2021; 37:534-546. [PMID: 33579530 DOI: 10.1016/j.dental.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The angiogenic differentiation of dental pulp stem cells (DPSCs) is important for tissue homeostasis and wound healing. In this study the influence of 2-hydroxyethyl methacrylate (HEMA) on angiogenic differentiation was investigated. METHODS To evaluate HEMA effects on angiogenic differentiation, DPSCs were cultivated in angiogenic differentiation medium (ADM) in the presence or absence of non-toxic HEMA concentrations (0.1 mM and 0.5 mM). Subsequently, angiogenic differentiation was analyzed on the molecular level by qRT-PCR and protein profiler analyzes of angiogenic markers and flow cytometry of PECAM1. The influence of HEMA on angiogenic phenotypes was analyzed by cell migration and sprouting assays. RESULTS Treatment with 0.5 mM HEMA during differentiation can lead to a slight reduction of angiogenic markers on mRNA level. HEMA also seems to slightly reduce the quantity of angiogenic cytokines (not significant). However, these HEMA concentrations have no detectable influence on cell migration, the abundance of PECAM1 and the formation of capillaries. Higher concentrations caused primary cytotoxic effects in angiogenic differentiation experiments conducted for longer periods than 72 h. SIGNIFICANCE Non-cytotoxic HEMA concentrations seem to have a minor impact on the expression of angiogenic markers, essentially on the mRNA level, without affecting the angiogenic differentiation process itself on a detectable level.
Collapse
Affiliation(s)
- André Jochums
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Renke Perduns
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Melanie Plum
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Peter Schertl
- Department of Cell Biology and Biophysics, Leibniz University Hannover, D-30419 Hannover, Germany
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece.
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
66
|
Sordi MB, Curtarelli RB, da Silva IT, Fongaro G, Benfatti CAM, de Souza Magini R, Cabral da Cruz AC. Effect of dexamethasone as osteogenic supplementation in in vitro osteogenic differentiation of stem cells from human exfoliated deciduous teeth. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:1. [PMID: 33469820 PMCID: PMC7815568 DOI: 10.1007/s10856-020-06475-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/10/2020] [Indexed: 05/05/2023]
Abstract
In in vitro culture systems, dexamethasone (DEX) has been applied with ascorbic acid (ASC) and β-glycerophosphate (βGLY) as culture media supplementation to induce osteogenic differentiation of mesenchymal stem cells. However, there are some inconsistencies regarding the role of DEX as osteogenic media supplementation. Therefore, this study verified the influence of DEX culture media supplementation on the osteogenic differentiation, especially the capacity to mineralize the extracellular matrix of stem cells from human exfoliated deciduous teeth (SHED). Five groups were established: G1-SHED + Dulbecco's Modified Eagles' Medium (DMEM) + fetal bovine serum (FBS); G2-SHED + DMEM + FBS + DEX; G3-SHED + DMEM + FBS + ASC + βGLY; G4-SHED + DMEM + FBS + ASC + βGLY + DEX; G5-MC3T3-E1 + α Minimal Essential Medium (MEM) + FBS + ASC + βGLY. DNA content, alkaline phosphatase (ALP) activity, free calcium quantification in the extracellular medium, and extracellular matrix mineralization quantification through staining with von Kossa, alizarin red, and tetracycline were performed on days 7 and 21. Osteogenic media supplemented with ASC and β-GLY demonstrated similar effects on SHED in the presence or absence of DEX for DNA content (day 21) and capacity to mineralize the extracellular matrix according to alizarin red and tetracycline quantifications (day 21). In addition, the presence of DEX in the osteogenic medium promoted less ALP activity (day 7) and extracellular matrix mineralization according to the von Kossa assay (day 21), and more free calcium quantification at extracellular medium (day 21). In summary, the presence of DEX in the osteogenic media supplementation did not interfere with SHED commitment into mineral matrix depositor cells. We suggest that DEX may be omitted from culture media supplementation for SHED osteogenic differentiation in vitro studies.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
| | - Raissa Borges Curtarelli
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
| | - Izabella Thaís da Silva
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
- Department of Pharmaceutics Science, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
| | - Cesar Augusto Magalhães Benfatti
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Department of Dentistry, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
| | - Ricardo de Souza Magini
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Department of Dentistry, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil.
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil.
- Department of Dentistry, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
67
|
Stem Cell-based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Rev Rep 2021; 17:1251-1263. [PMID: 33459973 DOI: 10.1007/s12015-020-10117-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Deep caries, trauma, and severe periodontitis result in pulpitis, pulp necrosis, and eventually pulp loss. However, no clinical therapy can regenerate lost pulp. A novel pulp regeneration strategy for clinical application is urgently needed. Signaling transduction plays an essential role in regulating the regenerative potentials of dental stem cells. Cytokines or growth factors, such as stromal cell-derived factor (SDF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), vascular endothelial growth factor (VEGF), WNT, can promote the migration, proliferation, odontogenic differentiation, pro-angiogenesis, and pro-neurogenesis potentials of dental stem cells respectively. Using the methods of signaling modulation including growth factors delivery, genetic modification, and physical stimulation has been applied in multiple preclinical studies of pulp regeneration based on cell transplantation or cell homing. Transplanting dental stem cells and growth factors encapsulated into scaffold regenerated vascularized pulp-like tissue in the root canal. Also, injecting a flowable scaffold only with chemokines recruited endogenous stem/progenitor cells for pulp regeneration. Notably, dental pulp regeneration has gradually developed into the clinical phase. These findings enlightened us on a novel strategy for structural and functional pulp regeneration through elaborate modulation of signaling transduction spatially and temporally via clinically applicable growth factors delivery. But challenges, such as the adverse effects of unphysiological signaling activation, the controlled drug release system, and the safety of gene modulation, are necessary to be tested in future works for promoting the clinical translation of pulp regeneration.
