51
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
52
|
Williams E, Bullock AN. Structural basis for the potent and selective binding of LDN-212854 to the BMP receptor kinase ALK2. Bone 2018; 109:251-258. [PMID: 28918311 PMCID: PMC5871398 DOI: 10.1016/j.bone.2017.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Individuals with the rare developmental disorder fibrodysplasia ossificans progressiva (FOP) experience disabling heterotopic ossification caused by a gain of function mutation in the intracellular region of the BMP type I receptor kinase ALK2, encoded by the gene ACVR1. Small molecule BMP type I receptor inhibitors that block this ossification in FOP mouse models have been derived from the pyrazolo[1,5-a]pyrimidine scaffold of dorsomorphin. While the first derivative LDN-193189 exhibited pan inhibition of BMP receptors, the more recent compound LDN-212854 has shown increased selectivity for ALK2. Here we solved the crystal structure of ALK2 in complex with LDN-212854 to define how its binding interactions compare to previously reported BMP and TGFβ receptor inhibitors. LDN-212854 bound to the kinase hinge region as a typical type I ATP-competitive inhibitor with a single hydrogen bond to ALK2 His286. Specificity arising from the 5-quinoline moiety was associated with a distinct pattern of water-mediated hydrogen bonds involving Lys235 and Glu248 in the inactive conformation favoured by ALK2. The structure of this complex provides a template for the design of future ALK2 inhibitors under development for the treatment of FOP and other related conditions of heterotopic ossification.
Collapse
Affiliation(s)
- Eleanor Williams
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
53
|
Gallitz I, Lofruthe N, Traeger L, Bäumer N, Hoerr V, Faber C, Kuhlmann T, Müller-Tidow C, Steinbicker AU. Deficiency of the BMP Type I receptor ALK3 partly protects mice from anemia of inflammation. BMC PHYSIOLOGY 2018; 18:3. [PMID: 29482530 PMCID: PMC6389079 DOI: 10.1186/s12899-018-0037-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Background Inflammatory stimuli induce the hepatic iron regulatory hormone hepcidin, which contributes to anaemia of inflammation (AI). Hepcidin expression is regulated by the bone morphogenetic protein (BMP) and the interleukin-6 (IL-6) signalling pathways. Prior results indicate that the BMP type I receptor ALK3 is mainly involved in the acute inflammatory hepcidin induction four and 72 h after IL-6 administration. In this study, the role of ALK3 in a chronic model of inflammation was investigated. The intact, heat-killed bacterium Brucella abortus (BA) was used to analyse its effect on the development of inflammation and hypoferremia in mice with hepatocyte-specific Alk3-deficiency (Alk3fl/fl; Alb-Cre) compared to control (Alk3fl/fl) mice. Results An iron restricted diet prevented development of the iron overload phenotype in mice with hepatocyte-specific Alk3 deficiency. Regular diet leads to iron overload and increased haemoglobin levels in these mice, which protects from the development of AI per se. Fourteen days after BA injection Alk3fl/fl; Alb-Cre mice presented milder anaemia (Hb 16.7 g/dl to 11.6 g/dl) compared to Alk3fl/fl control mice (Hb 14.9 g/dl to 8.6 g/dl). BA injection led to an intact inflammatory response in all groups of mice. In Alk3fl/fl; Alb-Cre mice, SMAD1/5/8 phosphorylation was reduced after BA as well as after infection with Staphylococcus aureus. The reduction of the SMAD1/5/8 signalling pathway due to hepatocyte-specific Alk3 deficiency partly suppressed the induction of STAT3 signalling. Conclusion The results reveal in vivo, that 1) hepatocyte-specific Alk3 deficiency partly protects from AI, 2) the development of hypoferremia is partly dependent on ALK3, and 3) the ALK3/BMP/hepcidin axis may serve as a possible therapeutic target to attenuate AI. Electronic supplementary material The online version of this article (10.1186/s12899-018-0037-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inka Gallitz
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany
| | - Niklas Lofruthe
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany
| | - Lisa Traeger
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany
| | - Nicole Bäumer
- Department of Medicine A, Molecular Haematology and Oncology, University Hospital Muenster, 48149, Muenster, Germany
| | - Verena Hoerr
- Institute of Medical Microbiology, Jena University Hospital, 07747, Jena, Germany.,Department of Clinical Radiology, University Hospital Muenster, 48149, Muenster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Muenster, 48149, Muenster, Germany
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Muenster, 48149, Muenster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A, Molecular Haematology and Oncology, University Hospital Muenster, 48149, Muenster, Germany.,Present Address: Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer Campus 1, Building A1, 48149, Muenster, Germany.
| |
Collapse
|
54
|
Canali S, Wang CY, Zumbrennen-Bullough KB, Bayer A, Babitt JL. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am J Hematol 2017; 92:1204-1213. [PMID: 28815688 DOI: 10.1002/ajh.24888] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Hepcidin is a key iron regulatory hormone that controls expression of the iron exporter ferroportin to increase the iron supply when needed to support erythropoiesis and other essential functions, but to prevent the toxicity of iron excess. The bone morphogenetic protein (BMP)-SMAD signaling pathway, through the ligand BMP6 and the co-receptor hemojuvelin, is a central regulator of hepcidin transcription in the liver in response to iron. Here, we show that dietary iron loading has a residual ability to induce Smad signaling and hepcidin expression in Bmp6-/- mice, effects that are blocked by a neutralizing BMP2/4 antibody. Moreover, BMP2/4 antibody inhibits hepcidin expression and induces iron loading in wildtype mice, whereas a BMP4 antibody has no effect. Bmp2 mRNA is predominantly expressed in endothelial cells of the liver, where its baseline expression is higher, but its induction by iron is less robust than Bmp6. Mice with a conditional ablation of Bmp2 in endothelial cells exhibit hepcidin deficiency, serum iron overload, and tissue iron loading in liver, pancreas and heart, with reduced spleen iron. Together, these data demonstrate that in addition to BMP6, endothelial cell BMP2 has a non-redundant role in hepcidin regulation by iron.
Collapse
Affiliation(s)
- Susanna Canali
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Chia-Yu Wang
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Kimberly B. Zumbrennen-Bullough
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Abraham Bayer
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Jodie L. Babitt
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
55
|
Deletion of BMP6 worsens the phenotype of HJV-deficient mice and attenuates hepcidin levels reached after LPS challenge. Blood 2017; 130:2339-2343. [PMID: 29021231 DOI: 10.1182/blood-2017-07-795658] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022] Open
Abstract
Lack of either bone morphogenetic protein 6 (BMP6) or the BMP coreceptor hemojuvelin (HJV) in mice leads to a similar phenotype with hepcidin insufficiency, hepatic iron loading, and extrahepatic iron accumulation in males. This is consistent with the current views that HJV is a coreceptor for BMP6 in hepatocytes. To determine whether BMP6 and HJV may also signal to hepcidin independently of each other, we intercrossed Hjv-/- and Bmp6-/- mice and compared the phenotype of animals of the F2 progeny. Loss of Bmp6 further repressed Smad signaling and hepcidin expression in the liver of Hjv-/- mice of both sexes, and led to iron accumulation in the pancreas and the heart of females. These data suggest that, in Hjv-/- females, Bmp6 can provide a signal adequate to maintain hepcidin to a level sufficient to avoid extrahepatic iron loading. We also examined the impact of Bmp6 and/or Hjv deletion on the regulation of hepcidin by inflammation. Our data show that lack of 1 or both molecules does not prevent induction of hepcidin by lipopolysaccharide (LPS). However, BMP/Smad signaling in unchallenged animals is determinant for the level of hepcidin reached after stimulation, which is consistent with a synergy between interleukin 6/STAT3 and BMP/SMAD signaling in regulating hepcidin during inflammation.
