51
|
Wang L, Song Y, Yan X, Xu T. A novel protein encoded by circVPS13D attenuates antiviral innate immunity by targeting MAVS in teleost fish. J Virol 2023; 97:e0088623. [PMID: 37843373 PMCID: PMC10688384 DOI: 10.1128/jvi.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The expression of circVPS13D was upregulated with SCRV invasion, which proved that circVPS13D was involved in the regulation of the antiviral immune response. Our study revealed that the existence of circVPS13D promoted the replication of SCRV. Functionally, circVPS13D negatively regulates the antiviral responses of fish. Mechanistically, we confirmed that circVPS13D inhibited RLRs antiviral signaling pathway via the encoded protein VPS13D-170aa by targeting MAVS. Our study provided novel insights into the roles of protein-coding circRNAs and supported VPS13D-170aa as a negative regulator in the antiviral immune responses of teleost fish.
Collapse
Affiliation(s)
- Linchao Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanhong Song
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
52
|
Ruan X, Liu Y, Wang P, Liu L, Ma T, Xue Y, Dong W, Zhao Y, E T, Lin H, Wang D, Yang C, Song J, Liu J, Deng M, An P, Lin Y, Yang J, Cui Z, Cao Y, Liu X. RBMS3-induced circHECTD1 encoded a novel protein to suppress the vasculogenic mimicry formation in glioblastoma multiforme. Cell Death Dis 2023; 14:745. [PMID: 37968257 PMCID: PMC10651854 DOI: 10.1038/s41419-023-06269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly vascularized malignant cancer of the central nervous system, and the presence of vasculogenic mimicry (VM) severely limits the effectiveness of anti-vascular therapy. In this study, we identified downregulated circHECTD1, which acted as a key VM-suppressed factor in GBM. circHECTD1 elevation significantly inhibited cell proliferation, migration, invasion and tube-like structure formation in GBM. RIP assay was used to demonstrate that the flanking intron sequence of circHECTD1 can be specifically bound by RBMS3, thereby inducing circHECTD1 formation to regulate VM formation in GBM. circHECTD1 was confirmed to possess a strong protein-encoding capacity and the encoded functional peptide 463aa was identified by LC-MS/MS. Both circHECTD1 and 463aa significantly inhibited GBM VM formation in vivo and in vitro. Analysis of the 463aa protein sequence revealed that it contained a ubiquitination-related domain and promoted NR2F1 degradation by regulating the ubiquitination of the NR2F1 at K396. ChIP assay verified that NR2F1 could directly bind to the promoter region of MMP2, MMP9 and VE-cadherin, transcriptionally promoting the expression of VM-related proteins, which in turn enhanced VM formation in GBM. In summary, we clarified a novel pathway for RBMS3-induced circHECTD1 encoding functional peptide 463aa to mediate the ubiquitination of NR2F1, which inhibited VM formation in GBM. This study aimed to reveal new mechanisms of GBM progression in order to provide novel approaches and strategies for the anti-vascular therapy of GBM. The schematic illustration showed the inhibitory effect of circHECTD1-463aa in the VM formation in GBM.
Collapse
Affiliation(s)
- Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yubo Zhao
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunqing Yang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jian Song
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiate Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Meiqi Deng
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping An
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Jin Yang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zheng Cui
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
53
|
Huang X, Wang Z, Song M, Huan H, Cai Z, Wu B, Shen J, Zhou YL, Shi J. CircIQGAP1 regulates RCAN1 and RCAN2 through the mechanism of ceRNA and promotes the growth of malignant glioma. Pharmacol Res 2023; 197:106979. [PMID: 37918583 DOI: 10.1016/j.phrs.2023.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Circular RNA (circRNA) is one of non-coding RNA with specific circular structure, which has been found to be involved in regulating a series of malignant biological behaviors in many malignant tumors. In this study, based on the IDH1 molecular typing of gliomas, we identified a significant downregulation of circRNA (circIQGAP1) expression in IDH1 mutant gliomas by high-throughput sequencing. In 79 tissue samples, we confirmed that circIQGAP1 expression was significantly downregulated in IDH1 mutant gliomas, and that low circIQGAP1 expression was positively associated with better prognosis. Knockdown of circIQGAP1 in glioma cell lines inhibited glioma cell malignancy and conversely overexpression of circIQGAP1 promoted glioma malignancy. circIQGAP1 regulated glioma cell migration, proliferation, invasion and apoptosis through miR-1256/RCAN1/Bax/Bcl-2/Caspase3 and miR-622/RCAN2/Bax/Bcl-2/Caspase3 axes. These results suggest that circIQGAP1 plays an important role in glioma development, promotes tumor growth, and is a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Ziheng Wang
- Clinical Biobank, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Mengruo Song
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng224000, China
| | - He Huan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zishu Cai
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Bing Wu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Jinlong Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
54
|
Shao Y, Xu J, Liang B, Zhang S, Chen W, Wang Y, Xing D. The role of CDR1as/ciRS-7 in cardio-cerebrovascular diseases. Biomed Pharmacother 2023; 167:115589. [PMID: 37776642 DOI: 10.1016/j.biopha.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Shuangshuang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
55
|
Mu M, Niu W, Chu F, Dong Q, Hu S, Niu C. CircSOBP suppresses the progression of glioma by disrupting glycolysis and promoting the MDA5-mediated immune response. iScience 2023; 26:107897. [PMID: 37766977 PMCID: PMC10520879 DOI: 10.1016/j.isci.2023.107897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma, an aggressively growing and highly malignant brain tumor, poses substantial therapeutic challenges due to its resistance to radiotherapy and chemotherapy. Recent research has identified circRNAs as pivotal players in glioma formation and development. However, the roles of circRNA in the metabolic and immune regulation of glioma are unclear. In this study, circSOBP expression was significantly downregulated in glioma cells and specimens. Functionally, enhanced circSOBP expression mitigated cell proliferation, invasion, migration, and glycolysis in gliomas. Mechanistically, circSOBP inhibited glycolysis and activated the MDA5-mediated IKKε/TBK1/IRF3 signaling pathway by binding TKFC proteins. Furthermore, the elevated levels of IFN-I induced by the MDA5 pathway increased the number and activity of CD8+ T and NK cells in the immune response of the animal models. In summary, our findings have emphasized the critical role of circSOBP in binding and modulating TKFC protein, offering potential therapeutic avenue for targeting glioma metabolism and immunological reprogramming.
Collapse
Affiliation(s)
- Maolin Mu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Fang Chu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Qingsheng Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
| | - Shanshan Hu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui 230001, P.R. China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui 230001, P.R. China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
56
|
Liu M, Wang W, Zhang H, Bi J, Zhang B, Shi T, Su G, Zheng Y, Fan S, Huang X, Chen B, Song Y, Zhao Z, Shi J, Li P, Lu W, Zhang L. Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis. Int J Mol Sci 2023; 24:14945. [PMID: 37834393 PMCID: PMC10574000 DOI: 10.3390/ijms241914945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| |
Collapse
|
57
|
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene 2023; 42:2783-2800. [PMID: 37587333 PMCID: PMC10504067 DOI: 10.1038/s41388-023-02780-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - David C Michael
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tanvi H Visal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radu Pirlog
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, UK
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
58
|
Gabryelska MM, Conn SJ. The RNA interactome in the Hallmarks of Cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1786. [PMID: 37042179 PMCID: PMC10909452 DOI: 10.1002/wrna.1786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Ribonucleic acid (RNA) molecules are indispensable for cellular homeostasis in healthy and malignant cells. However, the functions of RNA extend well beyond that of a protein-coding template. Rather, both coding and non-coding RNA molecules function through critical interactions with a plethora of cellular molecules, including other RNAs, DNA, and proteins. Deconvoluting this RNA interactome, including the interacting partners, the nature of the interaction, and dynamic changes of these interactions in malignancies has yielded fundamental advances in knowledge and are emerging as a novel therapeutic strategy in cancer. Here, we present an RNA-centric review of recent advances in the field of RNA-RNA, RNA-protein, and RNA-DNA interactomic network analysis and their impact across the Hallmarks of Cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Marta M Gabryelska
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
59
|
Liu Y, Wang J, Zhao X, Li W, Liu Y, Li X, Zhao D, Yu J, Ji H, Shao B, Li Z, Wang J, Yang Y, Hao Y, Wu Y, Yuan Y, Du Z. CDR1as promotes arrhythmias in myocardial infarction via targeting the NAMPT-NAD + pathway. Biomed Pharmacother 2023; 165:115267. [PMID: 37542851 DOI: 10.1016/j.biopha.2023.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Cardiac ventricular arrhythmia triggered by acute myocardial infarction (AMI) is a major cause of sudden cardiac death. We have reported previously that an increased serum level of circular RNA CDR1as is a potential biomarker of AMI. However, the possible role of CDR1as in post-infarct arrhythmia remains unclear. This study in MI mice investigated the effects and underlying mechanism of CDR1as in ventricular arrhythmias associated with MI. We showed that knockdown of CDR1as abbreviated the duration of the abnormally prolonged QRS complex and QTc intervals and decreased susceptibility to ventricular arrhythmias. Optical mapping demonstrated knockdown of CDR1as also reduced post-infarct arrhythmia by increasing the conduction velocity and decreasing dispersion of repolarization. Mechanistically, CDR1as led to the depletion of NAD+ and caused mitochondrial dysfunction by directly targeting the NAMPT protein and repressing its expression. Moreover, CDR1as aggravated dysregulation of the NaV1.5 and Kir6.2 channels in cardiomyocytes, a change which was alleviated by the replenishment of NAD+. These findings suggest that anti-CDR1as is a potential therapeutic approach for ischemic arrhythmias.