Collapse
|
68
|
Nizami MZI, Nishina Y. Recent Advances in Stem Cells for Dental Tissue Engineering. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:281-324. [DOI: 10.1007/978-981-16-4420-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
69
|
Ahmed GM, Abouauf EA, AbuBakr N, Elarab AE, Fawzy El-Sayed K. Stem Cell-Based Tissue Engineering for Functional Enamel and Dentin/Pulp Complex: A Potential Alternative to the Restorative Therapies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
70
|
Matoug-Elwerfelli M, Nazzal H, Raif EM, Wilshaw SP, Esteves F, Duggal M. Ex-vivo recellularisation and stem cell differentiation of a decellularised rat dental pulp matrix. Sci Rep 2020; 10:21553. [PMID: 33299073 PMCID: PMC7725831 DOI: 10.1038/s41598-020-78477-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023] Open
Abstract
Implementing the principles of tissue engineering within the clinical management of non-vital immature permanent teeth is of clinical interest. However, the ideal scaffold remains elusive. The aim of this work was to assess the feasibility of decellularising rat dental pulp tissue and evaluate the ability of such scaffold to support stem cell repopulation. Rat dental pulps were retrieved and divided into control and decellularised groups. The decellularisation protocol incorporated a low detergent concentration and hypotonic buffers. After decellularisation, the scaffolds were characterised histologically, immunohistochemistry and the residual DNA content quantified. Surface topography was also viewed under scanning electron microscopy. Biocompatibility was evaluated using cytotoxicity assays utilising L-929 cell line. Decellularised scaffolds were recellularised with human dental pulp stem cells up to 14 days in vitro. Cellular viability was assessed using LIVE/DEAD stain kit and the recellularised scaffolds were further assessed histologically and immunolabelled using makers for odontoblastic differentiation, cytoskeleton components and growth factors. Analysis of the decellularised scaffolds revealed an acellular matrix with histological preservation of structural components. Decellularised scaffolds were biocompatible and able to support stem cell survival following recellularisation. Immunolabelling of the recellularised scaffolds demonstrated positive cellular expression against the tested markers in culture. This study has demonstrated the feasibility of developing a biocompatible decellularised dental pulp scaffold, which is able to support dental pulp stem cell repopulation. Clinically, decellularised pulp tissue could possibly be a suitable scaffold for use within regenerative (reparative) endodontic techniques.
Collapse
Affiliation(s)
- Manal Matoug-Elwerfelli
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.,Department of Clinical Dental Science, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Hani Nazzal
- Department of Paediatric Dentistry, School of Dentistry, University of Leeds, Leeds, UK.,Hamad Dental Centre, Hamad Medical Corporation, Doha, Qatar
| | - El Mostafa Raif
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Stacy-Paul Wilshaw
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Filomena Esteves
- Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds, UK
| | - Monty Duggal
- Department of Paediatric Dentistry, School of Dentistry, University of Leeds, Leeds, UK. .,Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, National University Singapore, Singapore, Singapore.
| |
Collapse
|
71
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
72
|
Sanz JL, Forner L, Llena C, Guerrero-Gironés J, Melo M, Rengo S, Spagnuolo G, Rodríguez-Lozano FJ. Cytocompatibility and Bioactive Properties of Hydraulic Calcium Silicate-Based Cements (HCSCs) on Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs): A Systematic Review of In Vitro Studies. J Clin Med 2020; 9:jcm9123872. [PMID: 33260782 PMCID: PMC7761433 DOI: 10.3390/jcm9123872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The implementation of hydraulic calcium silicate-based endodontic cements (HCSCs) in biologically based endodontic procedures for the primary dentition has been recently investigated, focusing on the biological response of stem cells from human exfoliated deciduous teeth (SHEDs) towards them. The present systematic review aimed to present a qualitative synthesis of the available literature consisting of in vitro assays, which assessed the cytocompatibility and bioactive properties of HCSCs in direct contact with SHEDs. Following the PRISMA statement, an electronic database search was carried out in Medline, Scopus, Embase, Web of Science, and SciELO on March 31st and updated on November 16th, 2020. In vitro studies evaluating the biological response of SHEDs to the treatment with HCSCs were eligible. Within the term biological response, assays assessing the cytocompatibility (i.e., cell viability, migration, proliferation), cell plasticity or differentiation (i.e., osteo/odontogenic marker expression), and bioactivity or biomineralization (i.e., mineralized nodule formation) were included. A total of seven studies were included after the selection process. The study sample comprised an extensive range of cell viability, migration, proliferation, adhesion, and bioactivity assays regarding the biological response of SHEDs towards five different commercially available HCSCs (MTA, ProRoot MTA, Biodentine, iRoot BP Plus, and Theracal LC). Biodentine, MTA, and iRoot BP Plus showed significant positive results in cytocompatibility and bioactivity assays when cultured with SHEDs. The results from in vitro assays assessing the cytocompatibility and bioactivity of the HCSCs MTA, Biodentine, and iRoot BP Plus towards SHEDs support their use in vital pulp treatment for the primary dentition.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
- Correspondence: ; Tel.: +34-963864175
| | - Carmen Llena
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Julia Guerrero-Gironés
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - María Melo
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Francisco Javier Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
73
|
Chang HH, Chen IL, Wang YL, Chang MC, Tsai YL, Lan WC, Wang TM, Yeung SY, Jeng JH. Regulation of the regenerative activity of dental pulp stem cells from exfoliated deciduous teeth (SHED) of children by TGF-β1 is associated with ALK5/Smad2, TAK1, p38 and MEK/ERK signaling. Aging (Albany NY) 2020; 12:21253-21272. [PMID: 33148869 PMCID: PMC7695363 DOI: 10.18632/aging.103848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) regulates wound healing/regeneration and aging processes. Dental pulp stem cells from human exfoliated deciduous teeth (SHED) are cell sources for treatment of age-related disorders. We studied the effect of TGF-β1 on SHED and related signaling. SHED were treated with TGF-β1 with/without pretreatment/co-incubation by SB431542, U0126, 5Z-7-oxozeaenol or SB203580. Sircol collagen assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) assay, RT-PCR, western blotting and PathScan phospho-ELISA were used to measure the effects. We found that SHED expressed ALK1, ALK3, ALK5, TGF-RII, betaglycan and endoglin mRNA. TGF-β1 stimulated p-Smad2, p-TAK1, p-ERK, p-p38 and cyclooxygenase-2 (COX-2) protein expression. It enhanced proliferation and collagen content of SHED that were attenuated by SB431542, 5Z-7-oxozeaenol and SB203580, but not U0126. TGF-β1 (0.5-1 ng/ml) stimulated ALP of SHED, whereas 5-10 ng/ml TGF-β1 suppressed ALP. SB431542 reversed the effects of TGF-β1. However, 5Z-7-oxozeaenol, SB203580 and U0126 only reversed the stimulatory effect of TGF-β1 on ALP. Four inhibitors attenuated TGF-β1-induced COX-2 expression. TGF-β1-stimulated TIMP-1 and N-cadherin was inhibited by SB431542 and 5Z-7-oxozeaenol. These results indicate that TGF-β1 affects SHED by differential regulation of ALK5/Smad2/3, TAK1, p38 and MEK/ERK. TGF-β1 and SHED could potentially be used for tissue engineering/regeneration and treatment of age-related diseases.