Collapse
|
56
|
Uncoupled iron homeostasis in type 2 diabetes mellitus. J Mol Med (Berl) 2017; 95:1387-1398. [PMID: 28971221 DOI: 10.1007/s00109-017-1596-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus is frequently associated with iron overload conditions, such as primary and secondary hemochromatosis. Conversely, patients affected by type 2 diabetes mellitus (T2DM) show elevated ferritin levels, a biomarker for increased body iron stores. Despite these documented associations between dysregulated iron metabolism and T2DM, the underlying mechanisms are poorly understood. Here, we show that T2DM patients have reduced serum levels of hepcidin, the iron-regulated hormone that maintains systemic iron homeostasis. Consistent with this finding, we also observed an increase in circulating iron and ferritin levels. Our analysis of db/db mice demonstrates that this model recapitulates the systemic alterations observed in patients. Interestingly, db/db mice show an overall hepatic iron deficiency despite unaltered expression of ferritin and the iron importer TfR1. In addition, the liver correctly senses increased circulating iron levels by activating the BMP/SMAD signaling pathway even though hepcidin expression is decreased. We show that increased AKT phosphorylation may override active BMP/SMAD signaling and decrease hepcidin expression in 10-week old db/db mice. We conclude that the metabolic alterations occurring in T2DM impact on the regulation of iron homeostasis on multiple levels. As a result, metabolic perturbations induce an "iron resistance" phenotype, whereby signals that translate increased circulating iron levels into hepcidin production, are dysregulated. KEY MESSAGES T2DM patients show increased circulating iron levels. T2DM is associated with inappropriately low hepcidin levels. Metabolic alterations in T2DM induce an "iron resistance" phenotype.
Collapse
|
57
|
Zhu Q, Li M, Yan C, Lu Q, Wei S, Gao R, Yu M, Zou Y, Sriram G, Tong HJ, Hunziker W, Seneviratne CJ, Gong Z, Olsen BR, Cao T. Directed Differentiation of Human Embryonic Stem Cells to Neural Crest Stem Cells, Functional Peripheral Neurons, and Corneal Keratocytes. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Zhu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mingming Li
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Chuan Yan
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Qiqi Lu
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shunhui Wei
- Epithelial Cell Biology Laboratory; Institute of Molecular and Cell Biology; Singapore Singapore
| | - Rong Gao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Mengfei Yu
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | - Yu Zou
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Gopu Sriram
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- Institute of Medical Biology; Agency for Science Technology and Research; Singapore Singapore
| | - Huei J. Tong
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - Walter Hunziker
- The Affiliated Stomatology Hospital; Zhejiang University; Hangzhou 310003 China
| | | | - Zhiyuan Gong
- Department of Biological Sciences; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Bjorn R. Olsen
- Harvard Medical School, and Harvard School of Dental Medicine; Boston MA 02115 USA
| | - Tong Cao
- Faculty of Dentistry; National University of Singapore; Singapore Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
- National University of Singapore Tissue Engineering Program (NUSTEP), Life Sciences Institute; National University of Singapore; Singapore Singapore
| |
Collapse
|
58
|
Strategic Targeting of Multiple BMP Receptors Prevents Trauma-Induced Heterotopic Ossification. Mol Ther 2017; 25:1974-1987. [PMID: 28716575 DOI: 10.1016/j.ymthe.2017.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
Trauma-induced heterotopic ossification (tHO) is a condition of pathologic wound healing, defined by the progressive formation of ectopic bone in soft tissue following severe burns or trauma. Because previous studies have shown that genetic variants of HO, such as fibrodysplasia ossificans progressiva (FOP), are caused by hyperactivating mutations of the type I bone morphogenetic protein receptor (T1-BMPR) ACVR1/ALK2, studies evaluating therapies for HO have been directed primarily toward drugs for this specific receptor. However, patients with tHO do not carry known T1-BMPR mutations. Here we show that, although BMP signaling is required for tHO, no single T1-BMPR (ACVR1/ALK2, BMPR1a/ALK3, or BMPR1b/ALK6) alone is necessary for this disease, suggesting that these receptors have functional redundancy in the setting of tHO. By utilizing two different classes of BMP signaling inhibitors, we developed a translational approach to treatment, integrating treatment choice with existing diagnostic options. Our treatment paradigm balances either immediate therapy with reduced risk for adverse effects (Alk3-Fc) or delayed therapy with improved patient selection but greater risk for adverse effects (LDN-212854).
Collapse
|
59
|
Iron chelation for the treatment of uveitis. Med Hypotheses 2017; 103:1-4. [DOI: 10.1016/j.mehy.2017.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/04/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
|
60
|
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Front Immunol 2017; 8:339. [PMID: 28424688 PMCID: PMC5371613 DOI: 10.3389/fimmu.2017.00339] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
While mesenchymal stem cells (MSCs)-based therapy appears to be promising, there are concerns regarding possible side effects related to the unwanted suppression of antimicrobial immunity leading to an increased risk of infection. Conversely, recent data show that MSCs exert strong antimicrobial effects through indirect and direct mechanisms, partially mediated by the secretion of antimicrobial peptides and proteins (AMPs). In fact, MSCs have been reported to increase bacterial clearance in preclinical models of sepsis, acute respiratory distress syndrome, and cystic fibrosis-related infections. This article reviews the current evidence regarding the direct antimicrobial effector function of MSCs, focusing mainly on the role of MSCs-derived AMPs. The strategies that might modulate the expression and secretion of these AMPs, leading to enhanced antimicrobial effect, are highlighted. Furthermore, studies evaluating the presence of AMPs in the cargo of extracellular vesicles (EVs) are underlined as perspective opportunities to develop new drug delivery tools. The antimicrobial potential of MSCs-derived EVs can also be heightened through cell conditioning and/or drug loading. Finally, improving the pharmacokinetics and delivery, in addition to deciphering the multi-target drug status of AMPs, should synergistically lead to key advances against infections caused by drug-resistant strains.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
61
|
Langer AL, Ginzburg YZ. Role of hepcidin-ferroportin axis in the pathophysiology, diagnosis, and treatment of anemia of chronic inflammation. Hemodial Int 2017; 21 Suppl 1:S37-S46. [PMID: 28328181 DOI: 10.1111/hdi.12543] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anemia of chronic inflammation (ACI) is a frequently diagnosed anemia and portends an independently increased morbidity and poor outcome associated with multiple underlying diseases. The pathophysiology of ACI is multifactorial, resulting from the effects of inflammatory cytokines which both directly and indirectly suppress erythropoiesis. Recent advances in molecular understanding of iron metabolism provide strong evidence that immune mediators, such as IL-6, lead to hepcidin-induced hypoferremia, iron sequestration, and decreased iron availability for erythropoiesis. The role of hepcidin-ferroportin axis in the pathophysiology of ACI is stimulating the development of new diagnostics and targeted therapies. In this review, we present an overview of and rationale for inflammation-, iron-, and erythropoiesis-related strategies currently in development.
Collapse
Affiliation(s)
- Arielle L Langer
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yelena Z Ginzburg
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
62
|
Conde Diez S, de las Cuevas Allende R, Conde García E. Estado actual del metabolismo del hierro: implicaciones clínicas y terapéuticas. Med Clin (Barc) 2017; 148:218-224. [DOI: 10.1016/j.medcli.2016.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/29/2022]
|
63
|
Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood 2017; 129:1823-1830. [PMID: 28188131 DOI: 10.1182/blood-2016-09-740092] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Patients with myelofibrosis (MF) often develop anemia and frequently become dependent on red blood cell transfusions. Results from a phase 2 study for the treatment of MF with the Janus kinase 1/2 (JAK1/2) inhibitor momelotinib (MMB) demonstrated that MMB treatment ameliorated anemia, which was unexpected for a JAK1/2 inhibitor, because erythropoietin-mediated JAK2 signaling is essential for erythropoiesis. Using a rat model of anemia of chronic disease, we demonstrated that MMB treatment can normalize hemoglobin and red blood cell numbers. We found that this positive effect is driven by direct inhibition of the bone morphogenic protein receptor kinase activin A receptor, type I (ACVR1), and the subsequent reduction of hepatocyte hepcidin production. Of note, ruxolitinib, a JAK1/2 inhibitor approved for the treatment of MF, had no inhibitory activity on this pathway. Further, we demonstrated the effect of MMB is not mediated by direct inhibition of JAK2-mediated ferroportin (FPN1) degradation, because neither MMB treatment nor myeloid-specific deletion of JAK2 affected FPN1 expression. Our data support the hypothesis that the improvement of inflammatory anemia by MMB results from inhibition of ACVR1-mediated hepcidin expression in the liver, which leads to increased mobilization of sequestered iron from cellular stores and subsequent stimulation of erythropoiesis.