Collapse
Affiliation(s)
- Yunqi Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiapan Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yaohua Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xingda Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dan Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongyu Ji
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Bing Shao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhendong Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yilian Yang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yan Hao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuting Wu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
60
|
Grafanaki K, Grammatikakis I, Ghosh A, Gopalan V, Olgun G, Liu H, Kyriakopoulos GC, Skeparnias I, Georgiou S, Stathopoulos C, Hannenhalli S, Merlino G, Marie KL, Day CP. Noncoding RNA circuitry in melanoma onset, plasticity, and therapeutic response. Pharmacol Ther 2023; 248:108466. [PMID: 37301330 PMCID: PMC10527631 DOI: 10.1016/j.pharmthera.2023.108466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ioannis Grammatikakis
- Cancer Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arin Ghosh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulden Olgun
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George C Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerrie L Marie
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
61
|
Hu J, Zhang G, Wang Y, Xu K, Chen L, Luo G, Xu J, Li H, Pei D, Zhao X, Guo Z, Li X, Zong S, Jiang Y, Jing Z. CircGNB1 facilitates the malignant phenotype of GSCs by regulating miR-515-5p/miR-582-3p-XPR1 axis. Cancer Cell Int 2023; 23:132. [PMID: 37407973 DOI: 10.1186/s12935-023-02970-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Glioma is the most common and aggressive primary malignant brain tumor. Circular RNAs (circRNAs) and RNA-binding proteins (RBPs) have been verified to mediate diverse biological behaviors in various human cancers. Therefore, the aim of this study was to explore a novel circRNA termed circGNB1 and elucidate relative molecular mechanism in functional phenotypes, which might be a potential prognostic biomarker and therapeutic approach for glioma. CircGNB1 was upregulated in glioma and closely associated with the low poor prognosis. Functional assays demonstrated that circGNB1 overexpression promoted glioma stem cells (GSCs) viability proliferation, invasion, and neurosphere formation. Mechanistically, circGNB1 upregulated the expression of oncogene XPR1 via sponging miR-515-5p and miR-582-3p. The following experiments proved XPR1 could promote the malignant phenotype of GSCs via upregulating IL6 expression and activating JAK2/STAT3 signaling. Moreover, the RNA binding protein IGF2BP3 could bind to and maintain the stability of circGNB1, thus promoting the effects of circGNB1 on GSCs. Our study reveals that circGNB1 plays a crucial role in promoting tumorigenesis and malignant progression in glioma, which provides a promising cancer biomarker.
Collapse
Affiliation(s)
- Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Guoqing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Yongfeng Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Kai Xu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Lian Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Gang Luo
- Liaoning Maternal and Child Health Hospital, No. 240 Shayang Road, Shenyang, 110005, People's Republic of China
| | - Jinkun Xu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Dongmei Pei
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Zhengting Guo
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Shengliang Zong
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
62
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
63
|
Dai L, Han Y, Yang Z, Zeng Y, Liang W, Shi Z, Tao Y, Liang X, Liu W, Zhou S, Xing Z, Hu W, Wang X. Identification and validation of SOCS1/2/3/4 as potential prognostic biomarkers and correlate with immune infiltration in glioblastoma. J Cell Mol Med 2023. [PMID: 37315184 PMCID: PMC10399539 DOI: 10.1111/jcmm.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Suppressor of cytokine signalling (SOCS) 1/2/3/4 are involved in the occurrence and progression of multiple malignancies; however, their prognostic and developmental value in patients with glioblastoma (GBM) remains unclear. The present study used TCGA, ONCOMINE, SangerBox3.0, UALCAN, TIMER2.0, GENEMANIA, TISDB, The Human Protein Atlas (HPA) and other databases to analyse the expression profile, clinical value and prognosis of SOCS1/2/3/4 in GBM, and to explore the potential development mechanism of action of SOCS1/2/3/4 in GBM. The majority of analyses showed that SOCS1/2/3/4 transcription and translation levels in GBM tissues were significantly higher than those in normal tissues. qRT-PCR, western blotting (WB) and immunohistochemical staining were used to verify that SOCS3 was expressed at higher mRNA and protein levels in GBM than in normal tissues or cells. High SOCS1/2/3/4 mRNA expression was associated with poor prognosis in patients with GBM, especially SOCS3. SOCS1/2/3/4 were highly contraindicated, which had few mutations, and were not associated with clinical prognosis. Furthermore, SOCS1/2/3/4 were associated with the infiltration of specific immune cell types. In addition, SOCS3 may affect the prognosis of patients with GBM through JAK/STAT signalling pathway. Analysis of the GBM-specific protein interaction (PPI) network showed that SOCS1/2/3/4 were involved in multiple potential carcinogenic mechanisms of GBM. In addition, colony formation, Transwell, wound healing and western blotting assays revealed that inhibition of SOCS3 decreased the proliferation, migration and invasion of GBM cells. In conclusion, the present study elucidated the expression profile and prognostic value of SOCS1/2/3/4 in GBM, which may provide potential prognostic biomarkers and therapeutic targets for GBM, especially SOCS3.
Collapse
Affiliation(s)
- Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yongjie Han
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yuling Zeng
- Department of Blood Transfusion, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xianyin Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Wanqing Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| |
Collapse
|
64
|
Li J, Song Y, Cai H, Zhou B, Ma J. Roles of circRNA dysregulation in esophageal squamous cell carcinoma tumor microenvironment. Front Oncol 2023; 13:1153207. [PMID: 37384299 PMCID: PMC10299836 DOI: 10.3389/fonc.2023.1153207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent histological esophageal cancer characterized by advanced diagnosis, metastasis, resistance to treatment, and frequent recurrence. In recent years, numerous human disorders such as ESCC, have been linked to abnormal expression of circular RNAs (circRNAs), suggesting that they are fundamental to the intricate system of gene regulation that governs ESCC formation. The tumor microenvironment (TME), referring to the area surrounding the tumor cells, is composed of multiple components, including stromal cells, immune cells, the vascular system, extracellular matrix (ECM), and numerous signaling molecules. In this review, we briefly described the biological purposes and mechanisms of aberrant circRNA expression in the TME of ESCC, including the immune microenvironment, angiogenesis, epithelial-to-mesenchymal transition, hypoxia, metabolism, and radiotherapy resistance. As in-depth research into the processes of circRNAs in the TME of ESCC continues, circRNAs are promising therapeutic targets or delivery systems for cancer therapy and diagnostic and prognostic indicators for ESCC.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huihong Cai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
65
|
Li M, Chen W, Cui J, Lin Q, Liu Y, Zeng H, Hua Q, Ling Y, Qin X, Zhang Y, Li X, Lin T, Huang L, Jiang Y. circCIMT Silencing Promotes Cadmium-Induced Malignant Transformation of Lung Epithelial Cells Through the DNA Base Excision Repair Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206896. [PMID: 36814305 DOI: 10.1002/advs.202206896] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Changes in gene expression in lung epithelial cells are detected in cancer tissues during exposure to pollutants, highlighting the importance of gene-environmental interactions in disease. Here, a Cd-induced malignant transformation model in mouse lungs and bronchial epithelial cell lines is constructed, and differences in the expression of non-coding circRNAs are analyzed. The migratory and invasive abilities of Cd-transformed cells are suppressed by circCIMT. A significant DNA damage response is observed after exposure to Cd, which increased further following circCIMT-interference. It is found that APEX1 is significantly down-regulated following Cd exposure. Furthermore, it is demonstrated that circCIMT bound to APEX1 during Cd exposure to mediate the DNA base excision repair (BER) pathway, thereby reducing DNA damage. In addition, simultaneous knockdown of both circCIMT and APEX1 promotes the expression of cancer-related genes and malignant transformation after long-term Cd exposure. Overall, these findings emphasis the importance of genetic-epigenetic interactions in chemical-induced cancer transformation.
Collapse
Affiliation(s)
- Meizhen Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Wei Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou, 014030, P. R. China
| | - Qiuyi Lin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yufei Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Huixian Zeng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qiuhan Hua
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiaodi Qin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yindai Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xueqi Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Tianshu Lin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou, 014030, P. R. China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
66
|
Feng H, Deng Z, Peng W, Wei X, Liu J, Wang T. Circular RNA EPHA3 suppresses progression and metastasis in prostate cancer through the miR-513a-3p/BMP2 axis. J Transl Med 2023; 21:288. [PMID: 37118847 PMCID: PMC10148471 DOI: 10.1186/s12967-023-04132-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may regulate the onset and progression of human malignancies by competitively binding to microRNA (miRNA) sponges, thus regulating the downstream genes. However, aberrant circRNA expression patterns and their biological functions in prostate cancer (PCa) warrant further studies. Our research sought to shed further light on the possible role and molecular mechanism of circEPHA3 action in controlling the growth and metastasis of PCa cells. MATERIALS AND METHODS circEPHA3 (has_circ_0066596) was initially screened from a previous circRNA microarray and identified following Actinomycin D and RNase R assays. Fluorescence in situ hybridization, biotin-coupled probe RNA pulldown, and dual-luciferase reporter gene assays were performed to examine the relationship between circEPHA3 and miR-513a-3p. The biological role of circEPHA3 in PCa was assessed by CCK8, wound healing, Transwell assays, and animal experiments. RESULTS We identified a novel circular RNA, circEPHA3 (has_circ_0066596), which was down-regulated in high-grade PCa tissues and cell lines. The outcomes of CCK8, wound healing, Transwell assays, and animal experiments revealed that circEPHA3 prohibited the progression and metastasis of PCa in vivo and in vitro. Mechanistically, circEPHA3 was directly bound to miR-513a-3p and regulated the downstream gene, BMP2, thereby serving as a tumor suppressor in PCa. CONCLUSIONS As a tumor suppressor, circEPHA3 inhibited the proliferation and metastasis of PCa cells through the miR-513a-3p/BMP2 axis, suggesting that circEPHA3 might be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Wei
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
67
|
Zhong G, Zhao Q, Chen Z, Yao T. TGF-β signaling promotes cervical cancer metastasis via CDR1as. Mol Cancer 2023; 22:66. [PMID: 37004067 PMCID: PMC10064584 DOI: 10.1186/s12943-023-01743-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Due to the lack of effective treatment, metastasis is the main cause of cancer related deaths. TGF-β pathway has been reported related to cervical cancer metastasis. However, mechanism is still unclear. METHODS After agonist of TGF-β treatment, RNA sequencing revealed the expression profiles of circRNA in cervical cancer. In situ hybridization was used to analysis relationship between CDR1as and prognosis. Real-time PCR, Western blot, RNA interference, Transwell assay, Wound healing assay, RNA pulldown assay and RIP assays were performed in vitro. And in vivo cervical cancer model (including foot pad model and subcutaneous tumor formation) was also performed. RESULTS CDR1as was found upregulated obviously following TGF-β activation. In situ hybridization showed CDR1as was positively correlated with lymph node metastasis and shortened survival length. Simultaneously, overexpression of CDR1as promoted cervical cancer metastasis in vitro and in vivo. It was also found that CDR1as could facilitate the orchestration of IGF2BP1 on the mRNA of SLUG and stabilize it from degradation. Silencing IGF2BP1 hampers CDR1as related metastasis in cervical cancer. Additionally, effective CDR1as has been proven to activate TGF-β signaling factors known to promote EMT, including P-Smad2 and P-Smad3. CONCLUSIONS Our study proved TGF-β signaling may promote cervical cancer metastasis via CDR1as.