Collapse
Affiliation(s)
- Hsiao-Hua Chang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Il-Ly Chen
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Wen-Chien Lan
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Tong-Mei Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
74
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
75
|
Zeng Y, Baugh E, Akyalcin S, Letra A. Functional Effects of WNT10A Rare Variants Associated with Tooth Agenesis. J Dent Res 2020; 100:302-309. [PMID: 33034246 DOI: 10.1177/0022034520962728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in WNT10A have frequently been reported as etiologic for tooth agenesis (TA). However, the effects of WNT10A variation on gene/protein function and contribution to TA phenotypes remain poorly understood. Here, we performed bioinformatic and functional characterization analysis of WNT10A variants. In silico prediction of variant function was performed with VIPUR for all WNT10A missense variants reported in the Exome Aggregation Consortium database. Functional characterization experiments were then performed for selected WNT10A variants previously associated with TA. Expression vectors for wild-type and mutant WNT10A were made and transfected into stem cells from human exfoliated deciduous teeth (SHED) for evaluation of gene/protein function, WNT signaling activity, and effects on expression of relevant genes. While 75% of WNT10A variants were predicted neutral, most of the TA-associated variants received deleterious scores by potentially destabilizing or preventing the disulfide bond formation required for proper protein function. WNT signaling was significantly decreased with 8 of 13 variants tested, whereas wild-type-like activity was retained with 4 of 13 variants. WNT10A-mutant cells (T357I, R360C, and R379C mutants) showed reduced or impaired binding affinity to FZD5, suggesting a potential mechanism for the decreased WNT signaling. Mutant cells also had decreased WNT10A protein expression in comparison to wild-type cells. mRNA expression of PAX9, MSX1, AXIN2, and RUNX2 (known tooth development genes) was perturbed in mutant cells and quite significantly for PAX9 and RUNX2. Transcriptome analysis of wild-type and T357I-mutant cells identified 36 differentially expressed genes (26 downregulated, 10 upregulated) involved in skeletal system development and morphogenesis and pattern specification. WNT10A variants deemed pathogenic for TA likely affect protein folding and/or stabilization, leading to decreased WNT signaling and concomitant dysregulated expression of relevant genes. These findings may allow for improved interpretation of TA phenotypes upon clinical diagnosis while providing important insights toward the development of future tooth replacement therapies.
Collapse
Affiliation(s)
- Y Zeng
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - E Baugh
- Department of Biology, New York University, New York, NY, USA
| | - S Akyalcin
- Department of Orthodontics, School of Dental Medicine, Tufts University, Houston, TX, USA
| | - A Letra
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA.,Pediatric Research Center, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
76
|
Yi B, Dissanayaka WL, Zhang C. Growth Factors and Small-molecule Compounds in Derivation of Endothelial Lineages from Dental Stem Cells. J Endod 2020; 46:S63-S70. [PMID: 32950197 DOI: 10.1016/j.joen.2020.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Incorporating fully assembled microvascular networks into bioengineered dental pulp constructs can significantly enhance functional blood flow and tissue survival upon transplantation. Endothelial cells (ECs), cellular building blocks of vascular tissue, play an essential role in the process of prevascularization. However, obtaining sufficient ECs from a suitable source for translational application is challenging. Dental stem cells (DSCs), which exhibit a robust proliferative ability and immunocompatibility because of their autologous origin, could be a promising alternative cell source for the derivation of endothelial lineages. Under specific culture conditions, DSCs differentiate into osteo/odontogenic, adipogenic, chondrogenic, and neurogenic cell lineages. METHODS Recently, a new approach has been developed to directly reprogram cells using chemical cocktails and growth factors. Compared with the traditional reprogramming approach based on the forced expression of exogenous transcription factors, the chemical strategy avoids the risk associated with lentiviral transduction while offering a more viable methodology to drive cell lineage switch. The aim of this review was to unveil the concept of the use of small-molecule compounds and growth factors modulating key signaling pathways to derive ECs from DSCs. RESULTS In addition, our preliminary study showed that stem cells from the apical papilla could be induced into EC-like cells using small-molecule compounds and growth factors. These EC-like cells expressed endothelial specific genes (CD31 and VEGFR2) and proteins (CD31, VEGF receptor 2, and vascular endothelial cadherin) as well as gave rise to vessel-like tubular structures in vitro. CONCLUSIONS Our preliminary results suggest that chemical reprogramming might offer a novel way to generate EC-like cells from dental stem cells.
Collapse
Affiliation(s)
- Baicheng Yi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Waruna Lakmal Dissanayaka
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
77
|
Cucco C, Zhang Z, Botero TM, Chiego DJ, Castilho RM, Nör JE. SCF/C-Kit Signaling Induces Self-Renewal of Dental Pulp Stem Cells. J Endod 2020; 46:S56-S62. [PMID: 32950196 PMCID: PMC7508352 DOI: 10.1016/j.joen.2020.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The maintenance of a stem cell pool is imperative to enable healing processes in the dental pulp tissue throughout life. As such, knowing mechanisms underlying stem cell self-renewal is critical to understand pulp pathophysiology and pulp regeneration. The purpose of this study was to evaluate the impact of stem cell factor (SCF) signaling through its receptor tyrosine kinase (c-Kit) on the self-renewal of human dental pulp stem cells (hDPSCs). METHODS The hDPSCs were stably transduced with lentiviral vectors expressing shRNA-c-Kit or vector control. The impact of the SCF/c-Kit axis on hDPSC self-renewal was evaluated by using a pulpsphere assay in low attachment conditions and by evaluating the expression of polycomb complex protein Bmi-1 (master regulator of self-renewal) by Western blot and flow cytometry. RESULTS The c-Kit-silenced hDPSCs formed fewer pulpspheres when compared with hDPSCs transduced with control vector (P < .05). Evaluation of pulpsphere morphology revealed the presence of 3 distinct sphere types, ie, holospheres, merospheres, and paraspheres. Although c-Kit silencing decreased the number of holospheres compared with control cells (P < .05), it had no effect on the number of merospheres and paraspheres. Recombinant human stem cell factor (rhSCF) increased the number of holospheres (P < .05) and induced dose-dependent Bmi-1 expression in hDPSCs. As expected, the inductive capacity of rhSCF on Bmi-1 expression and fraction of Bmi-1-positive cells was inhibited when we silenced c-Kit in hDPSCs. CONCLUSIONS These results unveiled the role of SCF/c-Kit signaling on the self-renewal of hDPSCs and suggested that this pathway enables long-term maintenance of stem cell pools in human dental pulps.