Collapse
|
64
|
Identification of Guanosine 5'-diphosphate as Potential Iron Mobilizer: Preventing the Hepcidin-Ferroportin Interaction and Modulating the Interleukin-6/Stat-3 Pathway. Sci Rep 2017; 7:40097. [PMID: 28054602 PMCID: PMC5214259 DOI: 10.1038/srep40097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
Hepcidin, a peptide hormone, is a key regulator in mammalian iron homeostasis. Increased level of hepcidin due to inflammatory conditions stimulates the ferroportin (FPN) transporter internalization, impairing the iron absorption; clinically manifested as anemia of inflammation (AI). Inhibiting hepcidin-mediated FPN degradation is proposed as an important strategy to combat AI. A systematic approach involving in silico, in vitro, ex vivo and in vivo studies is employed to identify hepcidin-binding agents. The virtual screening of 68,752 natural compounds via molecular docking resulted into identification of guanosine 5′-diphosphate (GDP) as a promising hepcidin-binding agent. The molecular dynamics simulations helped to identify the important hepcidin residues involved in stabilization of hepcidin-GDP complex. The results gave a preliminary indication that GDP may possibly inhibit the hepcidin-FPN interactions. The in vitro studies revealed that GDP caused FPN stabilization (FPN-GFP cell lines) and increased the FPN-mediated cellular iron efflux (HepG2 and Caco-2 cells). Interestingly, the co-administration of GDP and ferrous sulphate (FeSO4) ameliorated the turpentine-induced AI in mice (indicated by increased haemoglobin level, serum iron, FPN expression and decreased ferritin level). These results suggest that GDP a promising natural small-molecule inhibitor that targets Hepcidin-FPN complex may be incorporated with iron supplement regimens to ameliorate AI.
Collapse
|
65
|
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Front Immunol 2017. [PMID: 28424688 DOI: 10.3389/fimmu.2017.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
While mesenchymal stem cells (MSCs)-based therapy appears to be promising, there are concerns regarding possible side effects related to the unwanted suppression of antimicrobial immunity leading to an increased risk of infection. Conversely, recent data show that MSCs exert strong antimicrobial effects through indirect and direct mechanisms, partially mediated by the secretion of antimicrobial peptides and proteins (AMPs). In fact, MSCs have been reported to increase bacterial clearance in preclinical models of sepsis, acute respiratory distress syndrome, and cystic fibrosis-related infections. This article reviews the current evidence regarding the direct antimicrobial effector function of MSCs, focusing mainly on the role of MSCs-derived AMPs. The strategies that might modulate the expression and secretion of these AMPs, leading to enhanced antimicrobial effect, are highlighted. Furthermore, studies evaluating the presence of AMPs in the cargo of extracellular vesicles (EVs) are underlined as perspective opportunities to develop new drug delivery tools. The antimicrobial potential of MSCs-derived EVs can also be heightened through cell conditioning and/or drug loading. Finally, improving the pharmacokinetics and delivery, in addition to deciphering the multi-target drug status of AMPs, should synergistically lead to key advances against infections caused by drug-resistant strains.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
66
|
Kanamori Y, Sugiyama M, Hashimoto O, Murakami M, Matsui T, Funaba M. Regulation of hepcidin expression by inflammation-induced activin B. Sci Rep 2016; 6:38702. [PMID: 27922109 PMCID: PMC5138601 DOI: 10.1038/srep38702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023] Open
Abstract
Activin B is induced in response to inflammation in the liver and enhances hepcidin expression, but the source of activin B and the molecular mechanism underlying hepcidin induction are not clear yet. Lipopolysaccharide (LPS)-induced inflammation induced inhibin βB but not inhibin α or inhibin βA expression in the liver, implicating activin B induction. Immunoreactive inhibin βB was detected in endothelial cells and Kupffer cells in LPS-treated liver. Activin B, but not activin A or activin AB, directly increased hepcidin expression. Activin B induced phosphorylation and activation of Smad1/5/8, the BMP-regulated (BR)-Smads. The stimulation of hepcidin transcription by activin B was mediated by ALK2 and ActRIIA, receptors for the TGF-β family. Unexpectedly, activin B-induced hepcidin expression and BR-Smad phosphorylation were resistant to the effects of LDN-193189, an ALK2/3/6 inhibitor. ALK2 and ActRIIA complex formation in response to activin B may prevent the approach of LDN-193189 to ALK2 to inhibit its activity. Activin B also induced phosphorylation of Smad2/3, the TGF-β/activin-regulated (AR)-Smad, and increased expression of connective tissue growth factor, a gene related to liver fibrogenesis, through ALK4 and ActRIIA/B. Activin B-induced activation of the BR-Smad pathway was also detected in non-liver-derived cells. The present study reveals the broad signaling of activin B, which is induced in non-parenchymal cells in response to hepatic inflammation, in hepatocytes.
Collapse
Affiliation(s)
- Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara 252-5201, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
67
|
Hepcidin upregulation by inflammation is independent of Smad1/5/8 signaling by activin B. Blood 2016; 129:533-536. [PMID: 27903526 DOI: 10.1182/blood-2016-10-748541] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
68
|
|
69
|
Canali S, Vecchi C, Garuti C, Montosi G, Babitt JL, Pietrangelo A. The SMAD Pathway Is Required for Hepcidin Response During Endoplasmic Reticulum Stress. Endocrinology 2016; 157:3935-3945. [PMID: 27483343 PMCID: PMC5045507 DOI: 10.1210/en.2016-1258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepcidin, the iron hormone, is regulated by a number of stimulatory and inhibitory signals. The cAMP responsive element binding protein 3-like 3 (CREB3L3) mediates hepcidin response to endoplasmic reticulum (ER) stress. In this study we asked whether hepcidin response to ER stress also requires the small mother against decapentaplegic (SMAD)-1/5/8 pathway, which has a major role in hepcidin regulation in response to iron and other stimuli. We analyzed hepcidin mRNA expression and promoter activity in response to ER stressors in HepG2 cells in the presence of the bone morphogenetic protein (BMP) type I receptor inhibitor LDN-193189, mutated hepcidin promoter or small interfering RNA against different SMAD proteins. We then used a similar approach in vivo in wild-type, Smad1/5, or Creb3l3-/- animals undergoing ER stress. In vitro, LDN-193189 prevented hepcidin mRNA induction by different ER stressors. Seemingly, mutation of a BMP-responsive element in the hepcidin promoter prevented ER stress-mediated up-regulation. Moreover, in vitro silencing of SMAD proteins by small interfering RNA, in particular SMAD5, blunted hepcidin response to ER stress. On the contrary, hepcidin induction by ER stress was maintained when using antibodies against canonical BMP receptor ligands. In vivo, hepcidin was induced by ER stress and prevented by LDN-193189. In addition, in Smad1/5 knockout mice, ER stress was unable to induce hepcidin expression. Finally, in Creb3l3 knockout mice, in response to ER stress, SMAD1/5 were correctly phosphorylated and hepcidin induction was still appreciable, although to a lesser extent as compared with the control mice. In conclusion, our study indicates that hepcidin induction by ER stress involves the central regulatory SMAD1/5 pathway.