Collapse
Affiliation(s)
- Guanglei Zhong
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Zhiliao Chen
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
68
|
Wang B, Chen H, Deng Y, Chen H, Xing L, Guo Y, Wang M, Chen J. CircDNAJC11 interacts with TAF15 to promote breast cancer progression via enhancing MAPK6 expression and activating the MAPK signaling pathway. J Transl Med 2023; 21:186. [PMID: 36895010 PMCID: PMC9999642 DOI: 10.1186/s12967-023-04020-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/26/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a common malignant tumor in women worldwide. Circular RNA (circRNA) has been proven to play a critical role in BC progression. However, the exact biological functions and underlying mechanisms of circRNAs in BC remain largely unknown. METHODS Here, we first screened for differentially expressed circRNAs in 4 pairs of BC tissues and adjacent non-tumor tissues using a circRNA microarray. Functionally, gain- and loss-of-function experiments in vitro and in vivo showed that circDNAJC11 promoted BC cell proliferation, migration, invasion, and tumor growth. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization assays, and rescue experiments were executed. RESULTS We found that circDNAJC11 was significantly upregulated in triple-negative breast cancer tissues and cells. Clinical data revealed that the high expression of circDNAJC11 was closely correlated with a poor prognosis of BC patients and could be an independent risk factor for BC prognosis. Functionally, gain- and loss-of-function experiments in vitro and in vivo showed that circDNAJC11 promoted BC cell proliferation, migration, invasion, and tumor growth. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization assays, and rescue experiments were executed. We demonstrated that circDNAJC11 combined with TAF15 to promote BC progression via stabilizing MAPK6 mRNA and activating the MAPK signaling pathway. CONCLUSIONS The circDNAJC11/TAF15/MAPK6 axis played a crucial role in the progression and development of BC, suggesting that circDNAJC11 might be a novel biomarker and therapeutical target for BC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China.,Department of Oncology, Daping Hospital of Army Medical University, 10 Changjiang Branch Road, Chongqing, 400042, People's Republic of China
| | - Hang Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, 118 Xingguang Road, Chongqing, 401147, People's Republic of China
| | - Yumei Deng
- Department of Cell Biology and Genetics, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Hong Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Lei Xing
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Yuping Guo
- Department of Cell Biology and Genetics, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Min Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
69
|
Hu F, Peng Y, Fan X, Zhang X, Jin Z. Circular RNAs: implications of signaling pathways and bioinformatics in human cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0466. [PMID: 36861443 PMCID: PMC9978890 DOI: 10.20892/j.issn.2095-3941.2022.0466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Circular RNAs (circRNAs) form a class of endogenous single-stranded RNA transcripts that are widely expressed in eukaryotic cells. These RNAs mediate post-transcriptional control of gene expression and have multiple functions in biological processes, such as transcriptional regulation and splicing. They serve predominantly as microRNA sponges, RNA-binding proteins, and templates for translation. More importantly, circRNAs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Although traditional experimental methods are usually time-consuming and laborious, substantial progress has been made in exploring potential circRNA-disease associations by using computational models, summarized signaling pathway data, and other databases. Here, we review the biological characteristics and functions of circRNAs, including their roles in cancer. Specifically, we focus on the signaling pathways associated with carcinogenesis, and the status of circRNA-associated bioinformatics databases. Finally, we explore the potential roles of circRNAs as prognostic biomarkers in cancer.
Collapse
Affiliation(s)
- Fan Hu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence to: Zhe Jin and Xiaojing Zhang, E-mail: and
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence to: Zhe Jin and Xiaojing Zhang, E-mail: and
| |
Collapse
|
70
|
Roles of circular RNAs in regulating the development of glioma. J Cancer Res Clin Oncol 2023; 149:979-993. [PMID: 35776196 DOI: 10.1007/s00432-022-04136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioma is the most common malignant tumor in the central nervous system. In patients with glioma, the prognosis is poor and median survival is only 12-15 months. With the recent development of sequencing technology, important roles of noncoding RNAs are being discovered in cells, especially those of circular RNAs (circRNAs). Because circRNAs are stable, abundant, and highly conserved, they are regarded as novel biomarkers in the early diagnosis and prognosis of diseases. PURPOSE In this review, roles and mechanisms of circRNAs in the development of glioma are summarized. METHODS This paper collects and reviews relevant PubMed literature. CONCLUSION Several classes of circRNAs are highly expressed in glioma and are associated with malignant biological behaviors of gliomas, including proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. Further studies are needed to clarify the roles of circRNAs in glioma and to determine whether it is possible to increase therapeutic effects on tumors through circRNA intervention.
Collapse
|
71
|
Peña-Paladines JJ, Wong CH, Chen Y. Circularized RNA as novel therapeutics in cancer. Int J Biochem Cell Biol 2023; 156:106364. [PMID: 36639095 DOI: 10.1016/j.biocel.2023.106364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Circular RNAs (CircRNAs) regulate gene expression by functioning as microRNA sponges, regulating protein stability, and gilding proteins for gene transcription and translation. Also, limited circRNAs harbour protein-coding ability through cap-independent pathways. These molecular mechanisms of circRNAs contribute to their importance in several cellular processes. Particularly, the dysregulation of circRNAs also plays a critical role in disease development. Targeting disease-causing circRNAs by restoring their normal expression by gain-of-function or loss-of-function approach and regulating their molecular activities could be potential direction for the development of anti-cancer therapies. Furthermore, due to unique covalently closed circular structure, the superior stability of circRNAs also grants them as novel therapeutic tools replacing the therapeutic small interfering RNAs and messenger RNAs. Here, we will review the functional and molecular mechanisms of circRNAs in pathogenesis, the current methods for targeting the dysregulated circRNAs, and the potential of using synthetic circRNAs in disease treatment and prevention.
Collapse
Affiliation(s)
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, China.
| |
Collapse
|
72
|
Wang H, Yuan H, Guo Q, Zeng X, Liu M, Ji R, Chen Z, Guan Q, Zheng Y, Wang Y, Zhou Y. A novel circRNA, hsa_circ_0069382, regulates gastric cancer progression. Cancer Cell Int 2023; 23:35. [PMID: 36841760 PMCID: PMC9960672 DOI: 10.1186/s12935-023-02871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Aberrant expression of circRNAs is closely associated with the progression of gastric cancer; however, the specific mechanisms involved remain unclear. Our aim was to identify new gastric cancer biomarkers and explore the molecular mechanisms of gastric cancer progression. Therefore, we analyzed miRNA and circRNA microarrays of paired early-stage gastric cancer samples. Our study identified a new circRNA called hsa_circ_0069382, that had not been reported before and was expressed at low levels in gastric cancer tissues. Our study also included bioinformatics analyses which determined that the high expression of hsa_circ_0069382 regulated the BTG anti-proliferation factor 2 (BTG2)/ focal adhesion kinase (FAK) axis in gastric cancer lines by sponging for miR-15a-5p. Therefore, proliferation, invasion, and migration of gastric cancer is impacted. miR-15a-5p overexpression partially restored the effects of hsa_circ_0069382. This study provides potential new therapeutic options and a future direction to explore for gastric cancer treatment, and biomarkers.