Collapse
Affiliation(s)
- Carolina Cucco
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Endodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Tatiana M Botero
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Daniel J Chiego
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan; Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
78
|
Zaw SYM, Kaneko T, Zaw ZCT, Sone PP, Murano H, Gu B, Okada Y, Han P, Katsube KI, Okiji T. Crosstalk between dental pulp stem cells and endothelial cells augments angiogenic factor expression. Oral Dis 2020; 26:1275-1283. [PMID: 32248596 DOI: 10.1111/odi.13341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We aimed to investigate whether the mesenchymal stem cell-endothelial cell crosstalk enhances angiogenic factor expression via nuclear factor-kappa B (NF-κB)-dependent mechanisms. MATERIALS AND METHODS Human dermal microvascular endothelial cells (HDMECs) and stem cells from human exfoliated deciduous teeth (SHEDs) were cocultured for 96 hr, in the presence of NF-κB decoy oligodeoxynucleotides (ODNs) or scramble (control). Vascular endothelial cell growth factor (VEGF) and phospho-NF-κB p65 were measured with enzyme-linked immunosorbent assay. Angiogenesis-related gene expression was analyzed with microarray analysis followed by real-time polymerase chain reaction. Tube formation assay was conducted in the presence of NF-κB decoy. RESULTS The VEGF and phospho-NF-κB p65 levels were significantly higher in the coculture with NF-κB decoy scramble than in single culture and coculture with NF-κB decoy ODN. Microarray analysis of SHEDs and HDMECs with NF-κB decoy scramble showed higher expression of proangiogenic genes, Bcl-2, NF-κB1, VEGFA, CXCL8, and CXCR1, and lower expression of proapoptotic genes, Bax and Caspase 9, compared to cells with NF-κB decoy ODN. Real-time PCR results for Bcl-2 and CXCL8 showed a similar trend. Tube formation assay showed more tube development in the presence of NF-κB decoy scramble. CONCLUSION The SHED-HDMEC crosstalk enhanced proangiogenic factor expression via NF-κB-dependent pathways.
Collapse
Affiliation(s)
- Su Yee Myo Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoatsu Kaneko
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Zar Chi Thein Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Phyo Pyai Sone
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroki Murano
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Bin Gu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yamato Okada
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Peifeng Han
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
79
|
|
80
|
Bertassoni LE. Progress and Challenges in Microengineering the Dental Pulp Vascular Microenvironment. J Endod 2020; 46:S90-S100. [PMID: 32950200 PMCID: PMC9924144 DOI: 10.1016/j.joen.2020.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The dental pulp is highly vascularized and innervated tissue that is uniquely designed, being highly biologically active, while being enclosed within the calcified structure of the tooth. It is well-established that the dental pulp vasculature is a key requirement for the functional performance of the tooth. Therefore, controlled regeneration of the dental pulp vasculature is a challenge that must be met for future regenerative endeavors in endodontics. METHODS In this perspective review, we address recent progress and challenges on the use of microengineering methods and biomaterials scaffolds to fabricate the dental pulp vascular microenvironment. RESULTS The conditions required to control the growth and differentiation of vascular capillaries are discussed, together with the conditions required for the formation of mature and stable pericyte-supported microvascular networks in 3-dimensional hydrogels and fabricated microchannels. Recent biofabrication methods, such as 3-dimensional bioprinting and micromolding are also discussed. Moreover, recent advances in the field of organs-on-a-chip are discussed regarding their applicability to dental research and endodontic regeneration. CONCLUSION Collectively, this short review offers future directions in the field that are presented with the objective of pointing toward successful pathways for successful clinical and translational strategies in regenerative endodontics, with especial emphasis on the dental pulp vasculature.
Collapse
Affiliation(s)
- Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA., Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR, USA., Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA., Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
81
|
|
82
|
Dissanayaka WL, Zhang C. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. J Endod 2020; 46:S81-S89. [DOI: 10.1016/j.joen.2020.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
83
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
84
|
Oh M, Zhang Z, Mantesso A, Oklejas A, Nör J. Endothelial-Initiated Crosstalk Regulates Dental Pulp Stem Cell Self-Renewal. J Dent Res 2020; 99:1102-1111. [PMID: 32471313 PMCID: PMC7375737 DOI: 10.1177/0022034520925417] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interactions with the microenvironment modulate the fate of stem cells in perivascular niches in tissues (e.g., bone) and organs (e.g., liver). However, the functional relevance of the molecular crosstalk between endothelial cells and stem cells within the perivascular niche in dental pulps is unclear. Here, we tested the hypothesis that endothelial cell-initiated signaling is necessary to maintain self-renewal of dental pulp stem cells. Confocal microscopy showed that ALDH1high and Bmi-1high stem cells are preferentially localized in close proximity to blood vessels in physiological human dental pulps. Secondary orosphere assays revealed that endothelial cell-derived factors (e.g., interleukin-6 [IL-6]) promote self-renewal of dental pulp stem cells cultured in low-attachment conditions. Mechanistic studies demonstrated that endothelial cell-derived IL-6 activates IL-6R (IL-6 Receptor) and signal transducer and activator of transcription 3 (STAT3) signaling and induces expression of Bmi-1 (master regulator of stem cell self-renewal) in dental pulp stem cells. Transplantation of dental pulp stem cells stably transduced with small hairpin RNA (shRNA)-STAT3 into immunodeficient mice revealed a decrease in the number of blood vessels surrounded by ALDH1high or Bmi-1high cells (perivascular niches) compared to tissues formed upon transplantation of vector control stem cells. And finally, in vitro capillary sprouting assays revealed that inhibition of IL-6 or STAT3 signaling decreases the vasculogenic potential of dental pulp stem cells. Collectively, these data demonstrate that endothelial cell-derived IL-6 enhances the self-renewal of dental pulp stem cells via STAT3 signaling and induction of Bmi-1. These data suggest that a crosstalk between endothelial cells and stem cells within the perivascular niche is required for the maintenance of stem cell pools in dental pulps.