Collapse
Affiliation(s)
- Susanna Canali
- Center for Hemochromatosis (S.C., C.V., C.G., G.M., A.P.), University of Modena and Reggio Emilia, University Hospital of Modena, 41100 Modena, Italy; and Program in Anemia Signaling Research (S.C., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Chiara Vecchi
- Center for Hemochromatosis (S.C., C.V., C.G., G.M., A.P.), University of Modena and Reggio Emilia, University Hospital of Modena, 41100 Modena, Italy; and Program in Anemia Signaling Research (S.C., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Cinzia Garuti
- Center for Hemochromatosis (S.C., C.V., C.G., G.M., A.P.), University of Modena and Reggio Emilia, University Hospital of Modena, 41100 Modena, Italy; and Program in Anemia Signaling Research (S.C., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Giuliana Montosi
- Center for Hemochromatosis (S.C., C.V., C.G., G.M., A.P.), University of Modena and Reggio Emilia, University Hospital of Modena, 41100 Modena, Italy; and Program in Anemia Signaling Research (S.C., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Jodie L Babitt
- Center for Hemochromatosis (S.C., C.V., C.G., G.M., A.P.), University of Modena and Reggio Emilia, University Hospital of Modena, 41100 Modena, Italy; and Program in Anemia Signaling Research (S.C., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Antonello Pietrangelo
- Center for Hemochromatosis (S.C., C.V., C.G., G.M., A.P.), University of Modena and Reggio Emilia, University Hospital of Modena, 41100 Modena, Italy; and Program in Anemia Signaling Research (S.C., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
70
|
Agoro R, Mura C. Inflammation-induced up-regulation of hepcidin and down-regulation of ferroportin transcription are dependent on macrophage polarization. Blood Cells Mol Dis 2016; 61:16-25. [DOI: 10.1016/j.bcmd.2016.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/24/2023]
|
71
|
Lofruthe N, Gallitz I, Traeger L, Bäumer N, Schulze I, Kuhlmann T, Müller-Tidow C, Steinbicker AU. Intravenous Iron Carboxymaltose as a Potential Therapeutic in Anemia of Inflammation. PLoS One 2016; 11:e0158599. [PMID: 27404499 PMCID: PMC4942094 DOI: 10.1371/journal.pone.0158599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/18/2016] [Indexed: 01/28/2023] Open
Abstract
Intravenous iron supplementation is an effective therapy in iron deficiency anemia (IDA), but controversial in anemia of inflammation (AI). Unbound iron can be used by bacteria and viruses for their replication and enhance the inflammatory response. Nowadays available high molecular weight iron complexes for intravenous iron substitution, such as ferric carboxymaltose, might be useful in AI, as these pharmaceuticals deliver low doses of free iron over a prolonged period of time. We tested the effects of intravenous iron carboxymaltose in murine AI: Wild-type mice were exposed to the heat-killed Brucella abortus (BA) model and treated with or without high molecular weight intravenous iron. 4h after BA injection followed by 2h after intravenous iron treatment, inflammatory cytokines were upregulated by BA, but not enhanced by iron treatment. In long term experiments, mice were fed a regular or an iron deficient diet and then treated with intravenous iron or saline 14 days after BA injection. Iron treatment in mice with BA-induced AI was effective 24h after iron administration. In contrast, mice with IDA (on iron deficiency diet) prior to BA-IA required 7d to recover from AI. In these experiments, inflammatory markers were not further induced in iron-treated compared to vehicle-treated BA-injected mice. These results demonstrate that intravenous iron supplementation effectively treated the murine BA-induced AI without further enhancement of the inflammatory response. Studies in humans have to reveal treatment options for AI in patients.
Collapse
Affiliation(s)
- Niklas Lofruthe
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Inka Gallitz
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Lisa Traeger
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Nicole Bäumer
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Isabell Schulze
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Andrea U. Steinbicker
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
72
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
73
|
Sebastiani G, Wilkinson N, Pantopoulos K. Pharmacological Targeting of the Hepcidin/Ferroportin Axis. Front Pharmacol 2016; 7:160. [PMID: 27445804 PMCID: PMC4914558 DOI: 10.3389/fphar.2016.00160] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
The iron regulatory hormone hepcidin limits iron fluxes to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Hepcidin insufficiency causes hyperabsorption of dietary iron, hyperferremia and tissue iron overload, which are hallmarks of hereditary hemochromatosis. Similar responses are also observed in iron-loading anemias due to ineffective erythropoiesis (such as thalassemias, dyserythropoietic anemias and myelodysplastic syndromes) and in chronic liver diseases. On the other hand, excessive hepcidin expression inhibits dietary iron absorption and leads to hypoferremia and iron retention within tissue macrophages. This reduces iron availability for erythroblasts and contributes to the development of anemias with iron-restricted erythropoiesis (such as anemia of chronic disease and iron-refractory iron-deficiency anemia). Pharmacological targeting of the hepcidin/ferroportin axis may offer considerable therapeutic benefits by correcting iron traffic. This review summarizes the principles underlying the development of hepcidin-based therapies for the treatment of iron-related disorders, and discusses the emerging strategies for manipulating hepcidin pathways.
Collapse
Affiliation(s)
- Giada Sebastiani
- Department of Medicine, McGill UniversityMontreal, QC, Canada; Division of Gastroenterology, Royal Victoria HospitalMontreal, QC, Canada
| | - Nicole Wilkinson
- Lady Davis Institute for Medical Research, Jewish General Hospital Montreal, QC, Canada
| | - Kostas Pantopoulos
- Department of Medicine, McGill UniversityMontreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General HospitalMontreal, QC, Canada
| |
Collapse
|
74
|
Sanders LN, Schoenhard JA, Saleh MA, Mukherjee A, Ryzhov S, McMaster WG, Nolan K, Gumina RJ, Thompson TB, Magnuson MA, Harrison DG, Hatzopoulos AK. BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction. Circ Res 2016; 119:434-49. [PMID: 27283840 DOI: 10.1161/circresaha.116.308700] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE We have recently shown that the bone morphogenetic protein (BMP) antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. Our initial studies discovered that Grem2 is strongly induced in the adult heart after experimental myocardial infarction (MI). However, the function of Grem2 and BMP-signaling inhibitors after cardiac injury is currently unknown. OBJECTIVE To investigate the role of Grem2 during cardiac repair and assess its potential to improve ventricular function after injury. METHODS AND RESULTS Our data show that Grem2 is transiently induced after MI in peri-infarct area cardiomyocytes during the inflammatory phase of cardiac tissue repair. By engineering loss- (Grem2(-/-)) and gain- (TG(Grem2)) of-Grem2-function mice, we discovered that Grem2 controls the magnitude of the inflammatory response and limits infiltration of inflammatory cells in peri-infarct ventricular tissue, improving cardiac function. Excessive inflammation in Grem2(-/-) mice after MI was because of overactivation of canonical BMP signaling, as proven by the rescue of the inflammatory phenotype through administration of the canonical BMP inhibitor, DMH1. Furthermore, intraperitoneal administration of Grem2 protein in wild-type mice was sufficient to reduce inflammation after MI. Cellular analyses showed that BMP2 acts with TNFα to induce expression of proinflammatory proteins in endothelial cells and promote adhesion of leukocytes, whereas Grem2 specifically inhibits the BMP2 effect. CONCLUSIONS Our results indicate that Grem2 provides a molecular barrier that controls the magnitude and extent of inflammatory cell infiltration by suppressing canonical BMP signaling, thereby providing a novel mechanism for limiting the adverse effects of excessive inflammation after MI.