Collapse
Affiliation(s)
- Haoying Wang
- grid.32566.340000 0000 8571 0482The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Hao Yuan
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Qinghong Guo
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Xi Zeng
- grid.32566.340000 0000 8571 0482The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Mengxiao Liu
- grid.32566.340000 0000 8571 0482The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Rui Ji
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Zhaofeng Chen
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Quanlin Guan
- grid.412643.60000 0004 1757 2902Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Ya Zheng
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
73
|
lncRNA ELFN1-AS1 promotes proliferation, migration and invasion and suppresses apoptosis in colorectal cancer cells by enhancing G6PD activity. Acta Biochim Biophys Sin (Shanghai) 2023; 55:649-660. [PMID: 36786074 DOI: 10.3724/abbs.2023010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumour cells change their metabolic patterns to support high proliferation rates and cope with oxidative stress. The lncRNA ELFN1-AS1 is highly expressed in a wide range of cancers and is essential to the proliferation and apoptosis of tumour cells. Nevertheless, its function in the metabolic reprogramming of tumour cells is unclear. Here we show that ELFN1-AS1 promotes glucose consumption as well as lactate and NADPH production. Database searching, bioinformatics analysis, RNA immunoprecipitation (RIP) and RNA pull-down assays show that ELFN1-AS1 enhances glucose-6-phosphate dehydrogenase ( G6PD) expression and activates the pentose phosphate pathway (PPP) by promoting TP53 degradation. In addition, luciferase reporter assay and chromatin immunoprecipitation (ChIP) show that YY1 binds to the ELFN1-AS1 promoter to promote transcriptional activation of ELFN1-AS1. Consistent with the in vitro experiments, knockdown of ELFN1-AS1 impedes the growth of tumours transplanted into mice by inhibiting the expression of G6PD. In conclusion, this study reveals that ELFN1-AS1 activates the PPP, and validates the regulatory role of the YY1/ ELFN1-AS1/ TP53/ G6PD axis in colorectal cancer.
Collapse
|
74
|
Circular RNAs-New Kids on the Block in Cancer Pathophysiology and Management. Cells 2023; 12:cells12040552. [PMID: 36831219 PMCID: PMC9953808 DOI: 10.3390/cells12040552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The ever-increasing number of cancer cases and persistently high mortality underlines the urgent need to acquire new perspectives for developing innovative therapeutic approaches. As the research on protein-coding genes brought significant yet only incremental progress in the development of anticancer therapy, much attention is now devoted to understanding the role of non-coding RNAs (ncRNAs) in various types of cancer. Recent years have brought about the awareness that ncRNAs recognized previously as "dark matter" are, in fact, key players in shaping cancer development. Moreover, breakthrough discoveries concerning the role of a new group of ncRNAs, circular RNAs, have evidenced their high importance in many diseases, including malignancies. Therefore, in the following review, we focus on the role of circular RNAs in cancer, particularly in cancer stem-like cells, summarize their mechanisms of action, and provide an overview of the state-of-the-art toolkits to study them.
Collapse
|
75
|
Li B, Li H, Zhang L, Ren T, Meng J. Expression analysis of human glioma susceptibility gene and P53 in human glioma and its clinical significance based on bioinformatics. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:53. [PMID: 36819578 PMCID: PMC9929792 DOI: 10.21037/atm-22-5646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023]
Abstract
Background The exact mechanism of glioblastoma multiforme (GBM) remains unclear. This study was to clarify the expression of P53 in glioma and its molecular mechanism, and to explore the possibility of P53 as a potential therapeutic target of glioma and its clinical application value, so as to provide a new theoretical basis for the treatment of glioma. Methods Firstly, a dataset was established to analyze the expression of P53 in different stages of glioma and its relationship with prognosis by using The Cancer Genome Atlas (TCGA) database, RNA-seq data, and survival data of glioma and normal control samples in gene expression profiling and interactive analysis (GEPIA). The genes co-expressed with P53 were screened out, their differential expression between glioma and normal control group was analyzed, and their functions were analyzed by enrichment analysis. The TGGA database was used for data verification and analysis. The correlation between P53 expression and clinicopathological parameters was analyzed. Kaplan-Meier survival analysis was used to analyze the relationship between P53 expression and overall survival (OS) and progression-free survival (PFS) of glioma patients, and Cox regression analysis was used to analyze the independent factors affecting OS and PFS of glioma patients. Results The results of TCGA data analysis were as follows: The expression level of P53 was different from that of different stages of glioma, namely, the expression level of P53 between grade II and grade III, grade III and grade IV, and grade II and grade IV were significantly different (P<0.05). The results of P53 gene-related survival analysis showed that KNL1 high expression and low expression were significantly different in OS, and the high expression group was associated with poor prognosis (P<0.05). Conclusions The P53 expression can be an effective biological indicator of poor prognosis of glioma.
Collapse
Affiliation(s)
- Baiyu Li
- Department of Neurology Care Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Hang Li
- Department of Geriatrics, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Linghui Zhang
- Department of Internal Medicine, Department of Clinical Medicine, Shijiazhuang Medical College, Shijiazhuang, China
| | - Taowen Ren
- Department of Neurology Care Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Jie Meng
- Department of Psychiatry, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
76
|
Xu S, Li X, Wang Y. Regulation of the p53‑mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review). Exp Ther Med 2023; 25:113. [PMID: 36793330 PMCID: PMC9922943 DOI: 10.3892/etm.2023.11812] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Stroke is one of the most threatening diseases worldwide, particularly in countries with larger populations; it is associated with high morbidity, mortality and disability rates. As a result, extensive research efforts are being made to address these issues. Stroke can include either hemorrhagic stroke (blood vessel ruptures) or ischemic stroke (blockage of an artery). Whilst the incidence of stroke is higher in the elderly population (≥65), it is also increasing in the younger population. Ischemic stroke accounts for ~85% of all stroke cases. The pathogenesis of cerebral ischemic injury can include inflammation, excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance and increased vascular permeability. All of the aforementioned processes have been extensively studied, providing insights into the disease. Other clinical consequences observed include brain edema, nerve injury, inflammation, motor deficits and cognitive impairment, which not only cause disabilities obstructing daily life but also increase the mortality rates. Ferroptosis is a type of cell death that is characterized by iron accumulation and increased lipid peroxidation in cells. In particular, ferroptosis has been previously implicated in ischemia-reperfusion injury in the central nervous system. It has also been identified as a mechanism involved in cerebral ischemic injury. The tumor suppressor p53 has been reported to modulate the ferroptotic signaling pathway, which both positively and negatively affects the prognosis of cerebral ischemia injury. The present review summarizes the recent findings on the molecular mechanisms of ferroptosis under the regulation of p53 underlying cerebral ischemia injury. Understanding of the p53/ferroptosis signaling pathway may provide insights into developing methods for improving the diagnosis, treatment and even prevention of stroke.
Collapse
Affiliation(s)
- Shuangli Xu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xuewei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China,Correspondence to: Dr Yanqiang Wang, Department of Neurology, Affiliated Hospital of Weifang Medical University, 2,428 Yuhe Road, Kuiwen, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
77
|
Lei L, Lu Q, Ma G, Li T, Deng J, Li W. P53 protein and the diseases in central nervous system. Front Genet 2023; 13:1051395. [PMID: 36712862 PMCID: PMC9880595 DOI: 10.3389/fgene.2022.1051395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
P53 protein is the product of P53 gene, which is a well acknowledged tumor suppressor gene. The function of P53 and the relevant mechanisms of anti-neoplasm have raised the interest of researchers since many years ago. It is demonstrated that P53 is a basic cell cycle regulator and a strong inhibitor for versatile cancers in humans. However, most research focuses on other organs and systems instead of the central nervous system (CNS). In fact, in recent years, more and more studies have been suggesting that P53 plays a significant role in multiple CNS tumors and other diseases and disorders such as cerebral stroke and neurodegenerative diseases. In this work, we mainly reviewed the P53's relationship with CNS tumors, cerebral stroke and neurodegenerative diseases, together with the relevant mechanisms, aiming to summarize the research achievements and providing new insight to the future study on diseases in CNS.
Collapse
Affiliation(s)
- Li Lei
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Guifang Ma
- Department of Ear, Nose and Throat (ENT) and Head and Neck (HN) Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiahong Deng
- Department of Ear, Nose and Throat (ENT) and Head and Neck (HN) Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,*Correspondence: Jiahong Deng, ; Weijia Li,
| | - Weijia Li
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,*Correspondence: Jiahong Deng, ; Weijia Li,
| |
Collapse
|
78
|
Wu X, Shi M, Lian Y, Zhang H. Exosomal circRNAs as promising liquid biopsy biomarkers for glioma. Front Immunol 2023; 14:1039084. [PMID: 37122733 PMCID: PMC10140329 DOI: 10.3389/fimmu.2023.1039084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Liquid biopsy strategies enable the noninvasive detection of changes in the levels of circulating biomarkers in body fluid samples, providing an opportunity to diagnose, dynamically monitor, and treat a range of diseases, including cancers. Glioma is among the most common forms of intracranial malignancy, and affected patients exhibit poor prognostic outcomes. As such, diagnosing and treating this disease in its early stages is critical for optimal patient outcomes. Exosomal circular RNAs (circRNAs) are involved in both the onset and progression of glioma. Both the roles of exosomes and methods for their detection have received much attention in recent years and the detection of exosomal circRNAs by liquid biopsy has significant potential for monitoring dynamic changes in glioma. The present review provides an overview of the circulating liquid biopsy biomarkers associated with this cancer type and the potential application of exosomal circRNAs as tools to guide the diagnosis, treatment, and prognostic evaluation of glioma patients during disease progression.
Collapse
Affiliation(s)
- Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Shi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| |
Collapse
|
79
|
Xu J, Huang L, Bao T, Duan K, Cheng Y, Zhang H, Zhang Y, Li J, Li Q, Li F. CircCDR1as mediates PM 2.5-induced lung cancer progression by binding to SRSF1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114367. [PMID: 36508830 DOI: 10.1016/j.ecoenv.2022.114367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Research indicates that particulate matter with an aerodynamic equivalent diameter of less than or equal to 2.5 µm in ambient air may induce lung cancer progression. Circular RNAs are a special kind of endogenous noncoding RNA, and their functions are reflected in various diseases and physiological processes, but there are still few studies related to PM2.5-induced lung cancer. Here, we identified that circCDR1as was upregulated in lung cancer cells stimulated with PM2.5 and positively correlated with the malignant features of lung cancer. The lower expression of CircCDR1as reduced the adverse progression of lung cancer cells after PM2.5 treatment; the lower expression of circCDR1as impaired the growth size and metastatic ability of lung cancer cells in mouse tumour models. Mechanistically, circCDR1as specifically bound to serine/arginine-rich splicing Factor 1 (SRSF1) and affected the splicing of vascular endothelial growth factor-A (VEGFA) by SRSF1. Furthermore, circCDR1as affected SRSF1 function by regulating PARK2-mediated SRSF1 ubiquitination, protein production and degradation. CircCDR1as also affected C-myc and cyclin D1 expression by regulating SRSF1 and affecting the wnt/β-catenin signalling pathway, ultimately promoting malignant behavior and inhibiting the apoptosis of lung cancer cells, thereby causing PM2.5-induced lung cancer development.