Collapse
Affiliation(s)
- M. Oh
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Z. Zhang
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - A. Mantesso
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - A.E. Oklejas
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J.E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
85
|
Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Maeda H. Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy. BIOLOGY 2020; 9:biology9070160. [PMID: 32659896 PMCID: PMC7407391 DOI: 10.3390/biology9070160] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Correspondence: ; Tel.: +81-92-642-6432
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Sayuri Hamano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
86
|
Sabbagh J, Ghassibe-Sabbagh M, Fayyad-Kazan M, Al-Nemer F, Fahed JC, Berberi A, Badran B. Differences in osteogenic and odontogenic differentiation potential of DPSCs and SHED. J Dent 2020; 101:103413. [PMID: 32585262 DOI: 10.1016/j.jdent.2020.103413] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are types of human dental tissue-derived mesenchymal stem cells (MSCs) that have emerged as an interesting and promising source of stem cells in the field of tissue engineering. The aim of this work is to isolate stem cells from DPSCs and SHED, cultivate them in vitro and compare their odontogenic differentiation potential. METHODS DPSCs and SHED were extracted from molars, premolars and canines of six healthy subjects aged 5-29 years. The cells were characterized, using flow cytometry, for mesenchymal stem cell surface markers. MTT colorimetric assay was applied to assess cell viability. Alizarin red staining, alkaline phosphatase (ALP) activity, quantitative real-time PCR (qRT-PCR) and western blot were carried out to determine DPSCs and SHED osteogenic/odontogenic differentiation. RESULTS DPSCs express higher STRO-1 and CD44 levels compared to SHED. Moreover, the cells differentiate and acquire columnar shape with a level of calcium deposition and mineralization that is the same between DPSCs and SHED. ALP activity, ALP, COLI, DMP-1, DSPP, OC, and RUNX2 (osteogenic/odontogenic differentiation markers) expression levels were higher in DPSCs. CONCLUSIONS DPSCs and SHED express MSCs markers. Although both cell types had calcium deposits, DPSCs presented a higher ALP activity level. In addition, DPSCs showed higher levels of osteogenic and odontogenic differentiation markers such as COLI, DSPP, OC, RUNX2, and DMP-1. These results suggest that DPSCs are closer to the phenotype of odontoblasts than SHED and may improve the efficacy of human dental tissue-derived mesenchymal stem cells therapeutic protocols. 'CLINICAL SIGNIFICANCE' DPSCs are closer than t SHED to the phenotype of odontoblasts. This would be helpful to enable better therapeutic decisions when applying MSCs-based therapy in the field of dentistry.
Collapse
Affiliation(s)
- Joseph Sabbagh
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Fatima Al-Nemer
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Jean Claude Fahed
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Antoine Berberi
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| |
Collapse
|
87
|
Therapeutic Functions of Stem Cells from Oral Cavity: An Update. Int J Mol Sci 2020; 21:ijms21124389. [PMID: 32575639 PMCID: PMC7352407 DOI: 10.3390/ijms21124389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Adult stem cells have been developed as therapeutics for tissue regeneration and immune regulation due to their self-renewing, differentiating, and paracrine functions. Recently, a variety of adult stem cells from the oral cavity have been discovered, and these dental stem cells mostly exhibit the characteristics of mesenchymal stem cells (MSCs). Dental MSCs can be applied for the replacement of dental and oral tissues against various tissue-damaging conditions including dental caries, periodontitis, and oral cancers, as well as for systemic regulation of excessive inflammation in immune disorders, such as autoimmune diseases and hypersensitivity. Therefore, in this review, we summarized and updated the types of dental stem cells and their functions to exert therapeutic efficacy against diseases.
Collapse
|
88
|
Zalaf BR, Bringel M, Jorge PK, de Oliveira B, Tanabe K, Santos CF, Oliveira RC, Rios D, Cruvinel T, Lourenço Neto N, Oliveira TM, Machado MAAM. A Biobank of Stem Cells of Human Exfoliated Deciduous Teeth: Overview of Applications and Developments in Brazil. Cells Tissues Organs 2020; 209:37-42. [PMID: 32541141 DOI: 10.1159/000506677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/17/2020] [Indexed: 11/19/2022] Open
Abstract
A biobank is an organized collection of biological human material and its associated information stored for research according to regulations under institutional responsibility, without commercial purposes, being a mandatory and strategical activity for research, regenerative medicine, and innovation. Stem cells have largely been employed in research and frequently stored in biobanks, which have been used as an essential source of biological materials. Stem cells of human exfoliated deciduous teeth (SHED) are stem cells which have a high multipotency and can be easily obtained. Besides, this extremely accessible tissue has advantages with respect to storage, as the SHED obtained in childhood can be used in later life, which implies the necessity for the creation and regulation of biobanks. The proper planning for the creation of a biobank includes knowledge of the material types to be stored, requirements regarding handling and storage conditions, storage time, and room for the number of samples. Thus, this study aimed to establish an overview of the development of a SHED biobank. Ethical and legal standardization, current applications, specific orientations, and challenges for the implementation of a SHED biobank were discussed. Through this overview, we hope to encourage further studies to use SHED biobanks.
Collapse
Affiliation(s)
- Bianca Rapini Zalaf
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil,
| | - Mayara Bringel
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Paula Karine Jorge
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Bárbara de Oliveira
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Kim Tanabe
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Daniela Rios
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Natalino Lourenço Neto
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | |
Collapse
|
89
|
Aziz NS, Yusop N, Ahmad A. Importance of Stem Cell Migration and Angiogenesis Study for Regenerative Cell-based Therapy: A Review. Curr Stem Cell Res Ther 2020; 15:284-299. [DOI: 10.2174/1574888x15666200127145923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
Stem cells play an essential role in maintaining homeostasis, as well as participating in new
tissue regeneration. Over the past 20 years, a great deal of effort has been made to investigate the behaviour
of stem cells to enable their potential use in regenerative medicine. However, a variety of biological
characteristics are known to exist among the different types of stem cells due to variations in
the methodological approach, formulation of cell culture medium, isolation protocol and cellular
niches, as well as species variation. In recent years, cell-based therapy has emerged as one of the advanced
techniques applied in both medical and clinical settings. Cell therapies aim to treat and repair
the injury sites and replace the loss of tissues by stimulating the repair and regeneration process. In
order to enable the use of stem cells in regenerative therapies, further characterisation of cell behaviour,
in terms of their proliferation and differentiation capacity, mainly during the quiescent and inductive
state is regarded as highly necessary. The central focus of regenerative medicine revolves around
the use of human cells, including adult stem cells and induced pluripotent stem cells for cell-based
therapy. The purpose of this review was to examine the existing body of literature on stem cell research
conducted on cellular angiogenesis and migration, to investigate the validity of different strategies and
variations of the cell type used. The information gathered within this review may then be shared with
fellow researchers to assist in future research work, engaging in stem cell homing for cell-based therapy
to enhance wound healing and tissue regeneration process.