Collapse
Affiliation(s)
- Lehanna N Sanders
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - John A Schoenhard
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Mohamed A Saleh
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Amrita Mukherjee
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Sergey Ryzhov
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - William G McMaster
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Kristof Nolan
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Richard J Gumina
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Thomas B Thompson
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Mark A Magnuson
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - David G Harrison
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Antonis K Hatzopoulos
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.).
| |
Collapse
|
75
|
Abstract
Bone morphogenetic proteins (BMPs), originally identified as osteoinductive components in extracts derived from bone, are now known to play important roles in a wide array of processes during formation and maintenance of various organs including bone, cartilage, muscle, kidney, and blood vessels. BMPs and the related "growth and differentiation factors" (GDFs) are members of the transforming growth factor β (TGF-β) family, and transduce their signals through type I and type II serine-threonine kinase receptors and their intracellular downstream effectors, including Smad proteins. Furthermore, BMP signals are finely tuned by various agonists and antagonists. Because deregulation of the BMP activity at multiple steps in signal transduction is linked to a wide variety of human diseases, therapeutic use of activators and inhibitors of BMP signaling will provide potential avenues for the treatment of the human disorders that are caused by hypo- and hyperactivation of BMP signals, respectively.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama 350-1241, Japan
| | - Tetsuro Watabe
- Section of Biochemistry, Department of Bio-Matrix, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
76
|
Abstract
Iron is required for most forms of organisms, and it is the most essential element for the functions of many iron-containing proteins involved in oxygen transport, cellular respiration, DNA replication, and so on. Disorders of iron metabolism are associated with diverse diseases, including anemias (e.g., iron-deficiency anemia and anemia of chronic diseases) and iron overload diseases, such as hereditary hemochromatosis and β-thalassemia. Hepcidin (encoded by Hamp gene) is a peptide hormone synthesized by hepatocytes, and it plays an important role in regulating the systematic iron homeostasis. As the systemic iron regulator, hepcidin, not only controls dietary iron absorption and iron egress out of iron storage cells, but also induces iron redistribution in various organs. Deregulated hepcidin is often seen in a variety of iron-related diseases including anemias and iron overload disorders. In the case of iron overload disorders (e.g., hereditary hemochromatosis and β-thalassemia), hepatic hepcidin concentration is significantly reduced.Since hepcidin deregulation is responsible for iron disorder-associated diseases, the purpose of this review is to summarize the recent findings on therapeutics targeting hepcidin.Continuous efforts have been made to search for hepcidin mimics and chemical compounds that could be used to increase hepcidin level. Here, a literature search was conducted in PubMed, and research papers relevant to hepcidin regulation or hepcidin-centered therapeutic work were reviewed. On the basis of literature search, we recapitulated recent findings on therapeutic studies targeting hepcidin, including agonists and antagonists to modulate hepcidin expression or its downstream signaling. We also discussed the molecular mechanisms by which hepcidin level and iron metabolism are modulated.Elevating hepcidin concentration is an optimal strategy to ameliorate iron overload diseases, and also to relieve β-thalassemia phenotypes by improving ineffective erythropoiesis. Relative to the current conventional therapies, such as phlebotomy and blood transfusion, therapeutics targeting hepcidin would open a new avenue for treatment of iron-related diseases.
Collapse
Affiliation(s)
- Jing Liu
- From the State Key Laboratory of Environmental Chemistry and Ecotoxicology (JL, SL), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Medicine (BS), University of California, Los Angeles, CA; Department of Cardiovascular Disease (HY), Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; and Gansu University of Traditional Chinese Medicine (HY), Lanzhou, China
| | | | | | | |
Collapse
|
77
|
Canali S, Core AB, Zumbrennen-Bullough KB, Merkulova M, Wang CY, Schneyer AL, Pietrangelo A, Babitt JL. Activin B Induces Noncanonical SMAD1/5/8 Signaling via BMP Type I Receptors in Hepatocytes: Evidence for a Role in Hepcidin Induction by Inflammation in Male Mice. Endocrinology 2016; 157:1146-62. [PMID: 26735394 PMCID: PMC4769363 DOI: 10.1210/en.2015-1747] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induction of the iron regulatory hormone hepcidin contributes to the anemia of inflammation. Bone morphogenetic protein 6 (BMP6) signaling is a central regulator of hepcidin expression in the liver. Recently, the TGF-β/BMP superfamily member activin B was implicated in hepcidin induction by inflammation via noncanonical SMAD1/5/8 signaling, but its mechanism of action and functional significance in vivo remain uncertain. Here, we show that low concentrations of activin B, but not activin A, stimulate prolonged SMAD1/5/8 signaling and hepcidin expression in liver cells to a similar degree as canonical SMAD2/3 signaling, and with similar or modestly reduced potency compared with BMP6. Activin B stimulates hepcidin via classical activin type II receptors ACVR2A and ACVR2B, noncanonical BMP type I receptors activin receptor-like kinase 2 and activin receptor-like kinase 3, and SMAD5. The coreceptor hemojuvelin binds to activin B and facilitates activin B-SMAD1/5/8 signaling. Activin B-SMAD1/5/8 signaling has some selectivity for hepatocyte-derived cells and is not enabled by hemojuvelin in other cell types. Liver activin B mRNA expression is up-regulated in multiple mouse models of inflammation associated with increased hepcidin and hypoferremia, including lipopolysaccharide, turpentine, and heat-killed Brucella abortus models. Finally, the activin inhibitor follistatin-315 blunts hepcidin induction by lipopolysaccharide or B. abortus in mice. Our data elucidate a novel mechanism for noncanonical SMAD activation and support a likely functional role for activin B in hepcidin stimulation during inflammation in vivo.
Collapse
Affiliation(s)
- Susanna Canali
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Amanda B Core
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Kimberly B Zumbrennen-Bullough
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Maria Merkulova
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Chia-Yu Wang
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Alan L Schneyer
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Antonello Pietrangelo
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Jodie L Babitt
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
78
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
79
|
Tadokoro T, Gao X, Hong CC, Hotten D, Hogan BLM. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development 2016; 143:764-73. [PMID: 26811382 PMCID: PMC4813333 DOI: 10.1242/dev.126656] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
The pseudostratified epithelium of the lung contains ciliated and secretory luminal cells and basal stem/progenitor cells. To identify signals controlling basal cell behavior we screened factors that alter their self-renewal and differentiation in a clonal organoid (tracheosphere) assay. This revealed that inhibitors of the canonical BMP signaling pathway promote proliferation but do not affect lineage choice, whereas exogenous Bmp4 inhibits proliferation and differentiation. We therefore followed changes in BMP pathway components in vivo in the mouse trachea during epithelial regeneration from basal cells after injury. The findings suggest that BMP signaling normally constrains proliferation at steady state and this brake is released transiently during repair by the upregulation of endogenous BMP antagonists. Early in repair, the packing of epithelial cells along the basal lamina increases, but density is later restored by active extrusion of apoptotic cells. Systemic administration of the BMP antagonist LDN-193189 during repair initially increases epithelial cell number but, following the shedding phase, normal density is restored. Taken together, these results reveal crucial roles for both BMP signaling and cell shedding in homeostasis of the respiratory epithelium. Summary: In the mouse airway epithelium, regeneration after injury involves transient downregulation of BMP signaling to promote proliferation, followed by cell shedding to restore cell density.
Collapse
Affiliation(s)
- Tomomi Tadokoro
- Department of Cell Biology, Duke Medicine, Durham, NC 27710, USA
| | - Xia Gao
- Department of Cell Biology, Duke Medicine, Durham, NC 27710, USA
| | - Charles C Hong
- Department of Medicine-Cardiovascular Medicine, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Danielle Hotten
- Department of Medicine, Division of Cardiology, Duke Medicine, Durham, NC 27710, USA
| | - Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, NC 27710, USA
| |
Collapse
|
80
|
Muthukumarasamy KM, Handore KL, Kakade DN, Shinde MV, Ranjan S, Kumar N, Sehrawat S, Sachidanandan C, Reddy DS. Identification of noreremophilane-based inhibitors of angiogenesis using zebrafish assays. Org Biomol Chem 2016; 14:1569-78. [DOI: 10.1039/c5ob01594d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel class of noreremophilane inhibitors of angiogenesis identified from zebrafish whole organism screens.