Collapse
Affiliation(s)
- Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Tuya Bao
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Kaiqian Duan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Qiujuan Li
- Department of Preventive medicine laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
80
|
Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-κB pathway. Oncogene 2023; 42:138-153. [PMID: 36396726 DOI: 10.1038/s41388-022-02542-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) play important roles in the malignant progression of tumours. Herein, we identified an unreported circRNA (hsa-circ-0072688, also named circADAMTS6) that is specifically upregulated in the hypoxic microenvironment of glioblastoma and closely correlated with poor prognosis of gliblastoma patients. We found that circADAMTS6 promotes the malignant progression of glioblastoma by promoting cell proliferation and inhibiting apoptosis. Mechanistically, the hypoxic tumour microenvironment upregulates circADAMTS6 expression through transcription factor activator protein 1 (AP-1) and RNA-binding protein TAR DNA-binding protein 43 (TDP43). Moreover, circADAMTS6 accelerates glioblastoma progression by recruiting and stabilising annexin A2 (ANXA2) in a proteasomes-dependent manner. Furthermore, we found T-5224 (AP-1 inhibitor) treatment induces downregulation of circADAMTS6 and then inhibits tumour growth. In conclusion, our findings highlight the important role of the circADAMTS6/ANXA2 axis based on hypoxic microenvironment in glioblastoma progression, as well as its regulation in NF-κB pathway. Targeting circADAMTS6 is thus expected to become a novel therapeutic strategy for glioblastoma.
Collapse
|
81
|
Hu Y, Yang Q, Cai S, Wang W, Fu S. The integrative analysis based on super-enhancer related genes for predicting different subtypes and prognosis of patient with lower-grade glioma. Front Genet 2023; 14:1085584. [PMID: 37091789 PMCID: PMC10119407 DOI: 10.3389/fgene.2023.1085584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Objective: Emerging evidence revealed that super-enhancer plays a crucial role in the transcriptional reprogramming for many cancers. The purpose aimed to explored how the super-enhancer related genes affects the prognosis and tumor immune microenvironment (TIME) of patients with low-grade glioma (LGG). Methods: In this study, the differentially expressed genes (DEGs) between LGG cohorts and normal brain tissue cohort were identified by the comprehensive analysis of the super-enhancer (SE) related genes. Then non-negative matrix factorization was performed to seek the optimal classification based on the DEGs, while investigating prognostic and clinical differences between different subtypes. Subsequently, a prognostic related signature (SERS) was constructed for the comprehensive evaluation in term of individualized prognosis, clinical characteristics, cancer markers, genomic alterations, and immune microenvironment of patients with LGG. Results: Based on the expression profiles of 170 DEGs, we identified three SE subtypes, and the three subtypes showed significant differences in prognostic, clinicopathological features. Then, nine optimal SE-related genes were selected to construct the SERS through the least absolute shrinkage and selection operator Cox regression analysis. Survival analysis showed that SERS had strong and stable predictive ability for the prognosis of LGG patients in the The Cancer Genome Atlas, China Glioma Genome Atlas, and Remdrandt cohorts, respectively. We also found that SERS was highly correlated with clinicopathological features, tumor immune microenvironment, cancer hallmarks, and genomic alterations in LGG patients. In addition, the predictive power of SERS for immune checkpoint inhibitor treatment is also superior. The qRT-PCR results and immunohistochemical results also confirmed the difference in the expression of four key genes in normal cells and tumors, as well as in normal tissues and tumor tissues. Conclusion: The SERS could be suitable to utilize individualized prognosis prediction and immunotherapy options for LGG patients in clinical application.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Neurosurgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Qingqing Yang
- Department of Thyroid and Breast Surgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Shuzhou Cai
- Department of Neurosurgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Wei Wang
- Department of Neurosurgery, Wuhan University of Science and Technology Affiliated Xiaogan Central Hospital, Xiaogan, Hubei, China
| | - Shiyin Fu
- Department of Pediatric, Jinchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| |
Collapse
|
82
|
Song J, Zheng J, Liu X, Dong W, Yang C, Wang D, Ruan X, Zhao Y, Liu L, Wang P, Zhang M, Liu Y. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res 2022; 41:171. [PMID: 35538499 PMCID: PMC9086421 DOI: 10.1186/s13046-022-02374-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
RNA-binding proteins (RBPs) and circular RNAs (circRNAs) play important roles in glioblastoma multiforme (GBM). Aerobic glycolysis is a metabolic characteristic of GBM. However, the roles of RBPs and circRNAs in aerobic glycolysis in GBM remain unclear. The aim of this study is to explore the mechanisms by which RBPs and circRNAs regulate aerobic glycolysis in GBM cells.
Methods
RNA sequencing and circRNA microarray analysis were performed to identify RBPs and circRNAs for further study. Mass spectrometry validated the encoded protein and its interacting proteins. Quantitative reverse transcription PCR and western blot assays were used to determine the mRNA and protein expression, respectively. Furthermore, immunofluorescence and fluorescence in situ hybridization assays were used to determine the protein and RNA localization, respectively. Glucose and lactate measurement assays, Seahorse XF glycolysis stress assays and cell viability assays were conducted to investigate the effects on glycolysis and proliferation in GBM cells.
Results
We selected zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1) and circRNA HEAT repeat containing 5B (circHEATR5B) as candidates for this study. These genes were expressed at low levels in GBM tissues and cells. Both ZCRB1 and circHEATR5B overexpression suppressed aerobic glycolysis and proliferation in GBM cells. ZCRB1 overexpression promoted the Alu element-mediated formation of circHEATR5B. In addition, circHEATR5B encoded a novel protein HEATR5B-881aa which interacted directly with Jumonji C-domain-containing 5 (JMJD5) and reduced its stability by phosphorylating S361. JMJD5 knockdown increased pyruvate kinase M2 (PKM2) enzymatic activity and suppressed glycolysis and proliferation in GBM cells. Finally, ZCRB1, circHEATR5B and HEATR5B-881aa overexpression inhibited GBM xenograft growth and prolonged the survival time of nude mice.
Conclusions
This study reveals a novel mechanism of regulating aerobic glycolysis and proliferation in GBM cells through the ZCRB1/circHEATR5B/HEATR5B-881aa/JMJD5/PKM2 pathway, which can provide novel strategies and potential targets for GBM therapy.
Collapse
|
83
|
Zhou Z, Cui X, Gao P, Zhang X, Zhu C, Sun B. Circular RNA circRASSF5 Functions as an Anti-Oncogenic Factor in Hepatocellular Carcinoma by Acting as a Competitive Endogenous RNA Through Sponging miR-331-3p. J Hepatocell Carcinoma 2022; 9:1041-1056. [PMID: 36217445 PMCID: PMC9547604 DOI: 10.2147/jhc.s376063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Recently, emerging studies have validated that circular RNAs participate in multiple biological progresses in various human malignant tumors, including hepatocellular carcinoma (HCC). However, until now, the elucidated mechanism of circular RNAs is only the tip of the iceberg. In this study, we firstly identify a novel circular RNA circRASSF5 (the only circular RNA derived from the RASSF5 gene), and attempt to investigate its biological function and underlying mechanism in HCC. Methods qRT-PCR, Western blotting and IHC were applied to detect the expression of related genes. CCK-8 assay, EdU staining, wound healing and transwell assays were used to investigate HCC proliferation, migration and invasion abilities. Animal model studies were included to investigate the function of circRASSF5 in HCC tumorigenesis and metastasis. RNA pull-down assay, luciferase reporter assay and FISH (fluorescence in situ hybridization) assay were performed to explore the potential biological mechanism underlying circRASSF5 function in HCC. Results CircRASSF5 is obviously downregulated in both HCC tissues and cell lines. Low level of circRASSF5 is negatively associated with larger tumor size, severe vascular invasion, more portal vein tumor embolus and unfavorable prognosis. Loss-of-function assay reveals that circRASSF5 remarkably impedes the growth and metastasis of HCC cells in vitro and in vivo. Mechanistically, circRASSF5 directly interacts with miR-331-3p as a sponge, and then enhances the expression of PH domain and leucine-rich repeat protein phosphatase (PHLPP), thus restraining the progression of HCC cells. Conclusion Altogether, we validate that circRASSF5 is a tumor suppressor in HCC, which competitively sponges with miR-331-3p and then enhances the tumor inhibitory effect of PHLPP, indicating the potential application value of circRASSF5 for HCC diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Zhao Zhou
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaohan Cui
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Peng Gao
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xudong Zhang
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Chunfu Zhu
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China,Correspondence: Chunfu Zhu, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China, Email
| | - Beicheng Sun
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,Beicheng Sun, Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China, Email
| |
Collapse
|
84
|
Yuan Y, Zhang X, Du K, Zhu X, Chang S, Chen Y, Xu Y, Sun J, Luo X, Deng S, Qin Y, Feng X, Wei Y, Fan X, Liu Z, Zheng B, Ashktorab H, Smoot D, Li S, Xie X, Jin Z, Peng Y. Circ_CEA promotes the interaction between the p53 and cyclin-dependent kinases 1 as a scaffold to inhibit the apoptosis of gastric cancer. Cell Death Dis 2022; 13:827. [PMID: 36167685 PMCID: PMC9515085 DOI: 10.1038/s41419-022-05254-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/23/2023]
Abstract
Circular RNAs (circRNAs) have been reported to play essential roles in tumorigenesis and progression. This study aimed to identify dysregulated circRNAs in gastric cancer (GC) and investigate the functions and underlying mechanism of these circRNAs in GC development. Here, we identify circ_CEA, a circRNA derived from the back-splicing of CEA cell adhesion molecule 5 (CEA) gene, as a novel oncogenic driver of GC. Circ_CEA is significantly upregulated in GC tissues and cell lines. Circ_CEA knockdown suppresses GC progression, and enhances stress-induced apoptosis in vitro and in vivo. Mechanistically, circ_CEA interacts with p53 and cyclin-dependent kinases 1 (CDK1) proteins. It serves as a scaffold to enhance the association between p53 and CDK1. As a result, circ_CEA promotes CDK1-mediated p53 phosphorylation at Ser315, then decreases p53 nuclear retention and suppresses its activity, leading to the downregulation of p53 target genes associated with apoptosis. These findings suggest that circ_CEA protects GC cells from stress-induced apoptosis, via acting as a protein scaffold and interacting with p53 and CDK1 proteins. Combinational therapy of targeting circ_CEA and chemo-drug caused more cell apoptosis, decreased tumor volume and alleviated side effect induced by chemo-drug. Therefore, targeting circ_CEA might present a novel treatment strategy for GC.