Collapse
Affiliation(s)
- Nur S. Aziz
- Postgraduate Unit, School of Dentistry, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Norhayati Yusop
- Basic Sciences and Oral Biology Unit, School of Dentistry, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Azlina Ahmad
- Basic Sciences and Oral Biology Unit, School of Dentistry, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
90
|
Han Y, Gong T, Zhang C, Dissanayaka WL. HIF-1α Stabilization Enhances Angio-/Vasculogenic Properties of SHED. J Dent Res 2020; 99:804-812. [PMID: 32298193 DOI: 10.1177/0022034520912190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The outcome of regenerative procedures could be augmented by enhancing the biological performances of stem cells prior to their transplantation. The current study aimed to investigate whether hypoxic preconditioning through stabilization of hypoxia-inducible factor 1α (HIF-1α) could enhance the angio-/vasculogenic properties of stem cells from human exfoliated deciduous teeth (SHED). HIF-1α expression in SHED under normoxia was stabilized by silencing the expression of prolyl hydroxylase domain-containing protein 2 (PHD2) via lentiviral small hairpin RNA. This in turn significantly increased the expression of an angiogenic factor: vascular endothelial growth factor. Conditioned medium of HIF-1α-stabilized SHED increased the migration and proliferation of human umbilical vein endothelial cells (HUVECs), indicating enhanced paracrine signaling of SHED following PHD2 knockdown (P < 0.05). Furthermore, the coculture of HIF-1α-stabilized SHED with HUVECs directly and in fibrin beads demonstrated significantly longer vascular sprouts through juxtacrine and paracrine effects (P < 0.05). When HIF-1α-stabilized SHED were added to a preformed HUVEC vascular tube network on Matrigel, it not only stabilized the vessels, as shown by the increased thickness (P < 0.05) and junctional area (P < 0.01) of tubes, but also gave rise to new sprouting (P < 0.01). This observation, with the morphologic changes and increased CD31 expression, suggested that HIF-1α stabilization enhanced the endothelial differentiation capacity of SHED through autocrine signaling. In vivo Matrigel plug assay demonstrated that HIF-1α-stabilized SHED alone could give rise to a vasculature that was significantly higher than that of control SHED ± HUVECs and similar to that of HIF-1α-stabilized SHED + HUVECs. In addition to vasculogenesis by endothelial differentiation, HIF-1α-stabilized SHED recruited host blood vessels into the implant by exerting a significant paracrine effect. Taken together, our results confirmed that HIF-1α-stabilized SHED could replace the function of HUVECs and act as the sole cell source of vascularization. Thus, targeting PHD2 to stabilize HIF-1α expression is an appealing strategy that enables the use of a single cell source for achieving vascularized tissue regeneration.
Collapse
Affiliation(s)
- Y Han
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - T Gong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - C Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - W L Dissanayaka
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
91
|
Differential expression of long noncoding RNAs from dental pulp stem cells in the microenvironment of the angiogenesis. Arch Oral Biol 2020; 113:104691. [PMID: 32247880 DOI: 10.1016/j.archoralbio.2020.104691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/28/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Angiogenesis is important in pulp-dentin formation. Among the regulatory factors, long noncoding RNA (LncRNA) is a class of functional RNA molecules that are not translated into protein and involved in regulating multiple physiological processes. The different expression of LncRNA and its target gene in dental pulp stem cells (DPSCs) were explored and may provide a theoretical basis for future regulation of dental pulp angiogenesis. METHODS In this study, we cultured DPSCs from healthy dental pulp tissues and divided them into two groups: the normal DPSCs and the DPSCs cultured in vascular induction medium. In total, 40,173 LncRNA probes and 20,730 protein coding mRNAs were detected through microarray, which were then verified by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. RESULTS The result of differential expressions measured in LncRNA through microarray showed that 376 LncRNAs increased significantly and 426 were downregulated among the two groups of cells. Moreover, the mRNA microarray in normal cultured DPSCs showed that 629 LncRNAs were significantly upregulated, while 529 of them were downregulated compared with the DPSCs that were cultured in vascular induction medium. Gene ontology (GO) analysis inferred the molecular function of mRNAs. Pathway analysis showed that 52 signaling pathways were involved in the differentiation process of DPSCs. qRT-PCR analysis, conducted for validation, showed results consistent with the microarray analysis. CONCLUSIONS We found that a number of different regulators are involved in inducing vascular differentiation of DPSCs, which provides a foundation for subsequent experiments.