Collapse
Affiliation(s)
| | - Kishor L. Handore
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Dipti N. Kakade
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
| | - Madhuri V. Shinde
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB)
- New Delhi
- India
| | - Naveen Kumar
- Vascular Biology Lab
- Department of Life Sciences
- School of Natural Sciences
- Shiv Nadar University
- India
| | - Seema Sehrawat
- Vascular Biology Lab
- Department of Life Sciences
- School of Natural Sciences
- Shiv Nadar University
- India
| | | | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Division of Organic Chemistry
- Pune
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
81
|
Blanchette NL, Manz DH, Torti FM, Torti SV. Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev Hematol 2015; 9:169-86. [PMID: 26669208 DOI: 10.1586/17474086.2016.1124757] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The secreted peptide hormone hepcidin regulates systemic and local iron homeostasis through degradation of the iron exporter ferroportin. Dysregulation of hepcidin leads to altered iron homeostasis and development of pathological disorders including hemochromatosis, and iron loading and iron restrictive anemias. Therapeutic modulation of hepcidin is a promising method to ameliorate these conditions. Several approaches have been taken to enhance or reduce the effects of hepcidin in vitro and in vivo. Based on these approaches, hepcidin modulating drugs have been developed and are undergoing clinical evaluation. In this article we review the rationale for development of these drugs, the data concerning their safety and efficacy, their therapeutic uses, and potential future prospects.
Collapse
Affiliation(s)
- Nicole L Blanchette
- a Department of Molecular Biology and Biophysics , University of Connecticut Health , Farmington , CT , USA
| | - David H Manz
- a Department of Molecular Biology and Biophysics , University of Connecticut Health , Farmington , CT , USA.,b School of Dental Medicine , University of Connecticut Health , Farmington , CT , USA
| | - Frank M Torti
- c Department of Medicine , University of Connecticut Health , Farmington , CT , USA
| | - Suzy V Torti
- a Department of Molecular Biology and Biophysics , University of Connecticut Health , Farmington , CT , USA
| |
Collapse
|
82
|
Li X, Rhee DK, Malhotra R, Mayeur C, Hurst LA, Ager E, Shelton G, Kramer Y, McCulloh D, Keefe D, Bloch KD, Bloch DB, Peterson RT. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Invest 2015; 126:389-401. [PMID: 26657863 DOI: 10.1172/jci83831] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated by the membrane iron exporter ferroportin and its regulatory peptide hormone hepcidin. The hepcidin/ferroportin axis is considered a promising therapeutic target for the treatment of diseases of iron overload or deficiency. Here, we conducted a chemical screen in zebrafish to identify small molecules that decrease ferroportin protein levels. The chemical screen led to the identification of 3 steroid molecules, epitiostanol, progesterone, and mifepristone, which decrease ferroportin levels by increasing the biosynthesis of hepcidin. These hepcidin-inducing steroids (HISs) did not activate known hepcidin-inducing pathways, including the BMP and JAK/STAT3 pathways. Progesterone receptor membrane component-1 (PGRMC1) was required for HIS-dependent increases in hepcidin biosynthesis, as PGRMC1 depletion in cultured hepatoma cells and zebrafish blocked the ability of HISs to increase hepcidin mRNA levels. Neutralizing antibodies directed against PGRMC1 attenuated the ability of HISs to induce hepcidin gene expression. Inhibiting the kinases of the SRC family, which are downstream of PGRMC1, blocked the ability of HISs to increase hepcidin mRNA levels. Furthermore, HIS treatment increased hepcidin biosynthesis in mice and humans. Together, these data indicate that PGRMC1 regulates hepcidin gene expression through an evolutionarily conserved mechanism. These studies have identified drug candidates and potential therapeutic targets for the treatment of diseases of abnormal iron metabolism.
Collapse
|
83
|
Mu M, An P, Wu Q, Shen X, Shao D, Wang H, Zhang Y, Zhang S, Yao H, Min J, Wang F. The dietary flavonoid myricetin regulates iron homeostasis by suppressing hepcidin expression. J Nutr Biochem 2015; 30:53-61. [PMID: 27012621 DOI: 10.1016/j.jnutbio.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023]
Abstract
Hepcidin, a master regulator of iron homeostasis, is a promising target in treatment of iron disorders such as hemochromatosis, anemia of inflammation and iron-deficiency anemia. We previously reported that black soybean seed coat extract could inhibit hepcidin expression. Based on this finding, we performed a screen in cultured cells in order to identify the compounds in black soybeans that inhibit hepcidin expression. We found that the dietary flavonoid myricetin significantly inhibited the expression of hepcidin both in vitro and in vivo. Treating cultured cells with myricetin decreased both HAMP mRNA levels and promoter activity by reducing SMAD1/5/8 phosphorylation. This effect was observed even in the presence of bone morphogenic protein-6 (BMP6) and interleukin-6 (IL-6), two factors that stimulate hepcidin expression. Furthermore, mice that were treated with myricetin (either orally or systemically) had reduced hepatic hepcidin expression, decreased splenic iron levels and increased serum iron levels. Notably, myricetin-treated mice increased red blood cell counts and hemoglobin levels. In addition, pretreating mice with myricetin prevented LPS-induced hypoferremia. We conclude that myricetin potently inhibits hepcidin expression both in vitro and in vivo, and this effect is mediated by altering BMP/SMAD signaling. These experiments highlight the feasibility of identifying and characterizing bioactive phytochemicals to suppress hepcidin expression. These results also suggest that myricetin may represent a novel therapy for treating iron deficiency-related diseases.
Collapse
Affiliation(s)
- Mingdao Mu
- Department of Nutrition, Nutrition Discovery Innovation Institute, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Peng An
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China; The first affiliated Hospital, Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Wu
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyun Shen
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dandan Shao
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Wang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yingqi Zhang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shenshen Zhang
- Department of Nutrition, Nutrition Discovery Innovation Institute, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Yao
- Traditional Chinese Medicine Department, Zhejiang Hospital, Hangzhou 310013, China
| | - Junxia Min
- The first affiliated Hospital, Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fudi Wang
- Department of Nutrition, Nutrition Discovery Innovation Institute, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
84
|
Raymond A, Liu B, Liang H, Wei C, Guindani M, Lu Y, Liang S, St John LS, Molldrem J, Nagarajan L. A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy. Oncotarget 2015; 5:12675-93. [PMID: 25544748 PMCID: PMC4350356 DOI: 10.18632/oncotarget.2564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/02/2014] [Indexed: 01/03/2023] Open
Abstract
Mesoderm Inducer in Xenopus Like1 (MIXL1), a paired-type homeobox transcription factor induced by TGF-β family of ligands is required for early embryonic specification of mesoderm and endoderm. Retrovirally transduced Mixl1 is reported to induce acute myelogenous leukemia (AML) with a high penetrance. But the mechanistic underpinnings of MIXL1 mediated leukemogenesis are unknown. Here, we establish the protooncogene c-REL to be a transcriptional target of MIXL1 by genome wide chromatin immune precipitation. Accordingly, expression of c-REL and its downstream targets BCL2L1 and BCL2A2 are elevated in MIXL1 expressing cells. Notably, MIXL1 regulates c-REL through a zinc finger binding motif, potentially by a MIXL1–Zinc finger protein transcriptional complex. Furthermore, MIXL1 expression is detected in the cancer genome atlas (TCGA) AML samples in a pattern mutually exclusive from that of HOXA9, CDX2 and HLX suggesting the existence of a core, yet distinct HOX transcriptional program. Finally, we demonstrate MIXL1 to be induced by BMP4 and not TGF-β in primary human hematopoietic stem and progenitor cells. Consequently, MIXL1 expressing AML cells are preferentially sensitive to the BMPR1 kinase inhibitor LDN-193189. These findings support the existence of a novel MIXL1-c REL mediated survival axis in AML that can be targeted by BMPR1 inhibitors. (MIXL1- human gene, Mixl1- mouse ortholog, MIXL1- protein)
Collapse
Affiliation(s)
- Aaron Raymond
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Genes and Development, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Liu
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Cancer Genetics and Genomics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Liang
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caimiao Wei
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michele Guindani
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Dept. of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Dept. of Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shoudan Liang
- Dept. of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa S St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeff Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lalitha Nagarajan
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Genes and Development, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Cancer Genetics and Genomics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Dept. of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Graduate Program in Human Molecular Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Center for Stem cell and Developmental biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
85
|
[Hepcidin for iron homeostasis and target therapy in ironrelated disorders]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:977-80. [PMID: 26632477 PMCID: PMC7342428 DOI: 10.3760/cma.j.issn.0253-2727.2015.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Abstract
The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.