Collapse
Affiliation(s)
- Yuan Yuan
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaojing Zhang
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Kaining Du
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaohui Zhu
- grid.499351.30000 0004 6353 6136Department of Pharmacology, College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118 People’s Republic of China
| | - Shanshan Chang
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yang Chen
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yidan Xu
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Jiachun Sun
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, No. 24, Jinhua Road, Jianxi District, Luoyang, Henan 471003 People’s Republic of China
| | - Xiaonuan Luo
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Shiqi Deng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Ying Qin
- grid.452847.80000 0004 6068 028XDepartment of Gastrointestinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Xianling Feng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yanjie Wei
- grid.458489.c0000 0001 0483 7922Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Xinmin Fan
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Ziyang Liu
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Baixin Zheng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Hassan Ashktorab
- grid.257127.40000 0001 0547 4545Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060 USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208 USA
| | - Song Li
- grid.454883.60000 0004 1788 7648Shenzhen Science & Technology Development Exchange Center, Shenzhen, Guangdong 518055 People’s Republic of China
| | - Xiaoxun Xie
- grid.256607.00000 0004 1798 2653School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhe Jin
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yin Peng
- grid.508211.f0000 0004 6004 3854Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060 People’s Republic of China
| |
Collapse
|
85
|
Słomka A, Kornek M, Cho WC. Small Extracellular Vesicles and Their Involvement in Cancer Resistance: An Up-to-Date Review. Cells 2022; 11:2913. [PMID: 36139487 PMCID: PMC9496799 DOI: 10.3390/cells11182913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, tremendous progress has been made in understanding the roles of extracellular vesicles (EVs) in cancer. Thanks to advancements in molecular biology, it has been found that the fraction of EVs called exosomes or small EVs (sEVs) modulates the sensitivity of cancer cells to chemotherapeutic agents by delivering molecularly active non-coding RNAs (ncRNAs). An in-depth analysis shows that two main molecular mechanisms are involved in exosomal modified chemoresistance: (1) translational repression of anti-oncogenes by exosomal microRNAs (miRs) and (2) lack of translational repression of oncogenes by sponging of miRs through long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). At the cellular level, these processes increase the proliferation and survival of cancer cells and improve their ability to metastasize and resist apoptosis. In addition, studies in animal models have shown enhancing tumor size under the influence of exosomal ncRNAs. Ultimately, exosomal ncRNAs are responsible for clinically significant chemotherapy failures in patients with different types of cancer. Preliminary data have also revealed that exosomal ncRNAs can overcome chemotherapeutic agent resistance, but the results are thoroughly fragmented. This review presents how exosomes modulate the response of cancer cells to chemotherapeutic agents. Understanding how exosomes interfere with chemoresistance may become a milestone in developing new therapeutic options, but more data are still required.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
86
|
Almouh M, Razmara E, Bitaraf A, Ghazimoradi MH, Hassan ZM, Babashah S. Circular RNAs play roles in regulatory networks of cell signaling pathways in human cancers. Life Sci 2022; 309:120975. [PMID: 36126723 DOI: 10.1016/j.lfs.2022.120975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
87
|
Wang S, Xiao F, Li J, Fan X, He Z, Yan T, Yang M, Yang D. Circular RNAs Involved in the Regulation of the Age-Related Pathways. Int J Mol Sci 2022; 23:ijms231810443. [PMID: 36142352 PMCID: PMC9500598 DOI: 10.3390/ijms231810443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have been extensively studied in recent years. Aging is a process related to functional decline that is regulated by signal transduction. An increasing number of studies suggest that circRNAs can regulate aging and multiple age-related diseases through their involvement in age-related signaling pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein, we summarize research progress on the biological functions of circRNAs in seven main age-related signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In this review, we suggest that circRNAs are widely involved in the regulation of the main age-related pathways and are potential biomarkers for aging and age-related diseases.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| |
Collapse
|
88
|
Circular RNA KIF4A Promotes Liver Metastasis of Breast Cancer by Reprogramming Glucose Metabolism. JOURNAL OF ONCOLOGY 2022; 2022:8035083. [PMID: 36052282 PMCID: PMC9427241 DOI: 10.1155/2022/8035083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Background Circular RNAs (circRNAs) regulate complex functional processes and play crucial roles in cancer development and progression. It was reported that circKIF4 regulates the progression of triple-negative breast cancer (TNBC). This study evaluates the role of circKIF4 in breast cancer distant metastasis and metabolic reprogramming. Methods RT-qPCR was performed to verify the expression of circKIF4A in breast cancer, liver metastatic tissues, and cell lines. The function of circKIF4A in metastasis was evaluated both in vitro and in vivo through a series of experiments, including cell migration and glucose intake experiments. Additionally, we conducted molecular experiments to clarify the regulatory role of circKIF4A. We then conducted a Luciferase reporter assay and an RNA immunoprecipitation assay to identify the molecular interactions between circKIF4A and miRNA. Results circKIF4A was overexpressed in breast cancer cell lines and tissues, inhibiting its expression and suppressing breast cancer growth and metastasis. Interestingly, we observed that circKIF4A reprogrammed the glucose metabolism of breast cancer, and silencing circKIF4A greatly affected glucose uptake and lactate production in breast cancer cells. miR-335 can be sponged by circKIF4A, which affected the expression of ALDOA/OCT4 protein and regulated HK2/PKM2 expression. Conclusions This study demonstrated that the circKIF4A-miR-335-OCT4/ALDOA-HK2/PKM2 axis is critical to breast cancer metabolic reprogramming, indicating that this axis could be a novel therapeutic target for the treatment of liver metastasis of breast cancer.
Collapse
|
89
|
Zhu Y, Huang G, Li S, Xiong H, Chen R, Zuo L, Liu H. CircSMARCA5: A key circular RNA in various human diseases. Front Genet 2022; 13:921306. [PMID: 36081987 PMCID: PMC9445203 DOI: 10.3389/fgene.2022.921306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are recognized as a novel type of single-stranded endogenous noncoding RNA molecule with the characteristics of tissue specificity, sequence conservation and structural stability. Accumulating studies have shown that circRNAs play a unique biological role in different kinds of diseases. CircRNAs can affect tumor proliferation, migration, metastasis and other behaviors by modulating the expression of downstream genes. CircSMARCA5, an example of a circRNA, is dysregulated in various noninfectious diseases, such as tumors, osteoporosis, atherosclerosis and coronary heart disease. Furthermore, recent studies have demonstrated that circSMARCA5 is associated with the occurrence and development of a variety of tumors, including gastric cancer, glioblastoma, hepatocellular carcinoma, multiple myeloma, colorectal cancer, breast cancer and osteosarcoma. Mechanistically, circSMARCA5 primarily acts as a sponge of miRNAs to regulate the expression of downstream genes, and can serve as a potential biomarker for the diagnosis of malignant tumors. This review summarizes the biological roles of circSMARCA5 and its molecular mechanism of action in various diseases. Moreover, the meta-analysis of some publications showed that the expression of circSMARCA5 was significantly correlated with the prognosis of patients and tumor TNM stage, showing that circSMARCA5 has the potential to be a prognostic marker.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gaozhen Huang
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shihao Li
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Xiong
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ruiqi Chen
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ling Zuo, ; Hongwei Liu,
| | - Hongwei Liu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ling Zuo, ; Hongwei Liu,
| |
Collapse
|
90
|
Goenka A, Tiek DM, Song X, Iglesia RP, Lu M, Hu B, Cheng SY. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022; 10:2031. [PMID: 36009578 PMCID: PMC9405925 DOI: 10.3390/biomedicines10082031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
For decades, research in cancer biology has been focused on the protein-coding fraction of the human genome. However, with the discovery of non-coding RNAs (ncRNAs), it has become known that these entities not only function in numerous fundamental life processes such as growth, differentiation, and development, but also play critical roles in a wide spectrum of human diseases, including cancer. Dysregulated ncRNA expression is found to affect cancer initiation, progression, and therapy resistance, through transcriptional, post-transcriptional, or epigenetic processes in the cell. In this review, we focus on the recent development and advances in ncRNA biology that are pertinent to their role in glioma tumorigenesis and therapy response. Gliomas are common, and are the most aggressive type of primary tumors, which account for ~30% of central nervous system (CNS) tumors. Of these, glioblastoma (GBM), which are grade IV tumors, are the most lethal brain tumors. Only 5% of GBM patients survive beyond five years upon diagnosis. Hence, a deeper understanding of the cellular non-coding transcriptome might help identify biomarkers and therapeutic agents for a better treatment of glioma. Here, we delve into the functional roles of microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in glioma tumorigenesis, discuss the function of their extracellular counterparts, and highlight their potential as biomarkers and therapeutic agents in glioma.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Marie Tiek
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
91
|
Circular RNA circPOSTN promotes neovascularization by regulating miR-219a-2-3p/STC1 axis and stimulating the secretion of VEGFA in glioblastoma. Cell Death Dis 2022; 8:349. [PMID: 35927233 PMCID: PMC9352789 DOI: 10.1038/s41420-022-01136-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM), the most malignant type of astrocytic tumor, is one of the deadliest cancers prevalent in adults. Along with tumor growth, patients with GBM generally suffer from extensive cerebral edema and apparent symptoms of intracranial hyper-pressure. Accumulating evidence has demonstrated that circRNA plays a critically important role in tumorigenesis and progression. However, the biological function and the underlying mechanism of circRNA in GBM remain elusive. In this study, by conducting gene expression detection based on 15 pairs of GBM clinical specimens and the normal adjunct tissues, we observed that circPOSTN showed abnormally higher expression in GBM. Both loss-of-function and gain-of-function biological experiments demonstrated that circPOSTN scheduled the proliferation, migration, and neovascularization abilities of GBM cells. Further, fluorescence in situ hybridization (FISH) assay, quantitative RT-PCR, and subcellular separation suggested that circPOSTN was predominately localized in the cytoplasm and may serve as a competing endogenous RNA (ceRNA). CircRNA-miRNA interaction prediction based on online analytical processing, AGO2-RIP assay, biotin labeled RNA pulldown assay, and dual-luciferase reporter assay revealed that circPOSTN sponged miR-219a-2-3p, limited its biological function, and ultimately upregulated their common downstream gene STC1. Finally, by carrying out in vitro and in vivo functional assays, we uncovered a new regulatory axis circPOSTN/miR-219a-2-3p/STC1 that promoted GBM neovascularization by increasing vascular endothelial growth factor A (VEGFA) secretion. Our study underscores the critical role of circPOSTN in GBM progression, providing a novel insight into GBM anti-tumor therapy.