Collapse
|
92
|
Sasaki J, Zhang Z, Oh M, Pobocik A, Imazato S, Shi S, Nör J. VE-Cadherin and Anastomosis of Blood Vessels Formed by Dental Stem Cells. J Dent Res 2020; 99:437-445. [PMID: 32028818 PMCID: PMC7088203 DOI: 10.1177/0022034520902458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is known that dental pulp stem cells (DPSCs) can be induced to differentiate into vasculogenic endothelial (VE) cells. However, the process that results in sprouting and anastomosis of DPSC-derived vessels remains unclear. Here, we performed studies to understand the mechanisms underpinning the anastomosis of the host vasculature with blood vessels generated by DPSCs (a model for mesenchymal stem cells). VE-cadherin-silenced primary human DPSCs seeded in tooth slice/scaffolds and transplanted into the subcutaneous space of immunodeficient mice generated fewer functional blood vessels (i.e., anastomosed with the host vasculature) than control DPSCs transduced with scrambled sequences. Both VE-cadherin-silenced and mitogen-activated protein kinase kinase 1 (MEK1)-silenced cells showed a decrease in the number of capillary sprouts in vitro. Interestingly, DPSC stably transduced with a VE-cadherin reporter demonstrated that vascular endothelial growth factor (VEGF) induces VE-cadherin expression in sprouting DPSCs undergoing anastomosis, but not in quiescent DPSCs. To begin to understand the mechanisms regulating VE-cadherin, we stably silenced MEK1 and observed that VEGF was no longer able to induce VE-cadherin expression and capillary sprout formation. Notably ERG, a transcriptional factor downstream from MEK/ERK, binds to the promoter region of VE-cadherin (chip assay) and is induced by VEGF in DPSCs. Collectively, these data defined a signaling pathway triggered by VEGF that results in phosphorylation of MEK1/ERK and activation of ERG leading to expression of VE-cadherin, which is required for anastomosis of DPSC-derived blood vessels. In conclusion, these results unveiled a signaling pathway that enables the generation of functional blood vessels upon vasculogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- J.I. Sasaki
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Z. Zhang
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - M. Oh
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - A.M. Pobocik
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - S. Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - S. Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - J.E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
93
|
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9:445-464. [PMID: 31943813 PMCID: PMC7103623 DOI: 10.1002/sctm.19-0398] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Human pulp stem cells (PSCs) include dental pulp stem cells (DPSCs) isolated from dental pulp tissues of human extracted permanent teeth and stem cells from human exfoliated deciduous teeth (SHED). Depending on their multipotency and sensitivity to local paracrine activity, DPSCs and SHED exert therapeutic applications at multiple levels beyond the scope of the stomatognathic system. This review is specifically concentrated on PSC-updated biological characteristics and their promising therapeutic applications in (pre)clinical practice. Biologically, distinguished from conventional mesenchymal stem cell markers in vitro, NG2, Gli1, and Celsr1 have been evidenced as PSC markers in vivo. Both perivascular cells and glial cells account for PSC origin. Therapeutically, endodontic regeneration is where PSCs hold the most promises, attributable of PSCs' robust angiogenic, neurogenic, and odontogenic capabilities. More recently, the interplay between cell homing and liberated growth factors from dentin matrix has endowed a novel approach for pulp-dentin complex regeneration. In addition, PSC transplantation for extraoral tissue repair and regeneration has achieved immense progress, following their multipotential differentiation and paracrine mechanism. Accordingly, PSC banking is undergoing extensively with the intent of advancing tissue engineering, disease remodeling, and (pre)clinical treatments.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of OrthodonticsPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| |
Collapse
|
94
|
Ko CS, Chen JH, Su WT. Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review. Curr Stem Cell Res Ther 2020; 15:61-76. [DOI: 10.2174/1574888x14666191018122109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023]
Abstract
Stem Cells from Human Exfoliated Deciduous Teeth (SHED) originate from the embryonic
neural crest as ectodermal mesenchymal stem cells and are isolated from human deciduous teeth.
SHED expresses the same cell markers as Embryonic Stem Cells (ESCs), such as OCT4 and NANOG,
which make SHED to have a significant impact on clinical applications. SHED possess higher rates of
proliferation, higher telomerase activity, increased cell population doubling, form sphere-like clusters,
and possess immature and multi-differentiation capacity; such high plasticity makes SHED one of the
most popular sources of stem cells for biomedical engineering. In this review, we describe the isolation
and banking method, the current development of SHED in regenerative medicine and tissue engineering
in vitro and in vivo.
Collapse
Affiliation(s)
| | - Jen-Hao Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
95
|
Yusof MFH, Hashim SNM, Zahari W, Chandra H, Noordin KBAA, Kannan TP, Hamid SSA, Mokhtar KI, Azlina A. Amniotic Membrane Enhance the Effect of Vascular Endothelial Growth Factor on the Angiogenic Marker Expression of Stem Cells from Human Exfoliated Deciduous Teeth. Appl Biochem Biotechnol 2020; 191:177-190. [PMID: 32096060 DOI: 10.1007/s12010-020-03266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Previously, it was reported that human amniotic membrane (AM) induced stem cells from human deciduous exfoliated teeth (SHED) endothelial-like-cell differentiation. This interesting effect of AM matrix on SHED demands further elucidation. Objective of this in vitro work was to study the effect of 24-h VEGF induced on SHED endothelial differentiation when seeded on acellular stromal side (SS) of AM matrix. Stemness of SHED was identified by flow cytometry. Cell attachment and morphological changes towards the matrix was observed by scanning electron microscopy. Protein expression of endothelial marker was examined by Western blot. The expression of stem cells and endothelial-specific gene markers of VEGF-induced SHED cultured on human AM was inspected via reverse transcriptase-polymerase chain reaction. Results showed SHED at both passages retain stemness property. Ang-1 protein was expressed in SHED. Cells treated with VEGF and cultured on AM transformed attached well to AM. VEGF-induced SHED expressed both stem cell and endothelial-specific markers throughout the treatments and timeline. Interestingly, prolonged VEGF treatment increased the expression of Cox-2 and VE-Cadherin genes in all treated groups when compared to SHED. It was concluded that the VEGF-induced SHED showed better expression of endothelial-specific markers when cultured on SS of AM, with prolonged VEGF treatment.
Collapse
Affiliation(s)
- Muhammad Fuad Hilmi Yusof
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurnasihah Md Hashim
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wafa' Zahari
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Hamshawagini Chandra
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Thirumulu Ponnuraj Kannan
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Abdul Hamid
- Tissue Bank, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Khairani Idah Mokhtar
- Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Azlina
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
96
|
Pankajakshan D, Voytik-Harbin SL, Nör JE, Bottino MC. Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:859-868. [PMID: 32734173 PMCID: PMC7391263 DOI: 10.1021/acsabm.9b00944] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current stem cell transplantation approaches lack efficacy, because they limit cell survival and retention and, more importantly, lack a suitable cellular niche to modulate lineage-specific differentiation. Here, we evaluate the intrinsic ability of type I oligomeric collagen matrices to modulate dental pulp stem cells (DPSCs) endothelial and odontogenic differentiation as a potential stem cell-based therapy for regenerative endodontics. DPSCs were encapsulated in low-stiffness (235 Pa) and high-stiffness (800 Pa) oligomeric collagen matrices and then evaluated for long-term cell survival, as well as endothelial and odontogenic differentiation following in vitro cell culture. Moreover, the effect of growth factor incorporation, i.e., vascular endothelial growth factor (VEGF) into 235 Pa oligomeric collagen or bone morphogenetic protein (BMP2) into the 800 Pa oligomeric collagen counterpart on endothelial or odontogenic differentiation of encapsulated DPSCs was investigated. DPSCs-laden oligomeric collagen matrices allowed long-term cell survival. Real time polymerase chain reaction (RT-PCR) data showed that the DPSCs cultured in 235 Pa matrices demonstrated an increased expression of endothelial markers after 28 days, and the effect was enhanced upon VEGF incorporation. There was a significant increase in alkaline phosphatase (ALP) activity at Day 14 in the 800 Pa DPSCs-laden oligomeric collagen matrices, regardless of BMP2 incorporation. However, Alizarin S data demonstrated higher mineralization by Day 21 and the effect was amplified in BMP2-modified matrices. Herein, we present key data that strongly support future research aimed at clinical translation of an injectable oligomeric collagen system for delivery and fate regulation of DPSCs to enable pulp and dentin regeneration at specific locations of the root canal system.