Collapse
Affiliation(s)
- Calum A MacRae
- Cardiovascular Medicine and Network Medicine Divisions, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Randall T Peterson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
87
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
88
|
Testa U, Castelli G, Elvira P. Experimental and investigational therapies for chemotherapy-induced anemia. Expert Opin Investig Drugs 2015; 24:1433-45. [PMID: 26359222 DOI: 10.1517/13543784.2015.1085505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION In cancer patients, anemia is frequently observed, particularly as a consequence to chemotherapy (chemotherapy-induced anemia, CIA). CIA is treated with Red Blood Cell transfusions and erythropoiesis-stimulating agents (ESAs). However, the use of ESAs in anemic cancer patients is associated with reduced survival time and time to progression. Consequently, new therapeutic options are needed. AREAS COVERED In this article, the authors discuss new erythroid-enhancing agents (EEAs) that act differently to erythropoietin. Specifically, the article summarizes the early clinical development of activin antagonists (Sotatercep [ACE-011] and ACE-536) and hepcidin antagonists [NOX-H94]). EXPERT OPINION Both Activin RIIA trap agents and hepcidin inhibitors are promising new EEAs, but their safety profile, and their impact on treating CIA, needs to be carefully assessed in controlled clinical trials over longer periods of time. It is also important to carefully evaluate CIA patients to properly assess the physiopathological mechanisms responsible for the development of their anemic condition and provide patients with the most appropriate treatment plan.
Collapse
Affiliation(s)
- Ugo Testa
- a Istituto Superiore di Sanità, Department of Hematology, Oncology and Molecular Medicine , Viale Regina Elena 299, Rome, Italy
| | - Germana Castelli
- a Istituto Superiore di Sanità, Department of Hematology, Oncology and Molecular Medicine , Viale Regina Elena 299, Rome, Italy
| | - Pelosi Elvira
- a Istituto Superiore di Sanità, Department of Hematology, Oncology and Molecular Medicine , Viale Regina Elena 299, Rome, Italy
| |
Collapse
|
89
|
Schmidt PJ. Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation. J Biol Chem 2015; 290:18975-83. [PMID: 26055723 DOI: 10.1074/jbc.r115.650150] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron is a redox-active metal required as a cofactor in multiple metalloproteins essential for a host of life processes. The metal is highly toxic when present in excess and must be strictly regulated to prevent tissue and organ damage. Hepcidin, a molecule first characterized as an antimicrobial peptide, plays a critical role in the regulation of iron homeostasis. Multiple stimuli positively influence the expression of hepcidin, including iron, inflammation, and infection by pathogens. In this Minireview, I will discuss how inflammation regulates hepcidin transcription, allowing for sufficient concentrations of iron for organismal needs while sequestering the metal from infectious pathogens.
Collapse
Affiliation(s)
- Paul J Schmidt
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
90
|
Abstract
Iron, an essential nutrient, is required for many diverse biological processes. The absence of a defined pathway to excrete excess iron makes it essential for the body to regulate the amount of iron absorbed; a deficiency could lead to iron deficiency and an excess to iron overload and associated disorders such as anaemia and haemochromatosis respectively. This regulation is mediated by the iron-regulatory hormone hepcidin. Hepcidin binds to the only known iron export protein, ferroportin (FPN), inducing its internalization and degradation, thus limiting the amount of iron released into the blood. The major factors that are implicated in hepcidin regulation include iron stores, hypoxia, inflammation and erythropoiesis. The present review summarizes our present knowledge about the molecular mechanisms and signalling pathways contributing to hepcidin regulation by these factors.
Collapse
|
91
|
Yun S, Vincelette ND. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis. Crit Rev Oncol Hematol 2015; 95:12-25. [PMID: 25737209 DOI: 10.1016/j.critrevonc.2015.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential component of erythropoiesis and its metabolism is tightly regulated by a variety of internal and external cues including iron storage, tissue hypoxia, inflammation and degree of erythropoiesis. There has been remarkable improvement in our understanding of the molecular mechanisms of iron metabolism past decades. The classical model of iron metabolism with iron response element/iron response protein (IRE/IRP) is now extended to include hepcidin model. Endogenous and exogenous signals funnel down to hepcidin via wide range of signaling pathways including Janus Kinase/Signal Transducer and Activator of Transcription 3 (JAK/STAT3), Bone Morphogenetic Protein/Hemojuvelin/Mothers Against Decapentaplegic Homolog (BMP/HJV/SMAD), and Von Hippel Lindau/Hypoxia-inducible factor/Erythropoietin (VHL/HIF/EPO), then relay to ferroportin, which directly regulates intra- and extracellular iron levels. The successful molecular delineation of iron metabolism further enhanced our understanding of common genetic and acquired disorder, hemochromatosis. The majority of the hereditary hemochromatosis (HH) patients are now shown to have mutations in the genes coding either upstream or downstream proteins of hepcidin, resulting in iron overload. The update on hepcidin centered mechanisms of iron metabolism and their clinical perspective in hemochromatosis will be discussed in this review.
Collapse
Affiliation(s)
- Seongseok Yun
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Nicole D Vincelette
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
92
|
|
93
|
Kawabata H, Uchiyama T, Sakamoto S, Kanda J, Oishi S, Fujii N, Tomosugi N, Kadowaki N, Takaori-Kondo A. A HAMP promoter bioassay system for identifying chemical compounds that modulate hepcidin expression. Exp Hematol 2015; 43:404-413.e5. [PMID: 25633564 DOI: 10.1016/j.exphem.2015.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 11/28/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Hepcidin is the central regulator of systemic iron homeostasis; dysregulation of hepcidin expression causes various iron metabolic disorders, including hereditary hemochromatosis and anemia of inflammation. To identify molecules that modulate hepcidin expression, we developed a bioassay system for hepcidin gene (HAMP) promoter activity by stable transfection of Hep3B hepatoma cells with an expression plasmid in which EGFP was linked to a 2.5-kb human HAMP promoter. Interleukin 6, bone morphogenetic protein 6 (BMP-6), and oncostatin M, well-characterized stimulators of the HAMP promoter, strongly enhanced the green fluorescence intensity of these cells. Dorsomorphin, heparin, and cobalt chloride, known inhibitors of hepcidin expression, significantly suppressed green fluorescence intensity, and these inhibitory effects were more prominent when the cells were stimulated with BMP-6. Employing this system, we screened 1,280 biologically active small molecules and found several candidate inhibitors of hepcidin expression. Apomorphine, benzamil, etoposide, CGS-15943, kenpaullone, and rutaecarpine (all at 10 μmol/L) significantly inhibited hepcidin mRNA expression by Hep3B cells without affecting cell viability. CGS-15943 was the strongest suppressor of BMP-6-induced hepcidin-25 secretion in these cells. We conclude that our newly developed hepcidin promoter bioassay system is useful for identifying and evaluating compounds that modulate hepcidin expression.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tatsuki Uchiyama
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Soichiro Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Kanda
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shinya Oishi
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naohisa Tomosugi
- Division of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Japan
| | - Norimitsu Kadowaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
94
|
Langdon JM, Barkataki S, Berger AE, Cheadle C, Xue QL, Sung V, Roy CN. RAP-011, an activin receptor ligand trap, increases hemoglobin concentration in hepcidin transgenic mice. Am J Hematol 2015; 90:8-14. [PMID: 25236856 DOI: 10.1002/ajh.23856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022]
Abstract
Over expression of hepcidin antimicrobial peptide is a common feature of iron-restricted anemia in humans. We investigated the erythroid response to either erythropoietin or RAP-011, a "murinized" ortholog of sotatercept, in C57BL/6 mice and in hepcidin antimicrobial peptide 1 over expressing mice. Sotatercept, a soluble, activin receptor type IIA ligand trap, is currently being evaluated for the treatment of anemias associated with chronic renal disease, myelodysplastic syndrome, β-thalassemia, and Diamond Blackfan anemia and acts by inhibiting signaling downstream of activin and other Transforming Growth Factor-β superfamily members. We found that erythropoietin and RAP-011 increased hemoglobin concentration in C57BL/6 mice and in hepcidin antimicrobial peptide 1 over expressing mice. While erythropoietin treatment depleted splenic iron stores in C57BL/6 mice, RAP-011 treatment did not deplete splenic iron stores in mice of either genotype. Bone marrow erythroid progenitors from erythropoietin-treated mice exhibited iron-restricted erythropoiesis, as indicated by increased median fluorescence intensity of transferrin receptor immunostaining by flow cytometry. In contrast, RAP-011-treated mice did not exhibit the same degree of iron-restricted erythropoiesis. In conclusion, we have demonstrated that RAP-011 can improve hemoglobin concentration in hepcidin antimicrobial peptide 1 transgenic mice. Our data support the hypothesis that RAP-011 has unique biologic effects which prevent or circumvent depletion of mouse splenic iron stores. RAP-011 may, therefore, be an appropriate therapeutic for trials in human anemias characterized by increased expression of hepcidin antimicrobial peptide and iron-restricted erythropoiesis.