Collapse
|
92
|
Gao Z, Xu J, Fan Y, Qi Y, Wang S, Zhao S, Guo X, Xue H, Deng L, Zhao R, Sun C, Zhang P, Li G. PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:223. [PMID: 35836243 PMCID: PMC9284800 DOI: 10.1186/s13046-022-02431-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Background Resistance to temozolomide (TMZ) is a major obstacle to preventing glioblastoma (GBM) recurrence after surgery. Although long noncoding RNAs (lncRNAs) play a variety of roles in GBM, the lncRNAs that regulate TMZ resistance have not yet been clearly elucidated. This study aims to identify lncRNAs that may affect TMZ treatment sensitivity and to explore novel therapeutic strategies to overcome TMZ resistance in GBM. Methods LncRNAs associated with TMZ resistance were identified using the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Quantitative real-time PCR (qRT–PCR) was used to determine the expression of PDIA3P1 in TMZ-resistant and TMZ-sensitive GBM cell lines. Both gain-of-function and loss-of-function studies were used to assess the effects of PDIA3P1 on TMZ resistance using in vitro and in vivo assays. Glioma stem cells (GSCs) were used to determine the effect of PDIA3P1 on the GBM subtype. The hypothesis that PDIA3P1 promotes proneural-to-mesenchymal transition (PMT) was established using bioinformatics analysis and functional experiments. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between PDIA3P1 and C/EBPβ. The posttranslational modification mechanism of C/EBPβ was verified using ubiquitination and coimmunoprecipitation (co-IP) experiments. CompuSyn was leveraged to calculate the combination index (CI), and the antitumor effect of TMZ combined with nefllamapimod (NEF) was validated both in vitro and in vivo. Results We identified a lncRNA, PDIA3P1, which was upregulated in TMZ-resistant GBM cell lines. Overexpression of PDIA3P1 promoted the acquisition of TMZ resistance, whereas knockdown of PDIA3P1 restored TMZ sensitivity. PDIA3P1 was upregulated in MES-GBM, promoted PMT progression in GSCs, and caused GBMs to be more resistant to TMZ treatment. Mechanistically, PDIA3P1 disrupted the C/EBPβ-MDM2 complex and stabilized the C/EBPβ protein by preventing MDM2-mediated ubiquitination. Expression of PDIA3P1 was upregulated in a time- and concentration-dependent manner in response to TMZ treatment, and TMZ-induced upregulation of PDIA3P1 was mediated by the p38α-MAPK signaling pathway. NEF is a small molecule drug that specifically targets p38α with excellent blood–brain barrier (BBB) permeability. NEF blocked TMZ-responsive PDIA3P1 upregulation and produced synergistic effects when combined with TMZ at specific concentrations. The combination of TMZ and NEF exhibited excellent synergistic antitumor effects both in vitro and in vivo. Conclusion PDIA3P1 promotes PMT by stabilizing C/EBPβ, reducing the sensitivity of GBM cells to TMZ treatment. NEF inhibits TMZ-responsive PDIA3P1 upregulation, and NEF combined with TMZ provides better antitumor effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02431-0.
Collapse
Affiliation(s)
- Zijie Gao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Chong Sun
- Immune Regulation in Cancer, Germany Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| |
Collapse
|
93
|
Role of Circular RNA in Brain Tumor Development. Cells 2022; 11:cells11142130. [PMID: 35883576 PMCID: PMC9315629 DOI: 10.3390/cells11142130] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Central nervous system tumors are a leading cause of cancer-related death in children and adults, with medulloblastoma (MB) and glioblastoma (GBM) being the most prevalent malignant brain tumors, respectively. Despite tremendous breakthroughs in neurosurgery, radiation, and chemotherapeutic techniques, cell heterogeneity and various genetic mutations impacting cell cycle control, cell proliferation, apoptosis, and cell invasion result in unwanted resistance to treatment approaches, with a 5-year survival rate of 70–80% for medulloblastoma, and the median survival time for patients with glioblastoma is only 15 months. Developing new medicines and utilizing combination medications may be viewed as excellent techniques for battling MB and GBM. Circular RNAs (circRNAs) can affect cancer-developing processes such as cell proliferation, cell apoptosis, invasion, and chemoresistance in this regard. As a result, several compounds have been introduced as prospective therapeutic targets in the fight against MB and GBM. The current study aims to elucidate the fundamental molecular and cellular mechanisms underlying the pathogenesis of GBM in conjunction with circRNAs. Several mechanisms were examined in detail, including PI3K/Akt/mTOR signaling, Wnt/-catenin signaling, angiogenic processes, and metastatic pathways, in order to provide a comprehensive knowledge of the involvement of circRNAs in the pathophysiology of MB and GBM.
Collapse
|
94
|
Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, Fu M, Shi H, Cai H, Qian H, Xu W, Zhang X. Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer 2022; 21:141. [PMID: 35780119 PMCID: PMC9250212 DOI: 10.1186/s12943-022-01606-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing studies suggest that circular RNAs (circRNAs) are critical regulators of cancer development and progression. However, the biological roles and mechanisms of circRNAs in gastric cancer (GC) remain largely unknown. METHODS We identified the differentially expressed circRNAs in GC by analyzing Gene Expression Omnibus (GEO) datasets. We explored the biological roles of circRNAs in GC by in vitro functional assays and in vivo animal studies. We performed tagged RNA affinity purification (TRAP), RNA immunoprecipitation (RIP), mass spectrometry (MS), RNA sequencing, luciferase reporter assays, and rescue experiments to investigate the mechanism of circRNAs in GC. RESULTS Downregulated expression of circular RNA EIF4G3 (circEIF4G3; hsa_circ_0007991) was found in GC and was associated with poor clinical outcomes. Overexpression of circEIF4G3 suppressed GC growth and metastasis through the inhibition of β-catenin signaling, whereas knockdown of circEIF4G3 showed the opposite effects. Mechanistic studies revealed that circEIF4G3 bound to δ-catenin protein to promote its TRIM25-mediated ubiquitin degradation and interacted with miR-4449 to upregulate SIK1 expression. CONCLUSION Our findings uncovered a tumor suppressor function of circEIF4G3 in GC through the regulation of δ-catenin protein stability and miR-4449/SIK1 axis. CircEIF4G3 may act as a promising prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xueyan Zang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, China
| | - Yanke Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Medical College of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Medical College of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Hui Qian
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Xu Zhang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Medical College of Jiangsu University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
95
|
Wu P, Qin J, Liu L, Tan W, Lei L, Zhu J. circEPSTI1 promotes tumor progression and cisplatin resistance via upregulating MSH2 in cervical cancer. Aging (Albany NY) 2022; 14:5406-5416. [PMID: 35779530 PMCID: PMC9320557 DOI: 10.18632/aging.204152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
CircRNAs (circRNAs) are a kind of non-coding RNAs which are extensively distributed in tissues. Previous investigations reported that circRNAs harbor indispensable roles in modulating the progress of multiple cancers. Nevertheless, the function along with the molecular mechanism of most circRNAs in cervical cancer progression was still not clear. Herein, we illustrated that circEPSTI1 is a remarkably upregulated circRNA, which we validated in tissues with cervical cancer along with cell lines. The biological role of circEPSTI1 in the advancement of cervical cancer was probed via loss-of function assessments. Silencing circEPSTI1 could diminish the proliferative capacity of the cervical cancer cells to spread. In cervical cancer cells, silencing circEPSTI1 dramatically elevated drug responsivity to cisplatin. Mechanically, RNA immuno-precipitation experiments and dual luciferase enzyme reporter experiments were conducted to reveal the molecular mechanism of circEPSTI1 in cervical cancer. In conclusion, this research premise identified the biological function of circEPSTI1-miR-370-3p-MSH2 axis in cervical cancer progression. Our result is significant for slowing the progress of and overcoming drug resistance of cervical cancer.