Collapse
Affiliation(s)
| | | | - Jacques E Nör
- University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Marco C Bottino
- University of Michigan School of Dentistry, Ann Arbor, Michigan
| |
Collapse
|
97
|
Angiogenic protein synthesis after photobiomodulation therapy on SHED: a preliminary study. Lasers Med Sci 2020; 35:1909-1918. [PMID: 32056077 DOI: 10.1007/s10103-020-02975-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
This study evaluated the viability, proliferation, and protein expression after photobiomodulation (PBM) of stem cell from human exfoliated deciduous teeth (SHED). The groups were the following: G1 (2.5 J/cm2), G2 (3.7 J/cm2), and control (not irradiated). According to the groups, cells were irradiated with InGaAlP diode laser at 660 nm wavelength, continuous mode, and single time application. After 6 h, 12 h, and 24 h from irradiation, the cell viability and proliferation, and the protein expression were analyzed by MTT, crystal violet, and ELISA multiplex assay, respectively. Twenty-four hours after PBM, SHED showed better proliferation. Over time in the supernatant, all groups had an increase at the levels of VEGF-C, VEGF-A, and PLGF. In the lysate, the control and G2 exhibited a decrease of the VEGF-A, PECAM-1, and PLGF expression, while control and G3 decreased VEGF-C, VEGF-A, and PDGF expression. The dosimetries of 2.5 J/cm2 and 3.7 J/cm2 maintained viability, improved proliferation, and synthesis of the angiogenic proteins in the supernatant in the studied periods on SHED.
Collapse
|
98
|
Xie F, He J, Chen Y, Hu Z, Qin M, Hui T. Multi-lineage differentiation and clinical application of stem cells from exfoliated deciduous teeth. Hum Cell 2020; 33:295-302. [PMID: 32006349 DOI: 10.1007/s13577-020-00323-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) have now been considered one of the most promising sources of stem cells for tissue engineering and stem cell therapies due to their stemness and potential to differentiate into other cell lines. The high proliferation rate, the differentiation capacity, the easy access and less ethical concerns make SHED a brilliant solution for many diseases. The purpose of this review is to describe current knowledge of SHED's capability of differentiation, applications and immune status and to draw attention to further research on the mechanism and the dependability of stem cell therapy with SHED.
Collapse
Affiliation(s)
- Fei Xie
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Jie He
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Yingyi Chen
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Ziqi Hu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China.
| | - Tianqian Hui
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China.
| |
Collapse
|
99
|
Kitase Y, Sato Y, Ueda K, Suzuki T, Mikrogeorgiou A, Sugiyama Y, Matsubara K, Tsukagoshi Okabe Y, Shimizu S, Hirata H, Yukawa H, Baba Y, Tsuji M, Takahashi Y, Yamamoto A, Hayakawa M. A Novel Treatment with Stem Cells from Human Exfoliated Deciduous Teeth for Hypoxic-Ischemic Encephalopathy in Neonatal Rats. Stem Cells Dev 2020; 29:63-74. [DOI: 10.1089/scd.2019.0221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuma Kitase
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Alkisti Mikrogeorgiou
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Kohki Matsubara
- Department of Oral and Maxillofacial Surgery and Nagoya University Hospital, Nagoya, Japan
| | | | - Shinobu Shimizu
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Masahiro Tsuji
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
100
|
Vitor LLR, Prado MTO, Lourenço Neto N, Oliveira RC, Sakai VT, Santos CF, Dionísio TJ, Rios D, Cruvinel T, Machado MAAM, Oliveira TM. Does photobiomodulation change the synthesis and secretion of angiogenic proteins by different pulp cell lineages? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111738. [PMID: 31954290 DOI: 10.1016/j.jphotobiol.2019.111738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/02/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
This study aimed to compare the synthesis and secretion of VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, and FGF-2 between pulp fibroblasts from human primary teeth (HPF) and stem cell from human deciduous teeth (SHED) before and after photobiomodulation. HPF were obtained from explant technique and characterized by immunohistochemistry, while SHED were obtained from digestion technique and characterized by flow cytometry. HPF (control group) and SHED were plated, let to adhere, and put on serum starvation to synchronize the cell cycles prior to photobiomodulation. Then, both cell lineages were irradiated with 660-nm laser according to the following groups: 2.5 and 3.7 J/cm2. MTT and crystal violet assays respectively verified viability and proliferation. ELISA Multiplex Assay assessed the following proteins: VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, FGF-2, at 6, 12, and 24 h after photobiomodulation, in supernatant and lysate. Two-way ANOVA/Tukey test evaluated cell viability and proliferation, while angiogenic production and secretion values were analyzed by one-way ANOVA (P < .05). Statistically similar HPF and SHED viability and proliferation patterns occurred before and after photobiomodulation (P > .05). HPF exhibited statistically greater values of all angiogenic proteins than did SHED, at all study periods, except for FGF-2 (supernatant; 12 h); VEGFR1 (lysate; non-irradiated; 12 h); and VEGFR1 (lysate; non-irradiated; 24 h). Photobiomodulation changed the synthesis and secretion of angiogenic proteins by HPF. HPF produced and secreted greater values of all tested angiogenic proteins than did SHED before and after irradiation with both energy densities of 2.5 and 3.7 J/cm2.
Collapse
Affiliation(s)
| | - Mariel Tavares Oliveira Prado
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Natalino Lourenço Neto
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Vivien Thiemy Sakai
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Daniela Rios
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|