Collapse
Affiliation(s)
- Jacqueline M. Langdon
- Division of Geriatric Medicine and Gerontology; Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Sangjucta Barkataki
- Lowe Family Genomics Core; Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Alan E. Berger
- Lowe Family Genomics Core; Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Chris Cheadle
- Lowe Family Genomics Core; Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology; Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Victoria Sung
- Translational Development; Celgene Corporation; San Francisco CA
| | - Cindy N. Roy
- Division of Geriatric Medicine and Gerontology; Johns Hopkins University School of Medicine; Baltimore Maryland
- Division of Hematology; Johns Hopkins School of Medicine; Baltimore Maryland
| |
Collapse
|
95
|
Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr Opin Chem Biol 2014; 24:58-70. [PMID: 25461724 DOI: 10.1016/j.cbpa.2014.10.025] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/13/2022]
Abstract
In 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature. We found that zebrafish screens have expanded beyond the use of developmental phenotypes to include behavioral, cardiac, metabolic, proliferative and regenerative endpoints. Additionally, many creative strategies have been used to uncover the mechanisms of action of new small molecules including chemical phenocopy, genetic phenocopy, mutant rescue, and spatial localization strategies.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Randall T Peterson
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
96
|
Mayeur C, Kolodziej SA, Wang A, Xu X, Lee A, Yu PB, Shen J, Bloch KD, Bloch DB. Oral administration of a bone morphogenetic protein type I receptor inhibitor prevents the development of anemia of inflammation. Haematologica 2014; 100:e68-71. [PMID: 25326432 DOI: 10.3324/haematol.2014.111484] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Claire Mayeur
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Starsha A Kolodziej
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy Wang
- Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Xin Xu
- Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Arthur Lee
- Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Paul B Yu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Shen
- Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Kenneth D Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
97
|
Ali JL, Lagasse BJ, Minuk AJ, Love AJ, Moraya AI, Lam L, Arthur G, Gibson SB, Morrison LC, Werbowetski-Ogilvie TE, Fu Y, Nachtigal MW. Differential cellular responses induced by dorsomorphin and LDN-193189 in chemotherapy-sensitive and chemotherapy-resistant human epithelial ovarian cancer cells. Int J Cancer 2014; 136:E455-69. [PMID: 25227893 DOI: 10.1002/ijc.29220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
Abstract
Inherent or acquired drug resistance is a major contributor to epithelial ovarian cancer (EOC) mortality. Novel drugs or drug combinations that produce EOC cell death or resensitize drug resistant cells to standard chemotherapy may improve patient treatment. After conducting drug tolerability studies for the multikinase inhibitors dorsomorphin (DM) and it is structural analogue LDN-193189 (LDN), these drugs were tested in a mouse intraperitoneal xenograft model of EOC. DM significantly increased survival, whereas LDN showed a trend toward increased survival. In vitro experiments using cisplatin (CP)-resistant EOC cell lines, A2780-cp or SKOV3, we determined that pretreatment or cotreatment with DM or LDN resensitized cells to the killing effect of CP or carboplatin (CB). DM was capable of blocking EOC cell cycle and migration, whereas LDN produced a less pronounced effect on cell cycle and no effect on migration. Subsequent analyses using primary human EOC cell samples or additional established EOC cells lines showed that DM or LDN induced a dose-dependent autophagic or cell death response, respectively. DM induced a characteristic morphological change with the appearance of numerous LC3B-containing acidic vacuoles and an increase in LC3BII levels. This was coincident with a decrease in cell growth and the altered cell cycle consistent with DM-induced cytostasis. By contrast, LDN produced a caspase 3-independent, reactive oxygen species-dependent cell death. Overall, DM and LDN possess drug characteristics suitable for adjuvant agents used to treat chemotherapy-sensitive and -resistant EOC.
Collapse
Affiliation(s)
- Jennifer L Ali
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood 2014; 124:2643-6. [PMID: 25163699 DOI: 10.1182/blood-2014-03-559484] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased hepcidin production is key to the development of anemia of inflammation. We investigated whether lexaptepid, an antihepcidin l-oligoribonucleotide, prevents the decrease in serum iron during experimental human endotoxemia. This randomized, double-blind, placebo-controlled trial was carried out in 24 healthy males. At T = 0 hours, 2 ng/kg Escherichia coli lipopolysaccharide was intravenously administered, followed by an intravenous injection of 1.2 mg/kg lexaptepid or placebo at T = 0.5 hours. The lipopolysaccharide-induced inflammatory response was similar in subjects treated with lexaptepid or placebo regarding clinical and biochemical parameters. At T = 9 hours, serum iron had increased by 15.9 ± 9.8 µmol/L from baseline in lexaptepid-treated subjects compared with a decrease of 8.3 ± 9.0 µmol/L in controls (P < .0001). This study delivers proof of concept that lexaptepid achieves clinically relevant hepcidin inhibition enabling investigations in the treatment of anemia of inflammation. This trial was registered at www.clinicaltrial.gov as #NCT01522794.
Collapse
|
99
|
Abstract
Hepcidin, the liver-produced peptide hormone, is a principal regulator of iron homeostasis. Abnormal hepcidin production has emerged as a causative factor in several common iron disorders. Hepcidin insufficiency results in iron overload in hereditary hemochromatosis and iron-loading anemias, whereas hepcidin excess causes or contributes to the development of iron-restricted anemias in inflammatory diseases, infections, some cancers and chronic kidney disease. Not surprisingly, hepcidin and related pathways have become the target for the development of novel therapeutics for iron disorders. In this review, we will summarize the strategies and development programs that have been devised for agonizing or antagonizing hepcidin and its receptor ferroportin.
Collapse
|
100
|
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-β) superfamily of signaling molecules. In addition to protean roles in embryonic development, germ-line specification, and cellular differentiation, a central role in iron homeostasis has recently been demonstrated for certain BMPs. Specifically, BMP6 serves to relate hepatic iron stores to the hepatocellular expression of the iron-regulatory hormone hepcidin. This regulation occurs via cellular SMAD-signaling molecules and is strongly modulated by the BMP coreceptor hemojuvelin (HJV). Mutations in certain genes influencing signaling to hepcidin via the BMP/SMAD pathway are associated with human disorders of iron metabolism, such as hereditary hemochromatosis and iron-refractory iron-deficiency anemia. Evidence suggests that signals in addition to iron stores influence hepcidin expression via the BMP/SMAD pathway. This review summarizes the details of BMP/SMAD signaling, with a particular focus on its role in iron homeostasis and iron-related diseases.
Collapse
Affiliation(s)
- Nermi L Parrow
- Division of Molecular and Clinical Nutrition, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|