Collapse
Affiliation(s)
- Peng Wu
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, Hunan Province, China
| | - Jing Qin
- Department of Pathology, The First People's Hospital of Changde City, Changde 415000, China
| | - Lingyan Liu
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, Hunan Province, China
| | - Wupeng Tan
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, Hunan Province, China
| | - Linchen Lei
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, Hunan Province, China
| | - Jiayu Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
96
|
CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother 2022; 151:113150. [PMID: 35623170 DOI: 10.1016/j.biopha.2022.113150] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Circular RNAs (circRNAs), a class of single-stranded noncoding RNAs with a covalently closed loop structure, are recognized as promising biomarkers and targets for diagnosing and treating dozens of diseases, especially cancers. CircRNAs are extremely stable, abundant and conserved and have tissue- or developmental stage-specific expression. Currently, the biogenesis and biological functions of circRNAs have been increasingly revealed with deep sequencing and bioinformatics. Studies have indicated that circRNAs are frequently expressed in brain tissues and that their expression levels change in different stages of neural development, suggesting that circRNAs may play an important role in diseases of the nervous system, such as glioma. However, because the biogenesis and functions of circRNAs do not depend on a single mechanism but are coregulated by multiple factors, it is necessary to further explore the underlying mechanisms. In this review, we summarized the classification, mechanisms of biogenesis and biological functions of circRNAs. Meanwhile, we emphatically expounded on the process of abnormal expression of circRNAs, methods used in circRNA research, and their effects on the malignant biological capabilities of glioma.
Collapse
|
97
|
Gao X, Tian X, Huang Y, Fang R, Wang G, Li D, Zhang J, Li T, Yuan R. Role of circular RNA in myocardial ischemia and ageing-related diseases. Cytokine Growth Factor Rev 2022; 65:1-11. [PMID: 35561533 DOI: 10.1016/j.cytogfr.2022.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/10/2023]
Abstract
Circular RNA (circRNA) is a new endogenous transcription product, which has attracted significant attention in RNA biology research.CircRNA comprise exons or introns involved in regulation of various mechanisms.These molecules are stable and species-specific, as well as cell and tissue-specific.Cardiovascular diseases particularly myocardial ischemia and ageing-related diseases, pose a major health care burden and novel treatments and biomarkers should be explored.Recent findings indicate that circRNAs are implicated in biological processes, such as glucose metabolism, fatty acid oxidation, mitochondrial biosynthesis, implying that they are potential targets for myocardial ischemia treatment.In the present review, the functions of circRNAs in the heart are described, with emphasis given on in the relationship with myocardial ischemia and cardiac aging-related diseases.Directions for future research are also summarized.
Collapse
Affiliation(s)
- Xiaolong Gao
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Xin Tian
- Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Ye Huang
- Department of Emergency, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan Playground Street, Beijing 100091, China
| | - Rong Fang
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China
| | - Gendi Wang
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Dan Li
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Junru Zhang
- Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an 710032, China.
| | - Ruihua Yuan
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Real World Clinical Research Institute, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China.
| |
Collapse
|
98
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Sarfaraz S, Taheri M, Ayatollahi SA. Circ_CDR1as: A circular RNA with roles in the carcinogenesis. Pathol Res Pract 2022; 236:153968. [PMID: 35667198 DOI: 10.1016/j.prp.2022.153968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022]
Abstract
Circular RNAs are a group of ancient but recently appreciated transcripts that affect carcinogenesis. An example of cancer-related circular RNAs is circ_CDR1as. It is mostly regarded as an oncogenic circular RNA, yet in bladder cancer and glioma it has the opposite effect. In gastric and ovarian cancer, both roles have been reported for this circular RNA. Circ_CDR1as has regulatory effects on miR-1270/AFP, miR-1287/Raf1, miR-7-5p/KLF4, miR-641/HOXA9, miR-219a-5p/SOX5, miR-7/HOXB13 and miR-876-5p/MAGE-A molecular axes. miR-7 is the most appreciated interacting miRNA with circ_CDR1as, since its interaction with circ_CDR1as has been validated in liver cancer, lung cancer, colorectal cancer, esophageal carcinoma, gastric cancer, pancreatic cancer, thyroid cancer, oral squamous cell carcinoma, nasopharyngeal carcinoma and osteosarcoma. The present article aims at summarization of the role of circ_CDR1as in neoplasms and its application as a biomarker in human cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayybeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Sana Sarfaraz
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
99
|
Liu Y, Hua Q, Li M, Li X, Chen W, Zeng H, Diao Q, Shi C, Ling Y, Jiang Y. Circular RNA circNIPBL promotes NNK-induced DNA damage in bronchial epithelial cells via the base excision repair pathway. Arch Toxicol 2022; 96:2049-2065. [PMID: 35435490 DOI: 10.1007/s00204-022-03297-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/31/2022] [Indexed: 01/18/2023]
Abstract
Environmental chemical exposure often causes DNA damage, which leads to cellular dysfunction and the development of diseases. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen that is known to cause DNA damage, while remains unknown about the underlying mechanism. In this study, simulated doses of NNK exposure in smokers, ranging from 50 to 300 μM, were used to detect the DNA damage effects of NNK in two human bronchial epithelial cells, 16HBE and BEAS-2B. The comet assay revealed increased DNA damage in response to NNK treatment, as measured by increased Olive tail moment (OTM). NNK treatment also led to elevated foci formation and protein expression of γ-H2AX, a DNA damage sensor. Dysregulation of proliferation, cell cycle arrest and apoptosis, was also observed in NNK-treated cells. Furthermore, the most effective dose of NNK (300 μM) was used in subsequent mechanistic studies. A circular RNA circNIPBL was identified to be significantly up-regulated in NNK-treated cells, circNIPBL knockdown successfully alleviated NNK-induced DNA damage and reversed the cellular dysregulation, while circNIPBL overexpression had the opposite effect. Mechanistically, we identified an interaction between circNIPBL and PARP1, a critical enzyme of the base excision repair (BER) pathway. CircNIPBL silencing successfully alleviated the NNK-induced inhibition of BER pathway proteins, including PARP1, XRCC1, PCNA and FEN1, while overexpression of circNIPBL had the opposite effect. In summary, our study shows for the first time that circNIPBL promotes NNK-induced DNA damage and cellular dysfunction through the BER pathway. In addition, our findings reveal the crucial role of epigenetic regulation in carcinogen-induced genetic lesions and further our understanding of environmental carcinogenesis.
Collapse
Affiliation(s)
- Yufei Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Qiuhan Hua
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Xueqi Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Wei Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Huixian Zeng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Qinqin Diao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Changhong Shi
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
100
|
Yin H, Wang H, Wang M, Yan Y, Dong Q, Li Q, Liu Y, Wang X, Guo T, Niu L, Zhang H, Wang B, Yao X, Yuan G, Pan Y. CircTCF25 serves as a sponge for miR-206 to support proliferation, migration, and invasion of glioma via the Jak2/p-Stat3/CypB axis. Mol Carcinog 2022; 61:558-571. [PMID: 35384084 DOI: 10.1002/mc.23402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022]
Abstract
Glioma is the most common primary malignant intracranial tumor in humans, and glioblastoma (GBM) has been associated with a more aggressive histology and poorer prognosis. There is growing evidence that circular RNAs (circRNAs) are involved in the progression of various malignancies; however, the role and molecular mechanism of circRNAs in glioma remain elusive. In the present study, we screened for differentially expressed circRNAs in gliomas by using a bioinformatics method. Significant upregulation in glioma tissues was verified by quantitative real-time polymerase chain reaction (qRT-PCR), and the prognostic value was evaluated. The potential oncogenic role of circular RNA TCF25 (circTCF25) in glioma was assessed both in vivo and in vitro. Bioinformatics analysis and luciferase reporter assays confirmed the interaction among circTCF25, microRNA-206 (miR-206), and its target gene Cyclophilin B (CypB). circTCF25 was predominantly located in the cytoplasm; the combination of mir-206 and circTCF25 reverses the effects of knockdown of circTCF25 on the proliferation, migration, invasion, and tumorigenesis of glioma cells. Competitive binding between circTCF25 and miR-206 mainly upregulates target gene CypB expression by preventing its inhibition of the Jak2/p-stat3 pathway. In addition, knockdown of circTCF25 reduced CypB expression by inhibiting JAK2/p-stat3, which was rescued by treatment with a miR-206 inhibitor. In summary, our findings demonstrate that the circTCF25/miR-206/CypB axis plays a vital role in glioma progression, migration, invasion, and tumorigenesis.
Collapse
Affiliation(s)
- Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Hongyu Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Maolin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yunji Yan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Qiang Dong
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Qiao Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yang Liu
- Key Laboratory of Neurology of Gansu Province, Lanzhou, Gansu Province, China
| | - Xiaoqing Wang
- Key Laboratory of Neurology of Gansu Province, Lanzhou, Gansu Province, China
| | - Tianxue Guo
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Liang Niu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - He Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Bo Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xuan Yao
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Guoqiang Yuan
- Key Laboratory of Neurology of Gansu Province, Lanzhou, Gansu Province, China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.,Key Laboratory of Neurology of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|